Gene genealogies in highly fecund populations with skewed offspring distribution

Bjarki Eldon

Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt Universität, Berlin

museum für naturkunde berlin

Overview

- models of high fecundity and skewed offspring distributions
- multiple merger coalescent processes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- site-frequency spectrum
- current projects

Models of small numbers of offspring

- Arguably the most commonly employed population model - the Wright-Fisher model - may be classified as a model of small numbers of offspring which means that in a large population - individuals have negligible chance of contributing huge numbers - on the order of the population size (N) - of offspring to the next generation
- Indeed, if all the moments of an exchangeable Cannings model are finite, one obtains the Kingman coalescent in the limit N → ∞ (see e.g. MÖHLE & SAGITOV (2001))

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Kingman coalescent from the WF-model

A realisation of ancestral relations in a WF population

The extracted gene genealogy

the times T_j are independent exponentials with rate $\binom{J}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each pair of ancestral lineages coalesces with rate 1. The genealogy of a class of Cannings exchangeable population models with finite moments and operating on *different timescales* converges (as $N \rightarrow \infty$) to the Kingman coalescent. The Kingman coalescent is the usual 'null model' in population genetics.

High fecundity and skewed offspring distributions

- ► High fecundity and skewed offspring distributions
 where individuals can have huge numbers of offspring with non-negligible probability (as N → ∞) give rise to multiple merger coalescent processes (e.g. HEDGECOCK & PUDOVKIN (2011) review in Bull. Marine Sci.)
- Potentially applicable to some marine organisms: Pacific oysters (HEDGECOCK, 1994; BECKENBACH, 1994; HEDGECOCK, CHOW, & WAPLES, 1992); flat oyster (HARRANG etal, 2013); white sea bream (PLANES & LENFANT, 2002); bicolor damselfish (CHRISTIE etal, 2010); Atlantic cod (ÁRNASON, 2004)
- forest trees such as European aspen (INGVARSSON, 2010)
- other populations ?

Skewed offspring distributions

SCHWEINSBERG (2003) The tail probability for the number of viable (haploid) offspring of an individual $i \in \{1, ..., N\}$, with $\mathbb{E}[X_i] > 1$, is

$$\mathbb{P}(X_i \ge k) \sim \frac{1}{k^{\alpha}}, \quad k \to \infty, \quad \alpha > 0$$

E. & WAKELEY (2006)

A modified haploid Moran model, in which the number of offspring of the reproducing individual is

$$\mathbb{P}(X = k) = (1 - \varepsilon_N)\delta_1(k) + \varepsilon_N\delta_{\lfloor \psi N \rfloor}(k), \quad \psi \in (0, 1]$$

Also population models with skewed offspring distributions by HUILLET & MÖHLE (2011), SARGSYAN & WAKELEY (2008), E. (preprint)

Λ coalescent

Donnelly and Kurtz (1999), Pitman (1999), Sagitov (1999) independently derive a multiple merger coalescent process, allowing each collection of $k \in \{2, ..., b\}$ active ancestral lineages to coalesce at the same time with rate

$$\lambda_{b,k}^{(\Lambda)} = \int_0^1 x^k (1-x)^{b-k} x^{-2} \Lambda(dx)$$

where Λ is a finite measure on [0, 1].

Examples of Λ -coalescents

The most commonly employed examples of Λ -coalescents: The Beta $(2 - \alpha, \alpha)$ -coalescent (SCHWEINSBERG 2003) occurs when $\alpha \in [1, 2)$:

$$\lambda_{b,k} = \frac{B(k-\alpha, b-k+\alpha)}{B(2-\alpha, \alpha)}$$

where $B(\cdot, \cdot)$ is the beta-function

The Dirac-coalescent (E. & WAKELEY 2006) occurs when $N^2 \varepsilon_N \to \infty$:

$$\lambda_{b,k} = \psi^{k-2} (1-\psi)^{b-k}$$

The timescales are different from the usually assumed Kingman timescale: 1 coalescent time unit corresponds to $1/c_N$ generations

$$\lambda_{b;\underline{k}}^{(\Xi)} = \sum_{\ell=0}^{n-|\underline{k}|} \binom{n-|\underline{k}|}{\ell} \frac{(M)_{r+\ell}}{M^{\ell+|\underline{k}|}} \lambda_{b,|\underline{k}|}^{(\Lambda)}, \quad 2 \le |\underline{k}| \le b$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(BLATH etal, 2015; preprint)

