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1.2 Optimization and Uniform Point Sets on the Sphere

Holger Heitsch and René Henrion

Fig. 1: Icosahedron inscribed
to a sphere such that its 12
vertices yield perfectly
uniformly distributed points

How to distribute points uniformly on a sphere may be considered as a question of mathematical

interest even without having in mind any concrete application. A first idea could be related to

perfectly regular point constellations as defined by the five platonic solids; see Figure 1. This idea,

however, is limited to just a few number of points (4, 6, 8, 12, and 20), moreover, restricted to

the classical two-dimensional sphere S2 in three-dimensional space. On the other hand, large

samples of uniformly distributed points on spheres Sd of arbitrary dimension d (see Figure 2)

are important in many problems of physics, chemistry, climate science, engineering and, not to

the least, mathematics itself. The starting point for finding uniform point sets on the sphere is to

define a criterion measuring uniformity. Such criterion is by no means uniquely defined and so,

different criteria would produce different optimal point sets. Two prominent representatives are

ϕ1(X) := min
1≤i< j≤N

‖xi − x j‖; ϕ2(X) :=
∑

i, j=1,...N ,i 6= j

1
‖xi − x j‖

,

where X = {x1, . . . , xN } is a given set of points in Sd . The first criterion measures the minimum

Fig. 2: Low-discrepancy
point set on the sphere

pairwise distance of points, which increases with uniformity, while the second criterion is essen-

tially the Coulomb potential energy. The latter is minimized by electrons located on the sphere and

repulsing each other so that the result is a uniform constellation. In both cases, the relation with

optimization is clear, the first criterion has to be maximized, the second one to be minimized over

all point sets X on the sphere. The focus here shall be shifted to another measure of uniformity,

the so-called spherical cap discrepancy, which plays an important role in bounding the integration

error of spherical integrals (e.g., approximation of the global mean surface temperature on earth

by an average of temperatures measured at finitely many points). Such integrals are important in

optimization problems with probabilistic constraints, so that optimization benefits from point sets

uniformly distributed on the sphere. On the other hand, contrary to ϕ1 and ϕ2 , the discrepancy

criterion is not directly computable by an explicit formula. It has been primarily used so far in the

context of theoretical estimates, but not for direct evaluation of concrete samples. It is here that

optimization in turn can help to provide an enumerative formula for numerical purposes. Both as-

pects of connecting optimization with uniform point sets on the sphere will be illustrated in the

following.

The spherical cap discrepancy

While the criteria ϕ1 and ϕ2 mentioned above are based on geometrical or physical intuition

about uniformity, the spherical cap discrepancy is related to probability measures by comparing

the empirical distribution generated by the given point set with the uniform distribution (normal-

ized surface measure) of Sd . More precisely, for a fairly uniformly distributed collection of points

it should hold true that for every hyperplane cutting the sphere, the relative share of points falling
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into either of the two arising spherical caps is close to the surface measure of the respective cap

divided by the surface measure of the whole sphere. In order to specify one out of the two possible

caps, one defines a spherical cap as the intersection Sd
∩ H(w, t) of the sphere with the closed

half-space

H(w, t) := {x | 〈w, x〉 ≥ t} (w ∈ Sd , t ∈ [0,1]),

which is generated by a normal vector w and a level t . Figure 3 illustrates some spherical caps for

S1 and S2 .

Fig. 3: Some spherical caps
for S1 and S2

In this way, the family of spherical caps can be parameterized by (w, t) ∈ Sd
× [0,1] , and each

such cap can be assigned a local discrepancy 1(w, t) := |µemp(w, t)− µcap(w, t)| . Here, µemp is

the empirical measure induced by the given point set on the sphere (counting the ratio of points

inside the spherical cap or just inside the closed half-space), while µcap refers to the normalized

surface measure providing the ratio between the area of the cap and that of the whole sphere;

see Figure 3 (a) for an illustration of these notions. Both quantities, and, hence, 1(w, t) are easy

to determine. The overall (global) discrepancy between empirical and uniform distribution then

results as the largest (supremum) of all the local discrepancies:

Fig. 4: Local discrepancy for
two points on S1

∼ [0,2π ]

1 := sup
w∈Sd ,t∈[0,1]

1(w, t).

