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Light emission from InGa1−N

3.0

2.5

2.0

1.5

1.0

E
g 

in
 e

V

3.2 3.3 3.4 3.5
alat in Å

InN

GaN

The bandgap of InGa1−N spans the whole visible spectrum...
but crystal quality reduced due to large lattice mismatch!

Carrier confinement in III-V nanowires MMS Days 2016 2 / 15



Light emission:InGa1−N/GaN thin films
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InGa1−N films in GaN
with high In content
and high structural
quality are hard to

achieve, due to large
lattice mismatch
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InGa1−N/GaN nanowires: elastic relaxation

Axial InGa1−N nanowire heterostructures facilitate elastic
relaxation

Image courtesy of M. Hanke, PDI
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Light emission: InGa1−N/GaN nanowires

It is generally difficult to obtain blue emission from nanowires:
Opposite trend compared to planar system!

Theoretical description of nanowires required

1 Wölz et al., Nanotechnology 45, 455203 (2012)
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Charge confining mechanisms in nanowires

2 Böcklin et al., Phys. Rev. B 81, 155306 (2010);
Kaganer et al., Phys. Rev. B 85, 125402 (2012)
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Finding a suitable formalism

Atomistic model
(ETBM, EPM, DFT)

Accurate description of
crystal lattice
Straightforward treatment
of single-atomistic
features
Alloy disorder can be taken
into account

Computational effort
depends on number of
atoms
Typical nanowire segment:
d = 80 nm, l = 20 nm
−→ ∼ 7.5 million atoms

Continuum approaches
(EMA, k · p)

Computationally cheap
Treatment of large
systems straightforward

Neglects atomistic
character of the crystal
Alloys described via
average (local)
composition
Treatment of single
atomistic effects difficult
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Model nanowire

t

d

[0
00

1]

Hexagonal nanowire of
diameter d
InGa1−N insertion of
homogeneous In content  and
thickness t
Surface potential
For homogeneous distribution
of donor-related charge:
Vsrf ∝ ϱd · d2.
ϱd = 1017cm−3 b= max(Vsurf) =
80 mV for a NW of d=80 nm
Vary , t, and d

−→ Continuum approach favourable

Carrier confinement in III-V nanowires MMS Days 2016 8 / 15



Model nanowire

t

d

[0
00

1]

Hexagonal nanowire of
diameter d
InGa1−N insertion of
homogeneous In content  and
thickness t
Surface potential
For homogeneous distribution
of donor-related charge:
Vsrf ∝ ϱd · d2.
ϱd = 1017cm−3 b= max(Vsurf) =
80 mV for a NW of d=80 nm
Vary , t, and d

−→ Continuum approach favourable

Carrier confinement in III-V nanowires MMS Days 2016 8 / 15



Employed formalisms

Strain and polarisation
Continuum elasticity theory3

Single-particle electronic properties
eight-band k · p model for wurtzite semiconductors4

Electron-hole overlap

O =
∑

r

ϱel(r)ϱho(r) (1)

Implementation within plane-wave framework5

3 Povolotskyi et al., Phys. Stat. Solidi (C) 2, 3891 (2005).
4 Chuang et al., Phys. Rev. B 54, 2491 (1999).
5 www.sphinxlib.de;

Boeck et al., Computer Phys. Commun 182, 543 (2011);
Marquardt et al., Comp. Mat. Sci. 95, 280 (2014).
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Interplay of polarisation and surface potential

Interplay between polarisation and surface potential –
explains reduction of PL intensity with smaller In content or

layer thickness

6 Marquardt et al., Nano Lett. 13, 3298 (2013).Carrier confinement in III-V nanowires MMS Days 2016 10 / 15



Realistic description of doping in nanowires

For a NW of 80 nm diameter and 20 nm segment length:
ϱd=1017cm−3 corresponds to 8.3 charges7!

Consider individual, randomly distributed donors in a NW8

Can atomistic effects be considered in continuum picture?

Typical donors: Si, O represent shallow donors in
InGa1−N
Model individual donors via their Coulomb potential

7 Corfdir et al., Phys. Rev. B 90, 205301 (2014).
8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Electron and hole confinement

Consider individual, randomly distributed donors in a NW8

Nd = 3 Nd = 9 Nd = 13

Vd,|Ψe|2,|Ψh|2 Vd,|Ψe|2,|Ψh|2 Vd,|Ψe|2,|Ψh|2

8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Energies and electron-hole overlap

Model system configurations

x = 5% x = 30% x = 10% x = 30%
t = 1 nm t = 1 nm t = 5 nm t = 5 nm

Variation of emission wavelength unaffected by x and t
Energies smaller than for homogeneous charge
distribution and donor-free case

Overlaps scatter by two orders of magnitude
Overlaps significantly smaller than for donor-free case but
also smaller than for homogeneous charge distribution

Linewidth broadening due to randomly distributed donors
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Ensemble average charge densities

ensemble average
(a)

homogeneous doping charge
(b)

Average hole state confinement in good agreement with
hole state in homogeneous doping charge model
Electron localization governed by dopants – strong
variations
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Summary & next steps

Continuum model to approach elastic, piezoelectric and
electronic properties of semiconductor nanowires
Generalised to arbitrary nanostructures and materials
Multiband k · p model can be adjusted to computational
demand and accuracy
Treatment of shallow defects possible

Coupling between strain and piezoelectric potentials
Self-consistent simulations to consider excitonic effects
Spatially dependent grid accuracy
To which extent can deep defects be taken into account?

Thank you for your kind attention!
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