ALEX 2018 Workshop: Abstracts
Spectral stability of inviscid columnar vortices
Thierry Gallay and Didier Smets
(1) Institut Fourier, Université Grenoble Alpes, (France)
(2) Laboratoire J.-L. Lions, Sorbonne Université Paris (France)
The mathematical theory of hydrodynamic stability started in the middle of the 19th century with the study of model examples, such as parallel flows, vortex rings, and surfaces of discontinuity. We focus here on the equally interesting case of columnar vortices, which are axisymmetric stationary flows where the velocity field only depends on the distance to the symmetry axis and has no component in the axial direction. The stability of such flows was first investigated by Kelvin in 1880, for some particular velocity profiles, and the problem benefited from important contributions by Rayleigh in 1880 and 1917. Despite further progress in the 20th century, the only rigorous results available so far are necessary conditions for instability under either two-dimensional or axisymmetric perturbations. The purpose of this talk is to present a recent work in collaboration with D. Smets (Paris), where we prove under mild assumptions that columnar vortices are spectrally stable with respect to general three-dimensional perturbations. The proof relies on a homotopy argument, which allows us to restrict the spectral analysis of the linearized operator to a small neighborhood of the imaginary axis in the complex plane.