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Structure

• Hierarchical organization of monkey AC:

3 core, 8 belt, 2 parabelt fields (Hackett

et al., 1998; Kaas & Hackett, 2000).

• Serial feedforward activation from core to

belt and to parabelt fields along many

parallel routes.

• Each field consists of n columns.

• The auditory cortex (AC) creates representations of sound sequences by adjusting

its dynamics for processing incoming stimuli according to stimulus history. This

process is termed temporal binding.

• Previous studies have suggested that the underlying mechanism of temporal

binding is short-term synaptic depression (STSD) which can be summarized in one

central parameter 𝜏rec, the time constant of recovery from synaptic depression.

• We want to investigate how 𝜏rec might be reflected in classical N1m adaptation

phenomena and temporal binding, with a view of exploring whether adaptation

could predict temporal binding from the perspective of dynamical neural networks.

Dynamics

Coupled differential equations describing neural interactions: leaky integrator neuron

plus presynaptic depression

Hackett et al. (1998) J. Comp. Neurol.
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Computational model
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Computational Unit: The Column

• A column is a complex, local collection of

neurons with similar response properties.

• We model the column in the simplest

possible way: Each column consists of an

excitatory (e) and an inhibitory (i) cell

population each described by one state

variable.

• Connections within and between columns

are expressed by Wee, Wei, and Wie.

Oberlaender et al. (2012) Cereb. Cortex

The core-belt-parabelt

structure is translated

into matrices of

13×13 fields.

inhibitory – excitatory excitatory – inhibitory excitatory – excitatory

Model of information processing in AC based on STSD (May et al. 2010, 2013, 2015) 

u state variable of excitatory cell population

v state variable of inhibitory cell population

τm membrane time constant

g spiking rate

Iaff afferent input from auditory pathway

Wee Wie Wei connection matrices 

A presynaptic depression

𝜏on, 𝜏rec onset and recovery time constant

t time

Ө threshold   

Leak term Excitatory Inhibitory Afferent input

Experimental paradigm

Standard paradigm to study adaptation: Regular-SOI experiment

• Stimuli are presented at regular stimulus-onset intervals (SOIs) in different blocks

and SOI is varied across blocks.

• Averaging single-trial responses per block produces mean response per SOI.

• Dependence of mean peak amplitude of the AC response on SOI can be described

with an exponentially saturating function with adaptation time constant 𝜏SOI.

Conclusions

• Fitting the model to experimental data was
done by trial and error, which is very slow
and sparse. Thus, mostly qualitative
simulations were performed so far.

• We aim for an approximated version of the
original non-linear model (linearized/
simplified) which retains relevant features
(network structure, presynaptic adaptation).

• By means of analytical solutions of the
model, we aim to vastly improve fitting the
model to experimental data (MEG on
humans, single-cell observations on
monkeys), and, thus, obtain e.g. more
detailed and subject-specific information on
auditory processing.
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Presynaptic adaptation 𝑨: release of neurotransmitters is dependent only on the

excitatory activity of preceding column, i.e. 𝑨 is a matrix with identical rows.

Thus, excitatory connection strengths become asymmetric, but we still can solve the

state equations analytically, because for the eigenvalues the following equality holds:

We first linearize the spiking rate and assume that excitatory to excitatory connections

(Wee) are symmetric, and all other connection matrices (Wei, Wie, W ii) are diagonal. We

can find analytical solutions as a mixture of damped harmonic oscillators (normal

modes).

Adaptation has a fast onset and a slow recovery phase. We approximate it with an 

infinitely fast decline of the connection strength and a slow exponential recovery. 
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We assume that the signal decline dj spreads infinitely fast through the network. We

approximate this spread by using the non-symmetric equivalent resistance

(conductance) matrix approach (resistances with voltage controlled current sources).

t=-0.1s t=0s t=0.5s t=1s t=4s
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Our approach

time [s] time [s] time [s]

• We approximate the original non-linear model while keeping the basic concepts:

network structure, oscillatory behavior, presynaptic adaptation.

• The resulting analytical solutions show a remarkable similarity in excitation and

adaptation as observed in the non-linear model.

• Are there other possibilities to improve this approximation further?

Stimulus 1 Stimulus 2 Recovery
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Neuro
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Fresh network Partial recovery

Results for a network of 13 areas with a single column each
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