Partial differential equations (PDEs), along with modern stochastic methods, represent one of the most versatile and powerful tools for constructing mathematical models to describe processes in nature and technology. At WIAS, we derive and investigate stationary and evolutionary PDE models that address real-world challenges in engineering, physics, chemistry, biology, and beyond, focusing on their mathematical properties.

The mathematical theory of nonlinear PDEs is developed in close collaboration with real-world problems across all WIAS Main Areas of Applications. These applications span from multiscale and multiphysics issues in optoelectronic devices or electrochemical systems to reaction-diffusion equations and phase-field models for chemical and biological systems, as well as nonlinear and nonsmooth material models with internal variables in continuum mechanics.

In realistic scenarios, problem data such as the domain under consideration and coefficients often exhibit nonsmooth behavior. Additionally, boundary conditions frequently are of mixed type. To address such challenges, WIAS conducts fundamental mathematical research to develop novel analytical tools and methods grounded in operator theory and functional analysis, as well as the calculus of variations. Our research on the analysis of nonlinear PDEs is closely intertwined with the study of problems involving multiple spatial or temporal scales.

Qualitative investigations into nonlinear PDEs regarding their analytical properties - including existence, regularity, and asymptotic behavior of solutions, as well as their thermodynamically consistent modeling - yield deeper insights into the underlying processes. This research is pivotal for enhancing and generalizing existing models, as well as for devising efficient numerical schemes and optimization algorithms. In recent years, WIAS has expanded its focus to encompass the integration of stochastic and PDE models and systematic upscaling from the former to the latter, leveraging tools such as large-deviation principles and gradient systems.

At WIAS, our research on PDEs centers around three core themes:

  • Rigorous mathematical analysis of general nonlinear evolution equations, focusing on the existence, uniqueness, and asymptotic properties of various types of solutions
  • Development of variational approaches employing the toolkit of the calculus of variations
  • Investigation of regularity results for solutions of elliptic and parabolic PDEs

By amalgamating fundamental and application-oriented research, WIAS contributes to the advancement of innovative technologies through the analysis of PDEs and evolutionary equations.

Simulation of phase-field evolution coupled to mechanics in Lagrangian coordinates (In Schmeller and Peschka, SIAM J. Appl. Math., 83 (2023), pp. 225--253, DOI 10.1137/22M148478X .)


Publications

  Monographs

  • A.H. Erhardt, K. Tsaneva-Atanasova, G.T. Lines, E.A. Martens, eds., Dynamical Systems, PDEs and Networks for Biomedical Applications: Mathematical Modeling, Analysis and Simulations, Special Edition, articles published in Frontiers of Physics, Frontiers in Applied Mathematics and Statistics, and Frontiers in Physiology, Frontiers Media SA, Lausanne, Switzerland, 2023, 207 pages, (Collection Published), DOI 10.3389/978-2-8325-1458-0 .

  • H. Abels, K. Disser, H.-Chr. Kaiser, A. Mielke, M. Thomas, eds., Issue on Partial Differential Equations in Fluids and Solids, 14 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Sciences, Springfield, 2021, 292 pages, (Collection Published).

  • A. Mielke, M. Peletier, D. Slepcev, eds., Variational Methods for Evolution, 17 of Oberwolfach Reports, European Mathematical Society Publishing House, Zurich, 2021, 76 pages, (Collection Published), DOI 10.4171/OWR/2020/29 .
    Abstract
    Variational principles for evolutionary systems take advantage of the rich toolbox provided by the theory of the calculus of variations. Such principles are available for Hamiltonian systems in classical mechanics, gradient flows for dissipative systems, but also time-incremental minimization techniques for more general evolutionary problems. The new challenges arise via the interplay of two or more functionals (e.g. a free energy and a dissipation potential), new structures (systems with nonlocal transport, gradient flows on graphs, kinetic equations, systems of equations) thus encompassing a large variety of applications in the modeling of materials and fluids, in biology, in multi-agent systems, and in data science. This workshop brought together a broad spectrum of researchers from calculus of variations, partial differential equations, metric geometry, and stochastics, as well as applied and computational scientists to discuss and exchange ideas. It focused on variational tools such as minimizing movement schemes, optimal transport, gradient flows, and large-deviation principles for time-continuous Markov processes, Gamma-convergence and homogenization.

  • TH. Eiter, Existence and Spatial Decay of Periodic Navier--Stokes Flows in Exterior Domains, Th. Eiter, ed., Logos Verlag Berlin GmbH, 2020, 197 pages, (Monograph Published), DOI 10.30819/5108 .
    Abstract
    A classical problem in the field of mathematical fluid mechanics is the flow of a viscous incompressible fluid past a rigid body. In his doctoral thesis, Thomas Walter Eiter investigates time-periodic solutions to the associated Navier-Stokes equations when the body performs a non-trivial translation. The first part of the thesis is concerned with the question of existence of time-periodic solutions in the case of a non-rotating and of a rotating obstacle. Based on an investigation of the corresponding Oseen linearizations, new existence results in suitable function spaces are established. The second part deals with the study of spatially asymptotic properties of time-periodic solutions. For this purpose, time-periodic fundamental solutions to the Stokes and Oseen linearizations are introduced and investigated, and the concept of a time-periodic fundamental solution for the vorticity field is developed. With these results, new pointwise estimates of the velocity and the vorticity field associated to a time-periodic fluid flow are derived.

  • M. Hintermüller, J.F. Rodrigues, eds., Topics in Applied Analysis and Optimisation -- Partial Differential Equations, Stochastic and Numerical Analysis, CIM Series in Mathematical Sciences, Springer Nature Switzerland AG, Cham, 2019, 396 pages, (Collection Published).

  • H.-Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., PDE 2015: Theory and Applications of Partial Differential Equations, 10 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Science, Springfield, 2017, iv+933 pages, (Collection Published).

  • P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels, eds., Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs: In Honour of Prof. Gianni Gilardi, 22 of Springer INdAM Series, Springer International Publishing AG, Cham, 2017, xii+571 pages, (Collection Published).
    Abstract
    This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

  • C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, Springer International Publishing Switzerland, Cham, 2016, xii+155 pages, (Monograph Published).
    Abstract
    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  • A. Mielke, Chapter 3: On Evolutionary $Gamma$-Convergence for Gradient Systems, in: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, A. Muntean, J.D.M. Rademacher, A. Zagaris, eds., 3 of Lecture Notes in Applied Mathematics and Mechanics, Springer International Publishing Switzerland, Cham, 2016, pp. 187--249, (Chapter Published).
    Abstract
    In these notes we discuss general approaches for rigorously deriving limits of generalized gradient flows. Our point of view is that a generalized gradient system is defined in terms of two functionals, namely the energy functional Eε and the dissipation potential Rε or the associated dissipation distance. We assume that the functionals depend on a small parameter and the associated gradients systems have solutions uε. We investigate the question under which conditions the limits u of (subsequences of) the solutions uε are solutions of the gradient system generated by the Γ-limits E0 and R0. Here the choice of the right topology will be crucial as well as additional structural conditions.
    We cover classical gradient systems, where Rε is quadratic, and rate-independent systems as well as the passage from viscous to rate-independent systems. Various examples, such as periodic homogenization, are used to illustrate the abstract concepts and results.

  • A. Mielke, T. Roubíček, Rate-independent Systems. Theory and Application, 193 of Applied Mathematical Sciences, Springer International Publishing, New York, 2015, vii+660 pages, (Monograph Published).
    Abstract
    This monograph provides both an introduction to and a thorough exposition of the theory of rate-independent systems, which the authors have been working on with a lot of collaborators over 15 years. The focus is mostly on fully rate-independent systems, first on an abstract level either with or even without a linear structure, discussing various concepts of solutions with full mathematical rigor. Then, usefulness of the abstract concepts is demonstrated on the level of various applications primarily in continuum mechanics of solids, including suitable approximation strategies with guaranteed numerical stability and convergence. Particular applications concern inelastic processes such as plasticity, damage, phase transformations, or adhesive-type contacts both at small strains and at finite strains. A few other physical systems, e.g. magnetic or ferroelectric materials, and couplings to rate-dependent thermodynamic models are considered as well. Selected applications are accompanied by numerical simulations illustrating both the models and the efficiency of computational algorithms. In this book, the mathematical framework for a rigorous mathematical treatment of "rate-independent systems" is presented in a comprehensive form for the first time. Researchers and graduate students in applied mathematics, engineering, and computational physics will find this timely and well written book useful.