The site-frequency spectrum

Exact likelihoods are computationally inefficient (e.g. BIRKNER & BLATH, 2008); hence we consider approximate likelihoods based on the *site-frequency spectrum*

The site-frequency spectrum $\underline{\xi}^{(n)} = \left(\xi_1^{(n)}, \dots, \xi_{n-1}^{(n)}\right)$ is a simple summary statistic of the full DNA sequence data, yet holds valuable information about genetic variation among individuals

Example of 3 DNA sequences with 5 segregating sites:

- 1:0020000000
- 2:0020001001
- 3:0000100100

The (unfolded) site-frequency spectrum for this example is

$$\underline{x}^{(3)} = \left(x_1^{(3)}, x_2^{(3)}\right) = (4, 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Exact expected site-frequency spectrum

Let $\theta>0$ denote the appropriately scaled (note different timescales) mutation rate

- ▶ For the Kingman-coalescent, $\mathbb{E}^{(K)}\left[\xi_{i}^{(n)}\right] = \frac{\theta}{i}$ (Fu, 1995)
- ► For Λ-coalescents, E^(Λ) [ξ_i⁽ⁿ⁾] = a recursion (BIRKNER etal, 2013)
- For Ξ-coalescents, E^(Ξ) [ξ_i⁽ⁿ⁾] = more complicated recursion (BLATH etal, (2016; preprint))
- ► An efficient method by SPENCE etal (2016; preprint) for Ξ-coalescents

Current projects

- Multi-loci ancestral selection graphs which admit simultaneous mergers to model the evolution of a trait affected by many loci in an effort to understand rapid adaptation
- Quantifying the association between the site-frequency spectra at unlinked loci in an effort to test for the presence of multiple mergers, and in a study design
- Tests for selection at loci in a background of multiple mergers
- Effect of large sample size and truncated offspring distributions on coalescent processes
- Extending the site-frequency spectrum (SFS) to individual-based SFS

Normalised SFS from all linkage groups of Atlantic cod (Einar Árnason)

sample size 134, segregating sites $pprox 10^4$

E n

(日)

Multi-loci ancestral selection graphs (ASG) (joint work with Wolfgang Stephan)

Two allelic types (a, A); A is beneficial

we derive multi-loci ancestral selection graphs which admit (simultaneous) multiple mergers of ancestral lineages for various forms of selection

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(see ETHERIDGE etal (2010) for a single-locus ∧-ASG)

Quantifying association between SFS at unlinked loci

We use the multivariate association statistic \mathcal{I}_n of Bakirov etal (2006): Let $X_j \in \mathbb{R}^p$ and $Y_j \in \mathbb{R}^q$ for $j \in [n]$ be a random sample from $(X, Y) \in \mathbb{R}^{p+q}$ with $X \sim F_1$, $Y \sim F_2$ and $(X, Y) \sim F$ and we test the hypothesis

$$F = F_1 F_2$$
 vs $F \neq F_1 F_2$

We form all unordered pairs of concatenated SFS $(\underline{\xi}^{(i)}, \underline{\xi}^{(j)})$, i < j, of SFS for ℓ unlinked loci, and with $n = \binom{\ell}{2}$, compute the statistic (Bakirov etal (2006))

$$\mathcal{I}_n = \sqrt{\frac{2\overline{z} - z_d - z}{x + y - z}} \in [0, 1]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\overline{z}, z_d, z, x, y$ are averages of the Euclidean norm in \mathbb{R}^{p+q} .