Unfortunately, 1(w, t) is a highly irregular function (see Figure 4) and so, determining its largest

value by applying some numerical optimization seems out of hope, much less a direct formula

is evident. It is not even clear whether the supremum in the definition of 1 is attained, i.e.,

whether there exists some concrete spherical cap realizing this value. Indeed, despite the com-

pactness of the set Sd
× [0,1] , the application of the classical Weierstrass theorem fails due to

1(w, t) not being upper semicontinuous. Nonetheless, one may show by independent arguments

([4, Prop. 1]) that there does exist a spherical cap realizing the largest value, i.e., 1 = 1(w∗, t∗)

for some (w∗, t∗) ∈ Sd
× [0,1] . Moreover, the boundary of the half-space H(w∗, t∗) associated

with this critical cap must contain at least one point of the given set, i.e., 〈w∗, x i
〉 = t∗ for some

i ∈ {1, . . . , N } . The computation of the global discrepancy drastically simplifies in the special case

of the one-dimensional sphere S1 (circle). We already know that the straight line associated with

the critical cap contains at least one point. If it does not contain any other point, then it has to

be tangent to the circle because otherwise – after turning the straight line a bit while keeping the

point on it – the discrepancy could be locally increased by locally increasing or decreasing µcap

without changing µemp (see Figure 3 (a)). However, the larger of the two discrepancies defined by
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a tangent through one point equals 1/N , whereas the larger of the two discrepancies defined by a

straight line passing through the two closest points on the circle is easily seen to be at least 1/N.

Hence, there always exists a critical cap on S1 associated with a straight line passing through two

distinct points. This fact allows one to enumerate the finite number of local discrepancies defined

by couples of points in order to find the global discrepancy as their maximum value. Unfortunately,

the idea of finding the critical cap as being defined among the finitely many hyperplanes related to

maximal affinely independent subsets of {x1, . . . , xN } fails for higher-dimensional spheres. This

can be seen from Figure 3 (b), where a set of three points on the equator of S2 is given. The

hyperplane passing through these points defines two spherical caps, each of which has local dis-

crepancy 1/2 . On the other hand, the hyperplane passing through the two points on the left-hand

side (see Figure 3 (c)) defines, in particular, a small cap to the left whose local discrepancy tends

to 2/3 when the two points converge to the “left pole” along the equator, whereas the previous

hyperplane would still have local discrepancy 1/2 . Hence, the maximum discrepancy may not be

realized by a hyperplane passing through a subset of {x1, . . . , xN } with a maximum number (here:

three) of affinely independent points.

An enumerative formula for the spherical cap discrepancy

The last observation means that a hyperplane defining a spherical cap with maximum local dis-

crepancy may not be fixed by the set of points x i it contains. Hence, there may remain a degree

of freedom that prevents the global discrepancy 1 from being calculated via straightforward enu-

meration. This degree of freedom may be removed, however, by an argument from optimization.

An essential observation in this direction is that a spherical cap realizing the maximum discrep-

ancy always has an empirical measure not smaller than its normalized surface measure ([4, Cor.

1]). This fact allows one to get rid of the absolute value appearing in the local discrepancies and

to write now

1 := max
w∈Sd ,t∈[0,1]

1(w, t) = max
w∈Sd ,t∈[0,1]

µemp(w, t)− µcap(w, t).

Here, we already exploited that the supremum in the original definition of 1 is actually a max-

imum. Now, assume that (w∗, t∗) defines a critical cap (1 = 1(w∗, t∗) ) and denote by I :=

{i |〈w∗, x i
〉 = t∗} the index set of points x i located on the hyperplane associated with this cap.

