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1.1 Phase Transitions of Condensation Type in Interacting

Particle Systems

Benedikt Jahnel, Wolfgang König, and Alexandra Quitmann

One of the greatest unsolved problems in contemporary mathematical physics is a mathematical

understanding of the famous Bose–Einstein condensation (BEC) phase transition. In 1924, the

young and then unknown Indian mathematical physicist Sateyendra Nath Bose kindly asked the al-

ready famous Albert Einstein to help publishing his achievement, a new calculation method for the

free energy of a simple model (i.e., without particle interactions) for a large particle system at very

low temperatures. Einstein helped him, but also noticed that this new method even had detected

a previously unknown and very weird phase transition, in particular, a new kind of condensation

phase of an ensemble of undistinguishable particles. In this state of matter, a positive fraction

would remain in the same quantum mechanical state, a kind of “super atom” having strange prop-

erties. He predicted that this effect would arise also at positive, but very low temperature and

under realistic conditions, i.e., with some interaction between the particles.

For a long time, this prediction did not lead to much research activity, since the anticipated phase

transition was seen mostly as a kind of curiosity, a mathematical foundation seemed to represent

a major undertaking, and an experimental verification was far out of reach. Nevertheless, a few

theoretical physicists started developing some preliminary modeling in the 1940s and triggered

the interest of the physics community. By the 1990s, the opinion emerged that an experimental

realization would be a hot candidate for a Nobel Prize. In 1992, a team of experimental physicists

created a temperature of 10−6 Kelvin for some ten thousands of particles, which did not suffice for

obtaining the condensation, but lead to the Physics Nobel Prize being awarded for the year 1997.

In 1995, finally, two teams reached a temperature of 10−9 Kelvin and did obtain the condensa-

tion phase experimentally. As expected, three members of the two teams were awarded jointly

the Physics Nobel Prize for the year 2001 for this success. This development triggered substantial

activity by mathematical physicists and later probabilists searching for a rigorous mathematical

understanding of BEC. Since then, for many simplified models, this phase transition has been suc-

cessfully analyzed mathematically, but not in the situation that is considered the most realistic

and important one, namely the thermodynamic limit of the canonical model at positive tempera-

ture with some pair interaction between the particles, the interacting quantum Bose gas.

The interacting quantum Bose gas

There is a generally acknowledged model for the description of the predicted condensation effect.

It is given via an ensemble of many interacting Brownian bridges (Brownian motions conditioned

on terminating at their initial site) of various lengths of their time intervals, where the number of

particles carried by a bridge is proportional to this length. The condensation effect is seen in the

emergence of a positive fraction of the particles that sit in cycles of lengths that tend to infinity

as the total particle number diverges. This positive fraction is—in this model—equal to the Bose–

Einstein condensate. The famous conjecture is that it exists in dimensions larger or equal to three
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1.1 Phase Transitions in Interacting Particle Systems 9

at sufficiently low temperatures (or equivalently at sufficiently large particle densities), but not in

dimensions less than or equal to two. More precisely, this phase transition is expected to be a

saturation effect, i.e., up to a certain critical particle density, all particles should be organized in

microscopic structures (i.e., in cycles of finite lengths), and if this threshold is exceeded, then the

condensate emerges, and the microscopic structures remain essentially unchanged if the particle

density is further increased. Each of the long cycles corresponds to an above said “super atom”,

the novel aggregate state of matter that fascinated Einstein and Bose.

Let us give a more precise description of the model. We consider a canonic interacting bosonic

many-body system in a large box in Rd at positive temperature 1/β ∈ (0,∞) with fixed particle

density ρ ∈ (0,∞) and kinetic energy in the thermodynamic limit, i.e., N particles in a large box

3N of volume N/ρ . We denote by

ℋN = −

N∑
i=1

1i +
∑

1≤i< j≤N

v(|xi − x j |), x1, . . . , xN ∈ 3N ,

the N -particle Hamilton operator with kinetic energy given by the Laplace operator and mutual

energy given by a pair-interaction function v : [0,∞)→ R . There is no particular canonical choice

of v in view of the Bose gas, but a typical requirement is a short-distance repulsion (i.e., v(r)→

∞ as r ↓ 0 ) and a strong decay at infinity. Otherwise, one requires v often to be nonnegative

or of Lennard-Jones-type, i.e., with some attraction at moderate distance (i.e., a strict negative

minimum at some positive point). We are interested in bosons and introduce a symmetrization,

i.e., we project ℋN on the set of symmetric, i.e., permutation-invariant, wave functions. For this,

we consider the trace of the operator e−βℋN in 3N with symmetrization,

Z N (β,3N ) = Tr3N ,+(e
−βℋN ), (1)

where the index + indicates the symmetrization. This trace is the partition function of the model,

the integral over all realizations of the system of N indistinguishable particles in 3N , equipped

with the two energies. The kinetic energy is expressed in terms of an expectation with respect to

N Brownian bridges (cycles) on the time interval [0, β] , and the symmetrization appends each

bridge at the end of another, according to some uniformly-at-random-picked permutation of the

N bridges. Since every permutation decomposes into cycles, these bridges are glued together to

bridges of various time lengths, by the virtue of the Markov property. This is summarized in terms

of a well-known variant of the Feynman–Kac formula, which we formulate now.