  • A. Mielke, Chapter 5: Variational Approaches and Methods for Dissipative Material Models with Multiple Scales, in: Analysis and Computation of Microstructure in Finite Plasticity, S. Conti, K. Hackl, eds., 78 of Lecture Notes in Applied and Computational Mechanics, Springer International Publishing, Heidelberg et al., 2015, pp. 125--155, (Chapter Published).
    Abstract
    In a first part we consider evolutionary systems given as generalized gradient systems and discuss various variational principles that can be used to construct solutions for a given system or to derive the limit dynamics for multiscale problems. These multiscale limits are formulated in the theory of evolutionary Gamma-convergence. On the one hand we consider the a family of viscous gradient system with quadratic dissipation potentials and a wiggly energy landscape that converge to a rate-independent system. On the other hand we show how the concept of Balanced-Viscosity solution arise as in the vanishing-viscosity limit.
     
    As applications we discuss, first, the evolution of laminate microstructures in finite-strain elastoplasticity and, second, a two-phase model for shape-memory materials, where H-measures are used to construct the mutual recovery sequences needed in the existence theory.

  • E. Valdinoci, ed., Contemporary PDEs between theory and applications, 35 of Discrete and Continuous Dynamical Systems Series A, American Institute of Mathematical Sciences, Springfield, 2015, 625 pages, (Collection Published).

  • B. Fiedler, M. Haragus, A. Mielke, G. Raugel, Y. Yi, eds., Special Issue in Memoriam of Klaus Kirchgässner, 27 of J. Dynam. Differential Equations, Springer International Publishing, Cham et al., 2015, 674 pages, (Collection Published).

  • A. Mielke, Chapter 21: Dissipative Quantum Mechanics Using GENERIC, in: Recent Trends in Dynamical Systems -- Proceedings of a Conference in Honor of Jürgen Scheurle, A. Johann, H.-P. Kruse, F. Rupp, S. Schmitz, eds., 35 of Springer Proceedings in Mathematics & Statistics, Springer, Basel et al., 2013, pp. 555--585, (Chapter Published).
    Abstract
    Pure quantum mechanics can be formulated as a Hamiltonian system in terms of the density matrix. Dissipative effects are modeled via coupling to a macroscopic system, where the coupling operators act via commutators. Following Öttinger (2010) we use the GENERIC framework (General Equations for Non-Equilibrium Reversible Irreversible Coupling) to construct thermodynamically consistent evolution equations as a sum of a Hamiltonian and a gradient-flow contribution, which satisfy a particular non-interaction condition. One of our models couples a quantum system to a finite number of heat baths each of which is described by a time-dependent temperature. The dissipation mechanism is modeled via the canonical correlation operator, which is the inverse of the Kubo-Mori metric for density matrices and which is strongly linked to the von Neumann entropy for quantum systems. Thus, one recovers the dissipative double-bracket operators of the Lindblad equations but encounters a correction term for the consistent coupling to the dissipative dynamics. For the finite-dimensional and isothermal case we provide a general existence result and discuss sufficient conditions that guarantee that all solutions converge to the unique thermal equilibrium state. Finally, we compare of our gradient flow formulation for quantum systems with the Wasserstein gradient flow formulation for the Fokker-Planck equation and the entropy gradient flow formulation for reversible Markov chains.

  • G. Dal Maso, A. Mielke, U. Stefanelli, eds., Rate-independent Evolutions, 6 (No. 1) of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Sciences, Springfield, 2013, 275 pages, (Collection Published).

  • A. Mielke, F. Otto, G. Savaré, U. Stefanelli, eds., Variational Methods for Evolution, 8 of Oberwolfach Reports, European Mathematical Society Publishing House, Zurich, 2011, pp. 3145--3216, (Chapter Published).

  • P. Colli, A. Damlamian, N. Kenmochi, M. Mimura, J. Sprekels, eds., Proceedings of International Conference on: Nonlinear Phenomena with Energy Dissipation: Mathematical Analysis, Modeling and Simulation, 29 of Gakuto International Series Mathematical Sciences and Applications, Gakkōtosho, Tokyo, 2008, 475 pages, (Collection Published).

  • U. Bandelow, H. Gajewski, R. Hünlich, Chapter 3: Fabry--Perot Lasers: Thermodynamics-based Modeling, in: Optoelectronic Devices --- Advanced Simulation and Analysis, J. Piprek, ed., Springer, New York, 2005, pp. 63-85, (Chapter Published).

  • A. Mielke, Chapter 6: Evolution of Rate-independent Systems, in: Handbook of Differential Equations. Vol. 2: Evolutionary Equations, C. Dafermos, E. Feireisl, eds., Elsevier Science B.V., Amsterdam, 2005, pp. 461-559, (Chapter Published).

  • B. Fiedler, K. Gröger, J. Sprekels, eds., EQUADIFF 99: International Conference on Differential Equations, Berlin 1999, 1, World Scientific, Singapore [u. a.], 2000, 806 pages, (Monograph Published).

  • B. Fiedler, K. Gröger, J. Sprekels, eds., EQUADIFF 99: International Conference on Differential Equations, Berlin 1999, 2, World Scientific, Singapore [u. a.], 2000, 681 pages, (Monograph Published).

  Articles in Refereed Journals

  • D. Abdel, A. Glitzky, M. Liero, Analysis of a drift-diffusion model for perovskite solar cells, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 30 (2025), pp. 99--131, DOI 10.3934/dcdsb.2024081 .
    Abstract
    This paper deals with the analysis of an instationary drift-diffusion model for perovskite solar cells including Fermi--Dirac statistics for electrons and holes and Blakemore statistics for the mobile ionic vacancies in the perovskite layer. The free energy functional is related to this choice of the statistical relations. Exemplary simulations varying the mobility of the ionic vacancy demonstrate the necessity to include the migration of ionic vacancies in the model frame. To prove the existence of weak solutions, first a problem with regularized state equations and reaction terms on any arbitrarily chosen finite time interval is considered. Its solvability follows from a time discretization argument and passage to the time-continuous limit. Applying Moser iteration techniques, a priori estimates for densities, chemical potentials and the electrostatic potential of its solutions are derived that are independent of the regularization level, which in turn ensure the existence of solutions to the original problem.

  • M. Bongarti, M. Hintermüller, Optimal boundary control of the isothermal semilinear Euler equation for gas dynamics on a network, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 89 (2024), pp. 36/1--36/48, DOI 10.1007/s00245-023-10088-0 .
    Abstract
    The analysis and boundary optimal control of the nonlinear transport of gas on a network of pipelines is considered. The evolution of the gas distribution on a given pipe is modeled by an isothermal semilinear compressible Euler system in one space dimension. On the network, solutions satisfying (at nodes) the Kirchhoff flux continuity conditions are shown to exist in a neighborhood of an equilibrium state. The associated nonlinear optimization problem then aims at steering such dynamics to a given target distribution by means of suitable (network) boundary controls while keeping the distribution within given (state) constraints. The existence of local optimal controls is established and a corresponding Karush--Kuhn--Tucker (KKT) stationarity system with an almost surely non--singular Lagrange multiplier is derived.

  • P. Bella, M. Kniely, Regularity of random elliptic operators with degenerate coefficients and applications to stochastic homogenization, Stochastic Partial Differential Equations. Analysis and Computations, published online on 27.02.2024, DOI https://doi.org/10.1007/s40072-023-00322-9 .
    Abstract
    We consider degenerate elliptic equations of second order in divergence form with a symmetric random coefficient field a. Extending the work of the first author, Fehrman, and Otto [Ann. Appl. Probab. 28 (2018), no. 3, 1379-1422], who established the large-scale regularity of a-harmonic functions in a degenerate situation, we provide stretched exponential moments for the minimal radius describing the minimal scale for this regularity. As an application to stochastic homogenization, we partially generalize results by Gloria, Neukamm, and Otto [Anal. PDE 14 (2021), no. 8, 2497-2537] on the growth of the corrector, the decay of its gradient, and a quantitative two-scale expansion to the degenerate setting. On a technical level, we demand the ensemble of coefficient fields to be stationary and subject to a spectral gap inequality, and we impose moment bounds on the coefficient field and its inverse. We also introduce the ellipticity radius, which encodes the minimal scale where these moments are close to their positive expectation value.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Curvature effects in pattern formation: Well-posedness and optimal control of a sixth-order Cahn--Hilliard equation, SIAM Journal on Mathematical Analysis, 56 (2024), pp. 4928--4969, DOI 10.1137/24M1630372 .
    Abstract
    This work investigates the well-posedness and optimal control of a sixth-order Cahn--Hilliard equation, a higher-order variant of the celebrated and well-established Cahn--Hilliard equation. The equation is endowed with a source term, where the control variable enters as a distributed mass regulator. The inclusion of additional spatial derivatives in the sixth-order formulation enables the model to capture curvature effects, leading to a more accurate depiction of isothermal phase separation dynamics in complex materials systems. We provide a well-posedness result for the aforementioned system when the corresponding nonlinearity of double-well shape is regular and then analyze a corresponding optimal control problem. For the latter, existence of optimal controls is established, and the first-order necessary optimality conditions are characterized via a suitable variational inequality. These results aim at contributing to improve the understanding of the mathematical properties and control aspects of the sixth-order Cahn--Hilliard equation, offering potential applications in the design and optimization of materials with tailored microstructures and properties.

