

Spatial Analysis and Modeling Tool (SAMT), a spatial modeling toolkit written in Python

Ralf Wieland

January 25, 2016

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland – 1 / 13

SAMT

Implementation Graphical User Interface Number crunching Open Science

Is an integrated **spatial simulation toolkit:**

- Matlab: matrix operations, powerful visualization
- GIS: points, lines, polygons, raster with geographic coordinates, database connection
- Between Matlab and a GIS to support spatial simulations

SAMT

Implementation Graphical User Interface Number crunching Open Science

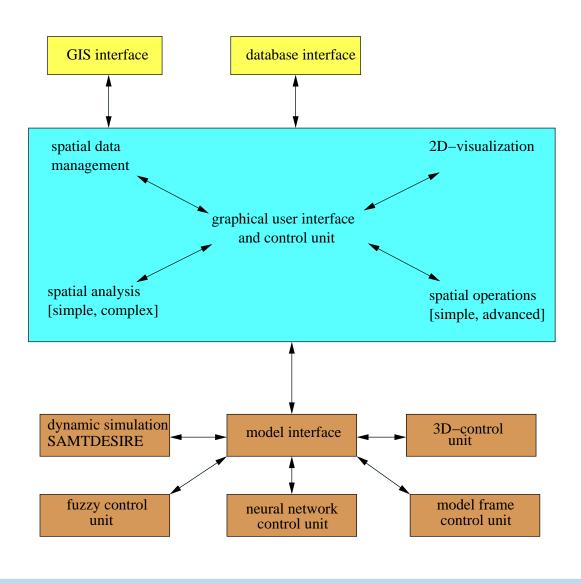
Is an integrated **spatial simulation toolkit:**

- Matlab: matrix operations, powerful visualization
- GIS: points, lines, polygons, raster with geographic coordinates, database connection
- Between Matlab and a GIS to support spatial simulations
- Open Source Project: https://github.com/Ralf3/samt2
- Toolkit consists of: SAMT, SAMTFUZZY, SADATO

SAMT

Implementation Graphical User Interface Number crunching Open Science

Is an integrated **spatial simulation toolkit:**


- I Matlab: matrix operations, powerful visualization
- GIS: points, lines, polygons, raster with geographic coordinates, database connection
- Between Matlab and a GIS to support spatial simulations
- Open Source Project: https://github.com/Ralf3/samt2
- Toolkit consists of: SAMT, SAMTFUZZY, SADATO
 - Can be used with a graphical user interface,
 - as a part of a simulation on the computer cluster,
 - as a tool to build a bridge between the modeler and the stakeholder: "Open Science"

Structure of SAMT

Implementation Graphical User Interface Number crunching Open Science

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland – 3 / 13

SAMT

Implementation Graphical User Interface

Number crunching

Open Science

C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland – 4 / 13

SAMT

- Implementation Graphical User
- Interface
- Number crunching
- Open Science

- C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)
- Python is a well structured high level language, easy to learn and use, but slow

SAMT

- Implementation Graphical User
- Interface
- Number crunching
- Open Science

C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)

Python is a well structured high level language, easy to learn and use, but slow

Way out: compile the "typed Python" code with Cython (about 30..80% of C/C++)

SAMT

- Implementation Graphical User
- Interface
- Number crunching
- Open Science

C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)

Python is a well structured high level language, easy to learn and use, but slow

- Way out: compile the "typed Python" code with **Cython** (about 30..80% of C/C++)
- Python comes with a set of scientific modules
- NumPy can be used to vectorization of programs, (Matlab) x[x>6.35] = x[x>6.35]*28.33E-03

SAMT

Implementation Graphical User

. Interface

Number crunching

Open Science

C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)

Python is a well structured high level language, easy to learn and use, but slow

- Way out: compile the "typed Python" code with Cython (about 30..80% of C/C++)
- Python comes with a set of scientific modules
- NumPy can be used to vectorization of programs, (Matlab) x[x>6.35] = x[x>6.35]*28.33E-03
- Matplotlib produces high quality scientific plots
- SciPy provides common scientific methods (solve differential eqns)
- SciKit includes nearly all methods of soft computing