Clearly, (w∗, t∗) must be a solution to the maximization problem

max
w∈Sd ,t∈[0,1]

µemp(w, t)− µcap(w, t) subject to 〈w, x i
〉 = t (i ∈ I ) ,

because (w∗, t∗) itself satisfies the constraints of this problem. Evidently, for (w, t) satisfying

these constraints and being close to (w∗, t∗) , no additional points may enter the hyperplane,

which implies that µemp(w∗, t∗) = µemp(w, t) (empirical measure locally constant). Therefore,

(w∗, t∗) must be a local solution to the maximization problem just for the negative spherical mea-

sure:

max
w∈Sd ,t∈[0,1]

−µcap(w, t) subject to 〈w, x i
〉 = t (i ∈ I ).

Observing that the surface measure µcap just depends on t (not on w ) and actually is monotoni-

cally decreasing in t , one concludes that (w∗, t∗) must be a local solution to the problem
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Fig. 5: Optimization problem
(*) in a trivial constellation
(S1, I = {1}, x1

= (1,0) ).
The red curve represents the
feasible set.

max
w∈Sd ,t∈[0,1]

t subject to 〈w, x i
〉 = t (i ∈ I ). (*)

This optimization problem (see Figure 5) is simple enough to identify its solutions from the neces-

sary optimality conditions. More precisely, denote by X I the matrix whose columns are generated

by x i for i ∈ I and by X̃ I :=
(

X I
−1T

)
the extended matrix with 1 := (1, . . . ,1)T . Without loss of

generality, we may assume that rank X̃ I = #I . Then, the critical cap is characterized explicitly by

([4, Lemma 3])

t∗ =
(

1− γI
γI

)1/2
, w∗ =

1+ (t∗)2

t∗
X I

(
X̃ T

I X̃ I

)−1
1 (γI := 1T

(
X̃ T

I X̃ I

)−1
1).

One may show that 0 < γI ≤ 1 . Clearly, the solution above is not defined for γI = 1 , which is

equivalent to t∗ = 0 . This corresponds to a hyperplane passing through the origin or a cap that is

Fig. 6: Set of randomly
generated (Monte-Carlo)
points on the sphere

a hemisphere. This case is technically more delicate to treat. For randomly generated point sets as

in Figure 6, one will have t∗ 6= 0 with probability one, but for constructed sets as in Figure 2, this

degenerate case may be relevant as well. Altogether, we arrive at the following explicit enumerative

formula for the spherical cap discrepancy 1 ([4, Th. 1]) for which a MATLAB implementation is

available at https://www.wias-berlin.de/people/heitsch/capdiscrepancy.

Keeping the notation introduced above, define

81 : =
{

I ⊆ {1, . . . , N }
∣∣∣1 ≤ rank X̃ I = #I ≤ min

{
n, rank X̃

}
; γI < 1

}
,

80 : =
{

I ⊆ {1, . . . , N }
∣∣∣ rank X̃ I = #I = min

{
n, rank X̃

}
; γI = 1

}
,

tI :=


(

1−γI
γI

)1/2
I ∈ 81

0 I ∈ 80
, wI :=

 1+tI
2

tI
X I

(
X̃ T

I X̃ I

)−1
1 I ∈ 81

∈ Ker X T
I ∩ S

n−1 I ∈ 80
,

where the selection of wI in case of I ∈ 80 is arbitrary. Then, 1 = max {11,10} , where

Fig. 7: Discrepancies as
functions of the sample size
for three sampling methods
on S2

11 := max
I∈81

1(wI , tI ) , 10 := max
I∈80

max {1(wI ,0),1(−wI ,0)} .

The formula may be exploited now in order to evaluate and compare point sets on spheres with

respect to their uniformity. Figure 7 shows normalized Monte Carlo and quasi-Monte Carlo sam-

ples of a Gaussian distribution with independent components (yielding a uniform distribution on

the sphere) as well as a low-discrepancy sequence using the Lambert transformation [2] on S2 .

