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1.4 Model-based Geometry Reconstruction of Quantum Dots

from TEM

Anieza Maltsi, Thomas Koprucki, Karsten Tabelow, and Timo Streckenbach

The use of lenses to magnify the vision of objects dates back a couple of centuries. In the early

Fig. 1: TEM image of InAs
QDs recorded at TU Berlin
showing a coffee-bean-like
contrast

seventeenth century the invention of the microscope really changed the way we may explore tiny

objects that are otherwise not accessible to the human eye. Today, many areas of science and tech-

nology cannot be thought without different types of microscopes. While the first were based on

light in the visible part of the spectrum and thus inherently limited in their spatial resolution due

to the connection between the wavelength of the propagating waves and the minimal size of dis-

tinguishable objects, modern microscopes use other types of waves to image even tinier objects.

One example is transmission electron microscopy (TEM) which uses the propagation of electron

waves through magnetic lenses to create an image, see [1]. TEM allows imaging of the crystallo-

graphic structure of materials down to an atomic scale. As such, TEM has become an indispensable

experimental tool to examine objects in life sciences or in material sciences at nanoscales. How-

ever, the creation of the image as well as its interpretation inherently require mathematical theory

to solve the reconstruction problem for a single specimen and to allow for automated processing

of bulks of them.

Model-based geometry reconstruction

Quantum dots (QD) are semiconductor nanostructures with interesting optoelectronic properties

Fig. 2: From shape space to
image space by numerical
simulation of TEM images
and back by inference on the
geometry of a single QD
from a given TEM image

that are determined by their geometry and used in many different fields, such as lasers, quan-

tum cryptography, and quantum metrology. The growth of semiconductor QDs with the desired

electronic properties would highly benefit from an assessment of QD geometry, distribution, and

strain profile in a feedback loop between epitaxial growth and analysis of their properties. In prin-

ciple, TEM can be used to assist such an optimization loop of QDs. However, the reconstruction of

the geometric properties of QDs from TEM images is a difficult problem due to the limited image

resolution (0.5–1nm), the highly nonlinear behavior of the dynamic electron scattering, non-local

effects due to strain, and strong stochastic influences resulting from uncertainties in the exper-

iment. In contrast to what is common for images from light microscopy, for TEM imaging of QDs

there is no simple one-to-one correspondence between the TEM image, which rather shows the

so-called coffee-bean contrast, and the shape of the QD, see Figure 1 for an experimental example

and Figure 2 for a simulated one.

Within the MATH+ project EF3-1 “Model-based geometry reconstruction from TEM images,” a novel

concept was introduced for three-dimensional model-based geometry reconstruction (MBGR) of

QDs from TEM imaging [2], see Figure 2: MBGR is based on a model for the QD configuration space

that includes categorical variables, such as their shape (e.g., pyramidal or lense-shaped) and

continuous parameters (e.g., size, height). By the numerical simulation of the imaging process,

a database of simulated TEM images spanning the image space for a large number of possible QD

configurations and image acquisition parameters can be generated. This simulated image space
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can then be assigned to some explicit or implicit metrics and explored by means of statistical

methodology, for example, by shape space methods, functional data analysis, or deep learning.

Such methods can then be used for inferring the geometry of QDs from experimental TEM images.

To realize the idea we combined expertise of the WIAS teams RG 1 Partial Differential Equations,

RG 3 Numerical Mathematics and Scientific Computing, RG 6 Stochastic Algorithms and Nonpara-

metric Statistics, and of the Electron Microscopy and Holography work group of the Institut für

Optik und Atomare Physik at Technische Universität Berlin. The work was funded by ECMath (OT7,

06/17–12/18) and MATH+ (EF3-1, 01/19–12/21).

Darwin–Howie–Whelan equations

For our first step in model-based geometry reconstruction, it is necessary to simulate TEM images

by numerically solving the equations describing the electron propagation, namely the Darwin–

Howie–Whelan (DHW) equations, see [4, Sec. 6.3]. The DHW equations can be derived from the

Schrödinger equation

19(r)+ (2π |k0|)
29(r) = −4π2U (r)9(r), (1)

where k0 is the wave vector of the monochromatic incoming beam, 9 is the wave function of

the electron beam propagating through the specimen, and U is the reduced electrostatic poten-

tial of the crystal, see [1]. For a perfect crystal, the specimen is described by a periodic lattice of

atoms 3 ⊂ R3 . We decomposed the spatial variable r = (x, y, z) into the transversal part (x, y)

orthogonal to the thickness variable z ∈ [0, z∗] , see Figure 3.
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Fig. 3: The incoming beam
with wave vector k0 enters
the specimen, is partially
transmitted, and generates
beams with nearby wave
vectors k0+g