  • R. Haller, H. Meinlschmidt, J. Rehberg, Hölder regularity for domains of fractional powers of elliptic operators with mixed boundary conditions, Pure and Applied Functional Analysis, 9 (2024), pp. 169--194.
    Abstract
    This work is about global Hölder regularity for solutions to elliptic partial differential equations subject to mixed boundary conditions on irregular domains. There are two main results. In the first, we show that if the domain of the realization of an elliptic differential operator in a negative Sobolev space with integrability q > d embeds into a space of Hölder continuous functions, then so do the domains of suitable fractional powers of this operator. The second main result then establishes that the premise of the first is indeed satisfied. The proof goes along the classical techniques of localization, transformation and reflection which allows to fall back to the classical results of Ladyzhenskaya or Kinderlehrer. One of the main features of our approach is that we do not require Lipschitz charts for the Dirichlet boundary part, but only an intriguing metric/measure-theoretic condition on the interface of Dirichlet- and Neumann boundary parts. A similar condition was posed in a related work by ter Elst and Rehberg in 2015 [10], but the present proof is much simpler, if only restricted to space dimension up to 4.

  • A. Mielke, S. Schindler, On self-similar patterns in coupled parabolic systems as non-equilibrium steady states, Chaos. An Interdisciplinary Journal of Nonlinear Science, 34 (2024), pp. 013150/1--013150/12, DOI 10.1063/5.0144692 .
    Abstract
    We consider reaction-diffusion systems and other related dissipative systems on unbounded domains which would have a Liapunov function (and gradient structure) when posed on a finite domain. In this situation, the system may reach local equilibrium on a rather fast time scale but the infinite amount of mass or energy leads to persistent mass or energy flow for all times. In suitably rescaled variables the system converges to a steady state that corresponds to asymptotically self-similar behavior in the original system.

  • J. Sprekels, F. Tröltzsch, Second-order sufficient conditions in the sparse optimal control of a phase field tumor growth model with logarithmic potential, ESAIM. Control, Optimisation and Calculus of Variations, 30 (2024), pp. 13/1--13/25, DOI 10.1051/cocv/2023084 .
    Abstract
    his paper treats a distributed optimal control problem for a tumor growth model of viscous Cahn--Hilliard type. The evolution of the tumor fraction is governed by a thermodynamic force induced by a double-well potential of logarithmic type. The cost functional contains a nondifferentiable term in order to enhance the occurrence of sparsity effects in the optimal controls, i.e., of subdomains of the space-time cylinder where the controls vanish. In the context of cancer therapies, sparsity is very important in order that the patient is not exposed to unnecessary intensive medical treatment. In this work, we focus on the derivation of second-order sufficient optimality conditions for the optimal control problem. While in previous works on the system under investigation such conditions have been established for the case without sparsity, the case with sparsity has not been treated before. The results obtained in this paper also improve the known results on this phase field model for the case without sparsity.

  • K. Hopf, Singularities in $L^1$-supercritical Fokker--Planck equations: A qualitative analysis, Annales de l'Institut Henri Poincare. Analyse Non Lineaire, 41 (2024), pp. 357--403, DOI 10.4171/AIHPC/85 .
    Abstract
    A class of nonlinear Fokker--Planck equations with superlinear drift is investigated in the L1-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis -- the main focus being on isotropic solutions, in which case the unique minimiser of the free energy will be shown to be the global attractor. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.

  • TH. Eiter, R. Lasarzik, Existence of energy-variational solutions to hyperbolic conservation laws, Calculus of Variations and Partial Differential Equations, 63 (2024), pp. 103/1--103/40, DOI 10.1007/s00526-024-02713-9 .
    Abstract
    We introduce the concept of energy-variational solutions for hyperbolic conservation laws. Intrinsically, these energy-variational solutions fulfill the weak-strong uniqueness principle and the semi-flow property, and the set of solutions is convex and weakly-star closed. The existence of energy-variational solutions is proven via a suitable time-discretization scheme under certain assumptions. This general result yields existence of energy-variational solutions to the magnetohydrodynamical equations for ideal incompressible fluids and to the Euler equations in both the incompressible and the compressible case. Moreover, we show that energy-variational solutions to the Euler equations coincide with dissipative weak solutions.

  • TH. Eiter, Y. Shibata, Viscous flow past a translating body with oscillating boundary, Journal of the Mathematical Society of Japan, pp. published in advance in July 2024 (1--32), DOI 10.2969/jmsj/91649164 .
    Abstract
    We study an incompressible viscous flow around an obstacle with an oscillating boundary that moves by a translational periodic motion, and we show existence of strong time-periodic solutions for small data in different configurations: If the mean velocity of the body is zero, existence of time-periodic solutions is provided within a framework of Sobolev functions with isotropic pointwise decay. If the mean velocity is non-zero, this framework can be adapted, but the spatial behavior of flow requires a setting of anisotropically weighted spaces. In the latter case, we also establish existence of solutions within an alternative framework of homogeneous Sobolev spaces. These results are based on the time-periodic maximal regularity of the associated linearizations, which is derived from suitable R-bounds for the Stokes and Oseen resolvent problems. The pointwise estimates are deduced from the associated time-periodic fundamental solutions.

  • A. Mielke, T. Roubíček, Qualitative study of a geodynamical rate-and-state model for elastoplastic shear flows in crustal faults, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 26 (2024), pp. 245--282, DOI 10.4171/IFB/506 .
    Abstract
    The Dieterich--Ruina rate-and-state friction model is transferred to a bulk variant and the state variable (aging) influencing the dissipation mechanism is here combined also with a damage influencing standardly the elastic response. As the aging has a separate dynamics, the overall model does not have a standard variational structure. A one-dimensional model is investigated as far as the steady-state existence, localization of the cataclastic core, and its time response, too. Computational experiments with a damage-free variant show stick-slip behavior (i.e. seismic cycles of tectonic faults) as well as stable slip under very large velocities.

  • R.I.A. Patterson, D.R.M. Renger, U. Sharma, Variational structures beyond gradient flows: A macroscopic fluctuation-theory perspective, Journal of Statistical Physics, 191 (2024), pp. 1--60, DOI 10.1007/s10955-024-03233-8 .
    Abstract
    Macroscopic equations arising out of stochastic particle systems in detailed balance (called dissipative systems or gradient flows) have a natural variational structure, which can be derived from the large-deviation rate functional for the density of the particle system. While large deviations can be studied in considerable generality, these variational structures are often restricted to systems in detailed balance. Using insights from macroscopic fluctuation theory, in this work we aim to generalise this variational connection beyond dissipative systems by augmenting densities with fluxes, which encode non-dissipative effects. Our main contribution is an abstract framework, which for a given flux-density cost and a quasipotential, provides a decomposition into dissipative and non-dissipative components and a generalised orthogonality relation between them. We then apply this abstract theory to various stochastic particle systems -- independent copies of jump processes, zero-range processes, chemical-reaction networks in complex balance and lattice-gas models.

  • W. van Oosterhout, M. Liero, Finite-strain poro-visco-elasticity with degenerate mobility, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, appeared online on 29.03.2024, DOI 10.1002/zamm.202300486 .
    Abstract
    A quasistatic nonlinear model for poro-visco-elastic solids at finite strains is considered in the Lagrangian frame using the concept of second-order nonsimple materials. The elastic stresses satisfy static frame-indifference, while the viscous stresses satisfy dynamic frame-indifference. The mechanical equation is coupled to a diffusion equation for a solvent or fluid content. The latter is pulled-back to the reference configuration. To treat the nonlinear dependence of the mobility tensor on the deformation gradient, the result by Healey & Krömer is used to show that the determinant of the deformation gradient is bounded away from zero. Moreover, the focus is on the physically relevant case of degenerate mobilities. The existence of weak solutions is shown using a staggered time-incremental scheme and suitable energy-dissipation inequalities.

  • A. Alphonse, D. Caetano, A. Djurdjevac, Ch.M. Elliot, Function spaces, time derivatives and compactness for evolving families of Banach spaces with applications to PDEs, Journal of Differential Equations, 353 (2023), pp. 268-338, DOI 10.1016/j.jde.2022.12.032 .
    Abstract
    We develop a functional framework suitable for the treatment of partial differential equations and variational problems on evolving families of Banach spaces. We propose a definition for the weak time derivative that does not rely on the availability of a Hilbertian structure and explore conditions under which spaces of weakly differentiable functions (with values in an evolving Banach space) relate to classical Sobolev?Bochner spaces. An Aubin?Lions compactness result is proved. We analyse concrete examples of function spaces over time-evolving spatial domains and hypersurfaces for which we explicitly provide the definition of the time derivative and verify isomorphism properties with the aforementioned Sobolev?Bochner spaces. We conclude with the proof of well posedness for a class of nonlinear monotone problems on an abstract evolving space (generalising the evolutionary p-Laplace equation on a moving domain or surface) and identify some additional problems that can be formulated with the setting developed in this work.

