Coupled time-integration of atmospheric chemistrytransport processes by using multirate implicit-explicit schemes

Ralf Wolke (wolke@tropos.de)

Leibniz Institute for Tropospheric Research (TROPOS), Leipzig

Mitglied der

Introduction

Model system COSMO-MUSCAT

> Numerics

- Model coupling
- Static grid nesting ("multiblock" approach)
- Time integration (IMEX scheme, multirate)
- > Air quality application ("cooling towers" in Saxony)

Conclusions

Tropospheric Processes

Schrödner (2009)

TROPOS

Focus:

- Process studies of tropospheric multiphase system
- Interactions aerosols clouds – radiation
- Climate-relevant processes
- > Air quality
- Impact on human health and ecosystems

"Air Quality": Particulate Matter Hotspots (Long Range Transport)

TROPOS

Chemistry-Transport Model MUSCAT

(« MUltiScale Chemistry Aerosol Transport »)

- Transport and chemical transformation of gas phase pollutants and particles in the atmosphere
- Online coupling with COSMO

- Applied from regional to urban scale
- Mainly used in forecast mode without data assimilation and nudging
- Direct and semi-direct feedback is implemented.

The Meteorological Model COSMO (COnsortium for Small-scale Modeling)

(DWD: Doms, Schättler, et al. 1998-2014; Baldauf et al. 2011)

- non-hydrostatic, compressible
- formulated with regard to a hydrostatic reference state
- staggered grid
 - horizontal: uniform, orthogonal
 - rotated Lambda-Phi grid
 - hybrid vertical coordinate
- operational mode for weather forecast, regional scale
- boundary and initial data from GME
- highly parallel
- Usually: Operational setup (Version: 5.01)
 prognostic TKE, multi-layer surface model, ...

Gas phase ("*read in*"):

- RACM (Stockwell et al., 1997) +
- > MIM2 (Karl et al., 2006)

Aerosol model:

- > Mass-based approach (e.g., *EMEP*) or
- Modal approach M7 (Vignati et al, 2004):
 - 4 internal-mixed and 3 external modes
 - sulphate, sea salt, dust, EC, OC
 extended by
 - nitrate and ammonium
 - SIA by ISORROPIA (Nenes et al., 1998)
 - SOA by SORGAM (Schell et al., 2001)
- Dust: sectional (5 bins)

Dry and wet deposition, sedimentation

Emissions:

- Anthropogenic (11 snaps, area + point, fires)
- Biogene (Steinbrecher et al., 2007)
- Seasalt (Sofiev et al., 2013)

Reaction system from input file:

High flexibility

Gas phase mechanism:

RACM-MIM2 95 species, 245 reactions (*Stockwell et al, 1997; Karl et al, 2006*)

Currently, cloud-chemistry is included!

C3.0RED

(up to 110 aqueous species in each droplet class)

Example of a Chemistry Input-File

```
#------ Bsp.sys -------
#
#---- GAS PHASE
#------
#
CLASS: GAS
NO2 - O3PX + NO
PHOTABC: A: 7.67e-03 B: 1.773179e-00 C: 0.77233e-00
```

CLASS: GAS O3PX + NO - NO2 TROE: KO: 9e-32 N: 1.5 KINF: 3e-11 M: 0

CLASS: GAS O3PX + NO2 - NO + [O2] TEMP1: A: 6.50E-12 E/R -120.0

CLASS: GAS OID + [H2O] - HO + HO CONST: A: 2.20E-10

CLASS: GAS HNO4 - HO2 + NO2 TROEQ: KO: 1.80E-31 N: 3.2 KINF: 4.7E-12 M: 1.4 KO: 2.1E-27 B: 10900

CLASS: GAS HO2 + HO2 - H2O2 SPEC4: C1: 2.3E-13 C2: 600 C3: 1.7E-33 C4: 100

Advection-Diffusion-Reaction Equations

Mass balance equation in flux form:

$$\frac{\partial c}{\partial t} + div(\vec{v}\rho\frac{c}{\rho}) = div(K\rho\nabla\frac{c}{\rho}) + R(c;T,q) + Q_c$$

c	vector of species concentrations					
	wind vector					
ρ	density of air					
Т, q	temperature, humidity					
R	chemical reaction terms					
Q	external sources (emissions)					