The column approximation restricts the focus to solutions of (1) that are exactly periodic in (x, y)

and are slow modulations in z of a highly-oscillatory function. This is due to the fact that in TEM

the beam is formed by fast electrons with high energy, so they will not be scattered very far from

the entrance point. Hence, we sought solutions in the form:

9(r) =
∑

g∈3∗
ψg(z) ei 2πk0·r ei 2πg·r, (2)

where 3∗ ⊂ R3 denotes the dual lattice, and ψg are slowly varying envelope functions. Inserting

the multi-beam ansatz (2) into (1), one obtains the DHW equations for infinitely many beams:

ρg
π

d
dz
ψg(z) = i

(
σgψg(z)+

∑
h∈3∗

Ug−hψh(z)
)
, ψg(0) = δ0,g, for g ∈ 3∗ , (3)

where ρg = (k0+g) · ν and σg = |k0|
2
− |k0+g|2,

where ν = (0,0,1)> is the normal to the crystal surface and where Ug are the Fourier coefficients

of the periodic potential U . This is an initial value problem for an infinite system of first-order ordi-

nary differential equations describing the propagation of the electron beam through the specimen

from z = 0 to the exit plane z = z∗ . The incoming beam ( g = 0 ) is scattered in directions k0+g .

One observation here is that the second derivative with respect to z has been dropped. This is

due to the high energy of the electrons in the incoming beam. However, the coefficient of the first
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derivative ρg can change sign or even become 0 or arbitrarily close to 0 for some g ∈ 3∗ . This

means neglecting the second derivative for such g ’s makes the DHW equations (for all beams

g ∈ 3∗ ) ill posed. Hence, the DHW equation (3) is only useful for a subset of beams g where ρg
is close to ρ0 = k0 · ν > 0 . The term ρ0 corresponds to the incoming beam ( g = 0 ), which has

to be included to satisfy the initial condition ψg(0) = δ0,g . But what do we mean by “close” and

how many beams are needed to obtain a reliable approximation for the solution of the Schrödinger

equation, in particular for high-energy electron beams?

We approached these questions by systematically investigating the dependence of the solutions
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Fig. 4: Dual lattice 3∗ (black
dots) and admissible sets
Gγ (green), G M (red), and
Ewald sphere (blue)

ψG
= (ψg)g∈G on the chosen subset G ⊂ 3∗ of the dual lattice. To do this, we first defined the

subsets G that make the problem well posed. The condition to be satisfied is ρ0 > 0 , so that we

can indeed drop the second derivative. For this, we introduced the set Gγ :=
{

g ∈ 3∗
∣∣ρg ≥ γρ0

}
for γ ∈ ]0,1[ , see Figure 4. On this set, the problem is well posed and it also satisfies the initial

condition. Next, we defined the appropriate Hilbert space H(G) and showed that the reduced DHW

system for each G ⊂ Gγ has a unique solution ψG : R→ H(G) , see [3].

The set Gγ is still an infinite set. In numerical simulations of TEM images, only a finite number

of beams g near the incoming beam g = 0 is used, such as the two-beam or systematic row

approximation, see [1, 2, 4]. We continued our investigation of the dependence of the solutions

on finite subsets G of Gγ . For that purpose, we introduced the set G M :=
{

g ∈ 3∗
∣∣ |g| ≤ M

}
,

for M > 0 , see Figure 4. This is important because the high-energy electrons are not scattered

very far away from the incoming direction. We also assumed that the Fourier coefficients Ug of the
a) b)

Fig. 5: Fourier coefficients of
the scattering potential for
GaAs along different
crystallographic directions
(red, blue) showing an
exponential decay (black)

scattering potential 𝒰 decay exponentially:

|Ug| ≤ CU e−αU|g| for all g ∈ 3∗. (4)

This assumption is satisfied for a wide class of materials, see also Figure 5. Using these assump-

tions, we proved that the influence of the exact choice of the subsets G such that G M
⊂ G ⊂ Gγ

is not important if we have enough modes around g = 0 . We provided explicit error bounds for

the solutions in the finite subsets G M
⊂ G ⊂ Gγ , which showed an exponential decay in depen-

dence on the radius M .

