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Models of small numbers of offspring

I Arguably the most commonly employed population
model - the Wright-Fisher model - may be classified as a
model of small numbers of offspring which means that -
in a large population - individuals have negligible chance
of contributing huge numbers - on the order of the
population size (N) - of offspring to the next generation

I Indeed, if all the moments of an exchangeable Cannings
model are finite, one obtains the Kingman coalescent in
the limit N →∞ (see e.g. Möhle & Sagitov (2001))



The Kingman coalescent from the WF-model
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Kingman coalescent

past

Each pair of ancestral lineages coalesces with rate 1. The
genealogy of a class of Cannings exchangeable population
models with finite moments and operating on different
timescales converges (as N →∞) to the Kingman
coalescent. The Kingman coalescent is the usual ‘null model’
in population genetics.



High fecundity and skewed offspring distributions

I High fecundity and skewed offspring distributions
- where individuals can have huge numbers of offspring
with non-negligible probability (as N →∞) - give rise to
multiple merger coalescent processes (e.g. Hedgecock
& Pudovkin (2011) review in Bull. Marine Sci. )

I Potentially applicable to some marine organisms:
Pacific oysters (Hedgecock, 1994; Beckenbach,
1994; Hedgecock, Chow, & Waples, 1992); flat
oyster (Harrang etal, 2013); white sea bream
(Planes & Lenfant, 2002); bicolor damselfish
(Christie etal, 2010); Atlantic cod (Árnason, 2004)

I forest trees such as European aspen (Ingvarsson,
2010)

I other populations ?



Skewed offspring distributions

Schweinsberg (2003)
The tail probability for the number of viable (haploid)
offspring of an individual i ∈ {1, . . . ,N}, with E[Xi ] > 1, is

P (Xi ≥ k) ∼ 1
kα , k →∞, α > 0

E. & Wakeley (2006)
A modified haploid Moran model, in which the number of
offspring of the reproducing individual is

P (X = k) = (1− εN)δ1(k) + εNδbψNc(k), ψ ∈ (0, 1]

Also population models with skewed offspring distributions
by Huillet & Möhle (2011), Sargsyan & Wakeley
(2008), E. (preprint)



Λ coalescent

past

Donnelly and Kurtz (1999), Pitman (1999), Sagitov (1999)
independently derive a multiple merger coalescent process,
allowing each collection of k ∈ {2, . . . , b} active ancestral
lineages to coalesce at the same time with rate

λ
(Λ)
b,k =

∫ 1

0
xk(1− x)b−kx−2Λ(dx)

where Λ is a finite measure on [0, 1].



Examples of Λ-coalescents

The most commonly employed examples of Λ-coalescents:
The Beta(2− α, α)-coalescent (Schweinsberg 2003) occurs
when α ∈ [1, 2):

λb,k =
B(k − α, b − k + α)

B(2− α, α)

where B(·, ·) is the beta-function

The Dirac-coalescent (E. & Wakeley 2006) occurs when
N2εN →∞:

λb,k = ψk−2(1− ψ)b−k

The timescales are different from the usually assumed
Kingman timescale: 1 coalescent time unit corresponds to
1/cN generations



Ξ-coalescent

past

Schweinsberg (2000) introduces the Ξ-coalescents, where
many multiple mergers may occur simultaneously
Example: denote size of merger i ∈ [r ], r ∈ [M], M ≥ 2, M is
level of ploidy, with ki , k = (k1, . . . , kr ), |k| = k1 + · · ·+ kr ,
then the rate of a k-simultaneous merger is given by

λ
(Ξ)
b;k =

n−|k|∑
`=0

(
n − |k|
`

)
(M)r+`

M`+|k| λ
(Λ)
b,|k|, 2 ≤ |k| ≤ b

(Blath etal, 2015; preprint)



The site-frequency spectrum
Exact likelihoods are computationally inefficient (e.g.
Birkner & Blath, 2008); hence we consider approximate
likelihoods based on the site-frequency spectrum

The site-frequency spectrum ξ(n) =
(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
is a

simple summary statistic of the full DNA sequence data, yet
holds valuable information about genetic variation among
individuals
Example of 3 DNA sequences with 5 segregating sites:

1 : 0020000000
2 : 0020001001
3 : 0000100100

The (unfolded) site-frequency spectrum for this example is

x (3) =
(
x (3)

1 , x (3)
2

)
= (4, 1)