For k ∈ N , we put qk =
1
k (4πβk)−d/2 and pick the starting sites of all the bridges of length k

(i.e., with time interval [0, βk] ) as the points of a Poisson point process with intensity qk ; hence

they are uniformly distributed over 3N , and their number is Poisson distributed with expectation

qk |3N | . Each bridge B of length k has exactly k particles B0, Bβ , B2β , . . . , B(k−1)β and has k

legs (Bt )t∈[( j−1)β, jβ] with j = 1, . . . , k . All these families of cycles are independently superposed

over k ∈ N , and the total number of all the motions is put equal to N . The interaction of the

ensemble is equal to a sum over all pairs of any two legs of any of the bridges and given by the
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functional

( f, g) �→

∫ β

0
v( f (t) − g(t)) dt. (2)

Let us denote the ensemble by B = (B(k,i))k,i with corresponding expectation E and the total

Fig. 1: Illustration of three
Brownian cycles (red, blue,
green) attached to Poisson
points (black) and carrying
particles (gray)

interaction by V , then the announced trace formula reads

Z N (�N ) = E
[
e−V1l{L(B) = N }

]
, (3)

where L(B) denotes the total number of particles in the system, i.e., the sum of all the lengths

of the cycles. We have arrived at a probabilistic description of the trace in terms of an interacting

ensemble of many random cycles (in this case, Brownian bridges) of various, unbounded lengths,

with a pair interaction for each pair of legs and a total number of N legs. In particular, this is a

spatial distribution of N indistinguishable particles in terms of a marked Poisson point process

in the box �N , see Figure 1.

The main goal is to prove that, in the limit as N → ∞ , in dimension d ≥ 3 (but not in d ≤ 2 )

and for all sufficiently large particle densities ρ , the main contribution to this expected value

Fig. 2: Up: Illustration of a
cycle ensemble without
emergence of a condensate.
Down: Illustration of a cycle
ensemble with a very long
cycle (red), interpreted as
condensate

comes from those configurations that have a positive fraction of particles (i.e., of legs) in “very

long” cycles, i.e., cycles of lengths that depend on N and diverge as N → ∞ , see Figure 2.

The totality of all these long cycles is then interpreted as the condensate. The occurrence of such

a macroscopic structure at sufficiently large particle density is supposed to be a condensation

phase transition, i.e., there should be a critical threshold ρc ∈ (0, ∞) such that long cycles occur

for ρ > ρc , but not for ρ < ρc . The idea is that, if ρ grows, i.e., when addding more and more

particles to the container �N , then first the particles are organized in finite-length cycles until

saturation is reached, and if the threshold ρc is exceeded, then all additional particles condensate,

and the density of the finite-cycle particles does not change anymore.

Large deviations ansatz

One familiar ansatz for deriving large- N asymptotics for the partition function is based on the

idea to derive a characteristic variational formula for its large- N exponential rate, i.e., for the free

energy per unit volume, given by

f (ρ) = − lim
N→∞

1
|�N |

log Z N (�N ).

This formula should be able to express the contributions of the decisive quantities like energy,

entropy, and particle density in terms of an infimum over all the three random ingredients (cycle

lengths, locations of Poisson points, cycle trajectories), to distribute all the random cycles. A deci-

sive step towards this aim was made in [1], where, for all sufficiently small ρ , it was proved that

f (ρ) = inf
{

I (P) + �(P) : P ∈ M(s)
1 , N (P) = ρ

}
, (4)

where M(s)
1 is the set of (distributions P of) translation-invariant marked point processes in Rd

(the marks being the random cycles starting and ending at the points); furthermore, I (P) is the

relative entropy density of P with respect to the above reference Poisson point process, �(P) the
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energy of P , and N (P) the effective particle density of P , i.e., the number of particles that P

puts on an average into a unit volume. It should be noted that P is able to express only micro-

scopic structures, not the condensate.

The methods employed in [1] failed to extend this statement to all particle densities ρ , nor to

say anything about the existence nor non-existence of minimizers P in that formula. The latter

Fig. 3: Illustration of a
realization of the simplified
quantum Bose gas in a finite
box. Poisson points on Zd

carry marks given by finite
grids of varying size

question is conjectured to be decisive for the question about occurrence of BEC. Indeed, if the

formula admits a minimizer, then this should be interpreted as the non-existence of a condensate,

while a lack of a minimizer should indicate that there is something in the system that cannot be

expressed in terms of such processes P – this should be the condensate. It is conjectured by

the WIAS team that there is a critical value ρc (which is finite in dimensions d ≥ 3 ) such that a

minimizer P exists for ρ < ρc , but not for ρ > ρc . Mathematically, much of the problem stems

from the fact that the map P �→ N (P) is lower semicontinuous, but not continuous.