Extending the site-frequency spectrum (SFS)

The standard site-frequency spectrum (SFS) $\underline{\xi}^{(n)} = \left(\xi_1^{(n)}, \dots, \xi_{n-1}^{(n)}\right)$ can be extended into the sequence-specific SFS

 $\left(\xi_{j,i}^{(n)}\right)$ = the number of polymorphic sites on sequence j shared with i-1 other sequences

$$\xi_i^{(n)} = \frac{1}{i} \sum_{j \in [n]} \xi_{j,i}^{(n)}$$

we may also consider joint probabilities, such as

$$\mathbb{P}\left(\xi_{j,1}^{(n)} > 0, \quad \xi_{j,2}^{(n)} > 0
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimating the distribution of \mathcal{I}_n for 2 loci

Kingman, theta = 3.0, r = 10.0

Tests of selection in a multiple merger background

Given data for ℓ unlinked loci in two populations, assuming the loci are independent the likelihood function on segregating sites (*S*) and pairwise differences (Δ):

$$L(\underline{\vartheta},\underline{ heta};\underline{s},\underline{d}) = \prod_{j\in [\ell]} \mathbb{P}^{(\vartheta_j, heta_j)} \left(S_j = s_j
ight) \mathbb{P}^{(\vartheta_j, heta_j, au)} \left(\Delta_j = d_j
ight) \quad (*)$$

but (*) is a function of both $\underline{\vartheta}$, $\underline{\theta}$, and τ the time of separation -

we replace segregating sites with normalised site-frequency spectrum $\underline{\zeta}^{(j)}$, and consider normalised joint site-frequency spectrum between the two populations:

$$\mathcal{L}(\underline{\vartheta};\underline{z},\underline{y}) = \prod_{j \in [\ell]} \mathbb{P}^{(\vartheta_j)} \left(\underline{\zeta}^{(j)} = \underline{z}_j \right) \mathbb{P}^{(\vartheta_j,\tau)} \left(\underline{\chi}^{(j)} = y_j \right) \quad (**)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and (**) is only a function of $\underline{\vartheta}$ and τ

Large sample size and truncated offspring distribution

(joint work with Alison Etheridge and Jerome Kelleher in Oxford, and Matthias Hammer at TU Berlin)

- The standard approach when deriving coalescent processes from population models is to assume that sample size is fixed, and much smaller than the (effective) population size; what happens when sample size is assumed to be on the order of the (effective) population size?
- we also consider truncated offspring distributions

$$\mathbb{P}(X_i \ge k) = Ck^{-\alpha}\mathbb{I}(1 \le k \le \phi(N)), \quad k \ge 1$$

and, depending on ϕ , obtain Lambda-coalescents where Λ is associated with truncated beta-distributions

Extend the model to polyploidy and multiple loci with recombination

References

- BLATH, CRONJÄGER, E., HAMMER: The site-frequency spectrum associated with Xi-coalescents. Preprint (biorxiv)
- ► E.: Age of an allele and gene genealogies of nested subsamples for populations admitting large offspring numbers. Preprint (arxiv)
- E., BIRKNER, BLATH, FREUND: Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents?, *Genetics 199*, 841-856, (2015)
- BIRKNER, BLATH, E.: Statistical properties of the site-frequency spectrum associated with Lambda-coalescents, *Genetics 195*, 1037-1053, (2013)
- BIRKNER, BLATH, E.: An ancestral recombination graph for diploid populations with skewed offspring distribution, *Genetics 193*, 255-290, (2013)

Funding and collaborators

Joint work with Matthias Birkner (JGU Mainz) Jochen Blath, Matthias Hammer (TU Berlin) Fabian Freund (University of Hohenheim) Mathias Cronjäger (University of Oxford) DFG SPP1819: Rapid Evolutionary Adaptation

PROBABILISTIC STRUCTURES

DFG SPP 1590

museum für naturkunde <mark>berlin</mark>