  • A. Zafferi, K. Huber, D. Peschka, J. Vrijmoed, T. John, M. Thomas, A porous-media model for reactive fluid-rock interaction in a dehydrating rock, Journal of Mathematical Physics, 64 (2023), pp. 091504/1--091504/29, DOI 10.1063/5.0148243 .
    Abstract
    We study the GENERIC structure of models for reactive two-phase flows and their connection to a porous-media model for reactive fluid-rock interaction used in Geosciences. For this we discuss the equilibration of fast dissipative processes in the GENERIC framework. Mathematical properties of the porous-media model and first results on its mathematical analysis are provided. The mathematical assumptions imposed for the analysis are critically validated with the thermodynamical rock data sets.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Cahn--Hilliard--Brinkman model for tumor growth with possibly singular potentials, Nonlinearity, 36 (2023), pp. 4470--4500, DOI https://doi.org/10.1088/1361-6544/ace2a7 .
    Abstract
    We analyze a phase field model for tumor growth consisting of a Cahn--Hilliard--Brinkman system, ruling the evolution of the tumor mass, coupled with an advection-reaction-diffusion equation for a chemical species acting as a nutrient. The main novelty of the paper concerns the discussion of the existence of weak solutions to the system covering all the meaningful cases for the nonlinear potentials; in particular, the typical choices given by the regular, the logarithmic, and the double obstacle potentials are admitted in our treatise. Compared to previous results related to similar models, we suggest, instead of the classical no-flux condition, a Dirichlet boundary condition for the chemical potential appearing in the Cahn--Hilliard-type equation. Besides, abstract growth conditions for the source terms that may depend on the solution variables are postulated.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Optimal control of a nonconserved phase field model of Caginalp type with thermal memory and double obstacle potential, Discrete and Continuous Dynamical Systems -- Series S, 16 (2023), pp. 2305--2325, DOI 10.3934/dcdss.2022210 .
    Abstract
    In this paper, we investigate optimal control problems for a nonlinear state system which constitutes a version of the Caginalp phase field system modeling nonisothermal phase transitions with a nonconserved order parameter that takes thermal memory into account. The state system, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. It consists of two nonlinearly coupled partial differential equations that govern the phase dynamics and the universal balance law for internal energy, written in terms of the phase variable and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. We extend recent results obtained for optimal control problems in which the free energy governing the phase transition was differentiable (i.e., of regular or logarithmic type) to the nonsmooth case of a double obstacle potential. As is well known, in this nondifferentiable case standard methods to establish the existence of appropriate Lagrange multipliers fail. This difficulty is overcome utilizing of the so-called deep quench approach. Namely, the double obstacle potential is approximated by a family of (differentiable) logarithmic ones for which the existence of optimal controls and first-order necessary conditions of optimality in terms of the adjoint state variables and a variational inequality are known. By proving appropriate bounds for the adjoint states of the approximating systems, we can pass to the limit in the corresponding first-order necessary conditions, thereby establishing meaningful first-order necessary optimality conditions also for the case of the double obstacle potential.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, On a Cahn--Hilliard system with source term and thermal memory, Nonlinear Analysis. An International Mathematical Journal, 240 (2024), pp. 113461/1--113461/16 (published online on 14.12.2023), DOI 10.1016/j.na.2023.113461 .
    Abstract
    A nonisothermal phase field system of Cahn--Hilliard type is introduced and analyzed mathematically. The system constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. It couples a Cahn--Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails additional mathematical difficulties because the mass conservation of the order parameter is lost. We provide several mathematical results under general assumptions on the source term and the double-well nonlinearity governing the evolution: existence and continuous dependence results are shown for weak and strong solutions to the corresponding initial-boundary value problem.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Optimal temperature distribution for a nonisothermal Cahn--Hilliard system in two dimensions with source term and double obstacle potential, Annals of the Academy of Romanian Scientists. Mathematics and its Applications., 15 (2023), pp. 175--204, DOI 10.56082/annalsarscimath.2023.1-2.175 .
    Abstract
    In this note, we study the optimal control of a nonisothermal phase field system of Cahn--Hilliard type that constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. It couples a Cahn--Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails further mathematical difficulties because the mass conservation of the order parameter is no longer satisfied. In this paper, we study the case that the double-well potential driving the evolution of the phase transition is given by the nondifferentiable double obstacle potential, thereby complementing recent results obtained for the differentiable cases of regular and logarithmic potentials. Besides existence results, we derive first-order necessary optimality conditions for the control problem. The analysis is carried out by employing the so-called deep quench approximation in which the nondifferentiable double obstacle potential is approximated by a family of potentials of logarithmic structure for which meaningful first-order necessary optimality conditions in terms of suitable adjoint systems and variational inequalities are available. Since the results for the logarithmic potentials crucially depend on the validity of the so-called strict separation property which is only available in the spatially two-dimensional situation, our whole analysis is restricted to the two-dimensional case.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Optimal temperature distribution for a nonisothermal Cahn--Hilliard system with source term, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 88 (2023), pp. 68/1--68/31, DOI 10.1007/s00245-023-10039-9 .

  • P.-É. Druet, K. Hopf, A. Jüngel, Hyperbolic-parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion, Communications in Partial Differential Equations, 48 (2023), pp. 863--894, DOI 10.1080/03605302.2023.2212479 .
    Abstract
    We investigate degenerate cross-diffusion equations with a rank-deficient diffusion matrix that are considered to model populations which move as to avoid spatial crowding and have recently been found to arise in a mean-field limit of interacting stochastic particle systems. To date, their analysis in multiple space dimensions has been confined to the purely convective case with equal mobility coefficients. In this article, we introduce a normal form for an entropic class of such equations which reveals their structure of a symmetric hyperbolic-parabolic system. Due to the state-dependence of the range and kernel of the singular diffusive matrix, our way of rewriting the equations is different from that classically used for symmetric second-order systems with a nullspace invariance property. By means of this change of variables, we solve the Cauchy problem for short times and positive initial data in H^s(mathbbT^d) for s>d/2+1.

  • M. Ebeling-Rump, D. Hömberg, R. Lasarzik, On a two-scale phasefield model for topology optimization, Discrete and Continuous Dynamical Systems -- Series S, 17 (2024), pp. 326--361 (published online on 26.11.2023), DOI 10.3934/dcdss.2023206 .
    Abstract
    In this article, we consider a gradient flow stemming from a problem in two-scale topology optimization. We use the phase-field method, where a Ginzburg--Landau term with obstacle potential is added to the cost functional, which contains the usual compliance but also an additional contribution including a local volume constraint in a penalty term. The minimization of such an energy by its gradient-flow is analyzed in this paper. We use an regularization and discretization of the associated state-variable to show the existence of weak solutions to the considered system.

  • K. Fellner, J. Fischer, M. Kniely, B.Q. Tang, Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion, Journal of Nonlinear Science, 33 (2023), pp. 66/1--66/49, DOI 10.1007/s00332-023-09926-w .
    Abstract
    The global existence of renormalised solutions and convergence to equilibrium for reaction-diffusion systems with non-linear diffusion are investigated. The system is assumed to have quasi-positive non-linearities and to satisfy an entropy inequality. The difficulties in establishing global renormalised solutions caused by possibly degenerate diffusion are overcome by introducing a new class of weighted truncation functions. By means of the obtained global renormalised solutions, we study the large-time behaviour of complex balanced systems arising from chemical reaction network theory with non-linear diffusion. When the reaction network does not admit boundary equilibria, the complex balanced equilibrium is shown, by using the entropy method, to exponentially attract all renormalised solutions in the same compatibility class. This convergence extends even to a range of non-linear diffusion, where global existence is an open problem, yet we are able to show that solutions to approximate systems converge exponentially to equilibrium uniformly in the regularisation parameter.

  • G. Gilardi, A. Signori, J. Sprekels, Nutrient control for a viscous Cahn--Hilliard--Keller--Segel model with logistic source describing tumor growth, Discrete and Continuous Dynamical Systems -- Series S, 16 (2023), pp. 3552--3572, DOI 10.3934/dcdss.2023123 .
    Abstract
    In this paper, we address a distributed control problem for a system of partial differential equations describing the evolution of a tumor that takes the biological mechanism of chemotaxis into account. The system describing the evolution is obtained as a nontrivial combination of a Cahn--Hilliard type system accounting for the segregation between tumor cells and healthy cells, with a Keller--Segel type equation accounting for the evolution of a nutrient species and modeling the chemotaxis phenomenon. First, we develop a robust mathematical background that allows us to analyze an associated optimal control problem. This analysis forced us to select a source term of logistic type in the nutrient equation and to restrict the analysis to the case of two space dimensions. Then, the existence of an optimal control and first-order necessary conditions for optimality are established.