In order to solve a problem of this kind, a WIAS team worked in 2020 on a slightly simplified model,

where Rd is replaced by the lattice Zd and the (random) Brownian cycles are replaced by (de-

terministic) grids, see Figure 3 for an illustration. The team is about to finish the derivation of a

characteristic variational formula that features a serious extension of (4): an extended probability

space that is able to encode also the macroscopic structure:

f (ρ) = inf
ρ1∈[0,ρ]

inf
ψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρ−ρ1
inf
{

I (Pψ) + �(Pψ) : Pψ ∈ M(s)
1 ,N (Pψ) = ρ1

}
.

Here, ψ(a) is the percentage of the area in which precisely a macroscopic grids overlap (this

defines something like an environment of condensates), and Pψ is the distribution of the micro-

scopic grids given the spatial distribution of the condensate and �(Pψ) its total expected energy

(within and between all microscopic and macroscopic particles), and N (Pψ) is the number of

microscopic particles that Pψ puts on an average at one site. Then ρ1 is the particle density in

microscopic grids, and ρ − ρ1 is the density of particles in the condensate.

This formula admits a minimizer for any value of ρ and a clear distinction between the mass of

microscopic particles and the condensate. Standard variational techniques give criteria for exis-

tence of minimizers with a non-trivial value of ρ − ρ1 . The WIAS team is working on a proof that,

as long as
∑

k kqk is finite (recall that qk is the spatial a priori density of cycles of length k ), this

criterion is satisfied for any sufficiently large ρ , i.e., a proof of the occurrence of BEC in this model.

We are confident of addressing the original interacting quantum Bose gas with an extension and

adaptation of this methodology in the future.

Reflection positivity ansatz

A second approach, which is currently explored by another WIAS team, consists of an application

of reflections to the family of random cycles and the deduction of useful correlation inequalities.

This technique has previously produced good results in models of random cycles (often called

random loops in this connection) in the spatially and temporally discrete setting, and offers good

perspectives for extensions to the interacting quantum Bose gas in the future. Currently, there is

a high interest in the study of models of interacting random loops in large boxes of various types,
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written in terms of random geometric permutations in the spirit of the formulation of the trace in

(1) above; see [2].

The model to which this technique was applied in 2020 at WIAS is the following. We work in a

large box in Zd with nearest-neighbor edges (and periodic boundary conditions). On each edge in

the box, there is a random number of links connecting the two vertices, satisfying the constraint

that the number of links connecting any vertex is even. Each link connecting a vertex is paired to

Fig. 4: Representation of a
link and pairing
configuration with six closed
loops. The circles represent
the vertices of the graph.
Paired links are connected
by a dotted line

precisely one other link connecting that vertex. As a result, we obtain a random collection of closed

loops as in Figure 4. We denote by me the number of links on the edge e and by nx the number

of pairings at the vertex x . A given configuration obtains a weight proportional to( ∏
edges e

γme

me!

)( ∏
vertices x,y

e−v(|x−y|)nx ny

)
K # loops, (5)

where v : [0,∞)→ R is an interaction function like in (2), and γ, K ∈ (0,∞) are two parameters.

The parameter γ controls the number of links and, hence, also the number of particles, i.e., it

plays the role of the particle density (called ρ above). Large values of the parameter K favor a

large number of loops, i.e., suppress their lengths. This random loop model is defined in the spirit

of the interacting quantum Bose gas; however, the precise relation between the two models is not

clear yet.

For this model the team is in progress to prove the existence of a regime of occurrence of macro-

scopic loops for all sufficiently large values of γ . The central technique uses a special property of

the random loop measure, which is a correlation inequality called reflection positivity. For an arbi-

trary plane through edges that is orthogonal to one of the Cartesian axes, we consider a bilinear

form defined on the set of functions that depend only on the configuration on one half of the box. It

is given by the expected value of the product of two such functions, where one of them is reflected

at the plane. Reflection positivity means that this bilinear form is symmetric and positive semidef-

inite, giving us a Cauchy–Schwarz-type inequality. The first step is to prove that the random loop

measure (5) indeed enjoys this property, which is due to the particular form of its weights and to

the periodic boundary conditions.

The by far more serious part is to use this correlation inequality to derive, for sufficiently large γ , a

positive lower bound on the expected length of the loops, uniformly in the volume of the box. (This

part is too involved to be explained here.)

The technique of reflection positivity was developed in the late 1970s by Fröhlich, Simon and

Spencer who employed it for establishing the occurrence of a phase transition in lattice spin mod-

els. In [3], this property was used to prove a phase transition in a modified version of the above

model, in which the “loop” containing the origin is open, i.e., it starts at the origin and ends at an

arbitrary vertex of the box that differs from the origin.

For K = 2 , the team is convinced that they will obtain a connection with the spatially discrete and

temporally continuous version (i.e., with continuous-time random walks in Zd ) of the interacting

quantum Bose gas, at least in the grand canonical ensemble (where the particle number is not

fixed, but a Poisson random number).
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