Exact expected site-frequency spectrum

Let θ > 0 denote the appropriately scaled (note different
timescales ) mutation rate

I For the Kingman-coalescent, E(K)
[
ξ

(n)
i

]
= θ

i (Fu, 1995)

I For Λ-coalescents, E(Λ)
[
ξ

(n)
i

]
= a recursion (Birkner

etal, 2013)
I For Ξ-coalescents, E(Ξ)

[
ξ

(n)
i

]
= more complicated

recursion (Blath etal, (2016; preprint))
I An efficient method by Spence etal (2016; preprint) for

Ξ-coalescents



Current projects

I Multi-loci ancestral selection graphs which admit
simultaneous mergers to model the evolution of a trait
affected by many loci in an effort to understand rapid
adaptation

I Quantifying the association between the site-frequency
spectra at unlinked loci in an effort to test for the
presence of multiple mergers, and in a study design

I Tests for selection at loci in a background of multiple
mergers

I Effect of large sample size and truncated offspring
distributions on coalescent processes

I Extending the site-frequency spectrum (SFS) to
individual-based SFS



Normalised SFS from all linkage groups of Atlantic cod
(Einar Árnason)
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Multi-loci ancestral selection graphs (ASG)
(joint work with Wolfgang Stephan)

Two allelic types (a,A); A is beneficial

we derive multi-loci ancestral selection graphs which admit
(simultaneous) multiple mergers of ancestral lineages
for various forms of selection

(see Etheridge etal (2010) for a single-locus Λ-ASG)

- -� d -d

A A

�

A



Quantifying association between SFS at unlinked loci

We use the multivariate association statistic In of Bakirov
etal (2006): Let Xj ∈ Rp and Yj ∈ Rq for j ∈ [n] be a random
sample from (X ,Y ) ∈ Rp+q with X ∼ F1, Y ∼ F2 and
(X ,Y ) ∼ F and we test the hypothesis

F = F1F2 vs F 6= F1F2

We form all unordered pairs of concatenated SFS
(
ξ(i), ξ(j)

)
,

i < j, of SFS for ` unlinked loci, and with n =
(`

2
)
, compute

the statistic (Bakirov etal (2006))

In =

√
2z − zd − z
x + y − z ∈ [0, 1]

where z , zd , z , x , y are averages of the Euclidean norm in
Rp+q.



Extending the site-frequency spectrum (SFS)

The standard site-frequency spectrum (SFS)
ξ(n) =

(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
can be extended into the

sequence-specific SFS(
ξ

(n)
j,i

)
= the number of polymorphic sites on sequence j

shared with i − 1 other sequences

ξ
(n)
i =

1
i
∑
j∈[n]

ξ
(n)
j,i

we may also consider joint probabilities, such as

P
(
ξ

(n)
j,1 > 0, ξ

(n)
j,2 > 0

)



Estimating the distribution of In for 2 loci
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Tests of selection in a multiple merger background

Given data for ` unlinked loci in two populations, assuming
the loci are independent the likelihood function on
segregating sites (S) and pairwise differences (∆):

L(ϑ, θ; s, d) =
∏
j∈[`]

P(ϑj ,θj ) (Sj = sj)P(ϑj ,θj ,τ) (∆j = dj) (∗)

but (∗) is a function of both ϑ, θ, and τ the time of
separation -
we replace segregating sites with normalised site-frequency
spectrum ζ(j), and consider normalised joint site-frequency
spectrum between the two populations:

L(ϑ; z , y) =
∏
j∈[`]

P(ϑj )
(
ζ(j) = z j

)
P(ϑj ,τ)

(
χ(j) = yj

)
(∗∗)

and (∗∗) is only a function of ϑ and τ



Large sample size and truncated offspring distribution
(joint work with Alison Etheridge and Jerome Kelleher in
Oxford, and Matthias Hammer at TU Berlin)

I The standard approach when deriving coalescent
processes from population models is to assume that
sample size is fixed, and much smaller than the
(effective) population size; what happens when sample
size is assumed to be on the order of the (effective)
population size?

I we also consider truncated offspring distributions

P (Xi ≥ k) = Ck−αI(1 ≤ k ≤ φ(N)), k ≥ 1

and, depending on φ, obtain Lambda-coalescents where
Λ is associated with truncated beta-distributions

I Extend the model to polyploidy and multiple loci with
recombination
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