Decomposition of Horizontal Domain

Static grid ("multiblock approach")

- From a given rectangular grid (usually for the metagolagical driver)
 - for the meteorological driver).
- Non-overlapping subblocks (also of rectangular type) are marked for refining or coarsening.
- Refinement level between neighbouring blocks is restricted to 1.

Coupling Scheme: Grid Structure

Spatial grid transformation of meteorological arrays

Finite volume approach saves mass conservation if this is fulfilled in the original COSMO grid !!

Numerical methods

- Space discretization
 - > Staggered grid. Finite-volume techniques.
 - Advection: Third-order upwind scheme (Hundsdorfer et al., 1995).
- Time-integration: IMEX scheme (Knoth & Wolke, 1998)
 - Explicit second-order Runge-Kutta for horizontal advection
 - Second order BDF method for the rest: Jacobian is calculated explicitly, linear systems by Gauss-Seidel iterations or AMF

IMEX Time Integration Scheme

$$c' = {f_E(t,c) \over f_I(t,c)} + {f_I(t,c)}$$

where $f_E(t, c)$ represents the horizontal advection and $f_I(t, c)$ includes the vertical transport processes and the chemistry.

Coupling Scheme in Time

- Time interpolation of the meteorological fields:
 - 1. Linear interpolated in $[t_n, t_{n+1}]$
 - 2. Time-averaged values on $[t_n, t_{n+1}]$: Projected wind field
- : Temperature, Density,....
- Separate time step size control for COSMO and MUSCAT

Multirate approach

Problem of different time steps :

Save mass consistency and the order of the RK methods on faces with different time steps.

Basic idea:

$$c' = f_{Slow}(t,c) + f_{Fast}(t,c) + f_{I}(t,c)$$

29/01/2016

MMS_Days 2016

Recursive Flux Splitting Multirate (RFSMR) Approach

$$W_{1} = w_{0}, \qquad (1)$$

$$r_{i} = \sum_{j=1}^{i-1} (a_{ij} - a_{i-1,j}) G(W_{j}), \qquad (2)$$

$$v_{i} (\tau_{i-1}) = W_{i-1}, \qquad (3)$$

$$\frac{dv_{i}}{d\tau} = \frac{1}{c_{i} - c_{i-1}} r_{i} + F(v_{i}), \qquad (4)$$

$$\tau \in [\tau_{i-1}, \tau_{i}], \quad i = 2, ..., s+1, \qquad (4)$$

$$W_{i} = v_{i} (\tau_{i}), \qquad (5)$$

$$w_{1} = W_{s+1}, \qquad (6)$$

- > Eq. (4) can be solved by an **IMEX scheme (recursively).**
- Order conditions are derived:
 - Second if all base methods of second order
 - For third order an additional condition have to be fulfilled.

Schlegel et al., 2012

Numerical methods

• Space discretization

- > Staggered grid. Finite-volume techniques.
- Advection: Third-order upwind scheme (Hundsdorfer et al., 1995).
- Time-integration: IMEX scheme
 - Explicit second-order Runge-Kutta for horizontal advection
 - Second order BDF method for the rest: Jacobian is calculated explicitly, linear systems by Gauss-Seidel iterations or AMF
 - Multirate techniques (Schlegel et al., 2012): Only "local" CFL criteria have to be fulfilled, leads to different explicit time steps in different regions
 - → Tested for air quality applications.

Air Quality Applications

- "Cooling Towers induced Particulate Matter (PM)"
 - The contribution of two large brown-coal fired power stations in Saxony to the formation of secondary PM was examined.
 - The highest contribution of PM in a narrow plume in the lowest modelling layer on a warm summer day is about 10 µg/m3.
 - About 90% of this PM are secondary formatted ammonia sulphate.

