Scaling Limits of Random Growth Models

Amanda Turner Department of Statistics University of Leeds, UK

ヘロト ヘロト ヘヨト ヘヨト

Amanda Turner Department of Statistics University of Leeds, UK

Biological growth

Photo by James Wearn

Amanda Turner Department of Statistics University of Leeds, UK $% \left({{{\rm{UK}}} \right)$

Biological growth

Gift by Sir Alexander Fleming to Edinburgh University Library, Scotland

Amanda Turner Department of Statistics University of Leeds, UK

Mineral deposition

Photo by Kevin R Johnson

(a)

Amanda Turner Department of Statistics University of Leeds, UK

Mineral deposition

Amanda Turner Department of Statistics University of Leeds, UK

Dendrite Growth in a Lithium Battery

Photo by Neil Dasgupta

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Amanda Turner Department of Statistics University of Leeds, UK

Lightning strikes

From "Lichtenberg Figures Due to a Lightning Strike" by Yves Domart, MD, and Emmanuel Garet, MD $\langle \Box \rangle \langle \Box \rangle \langle \exists \rangle \langle \exists \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle \langle \exists z \rangle \langle \exists$

Amanda Turner Department of Statistics University of Leeds, UK

Lattice models for random growth

ヘロト ヘロト ヘヨト ヘヨト

3

Amanda Turner Department of Statistics University of Leeds, UK

Eden cluster with 1,500 particles

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

Simulation by Eviatar Procaccia 《 다 》 《 큔 》 《 클 》 《 클 》 《 클 》 이 이 아

Amanda Turner Department of Statistics University of Leeds, UK

DLA cluster with 2,000 particles

Amanda Turner Department of Statistics University of Leeds, UK

Stationary DLA

Simulation by Eviatar Procaccia

Amanda Turner Department of Statistics University of Leeds, UK

Other lattice models for random growth

- Dielectric breakdown models (DBM)
- Internal diffusion-limited aggregation (IDLA)
- First passage percolation (FPP)
- Interface models: ballistic deposition, corner growth model, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

What do we know about lattice models for random growth?

Not much!

- DLA first formulated in 1981 by Witten and Sander.
- Original paper has almost 7,000 citations.
- Only one rigorous result in over 40 years: At time t DLA is contained in a ball of radius $t^{2/3}$ (Kesten, 1987).
- No proof (or even convincing explanation) that DLA does not converge to a ball.
- Main open problems:
 - Existence of universal limit.
 - Growth rate of the cluster.
 - Structure of the limiting set (e.g. fractal dimension).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Number of arms.

Amanda Turner Department of Statistics University of Leeds, UK

DLA cluster with 145,199,976 particles

Simulation by B.Grebenkov and D.Beliaev

Amanda Turner Department of Statistics University of Leeds, UK

Off-lattice DLA

Ball shaped particles perform BM (from infinity) until they attach to the aggregate.

Amanda Turner Department of Statistics University of Leeds, UK

Harmonic measure

- The attachment point is distributed according to harmonic measure on the cluster boundary (from infinity).
- By conformal invariance of BM, harmonic measure is conformally invariant.
- An algorithm for sampling a boundary point of a set A: Let D_0 denote the exterior unit disk in the complex plane \mathbb{C} and let $\Phi : D_0 \to A^c$ be conformal. Choose a point $y \in \partial D_0$ uniformly. Then take $\Phi(y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

But how do you find Φ?

Conformal mapping representation of a slit-shaped particle

Let *P* denote the slit $[1, 1 + \delta]$ in the complex plane.

There exists a unique conformal mapping $F: D_0 \to D_0 \setminus P$ that fixes ∞ in the sense that

$${\sf F}(z)=e^{c}z+O(1)$$
 as $|z| o\infty,$

for some c>0, the (log of the) capacity, which satisfies $e^c=1+rac{\delta^2}{4(1+\delta)}.$

Amanda Turner Department of Statistics University of Leeds, UK

Conformal mapping representation of a cluster

Suppose P₁, P₂,... is a sequence of particles, where P_n has capacity c_n (or length δ_n) and attachment angle Θ_n, n = 1, 2, Let F_n be the particle map corresponding to P_n.

• Set
$$\Phi_0(z) = z$$

- Recursively define $\Phi_n(z) = \Phi_{n-1} \circ F_n(z)$, for n = 1, 2, ...
- This generates a sequence of conformal maps $\Phi_n : D_0 \to K_n^c$, where $K_{n-1} \subset K_n$ are growing compact sets, which we call clusters.