  • J. Sprekels, F. Tröltzsch, Second-order sufficient conditions for sparse optimal control of singular Allen--Cahn systems with dynamic boundary conditions, Discrete and Continuous Dynamical Systems -- Series S, 16 (2023), pp. 3784--3812, DOI 10.3934/dcdss.2023163 .
    Abstract
    In this paper we study the optimal control of a parabolic initial-boundary value problem of Allen--Cahn type with dynamic boundary conditions. Phase field systems of this type govern the evolution of coupled diffusive phase transition processes with nonconserved order parameters that occur in a container and on its surface, respectively. It is assumed that the nonlinear functions driving the physical processes within the bulk and on the surface are double well potentials of logarithmic type whose derivatives become singular at the boundary of their respective domains of definition. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a nondifferentiable term like the L1-norm leading to sparsity of optimal controls. For such cases, we derive second-order sufficient conditions for locally optimal controls.

  • A. Glitzky, M. Liero, A drift-diffusion based electrothermal model for organic thin-film devices including electrical and thermal environment, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, published online on 27.11.2023, DOI 10.1002/zamm.202300376 .
    Abstract
    We derive and investigate a stationary model for the electrothermal behavior of organic thin-film devices including their electrical and thermal environment. Whereas the electrodes are modeled by Ohm's law, the electronics of the organic device itself is described by a generalized van Roosbroeck system with temperature dependent mobilities and using Gauss--Fermi integrals for the statistical relation. The currents give rise to Joule heat which together with the heat generated by the generation/recombination of electrons and holes in the organic device occur as source terms in the heat flow equation that has to be considered on the whole domain. The crucial task is to establish that the quantities in the transfer conditions at the interfaces between electrodes and the organic semiconductor device have sufficient regularity. Therefore, we restrict the analytical treatment of the system to two spatial dimensions. We consider layered organic structures, where the physical parameters (total densities of transport states, LUMO and HOMO energies, disorder parameter, basic mobilities, activation energies, relative dielectric permittivity, heat conductivity) are piecewise constant. We prove the existence of weak solutions using Schauder's fixed point theorem and a regularity result for strongly coupled systems with nonsmooth data and mixed boundary conditions that is verified by Caccioppoli estimates and a Gehring-type lemma.

  • TH. Eiter, M. Kyed, Y. Shibata, Periodic Lp estimates by R-boundedness: Applications to the Navier--Stokes equations, Acta Applicandae Mathematicae. An International Survey Journal on Applying Mathematics and Mathematical Applications, 188 (2023), pp. 1/1--1/43, DOI 10.1007/s10440-023-00612-3 .
    Abstract
    General evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw's transference principle, time-periodic Lp estimates of maximal regularity type are established from R-bounds of the family of solution operators (R-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier--Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.

  • TH. Eiter, M. Kyed, Y. Shibata, Falling drop in an unbounded liquid reservoir: Steady-state solutions, Journal of Mathematical Fluid Mechanics, 25 (2023), pp. 34/1--34/34, DOI 10.1007/s00021-023-00777-9 .
    Abstract
    The equations governing the motion of a three-dimensional liquid drop moving freely in an unbounded liquid reservoir under the influence of a gravitational force are investigated. Provided the (constant) densities in the two liquids are sufficiently close, existence of a steady-state solution is shown. The proof is based on a suitable linearization of the equations. A setting of function spaces is introduced in which the corresponding linear operator acts as a homeomorphism.

  • D. Hömberg, R. Lasarzik, L. Plato, On the existence of generalized solutions to a spatio-temporal predator-prey system with prey-taxis, Journal of Evolution Equations, 23 (2023), pp. 20/1--20/44, DOI 10.1007/s00028-023-00871-5 .
    Abstract
    In this paper we consider a pair of coupled non-linear partial differential equations describing the interaction of a predator-prey pair. We introduce a concept of generalized solutions and show the existence of such solutions in all space dimension with the aid of a regularizing term, that is motivated by overcrowding phenomena. Additionally, we prove the weak-strong uniqueness of these generalized solutions and the existence of strong solutions at least locally-in-time for space dimension two and three.

  • R. Lasarzik, M.E.V. Reiter, Analysis and numerical approximation of energy-variational solutions to the Ericksen--Leslie equations, Acta Applicandae Mathematicae. An International Survey Journal on Applying Mathematics and Mathematical Applications, 184 (2023), pp. 11/1--11/44, DOI 10.1007/s10440-023-00563-9 .
    Abstract
    We define the concept of energy-variational solutions for the Ericksen--Leslie equations in three spatial dimensions. This solution concept is finer than dissipative solutions and satisfies the weak-strong uniqueness property. For a certain choice of the regularity weight, the existence of energy-variational solutions implies the existence of measure-valued solutions and for a different choice, we construct an energy-variational solution with the help of an implementable, structure-inheriting space-time discretization. Computational studies are performed in order to provide some evidence of the applicability of the proposed algorithm.

  • R. Lasarzik, On the existence of energy-variational solutions in the context of multidimensional incompressible fluid dynamics, Mathematical Methods in the Applied Sciences, 47 (2024), pp. 4319--4344 (published online on 20.12.2023), DOI 10.1002/mma.9816 .
    Abstract
    We define the concept of energy-variational solutions for the Navier--Stokes and Euler equations. This concept is shown to be equivalent to weak solutions with energy conservation. Via a standard Galerkin discretization, we prove the existence of energy-variational solutions and thus weak solutions in any space dimension for the Navier--Stokes equations. In the limit of vanishing viscosity the same assertions are deduced for the incompressible Euler system. Via the selection criterion of maximal dissipation we deduce well-posedness for these equations.

  • M. Liero, A. Mielke, G. Savaré, Fine properties of geodesics and geodesic $lambda$-convexity for the Hellinger--Kantorovich distance, Archive for Rational Mechanics and Analysis, 247 (2023), pp. 112/1--112/73, DOI 10.1007/s00205-023-01941-1 .
    Abstract
    We study the fine regularity properties of optimal potentials for the dual formulation of the Hellinger--Kantorovich problem (HK), providing sufficient conditions for the solvability of the primal Monge formulation. We also establish new regularity properties for the solution of the Hamilton--Jacobi equation arising in the dual dynamic formulation of HK, which are sufficiently strong to construct a characteristic transport-dilation flow driving the geodesic interpolation between two arbitrary positive measures. These results are applied to study relevant geometric properties of HK geodesics and to derive the convex behaviour of their Lebesgue density along the transport flow. Finally, exact conditions for functionals defined on the space of measures are derived that guarantee the geodesic lambda-convexity with respect to the Hellinger--Kantorovich distance.

  • A. Mielke, R. Rossi, Balanced-viscosity solutions to infinite-dimensional multi-rate systems, Archive for Rational Mechanics and Analysis, 247 (2023), pp. 53/1--53/100, DOI 10.1007/s00205-023-01855-y .
    Abstract
    We consider generalized gradient systems with rate-independent and rate-dependent dissipation potentials. We provide a general framework for performing a vanishing-viscosity limit leading to the notion of parametrized and true Balanced-Viscosity solutions that include a precise description of the jump behavior developing in this limit. Distinguishing an elastic variable $u$ having a viscous damping with relaxation time $eps^alpha$ and an internal variable $z$ with relaxation time $eps$ we obtain different limits for the three cases $alpha in (0,1)$, $alpha=1$ and $alpha>1$. An application to a delamination problem shows that the theory is general enough to treat nontrivial models in continuum mechanics.

  • A. Mielke, Non-equilibrium steady states as saddle points and EDP-convergence for slow-fast gradient systems, Journal of Mathematical Physics, 64 (2023), pp. 123502/1-- 123502/27, DOI 10.1063/5.0149910 .
    Abstract
    The theory of slow-fast gradient systems leads in a natural way to non-equilibrium steady states, because on the slow time scale the fast subsystem stays in steady states that are driven by the interaction with the slow system. Using the theory of convergence of gradient systems in the sense of the energy-dissipation principle shows that there is a natural characterization of these non-equilibrium steady states as saddle points of a Lagrangian where the slow variables are fixed. We give applications to slow-fast reaction-diffusion systems based on the so-called cosh-type gradient structure for reactions. It is shown that two binary reaction give rise to a ternary reaction with a state-dependent reaction coefficient. Moreover, we show that a reaction-diffusion equation with a thin membrane-like layer convergences to a transmission condition, where the formerly quadratic dissipation potential for diffusion convergences to a cosh-type dissipation potential for the transmission in the membrane limit.