Hinneburg et al. (2009)

Treatment of Cooling Tower Emissions

Cooling tower model S/P (Schatzmann and Policastro, 1984):

- integral hydrodynamical model, based on PDE of fluid dynamics
- conservation of mass, momentum, energy, water, and inert pollutants

Treatment of Cooling Tower Emissions

Effective emission height (Summer: 23.-26.08.2002)

MMS_Days 2016

Near-Source Processes

Air parcel model SPACCIM (Wolke et al., 2005):

- combines detailed microphysics and complex multiphase chemistry
- size-resolved treatment of activation, mass transfer and aqueous phase chemistry

COSMO Grid Nesting

Size resolution

N1: 16 km x 16 km 40 vertical layers N2: 8 km x 8 km 50 vertical layers N3: 2.8 km x 2.8 km 50 vertical layers

<u>Time period:</u> 10. – 24. August 2002 *(additional measurements)*

<u>Chemistry:</u> RACM-MIM2 + SIA

N1 runs to generate appropriate boundary values !

N3 Grid Structure of MUSCAT (original)

29/01/2016

MMS_Days 2016

Comparison with Measurements

Comparison of Different SIA Schemes

MMS_Days 2016

29/01/2016

Comparison of Different SIA Schemes

Modification of MUSCAT Grid

Cooling Tower Run: Multirate vs. Singlerate

Recursive Flux Splitting Multirate (RFSMR)

Multirate Runge-Kutta scheme based on Heun2

Data transfer for two refinement levels

Imbalances are caused by time step control of blockwise implicit integration (large emissions, clouds)

load balancing (using *ParMetis*)

Additional imbalances by Multirate:

a) Worst case block distribution:									
time level	0				1		0		
processor 1	block 1 block 2	[ic	[idle]		[idle]		block 1 block 2		
processor 2	[idle]	block 3	block 4		block 3	block 4	[idle]		
b) Best case block distribution:									
processor 1	block 1 block 3		block 3	block 1					
processor 2	block 2 block 4		block 4	block 2					

Conclusions

- Multiblock grid techniques and IMEX time integration schemes are suitable for an efficient treatment of scale interactions.
- Outlook (*multirate time integration*):
 - considering of the cloud heterogeneity in space and time
 - dynamical data structures, load balancing

Acknowledgement

This work was supported by the LfUG Saxony, NIC Jülich and the ZIH Dresden. Furthermore, we thank the German Weather Service for their cooperation.

Thank you!

Parallel coupling of COSMO and MUSCAT

• "concurrent" or "sequential" coupling scheme:

_	P_{LM}	for	LM	(MPI_COM_MET)
_	P _{CTM}	for	MUSCAT	(MPI_COM_CTM)

- Each model use its own domain decomposition:
 - LM rectangular
 - MUSCAT distribution of blocks
- LM and MUSCAT use its own "topology" for communication ("optimal" for used decomposition)
- MDE library for data transfer.
- Projection of wind fields by parallel cg-method.

Performance Analysis I

Sequential vs. Concurrent Coupling

Lieber & Wolke (2007)

Coupling Scheme

- Time interpolation of the meteorological fields:
 - 1. Linear interpolated in $[t_n, t_{n+1}]$
 - 2. Time-averaged values on $[t_n, t_{n+1}]$: Projected wind field
- : Temperature, Density,....
- Separate time step size control for COSMO and MUSCAT

Coupling Scheme (+ mass conservation)

- Time interpolation of the meteorological fields:
 - 1. Linear interpolated in $[t_n, t_{n+1}]$: Temperature, Density,....
 - 2. Time-averaged values on $[t_n, t_{n+1}]$: **Projected** wind field
- - → necessary for mass conservation (elliptic equation by cg-method) !!
- Separate time step size control for LM and MUSCAT