SAMT

Implementation Graphical User

Interface

Number crunching

Open Science

C/C++ is more an assembler than a high level language Basic libraries are changing permanently (not compatible)

Python is a well structured high level language, easy to learn and use, but slow

- Way out: compile the "typed Python" code with **Cython** (about 30..80% of C/C++)
- Python comes with a set of scientific modules
- NumPy can be used to vectorization of programs, (Matlab) x[x>6.35] = x[x>6.35]*28.33E-03
- Matplotlib produces high quality scientific plots
- SciPy provides common scientific methods (solve differential eqns)
- SciKit includes nearly all methods of soft computing
- Other modules helps for daily work: datetime, hdf5, pandas,...

SAMT

Implementation Graphical User Interface

Number crunching

Open Science

IO: ASCII, HDF, random Access: header, value, matc, matp

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland - 5 / 13

SAMT

- Implementation Graphical User Interface
- Number crunching
- Open Science

IO: ASCII, HDF, random

- Access: header, value, matc, matp
- Visualization: show, showi, show3d, showbw, show_hist
- Statistics: hist, mean_std, min, max, unique, corr, sample
- Simple: norm, classify, replace, add, mul
- Complex: invert, lut, border, cut, varpart

SAMT

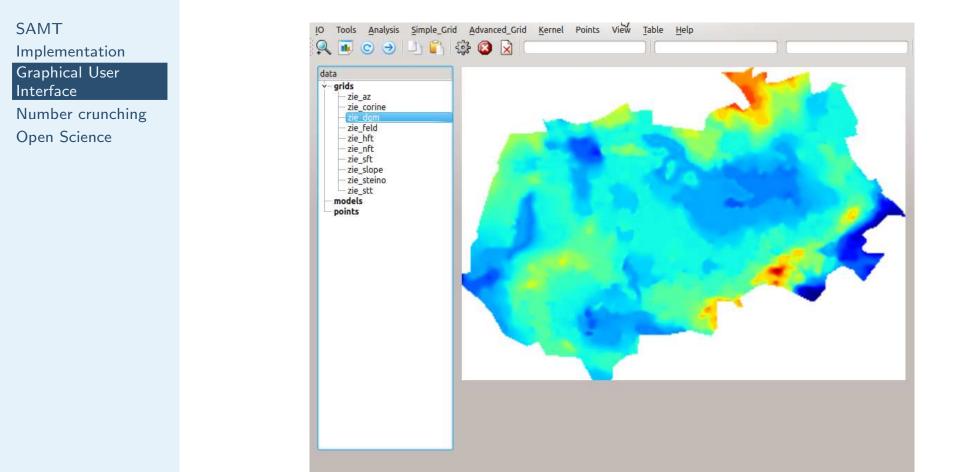
- Implementation Graphical User
- Interface
- Number crunching
- Open Science

■ IO: ASCII, HDF, random

- Access: header, value, matc, matp
 - Visualization: show, showi, show3d, showbw, show_hist
- Statistics: hist, mean_std, min, max, unique, corr, sample
- Simple: norm, classify, replace, add, mul
- Complex: invert, lut, border, cut, varpart
- Kernel: kernel_squ, kernel_cir, remove_trend
- Combination: mul, add, min, max, or

SAMT

- Implementation Graphical User Interface
- Number crunching
- Open Science


■ IO: ASCII, HDF, random

- Access: header, value, matc, matp
 - I Visualization: show, showi, show3d, showbw, show_hist
- Statistics: hist, mean_std, min, max, unique, corr, sample
- Simple: norm, classify, replace, add, mul
- Complex: invert, lut, border, cut, varpart
- Kernel: kernel_squ, kernel_cir, remove_trend
- Combination: mul, add, min, max, or
- Point: transform, interpolation, voronoi, distance
- Flow: d4, d8, grad_d4, grad_d8, floodFill