  • A. Mielke, On two coupled degenerate parabolic equations motivated by thermodynamics, Journal of Nonlinear Science, 33 (2023), pp. 42/1--42/55, DOI 10.1007/s00332-023-09892-3 .
    Abstract
    We discuss a system of two coupled parabolic equations that have degenerate diffusion constants depending on the energy-like variable. The dissipation of the velocity-like variable is fed as a source term into the energy equation leading to conservation of the total energy. The motivation of studying this system comes from Prandtl's and Kolmogorov's one and two-equation models for turbulence, where the energy-like variable is the mean turbulent kinetic energy. Because of the degeneracies there are solutions with time-dependent support like in the porous medium equation, which is contained in our system as a special case. The motion of the free boundary may be driven by either self-diffusion of the energy-like variable or by dissipation of the velocity-like variable. The cross-over of these two phenomena is exemplified for the associated planar traveling fronts. We provide existence of suitably defined weak and very weak solutions. After providing a thermodynamically motivated gradient structure we also establish convergence into steady state for bounded domains and provide a conjecture on the asymptotically self-similar behavior of the solutions in Rd for large times.

  • M. Bongarti, L.D. Galvan, L. Hatcher, M.R. Lindstrom, Ch. Parkinson, Ch. Wang, A.L. Bertozzi , Alternative SIAR models for infectious diseases and applications in the study of non-compliance, Mathematical Models & Methods in Applied Sciences, 32 (2022), pp. 1987--2015, DOI 10.1142/S0218202522500464 .
    Abstract
    In this paper, we use modified versions of the SIAR model for epidemics to propose two ways of understanding and quantifying the effect of non-compliance to non-pharmaceutical intervention measures on the spread of an infectious disease. The SIAR model distinguishes between symptomatic infected (I) and asymptomatic infected (A) populations. One modification, which is simpler, assumes a known proportion of the population does not comply with government mandates such as quarantining and social-distancing. In a more sophisticated approach, the modified model treats non-compliant behavior as a social contagion. We theoretically explore different scenarios such as the occurrence of multiple waves of infections. Local and asymptotic analyses for both models are also provided.

  • A.H. Erhardt, E. Wahlén, J. Weber, Bifurcation analysis for axisymmetric capillary water waves with vorticity and swirl, Studies in Applied Mathematics, 149 (2022), pp. 904--942, DOI 10.1111/sapm.12525 .
    Abstract
    We study steady axisymmetric water waves with general vorticity and swirl, subject to the influence of surface tension. This can be formulated as an elliptic free boundary problem in terms of Stokes' stream function. A change of variables allows us to overcome the generic coordinate-induced singularities and to cast the problem in the form ?identity plus compact,? which is amenable to Rabinowitz's global bifurcation theorem, whereas no restrictions regarding the absence of stagnation points in the flow have to be made. Within the scope of this new formulation, local curves and global families of solutions, bifurcating from laminar flows with a flat surface, are constructed.

  • A. Agazzi, L. Andreis, R.I.A. Patterson, D.R.M. Renger, Large deviations for Markov jump processes with uniformly diminishing rates, Stochastic Processes and their Applications, 152 (2022), pp. 533--559, DOI 10.1016/j.spa.2022.06.017 .
    Abstract
    We prove a large-deviation principle (LDP) for the sample paths of jump Markov processes in the small noise limit when, possibly, all the jump rates vanish uniformly, but slowly enough, in a region of the state space. We further show that our assumptions on the decay of the jump rates are optimal. As a direct application of this work we relax the assumptions needed for the application of LDPs to, e.g., Chemical Reaction Network dynamics, where vanishing reaction rates arise naturally particularly the context of Mass action kinetics.

  • D. Bothe, W. Dreyer, P.-É. Druet, Multicomponent incompressible fluids -- An asymptotic study, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, published online on 14.01.2022, DOI 10.1002/zamm.202100174 .
    Abstract
    This paper investigates the asymptotic behavior of the Helmholtz free energy of mixtures at small compressibility. We start from a general representation for the local free energy that is valid in stable subregions of the phase diagram. On the basis of this representation we classify the admissible data to construct a thermodynamically consistent constitutive model. We then analyze the incompressible limit, where the molar volume becomes independent of pressure. Here we are confronted with two problems:

    (i) Our study shows that the physical system at hand cannot remain incompressible for arbitrary large deviations from a reference pressure unless its volume is linear in the composition. (ii) As a consequence of the 2nd law of thermodynamics, the incompressible limit implies that the molar volume becomes independent of temperature as well. Most applications, however, reveal the non-appropriateness of this property. According to our mathematical treatment, the free energy as a function of temperature and partial masses tends to a limit in the sense of epi-- or Gamma--convergence. In the context of the first problem, we study the mixing of two fluids to compare the linearity with experimental observations. The second problem will be treated by considering the asymptotic behavior of both a general inequality relating thermal expansion and compressibility and a PDE-system relying on the equations of balance for partial masses, momentum and the internal energy.

  • P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Well-posedness and optimal control for a Cahn--Hilliard--Oono system with control in the mass term, Discrete and Continuous Dynamical Systems -- Series S, 15 (2022), pp. 2135--2172, DOI 10.3934/dcdss.2022001 .
    Abstract
    The paper treats the problem of optimal distributed control of a Cahn--Hilliard--Oono system in Rd, 1 ≤ d ≤ 3 with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case d = 2. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain

  • P. Colli, G. Gilardi, J. Sprekels, Optimal control of a phase field system of Caginalp type with fractional operators, Pure and Applied Functional Analysis, 7 (2022), pp. 1597--1635.
    Abstract
    In their recent work “Well-posedness, regularity and asymptotic analyses for a fractional phase field system” (Asymptot. Anal. 114 (2019), 93--128), two of the present authors have studied phase field systems of Caginalp type, which model nonconserved, nonisothermal phase transitions and in which the occurring diffusional operators are given by fractional versions in the spectral sense of unbounded, monotone, selfadjoint, linear operators having compact resolvents. In this paper, we complement this analysis by investigating distributed optimal control problems for such systems. It is shown that the associated control-to-state operator is Fréchet differentiable between suitable Banach spaces, and meaningful first-order necessary optimality conditions are derived in terms of a variational inequality and the associated adjoint state variables.

  • P. Colli, G. Gilardi, J. Sprekels, Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities, Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni, 33 (2022), pp. 193--228, DOI 10.4171/rlm/969 .
    Abstract
    This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed (see [P. Colli et al., Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci. bf 30 (2020), 1253--1295]). The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and in particular the equation describing the dynamics of the tumor phase variable has the structure of a Allen--Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness and continuous dependence theory by setting up a careful analysis which allows the consideration of nonsmooth potentials and the treatment of continuous nonlinearities with general growth properties.

  • P. Colli, A. Signori, J. Sprekels, Analysis and optimal control theory for a phase field model of Caginalp type with thermal memory, Communications in Optimization Theory, 2022 (2022), pp. 4/1--4/31, DOI 10.23952/cot.2022.4 .
    Abstract
    A nonlinear extension of the Caginalp phase field system is considered that takes thermal memory into account. The resulting model, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. Two equations, resulting from phase dynamics and the universal balance law for internal energy, are written in terms of the phase variable (representing a non-conserved order parameter) and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. Existence and continuous dependence results are shown for weak and strong solutions to the corresponding initial-boundary value problem. Then, an optimal control problem is investigated for a suitable cost functional, in which two data act as controls, namely, the distributed heat source and the initial temperature. Fréchet differentiability between suitable Banach spaces is shown for the control-to-state operator, and meaningful first-order necessary optimality conditions are derived in terms of variational inequalities involving the adjoint variables. Eventually, characterizations of the optimal controls are given.

  • P. Colli, A. Signori, J. Sprekels, Optimal control problems with sparsity for tumor growth models involving variational inequalities, Journal of Optimization Theory and Applications, 194 (2022), pp. 25--58, DOI 10.1007/s10957-022-02000-7 .
    Abstract
    This paper treats a distributed optimal control problem for a tumor growth model of Cahn--Hilliard type including chemotaxis. The evolution of the tumor fraction is governed by a variational inequality corresponding to a double obstacle nonlinearity occurring in the associated potential. In addition, the control and state variables are nonlinearly coupled and, furthermore, the cost functional contains a nondifferentiable term like the $L^1$--norm in order to include sparsity effects which is of utmost relevance, especially time sparsity, in the context of cancer therapies as applying a control to the system reflects in exposing the patient to an intensive medical treatment. To cope with the difficulties originating from the variational inequality in the state system, we employ the so-called “deep quench approximation” in which the convex part of the double obstacle potential is approximated by logarithmic functions. For such functions, first-order necessary conditions of optimality can be established by invoking recent results. We use these results to derive corresponding optimality conditions also for the double obstacle case, by deducing a variational inequality in terms of the associated adjoint state variables. The resulting variational inequality can be exploited to also obtain sparsity results for the optimal controls.