Discrete continuity equation is not valid for given density

and mass flux field

$$U = (\rho u, \rho v, \rho w).$$

Modify mass flux field by

$$\left\| \begin{array}{l} D \left(\stackrel{\Gamma}{U^{*}} - \stackrel{\Gamma}{U^{n+1}} \right) \right\| \rightarrow \text{Min!}$$

and
$$\rho^{n+1} - \rho^{n} + \Delta t_{n} \text{g} \nabla \stackrel{\Gamma}{U^{*}} = 0.$$

- Projection changes all components of the mass flux field.
- Projection is done on the COSMO grid. Density and the mass flux field are interpolated to the composed grid without violating the continuity equation.

- Space discretization
 - > Staggered grid. Finite-volume techniques.
 - Advection: Third-order upwind scheme (Hundsdorfer et al., 1995).
- Time-integration: IMEX scheme (Knoth & Wolke, 1998)
 - Explicit second-order Runge-Kutta for horizontal advection
 - Second order BDF method for the rest: Jacobian is calculated explicitly, linear systems by Gauss-Seidel iterations or AMF
 - > Automatic step size control
 - ➔ different number of steps (load imbalances)
- Parallelization
 - domain decomposition
 - dynamical load-balancing by redistribution of blocks

Load Balancing of MUSCAT

The number of function evaluations of each block at the start and the end time.

Load Balancing of MUSCAT

Start and end distribution for a run with12 MUSCAT processors

29/01/2016

MMS_Days 2016

Aerosol Model

- Modal model MADMAcS I (Wilck and Stratmann, 1997):
 - **Coagulation, condensation, gas uptake** (,nucleation)
 - Equilibrium models: ISORROPIA (Nenes et al., 1998), EQSAM (Metzger, 2001)
 - → Only for process studies !
- Mass-based approach: Similar to EMEP model
- In both approaches: Dry and wet deposition, sedimentation
- Considered components: Sulphate, nitrate, ammonia, EC, POC only in mass-based approach: SS, SOA (Schell et al., 2001)
- SAMUM: Dust sectional (5 or 12 size bins)
- Work in progress: Modified M7 (Vignati et al, 2004, Stier et al., 2005) Sulphate, sea salt, dust, EC, OC + nitrate, ammonia, SOA partitioning

Anthropogenic Emissions

- 11 SNAP codes of EMEP/CORINAIR for characterising the different anthropogenic source types (e.g., combustion in energy industry, road transport, agriculture) are used.
- The considered chemical species are the main pollutants SO₂, NO_x, CO, NH₃, PM_{2.5}, PM₁₀, methane, and non-methane volatile organic compounds (NMVOC).
- Area, line and point sources possible. *(Special: "cooling tower")*.
- <u>Aerosol emissions:</u> Particle number and composition are generated in dependence from the corresponding SNAP (*Splitting table*). (EMEP + Stier et al.+ Measurements)

Dust emissions scheme (Tegen et al., 2002)

Biogenic Emissions

- NO emissions are calculated in dependence on the vegetation type and surface temperature (Williams et al., 1992).
- The VOC emissions additionally depend on sunlight (*Günther et al., 1993*).

IMEX Time Integration Scheme

Jacobian

$$J = J^{Gas} + J^{Hen} + J^{Aqua} + J^{TFrac}$$

$$=: J^{Chem}$$
(3)

Numerical methods in MUSCAT

Spatial discretization

- Method of Lines: (MBE) → Large system of ordinary differential equations in time
- Staggered grid. Finite-volume techniques
- Advection: Third-order upwind scheme

Time integration: IMEX scheme

- Explicit second-order Runge-Kutta for horizontal advection
- Second order BDF method for the rest: Jacobian is calculated explicitly, a linear system by Gauss-Seidel iterations or AMF methods
- Automatic time-step control

Parallelization

- Domain decomposition
- Dynamical load balancing

29/01/2016

MMS_Days 2016

PM10

Wed Oct 18 12:00 2006