We reduced the set of beams even further by restricting g into a neighborhood of the Ewald sphere

SEw :=
{

g ∈ R3 ∣∣ |k0|
2
− |k0+g|2 = 0

}
,

see Figure 4. Indeed, in TEM the incoming beam with wave vector k0 is chosen exactly in such a
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Fig. 6: Ewald sphere (blue)
and Laue zones from the
lowest (yellow) to third order
(green)

way that the intersection of the Ewald sphere SEw with the dual lattice 3∗ contains, in addition

to the incoming beam, a special number of other beams. An example is the so-called Laue-zone

approximation, which is an approximation of a spherical cap of the Ewald sphere, see Figure 6. By

using energy conservation, we provided error bounds for that choice. A similar error analysis was

then carried out for both the two-beam and the systematic-row approximation, which are widely

employed in TEM image simulation software such as PyTEM [5]. Finally, numerical simulations were

done that underpin the quality of the error bounds and thus provide a justification of heuristic

beam selection criteria often used in TEM simulation software. For more details on all the above-

mentioned results; see [3].
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Simulation of TEM images of QDs

In semiconductor nanostructures, such as QDs, the dynamical electron scattering as described

above for perfect crystals, is additionally influenced by spatial variations in the material composi-

tion and by local deformations of the lattice due to elastic strain. In order to model the TEM images,

we used elasticity theory to obtain the strain profile and coupled this profile with the DHW equa-

tions describing the electron propagation through the sample. We considered QDs composed of

InGaAs inside a crystal matrix of GaAs, where the indium content is 80%. The influence of spatial

variations in the indium content c(r) and of the lattice deformations given by the displacement

field u(r) can be approximated by the modification of the Fourier coefficients according to

Ug → U ′g(r) =
[
c(r)U I n As

g + (1− c(r))U Ga As
g

]
× exp(−2π iu(r) · g). (5)

The projection of the displacement on the individual reciprocal lattice vector g enters the coupling

as a phase factor. A simulated TEM image is created by propagating the beams through the speci-

men for every pixel (xi , y j ) , i, j = 1, . . . , N . For the numerical simulation of the TEM images, the

elasticity problem is solved with WIAS-pdelib, where we took as an input the geometry of the

QD and computed the displacement field that enters the DHW-solver PyTEM [5], which computes

the TEM image for the chosen excitation. An example of this toolchain for a pyramidal InGaAs QD

and the influence of the excitation on the image contrast can be seen in Figure 7. For more details,

see [2].

Fig. 7: Simulation of TEM
images: a) QD geometry, b)
ux component, and d) uy
component of displacement
field. c) and e):
corresponding TEM images
for strong beam conditions.

Database of TEM images of QDs

Using the toolchain described above, we generated a database of TEM images for initially two

Fig. 8: Three-dimensional
geometry for lense-shaped
and pyramidal QD

classes of geometries: pyramidal and lense-shaped QDs, see Figure 8. This database contains im-

ages for different QD geometry parameters (baselength, aspect-ratio, concentration, position) and

excitation parameters (acceleration voltage, beam directions). A structured query language (SQL)

database is used to store the metadata of the images including the actual values of the parame-

ters, the numerical parameters controlling the solvers, and the file locations. The consistency of

parameters and data across the toolchain is ensured by using portable metadata descriptions in

JavaScript Object Notation (JSON).

Examples from the database are shown in Figure 9, where we have the TEM images for four ge-

ometries (flat and full lense-shaped, full and truncated pyramid) for two different excitations. An

interesting first observation with the human eye by comparison with experimental data is that the
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QD is lense shaped, while before it was considered to be a pyramidal one. For better and auto-

mated classification of QDs, we need methods like deep learning, which is an ongoing work in our

project.

Fig. 9: Comparison of
experimental (a) and e)) and
simulated (b) and d)) TEM
images for geometries
shown in c)

Conclusions and outlook

We studied the mathematical structure of the DHW equations that led to a justification of heuristic

beam selection criteria and explicit error bounds for different cases, including the widely used two-

beam and systematic-row approximation, see [3]. The analysis is currently extended to the impact

of strain in the system, which led to a mathematical underpinning of symmetries observed in TEM

images; see, e.g., [6].

Together with Tore Niermann from Technische Universität Berlin, we developed a software for the

simulation of TEM images for semiconductor QDs. Our toolchain was also applied to more gen-

eral strained semiconductor nanostructures, as, for example, in [6] for quantum wells in tilted TEM

lamellas. With this toolchain, we simulated a database of TEM images for different configurations,

which will now be used for our last step in model-based geometry reconstruction, namely the clas-

sification of QDs and the analysis of the image space via methods like deep learning.
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