  • J. Fischer, K. Hopf, M. Kniely, A. Mielke, Global existence analysis of energy-reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 54 (2022), pp. 220--267, DOI 10.1137/20M1387237 .
    Abstract
    We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time ensuring thermodynamic consistency. A key difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in a case of spatially constant temperature. We use time discretisation and regularisation techniques and derive a priori estimates based on a suitable entropy and the associated entropy production. Renormalised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear.

  • P. Krejčí, E. Rocca, J. Sprekels, Analysis of a tumor model as a multicomponent deformable porous medium, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 24 (2022), pp. 235--262, DOI 10.4171/IFB/472 .
    Abstract
    We propose a diffuse interface model to describe tumor as a multicomponent deformable porous medium. We include mechanical effects in the model by coupling the mass balance equations for the tumor species and the nutrient dynamics to a mechanical equilibrium equation with phase-dependent elasticity coefficients. The resulting PDE system couples two Cahn--Hilliard type equations for the tumor phase and the healthy phase with a PDE linking the evolution of the interstitial fluid to the pressure of the system, a reaction-diffusion type equation for the nutrient proportion, and a quasistatic momentum balance. We prove here that the corresponding initial-boundary value problem has a solution in appropriate function spaces.

  • X. Liu, M. Thomas, E. Titi, Well-posedness of Hibler's dynamical sea-ice model, Journal of Nonlinear Science, 32 (2022), pp. 49/1--49/31, DOI 10.1007/s00332-022-09803-y .
    Abstract
    This paper establishes the local-in-time well-posedness of solutions to an approximating system constructed by mildly regularizing the dynamical sea ice model of it W.D. Hibler, Journal of Physical Oceanography, 1979. Our choice of regularization has been carefully designed, prompted by physical considerations, to retain the original coupled hyperbolic-parabolic character of Hibler's model. Various regularized versions of this model have been used widely for the numerical simulation of the circulation and thickness of the Arctic ice cover. However, due to the singularity in the ice rheology, the notion of solutions to the original model is unclear. Instead, an approximating system, which captures current numerical study, is proposed. The well-posedness theory of such a system provides a first-step groundwork in both numerical study and future analytical study.

  • D.R.M. Renger, S. Schindler, Gradient flows for bounded linear evolution equations, Zeitschrift fur Analysis und ihre Anwendungen. Journal for Analysis and its Applications, 41 (2022), pp. 229--238, DOI 10.4171/ZAA/1706 .
    Abstract
    We study linear evolution equations in separable Hilbert spaces defined by a bounded linear operator. We answer the question which of these equations can be written as a gradient flow, namely those for which the operator is real diagonalisable. The proof is constructive, from which we also derive geodesic lambda-convexity.

  • G. Shanmugasundaram, G. Arumugam, A.H. Erhardt, N. Nagarajan, Global existence of solutions to a two-species predator-prey parabolic chemotaxis system, International Journal of Biomathematics, 15 (2022), pp. 2250054/1--2250054/23, DOI 10.1142/S1793524522500541 .

  • A.F.M. TER Elst, A. Linke, J. Rehberg, On the numerical range of sectorial forms, Pure and Applied Functional Analysis, 7 (2022), pp. 1931--1940.
    Abstract
    We provide a sharp and optimal generic bound for the angle of the sectorial form associated to a non-symmetric second-order elliptic differential operator with various boundary conditions. Consequently this gives an, in general, sharper H-angle for the H-calculus on Lp for all p ∈ (1, ∞) if the coefficients are real valued.

  • A. Glitzky, M. Liero, G. Nika, A coarse-grained electrothermal model for organic semiconductor devices, Mathematical Methods in the Applied Sciences, 45 (2022), pp. 4809--4833, DOI 10.1002/mma.8072 .
    Abstract
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion based electrothermal models with thermistor type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss--Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.

  • K. Hopf, M. Burger, On multi-species diffusion with size exclusion, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 224 (2022), pp. 113092/1--113092/27, DOI 10.1016/j.na.2022.113092 .
    Abstract
    We revisit a classical continuum model for the diffusion of multiple species with size-exclusion constraint, which leads to a degenerate nonlinear cross-diffusion system. The purpose of this article is twofold: first, it aims at a systematic study of the question of existence of weak solutions and their long-time asymptotic behaviour. Second, it provides a weak-strong stability estimate for a wide range of coefficients, which had been missing so far. In order to achieve the results mentioned above, we exploit the formal gradient-flow structure of the model with respect to a logarithmic entropy, which leads to best estimates in the full-interaction case, where all cross-diffusion coefficients are non-zero. Those are crucial to obtain the minimal Sobolev regularity needed for a weak-strong stability result. For meaningful cases when some of the coefficients vanish, we provide a novel existence result based on approximation by the full-interaction case.

  • K. Hopf, Weak-strong uniqueness for energy-reaction-diffusion systems, Mathematical Models & Methods in Applied Sciences, 21 (2022), pp. 1015--1069, DOI 10.1142/S0218202522500233 .
    Abstract
    We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consistent models, and their formal entropy structure allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion systems.

  • P.-É. Druet, Maximal mixed parabolic-hyperbolic regularity for the full equations of multicomponent fluid dynamics, Nonlinearity, 35 (2022), pp. 3812--3882, DOI 10.1088/1361-6544/ac5679 .
    Abstract
    We consider a Navier--Stokes--Fick--Onsager--Fourier system of PDEs describing mass, energy and momentum balance in a Newtonian fluid with composite molecular structure. For the resulting parabolic-hyperbolic system, we introduce the notion of optimal regularity of mixed type, and we prove the short-time existence of strong solutions for a typical initial boundary-value-problem. By means of a partial maximum principle, we moreover show that such a solution cannot degenerate in finite time due to blow-up or vanishing of the temperature or the partial mass densities. This second result is however only valid under certain growth conditions on the phenomenological coefficients. In order to obtain some illustration of the theory, we set up a special constitutive model for volume-additive mixtures.

  • TH. Eiter, K. Hopf, R. Lasarzik, Weak-strong uniqueness and energy-variational solutions for a class of viscoelastoplastic fluid models, Advances in Nonlinear Analysis, 12 (2023), pp. 20220274/1--20220274/31 (published online on 03.10.2022), DOI 10.1515/anona-2022-0274 .
    Abstract
    We study a model for a fluid showing viscoelastic and viscoplastic behavior, which describes the flow in terms of the fluid velocity and an internal stress. This stress tensor is transported via the Zaremba--Jaumann rate, and it is subject to two dissipation processes: one induced by a nonsmooth convex potential and one by stress diffusion. We show short-time existence of strong solutions as well as their uniqueness in a class of Leray--Hopf type weak solutions satisfying the tensorial component in the sense of an evolutionary variational inequality. The global-in-time existence of such generalized solutions has been established in a previous work. We further study the limit when stress diffusion vanishes. In this case, the above notion of generalized solutions is no longer suitable, and we introduce the concept of energy-variational solutions, which is based on an inequality for the relative energy. We derive general properties of energy-variational solutions and show their existence by passing to the non-diffusive limit in the relative energy inequality satisfied by generalized solutions for non-zero stress diffusion.

  • TH. Eiter, On the Oseen-type resolvent problem associated with time-periodic flow past a rotating body, SIAM Journal on Mathematical Analysis, 54 (2022), pp. 4987--5012, DOI 10.1137/21M1456728 .
    Abstract
    Consider the time-periodic flow of an incompressible viscous fluid past a body performing a rigid motion with non-zero translational and rotational velocity. We introduce a framework of homogeneous Sobolev spaces that renders the resolvent problem of the associated linear problem well posed on the whole imaginary axis. In contrast to the cases without translation or rotation, the resolvent estimates are merely uniform under additional restrictions, and the existence of time-periodic solutions depends on the ratio of the rotational velocity of the body motion to the angular velocity associated with the time period. Provided that this ratio is a rational number, time-periodic solutions to both the linear and, under suitable smallness conditions, the nonlinear problem can be established. If this ratio is irrational, a counterexample shows that in a special case there is no uniform resolvent estimate and solutions to the time-periodic linear problem do not exist.

  • TH. Eiter, On the Stokes-type resolvent problem associated with time-periodic flow around a rotating obstacle, Journal of Mathematical Fluid Mechanics, 24 (2022), pp. 52/1--17, DOI 10.1007/s00021-021-00654-3 .
    Abstract
    Consider the resolvent problem associated with the linearized viscous flow around a rotating body. Within a setting of classical Sobolev spaces, this problem is not well posed on the whole imaginary axis. Therefore, a framework of homogeneous Sobolev spaces is introduced where existence of a unique solution can be guaranteed for every purely imaginary resolvent parameter. For this purpose, the problem is reduced to an auxiliary problem, which is studied by means of Fourier analytic tools in a group setting. In the end, uniform resolvent estimates can be derived, which lead to the existence of solutions to the associated time-periodic linear problem.