Additionally: full access to all scientific Python modules

Graphical User Interface

Figure 1: SAMT2 with some data

Leibniz Centre for Agricultural Landscape Research

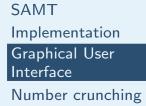
January 25, 2016 R. Wieland - 6 / 13

Graphical User Interface

SAMT Implementation Graphical User Interface

Number crunching Open Science

result	exec						
Expression	np.power(np.log10(a_+1),b_/10.0)						
Numpy mathe	matical functions	a: np.f e.g.: a	_+ 50 * b_ *np.sin(c	_+ 2.0)			
sin(x)	cos(x)	tan(x)	arcsin(x)	arccos(x)	arctan(x)	deg2rad(x)	rad2deg(x
sinh(x)	cosh(x)	tanh(x)	arcsinh(x)	arccosh(x)	arctanh(x)		
round(x,dec)	rint(x)	fix(x)	floor(x)	ceil(x)	trunc(x)		
exp(x)	exp2(x)	log(x)	log10(x)	log2(x)			
add(x1,x2)	subtract(x1,x2)	multiply(x1,x2)	divide(x1,x2)	power(x1,x2)			<
sqrt(x)	square(x)	fabs(x)	maximum(x1,x2)	minimum(x1,x2)			


Figure 2: Expression builder of SAMT2

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland - 7 / 13

Graphical User Interface

Open Science

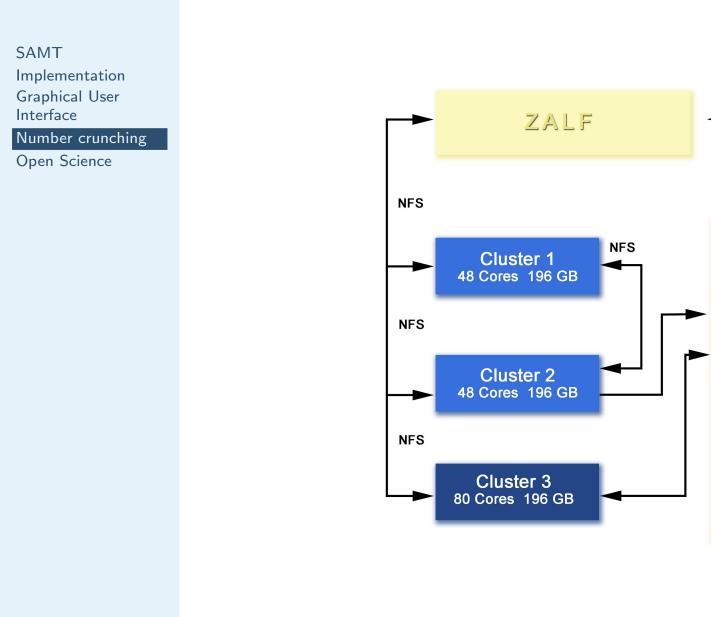

zie dgm 0 100 Klein Ziethe Groß Zethen 200 8 198 Y 300 Serwest Senftenhütte 400 400 0 100 200 300 500 600 х

Figure 3: Access to OSM data

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland - 8 / 13

Leibniz Centre for Agricultural Landscape Research Janua

January 25, 2016 R. Wieland - 9 / 13

Samba

SAN

1 T B

1 T B

SAMT Implementation Graphical User Interface

Number crunching

Open Science

Application:

 Yield estimation under climate change large regions in Germany (Brandenburg, Thuringia and Saxony with an grid size of 1ha)

SAMT Implementation Graphical User Interface

Number crunching

Open Science

Application:

- Yield estimation under climate change large regions in Germany (Brandenburg, Thuringia and Saxony with an grid size of 1ha)
- Analysis of soil slices from X-Ray CT image stack

SAMT Implementation Graphical User

- Interface
- Number crunching

Open Science

Application:

- Yield estimation under climate change large regions in Germany (Brandenburg, Thuringia and Saxony with an grid size of 1ha)
- Analysis of soil slices from X-Ray CT image stack
- Modeling of Mosquitoes movement and habitat quality for Mosquitoes of Germany

SAMT Implementation Graphical User

- Interface
- Number crunching

Open Science

Application:

- Yield estimation under climate change large regions in Germany (Brandenburg, Thuringia and Saxony with an grid size of 1ha)
- Analysis of soil slices from X-Ray CT image stack
- Modeling of Mosquitoes movement and habitat quality for Mosquitoes of Germany
- using a SVM to generate maps for controlling the fertilizer broadcaster

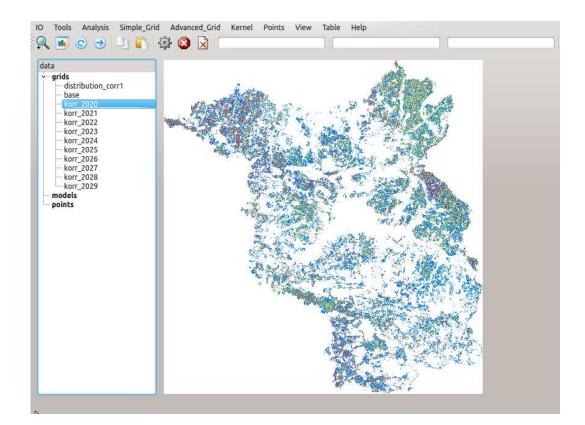
SAMT Implementation Graphical User

- Interface
- Number crunching

Open Science

Application:

- Yield estimation under climate change large regions in Germany (Brandenburg, Thuringia and Saxony with an grid size of 1ha)
- Analysis of soil slices from X-Ray CT image stack
- Modeling of Mosquitoes movement and habitat quality for Mosquitoes of Germany
- using a SVM to generate maps for controlling the fertilizer broadcaster
- Python controls the cluster using MPI load data, calc, collect data


Implementation Graphical User Interface

interface

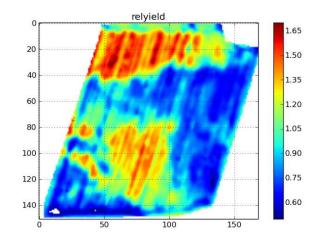
Number crunching

Open Science

yield estimation based on market scenarios and climate change with 1ha resolution

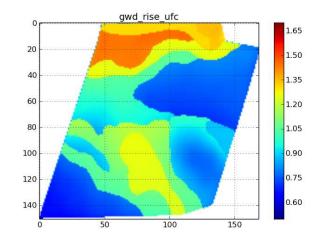
Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland – 11 / 13



SAMT Implementation Graphical User Interface

Number crunching


Open Science

relyield from equipment

measured yield

SVM

ground water distance, capillary rise, usable field capacity

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland - 12 / 13

Open Science

SAMT
Implementation
Graphical User
Interface
Number crunching
Open Science

Application: Can the user be included in modeling?

- Science is data collection plus modeling
- Applied science is an application of science to problems

Leibniz Centre for Agricultural Landscape Research

January 25, 2016 R. Wieland - 13 / 13

Open Science

SAMT
Implementation
Graphical User
Interface
Number crunching
Open Science

Application: Can the user be included in modeling?

- Science is data collection plus modeling
- Applied science is an application of science to problems
 We have the software and the interactive environment: "ipython notebook",
 - open source software,
 - documentation,
 - interactivity

Open Science

SAMT
Implementation
Graphical User
Interface
Number crunching

Application: Can the user be included in modeling?

- Science is data collection plus modeling
- Applied science is an application of science to problems
- We have the software and the interactive environment: "ipython notebook",
 - open source software,
 - documentation,
 - interactivity
- the stakeholders have knowledge (models) and knows the problems, why do we not include them in science?