

## Modeling of an Edge-Emitting strained-Ge laser

<u>G. Capellini</u>, M. Virgilio, Y. Yamamoto, L. Zimmermann, B. Tillack, D. Peschka, M. Thomas, A. Glitzky, R. Nürnberg, K. Gärtner, Th. Koprucki, and T. Schroeder





innovations for high performance microelectronics





### Motivation: the connected world



#### Establishing the Zettabyte Era Global IP Traffic Will Increase 4-Fold From 2011 to 2016



www.ihp-microelectronics.com | © 2014 - All rights reserved | MMSDays 2016

27<sup>th</sup> January 2016

### Motivation: bandwidth, bandwidth, and banwidth



More bandwidth and lower power consumption needed at all scales:

- Rack-to-Rack
- Board-to-Board
- Chip-to-Chip





www.ihp-microelectronics.com | © 2014 - All rights reserved | MMSDays 2016

27<sup>th</sup> January 2016

# Bringing light to the chip: a More-than-Moore solution





# Silicon wafer



# Light on chip: Laser is the Holy Grail







# Integrated laser is the only missing piece: a Ge Laser?





### TOWARDS A LASER MONOLITHICALLY INTEGRATED IN THE SILICON PHOTONICS: how to turn a group IV semiconductor in a direct band gap material



- TENSILE STRAIN
- ULTRA-HIGH n DOPING (difficult in Ge)
- ALLOYING WITH Sn

### OK: INTEGRABLE, EMISSION DEMONSTRATED



#### **KO: LARGE I<sub>th</sub>, LIMITED DEVICE LIFETIME**



#### **RT Electrically pumped Ge laser**

Camacho-Aguilera (MIT), 2012 :  $\epsilon_{bi}$ =0.2%  $I_{th}$ ~ 300kA/cm<sup>2</sup>  $W_{out}$ <1mW  $\lambda$ ~1.6-1.7  $\mu$ m  $n_{dop}$ ~4x10<sup>19</sup>cm<sup>-3</sup> Koerner (IHT), 2015 :  $\epsilon_{bi}$ <0.2%  $I_{th}$ ~ 500kA/cm<sup>2</sup>  $W_{out}$ <1mW  $\lambda$ ~1.66-1.7  $\mu$ m  $n_{dop}$ ~3x10<sup>19</sup>cm<sup>-3</sup> **T=80K Optically pumped GeSn laser** Wirths (FZ-Juelich), 2015 : xSn= 0.13  $\epsilon_{bi}$ =-0.7%  $P_{th}$ ~ 325kW/cm<sup>2</sup>  $W_{out}$ = NA (gain ~100cm<sup>-1</sup>)  $\lambda$ ~2.25  $\mu$ m



.....







# **Modeling strategy**



#### FROM MATERIAL PROPERTIES TO FULL 2D OPTOLELECTRONIC SIMULATIONS: UPSCALING









- TM PREFERRED OVER TE (higher gain due to LH-HH splitting)
- APERTURE INJECTION REDUCES THRESHOLD BY 4×
- EMISSION POWER IN THE mW RANGE AT 30 mA
- BLUE SHIFTED EMISSION FOR HIGHER LOSSES (wg, mirror, fca, 0.2 etc. Agrees with MIT)
- SWITCHING TO TM2 AT HIGHER LOSSES









# Thank you for your attention!

Giovanni Capellini

IHP – Innovations for High Performance Microelectronics
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Phone: +49 (0) 335 5625 317
Fax: +49 (0) 335 5625 681
Email: capellini@ihp-microelectronics.com

www.ihp-microelectronics.com



innovations for high performance microelectronics