Figure 8 plots the true discrepancies and a simple lower bound used in [2, p. 1005] for randomly

generated samples on S4 .
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Optimization under probabilistic constraints

Efficient samples of the uniform distribution on the sphere are in turn essential for the solution of

 0

 0.2

 0.4

 0.6

 30  60  90  120  150  180

D
is

c
re

p
a
n
c
y

Sample size

discrepancy
lower estimate

Fig. 8: True discrepancies
and simple lower estimates
for randomly generated
samples as functions of the
sample size on S4

optimization problems subject to probabilistic constraints

minimize f (x) subject to ϕ(x) := P(gi (x, ξ) ≥ 0 (i ∈ I )) ≥ p, (**)

where x is a finite- or infinite-dimensional decision, f is some cost function, ξ is a random vector,

and g represents some finite or infinite inequality system. Under such constraint, a decision x is

declared to be feasible if the random inequality system is satisfied at least with a probability p .

The essential ingredient of such optimization problems is the probability function ϕ whose values

and gradients – needed in any numerical solution approach – are not given explicitly, but have to

be approximated. In the case that ξ has an elliptically symmetric distribution, the probability can

be represented as a spherical integral that promises a significant reduction of variance for the

resulting estimate when compared to sampling “in space.” For instance, if ξ ∼ 𝒩 (µ,6) has a

d−dimensional normal distribution, then

ϕ(x) =
∫

Sd−1

α(z)dνU (z); α(z) := νχ {r ≥ 0 | gi (x, µ+ r Lz) ≥ 0 (i ∈ I )},

where L LT
= 6 , νU is the uniform distribution on Sd−1 , and νχ is the one-dimensional Chi-

Fig. 9: Probability estimated
according to (***) (d=36) by
Monte Carlo (Mersenne
Twister) and quasi-Monte
Carlo

distribution with d degrees of freedom. Under suitable conditions on g (growth conditions, con-

straint qualifications), α can be shown to be differentiable [1], so that ∇φ is obtained as a spher-

ical integral as well by differentiating under the integral. For numerical purposes the spherical

integral is approximated by the average over a finite number of points uniformly sampled over the

sphere:

ϕ(x) ≈ N−1
N∑

i=1

α(zi ) (zi
∈ Sd−1). (***)

It is here that the mentioned relation between the spherical cap discrepancy and the integration

error for spherical integrals comes into play (in particular, the latter tends to zero if the former

does so). As a consequence, the difference in discrepancy between Monte Carlo and quasi-Monte

Carlo sampling, which is visible in Figure 7, reflects also in the goodness of estimations of prob-

abilities (and their gradients) as supported by Figure 9. Optimization problems with probabilis-

tic constraints like (**) find a lot of applications in engineering, economics, power management,

telecommunications, and other fields. Figures 10 and 11 illustrate two instances from optimal con-

trol under uncertainty. In the first application, an optimal Neumann boundary control of the vibrat-

ing string is considered under random initial conditions (random Fourier coefficients for initial

position of the string) [3]. The aim is to find a cost-minimal control driving the terminal energy of

the string close to zero (smaller than a given tolerance) with given probability.
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Fig. 10: Optimal control of
the vibrating string under
random initial condition and
probabilistic constraint for
terminal energy. The figure
shows the optimal control
functions (left) for different
required probabilities
p ∈ (0,1) and the energy as
function of time for p = 0.9
for ten generated scenarios
of the initial condition (one
instance not reaching the
required small terminal
energy).

The second application is the capacity maximization problem in gas networks under random loads.

The network owner aims at documenting additional free capacity of the network for serving poten-

tial new clients under the constraint that the loads of new clients (arbitrary up to free capacity)

plus the random loads of current clients (distribution estimated from historical data) can be served

physically (here: respecting a lower pressure bound in pipes) with given high probability.

Fig. 11: Maximization of free
capacity in gas networks.
Mean (black) and simulated
scenarios (gray) for load
profiles of current clients.
Resulting scenarios for
pressure (yellow), most of
which satisfy the lower
bound.
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