Cluster formed by iteratively composing mappings

Picture by Vittoria Silvestri

Amanda Turner Department of Statistics University of Leeds, UK

Cluster formed by iteratively composing mappings

イロト イポト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

Parameter choices for physical models

- By varying the sequences {Θ_n} and {c_n}, it is possible to describe a wide class of growth models.
- For biological growth (Eden model)

$$\mathbb{P}(\Theta_n \in (a,b)) \propto \int_a^b |\Phi_{n-1}'(e^{i heta})| d heta$$

and

$$c_n \approx c |\Phi'_{n-1}(e^{i\Theta_n})|^{-2}$$

■ For DLA, *c_n* is as above and

$$\mathbb{P}(\Theta_n \in (a,b)) = \mathbb{P}(\Phi_{n-1}^{-1}(B_{\tau}) \in (a,b)) \propto (b-a)$$

where B_t is Brownian motion started from ∞ and τ is the hitting time of the cluster K_{n-1} .

Amanda Turner Department of Statistics University of Leeds, UK

Aggregate Loewner Evolution, $ALE(\alpha, \eta, \sigma)$

• Θ_n distributed $\propto |\Phi'_{n-1}(e^{\sigma+i\theta})|^{-\eta}d\theta;$ $c_n = c|\Phi'_{n-1}(e^{\sigma+i\Theta_n})|^{-\alpha}.$

Amanda Turner Department of Statistics University of Leeds, UK

Regularization for ALE

- Even after the arrival of a single slit particle, the map $\theta \mapsto |\Phi'_n(e^{i\theta})|$ is badly behaved and takes the values 0 and ∞ .
- For some values of η,

$$\int_{-\pi}^{\pi} |\Phi_{n-1}'(e^{i\theta})|^{-\eta} d\theta = \infty,$$

so regularization is necessary to even define the measure.

• A solution is to let Θ_n have distribution

$$\propto |\Phi_{n-1}'(e^{\sigma+i heta})|^{-\eta}d heta$$

for $\sigma > 0$ and take the limit $\sigma \rightarrow 0$.

• Models are very sensitive to the rate at which $\sigma \rightarrow 0$. Can be argued that $\sigma \sim c^{1/2}$ is natural from a physical point of view.

Amanda Turner Department of Statistics University of Leeds, UK

Phase transition

Open Problem:

Does ALE(α, η, σ) exhibit a phase transition from disks to non-disks along the line $\alpha + \eta = 1$ (for 'broad' choices of the regularization parameter σ)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

- Longstanding conjectures:
 - $HL(\alpha)$ has a phase transition at $\alpha = 1$.
 - **DBM**(η) has a phase transition at $\eta = 0$.

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,0) cluster with 8,000 particles for $c = 10^{-4}$

イロト イボト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,0.5,0.02) cluster with 8,000 particles for $c = 10^{-4}$

イロト イボト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,1,0.02) cluster with 8,000 particles for $c = 10^{-4}$

イロト イボト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,1.5,0.02) cluster with 8,000 particles for $c = 10^{-4}$

イロト イヨト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,2,0.02) cluster with 8,000 particles for $c = 10^{-4}$

イロン イロン イヨン イヨン

Amanda Turner Department of Statistics University of Leeds, UK

ALE(0,5,0.02) cluster with 8,000 particles for $c = 10^{-4}$

ヘロト ヘロト ヘヨト ヘヨト

э

Amanda Turner Department of Statistics University of Leeds, UK

Previous results: HL(0)

Much of the previous work relates to HL(0) as particle maps are i.i.d. so the model is mathematically the most tractable.

- Norris and Turner (2012):
 - small-particle scaling limit of HL(0) is a growing disk: $\Phi_n(z) \approx e^{cn}z$
 - branching structure is related to the Brownian web
 - expected size of the n^{th} particle is roughly $\delta \exp cn$, so HL(0) is "unphysical".
- Silvestri (2017): fluctuations converge to a log-correlated Fractional Gaussian Field.

HL(0)-like model variants

- Sola, Turner, Viklund (2012): Anisotropic HL(0)
- Berestycki and Silvestri (2021): Constrained HL(0)
- Berger, Turner, Procaccia (2021): Stationary HL(0)

イロト イボト イヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

$HL(\alpha)$ for $\alpha \neq 0$

All results for HL(α) with $\alpha \neq 0$ require some kind of regularization.

- Rohde and Zinsmeister (2005) obtained estimates on the dimension of scaling limits for a regularized version of HL(α).
- Sola, T., Viklund (2015) showed small-particle scaling limit of regularized HL(α) is a growing disk for all α provided regularization parameter σ is large enough.
- Liddle and T. (2021) obtained disk-limits and fluctuation results for $HL(\alpha)$ under capacity rescaling, regularized at ∞ , when $\alpha \in (0, 2)$.

ALE family in the singular regime

- Sola, T., Viklund (2019) showed scaling limit of ALE(α, η, σ) is a single slit if α ≥ 0 and η > 1 when using slit particles, provided σ is very small.
- Higgs (2021) showed scaling limit of ALE(0, η, σ) converges to a SLE₄ for η < -2 when using slit particles, provided σ is very small. Other SLE_κ's with κ > 4 can be obtained by using different particle shapes.

