

Applying Mixed Integer Linear Programming in the Biomedical Sciences

1st MMS Days, Berlin, January 2016

Rainer König Hans-Knöll-Institute and Jena University

Let's assume the following problem:

Minimize $x_1 + x_2$ (= error)

Subject to

$$4x_1 + x_2 \ge 4$$

 $x_1 + 2x_2 \ge 3$

Min $x_1 + x_2$ Let's assume $x_1, x_2 \ge 0$ x_2 x_1

Min $x_1 + x_2$ Let's assume $x_1, x_2 \ge 0$

 $Min \quad x_1 + x_2$

Let's assume $x_1, x_2 \ge 0$

Additional constraints are added:

 $4x_1 + x_2 \ge 4$

Min $x_1 + x_2$

Let's assume $x_1, x_2 \ge 0$

Additional constraints are added:

 $4x_1 + x_2 \ge 4$

 $Min \quad x_1 + x_2$

Let's assume $x_1, x_2 \ge 0$

Additional constraints are added:

 $4x_1 + x_2 \ge 4$

 $x_1 + 2x_2 \ge 3$

Min $x_1 + x_2$

Let's assume $x_1, x_2 \ge 0$

Additional constraints are added:

 $4x_1 + x_2 \ge 4$

 $x_1 + 2x_2 \ge 3$

Min $x_1 + x_2$

Let's assume $x_1, x_2 \ge 0$

Additional constraints are added:

 $4x_1 + x_2 \ge 4$

 $x_1 + 2x_2 \ge 3$

Resume, and from linear to Mixed Integer programming

Resume

- Putting up an optimization criterion
- Adding linear constraints
- the solution space can be continuous or discrete (Mixed Integer Linear Programming)
- MILP: binary and continuous variables can be multiplied

Applications

- Time table optimization (school, train, public transport)
- Traveling salesman problem (record: n=85,900 cities, $\frac{n^2-n}{2}$ variables, $\frac{(n-1)!}{2}$ solutions)

Bioinformatics:

Analysis of cellular networks (graphs):

- Metabolism: Flux Balance Analysis
- Gene regulation: Linear models
- Signal transduction: Finding discriminative modules in protein interaction networks
- Pattern recognition on networks (PathWave) (Schramm et al, 2010, Bioinformatics)

Identifying the regulation of genes

Which effectors are responsible for the transcript level of a certain gene within a specific cellular context?

Constructing models to infer regulation by transcription factors

Gene of interest

Putting up the linear model

The model

$$\widetilde{g}_{j} = \beta_{0} + \sum_{t=1}^{T} \beta_{t} \cdot eff_{t,j}$$

Optimization

min

$$\sum_{j=1}^{l} \left| g_{j} - \widetilde{g}_{j} \right|$$

14 (Schacht et al., 2014, Bioinformatics)

Estimating the effect of a transcription factor

- a) By the gene expression of the TF itself
- b) By our new definition of the **activity**

 $eff_{t,i} = act_{t,i} = sum of z$ -scores of the TF's target genes

c) "Switch" approach, a combination of a) and b)

- The algorithm can choose which model fits best to the given problem (for each gene independently)
- Preselection of the exact number of parameters

Regulation of melanogenesis

Discussion

Mixed Integer Linear Programming has a large variety of applications in bioinformatics, mostly for analyzing cellular networks/graphs

We applied MILP to infer cell context specific regulators of transcription by

- linear models and
- estimating the activity of a TF by expression of its target genes

MILP allowed us to use switches which gives the search space a non-linear topology, this compares to biological systems (cell death, immortalization)

Melanogenesis: SOX5 is a newly identified regulator of MITF in human melanomas

Acknowledgements

Theresa Schacht Vijay Muley Marcus Oswald Ashwin Sharma Volker Ast Anna Dieckmann Antje Biering Joao Saraiva Alexandra Poos Franziska Hörhold Amol Kolte University Hospital Jena Michael Bauer

Hans-Knöll-Institute Jena Axel Brakhage

Theoretical Bioinformatics, DKFZ: Benedikt Brors Roland Eils Discrete and Combinatorical Optimization, University of Heidelberg: Stefan Wiesberg, Gerhard Reinelt

Theoretical Systemsbiology DKFZ: Frank Westermann

DKFZ Core Facility Stefan Wiemann, Ulrike Korf, Nicolle Diessl

Gunnar Schramm Rosario Piro Moritz Aschoff