イロト 不同 トイヨト イヨト

Amanda Turner Department of Statistics University of Leeds, UK

ALE family in the disk-regime

Norris, Turner, Silvestri (2022 and 2024)

• Scaling limit: For all $\alpha + \eta \leq 1$, provided $\sigma \gg c^{1/2}$ as $c \to 0$ ($\sigma \gg c^{1/3}$ when $\alpha + \eta = 1$),

$$\Phi_n(z) \approx (1 + \alpha cn)^{1/\alpha} z.$$

• Fluctuations: Set $\mathcal{F}_n^{(c)}(z) = c^{-1/2} \left((1 + \alpha cn)^{-1/\alpha} \Phi_n(z) - z \right)$. Then $\mathcal{F}_{\lfloor t/c \rfloor}^{(c)}(z) \to \mathcal{F}_t(z)$ where $\dot{\tau}(z) = \frac{1}{2} \left((1 - (z + z)) - \tau'(z) - \tau(z) + \sqrt{2}c(z) \right)$

$$\dot{\mathcal{F}}_t(z) = \frac{1}{1+\alpha t} \left(\left(1-(\alpha+\eta)\right) z \mathcal{F}'_t(z) - \mathcal{F}_t(z) + \sqrt{2}\xi_t(z) \right).$$

Here $\xi_t(z)$ is complex space-time white noise on the circle, analytically continued to the exterior unit disk.

Amanda Turner Department of Statistics University of Leeds, UK

Fluctuations for ALE(α, η, σ) when $\alpha + \eta \leq 1$

Specifically

$$\mathcal{F}_t(z) = \sum_{m=0}^{\infty} (A_t^m + iB_t^m) z^{-m}$$

where

$$dA_t^m = -\frac{(m(1-\alpha-\eta)+1)A_t^m}{1+\alpha t}dt + \frac{\sqrt{2}}{1+\alpha t}d\beta_t^m$$

$$dB_t^m = -\frac{(m(1-\alpha-\eta)+1)B_t^m}{1+\alpha t}dt + \frac{\sqrt{2}}{1+\alpha t}d\beta_t^{\prime m}.$$

Here $\beta_t^m, \beta_t^{\prime m}$ are i.i.d. Brownian motions for $m = 0, 1, \ldots$, so

$$A_t^m, B_t^m \sim \mathcal{N}\left(0, \frac{1 - e^{-2(m(1 - \alpha - \eta) + 1)\tau_t}}{m(1 - \alpha - \eta) + 1}\right).$$

Amanda Turner Department of Statistics University of Leeds, UK

Remarks

- The map $z \mapsto \mathcal{F}_t(z)$ is determined (by analytic extension) by the boundary process $\theta \mapsto \mathcal{F}_t(e^{i\theta})$.
- When $\alpha = \eta = 0$, these boundary fluctuations are the same as for internal diffusion limited aggregation (IDLA).
- As $t \to \infty$, $\mathcal{F}_t(e^{i\theta})$ converges to a Gaussian field.
 - When α + η = 0, 𝓕_∞(e^{iθ}) is known as the augmented Gaussian Free Field.
 - When $\alpha + \eta < 1$, $\operatorname{Cov} \left(\mathcal{F}_{\infty}(e^{ix}), \mathcal{F}_{\infty}(e^{iy}) \right) \asymp \log |x y|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

• When $\alpha + \eta = 1$, $\mathcal{F}_{\infty}(e^{i\theta})$ is complex white noise.

Amanda Turner Department of Statistics University of Leeds, UK

References

[1] M.B.Hastings and L.S.Levitov, *Laplacian growth as one-dimensional turbulence*, Physica D 116 (1998).

[2] F.Johansson Viklund, A.Sola, A.Turner, *Small particle limits in a regularized Laplacian random growth model*, CMP, 334 (2015).

[3] J.Norris, V.Silvestri, A.Turner, *Scaling limits for planar aggregation with subcritical fluctuations*, PTRF, 185 (2022).

[4] J.Norris, V.Silvestri, A.Turner, *Stability of regularized Hastings-Levitov aggregation in the subcritical regime*, CMP, 405 (2024).

[5] J.Norris, A.Turner, *Hastings-Levitov aggregation in the small-particle limit*, CMP, 316 (2012).

[6] A.Sola, A.Turner, F.Viklund, *One-dimensional scaling limits in a planar Laplacian random growth model*, CMP, 371 (2019).

[7] V.Silvestri, Fluctuation results for Hastings-Levitov planar growth. PTRF, 167 (2017).

Amanda Turner Department of Statistics University of Leeds, UK