  • TH. Eiter, On the regularity of weak solutions to time-periodic Navier--Stokes equations in exterior domains, Mathematics - Open Access Journal, 11 (2023), pp. 141/1--141/17 (published online on 27.12.2022), DOI 10.3390/math11010141 .
    Abstract
    Consider the time-periodic viscous incompressible fluid flow past a body with non-zero velocity at infinity. This article gives sufficient conditions such that weak solutions to this problem are smooth. Since time-periodic solutions do not have finite kinetic energy in general, the well-known regularity results for weak solutions to the corresponding initial-value problem cannot be transferred directly. The established regularity criterion demands a certain integrability of the purely periodic part of the velocity field or its gradient, but it does not concern the time mean of these quantities.

  • R. Lasarzik, E. Rocca, G. Schimperna, Weak solutions and weak-strong uniqueness for a thermodynamically consistent phase-field model, Rendiconti Lincei -- Matematica e Applicazioni, 33 (2022), pp. 229--269, DOI 10.4171/RLM/970 .
    Abstract
    In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy balance is replaced by the total energy inequality complemented with a weak form of the entropy inequality. Moreover, we prove existence of local-in-time strong solutions and, finally, we show weak-strong uniqueness of solutions, meaning that every weak solution coincides with a local strong solution emanating from the same initial data, as long as the latter exists.

  • A. Mielke, S. Reichelt, Traveling fronts in a reaction-diffusion equation with a memory term, Journal of Dynamics and Differential Equations, 36 (2024), pp. S487--S513 (published online on 23.02.2022), DOI 10.1007/s10884-022-10133-6 .
    Abstract
    Based on a recent work on traveling waves in spatially nonlocal reaction-diffusion equations, we investigate the existence of traveling fronts in reaction-diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction-diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory.

    The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.

  • A. Mielke, J. Naumann, On the existence of global-in-time weak solutions and scaling laws for Kolmogorov's two-equation model of turbulence, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 102 (2022), pp. e202000019/1--e202000019/31, DOI 10.1002/zamm.202000019 .
    Abstract
    This paper is concerned with Kolmogorov's two-equation model for free turbulence in space dimension 3, involving the mean velocity u, the pressure p, an average frequency omega, and a mean turbulent kinetic energy k. We first discuss scaling laws for a slightly more general two-equation models to highlight the special role of the model devised by Kolmogorov in 1942. The main part of the paper consists in proving the existence of weak solutions of Kolmogorov's two-equation model under space-periodic boundary conditions in cubes with positive side length l. To this end, we provide new a priori estimates and invoke existence result for pseudo-monotone operators.

  • P.-É. Druet, Global-in-time existence for liquid mixtures subject to a generalised incompressibility constraint, Journal of Mathematical Analysis and Applications, 499 (2021), pp. 125059/1--125059/56, DOI 10.1016/j.jmaa.2021.125059 .
    Abstract
    We consider a system of partial differential equations describing diffusive and convective mass transport in a fluid mixture of N > 1 chemical species. A weighted sum of the partial mass densities of the chemical species is assumed to be constant, which expresses the incompressibility of the fluid, while accounting for different reference sizes of the involved molecules. This condition is different from the usual assumption of a constant total mass density, and it leads in particular to a non-solenoidal velocity field in the Navier-Stokes equations. In turn, the pressure gradient occurs in the diffusion fluxes, so that the PDE-system of mass transport equations and momentum balance is fully coupled. Another striking feature of such incompressible mixtures is the algebraic formula connecting the pressure and the densities, which can be exploited to prove a pressure bound in L1. In this paper, we consider incompressible initial states with bounded energy and show the global existence of weak solutions with defect measure.

  • M. Heida, M. Kantner, A. Stephan, Consistency and convergence for a family of finite volume discretizations of the Fokker--Planck operator, ESAIM: Mathematical Modelling and Numerical Analysis, 55 (2021), pp. 3017--3042, DOI 10.1051/m2an/2021078 .
    Abstract
    We introduce a family of various finite volume discretization schemes for the Fokker--Planck operator, which are characterized by different weight functions on the edges. This family particularly includes the well-established Scharfetter--Gummel discretization as well as the recently developed square-root approximation (SQRA) scheme. We motivate this family of discretizations both from the numerical and the modeling point of view and provide a uniform consistency and error analysis. Our main results state that the convergence order primarily depends on the quality of the mesh and in second place on the quality of the weights. We show by numerical experiments that for small gradients the choice of the optimal representative of the discretization family is highly non-trivial while for large gradients the Scharfetter--Gummel scheme stands out compared to the others.

  • A. Stephan, EDP-convergence for a linear reaction-diffusion system with fast reversible reaction, Calculus of Variations and Partial Differential Equations, 60 (2021), pp. 226/1--226/35, DOI 10.1007/s00526-021-02089-0 .
    Abstract
    We perform a fast-reaction limit for a linear reaction-diffusion system consisting of two diffusion equations coupled by a linear reaction. We understand the linear reaction-diffusion system as a gradient flow of the free energy in the space of probability measures equipped with a geometric structure, which contains the Wasserstein metric for the diffusion part and cosh-type functions for the reaction part. The fast-reaction limit is done on the level of the gradient structure by proving EDP-convergence with tilting. The limit gradient system induces a diffusion system with Lagrange multipliers on the linear slow-manifold. Moreover, the limit gradient system can be equivalently described by a coarse-grained gradient system, which induces a diffusion equation with a mixed diffusion constant for the coarse-grained slow variable.

  • E. Ipocoana, A. Zafferi, Further regularity and uniqueness results for a non-isothermal Cahn--Hilliard equation, Communications on Pure and Applied Analysis, 20 (2021), pp. 763--782, DOI 10.3934/cpaa.2020289 .
    Abstract
    The aim of this paper is to establish new regularity results for a non-isothermal Cahn--Hilliard system in the two-dimensional setting. The main achievement is a crucial L estimate for the temperature, obtained by a suitable Moser iteration scheme. Our results in particular allow us to get a new simplified version of the uniqueness proof for the considered model.

  • L. Baňas, R. Lasarzik, A. Prohl, Numerical analysis for nematic electrolytes, IMA Journal of Numerical Analysis, 41 (2021), pp. 2186--2254, DOI 10.1093/imanum/draa082 .
    Abstract
    We consider a system of nonlinear PDEs modeling nematic electrolytes, and construct a dissipative solution with the help of its implementable, structure-inheriting space-time discretization. Computational studies are performed to study the mutual effects of electric, elastic, and viscous effects onto the molecules in a nematic electrolyte.

  • D. Bothe, P.-É. Druet, Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 210 (2021), pp. 112389/1--112389/53, DOI 10.1016/j.na.2021.112389 .
    Abstract
    We consider a system of partial differential equations describing mass transport in a multicomponent isothermal compressible fluid. The diffusion fluxes obey the Fick-Onsager or Maxwell- Stefan closure approach. Mechanical forces result into one single convective mixture velocity, the barycentric one, which obeys the Navier-Stokes equations. The thermodynamic pressure is defined by the Gibbs-Duhem equation. Chemical potentials and pressure are derived from a thermodynamic potential, the Helmholtz free energy, with a bulk density allowed to be a general convex function of the mass densities of the constituents. The resulting PDEs are of mixed parabolic-hyperbolic type. We prove two theoretical results concerning the well-posedness of the model in classes of strong solutions: 1. The solution always exists and is unique for short-times and 2. If the initial data are sufficiently near to an equilibrium solution, the well-posedness is valid on arbitrary large, but finite time intervals. Both results rely on a contraction principle valid for systems of mixed type that behave like the compressible Navier- Stokes equations. The linearised parabolic part of the operator possesses the self map property with respect to some closed ball in the state space, while being contractive in a lower order norm only. In this paper, we implement these ideas by means of precise a priori estimates in spaces of exact regularity.

  • D. Bothe, P.-É. Druet, Well-posedness analysis of multicomponent incompressible flow models, Journal of Evolution Equations, 21 (2021), pp. 4039--4093, DOI 10.1007/s00028-021-00712-3 .
    Abstract
    In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities of the species stays constant. In this type of models, non solenoidal effects affect the velocity field in the Navier--Stokes equations and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.

  • P. Colli, G. Gilardi, J. Sprekels, An asymptotic analysis for a generalized Cahn--Hilliard system with fractional operators, Journal of Evolution Equations, 21 (2021), pp. 2749--2778, DOI 10.1007/s00028-021-00706-1 .
    Abstract
    In a recent paper the same authors have proved existence, uniqueness and regularity results for a class of viscous and nonviscous Cahn--Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers in the spectral sense of general linear operators, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space of square-integrable functions on a bounded and smooth three-dimensional domain, and have compact resolvents. Here, for the case of the viscous system, we analyze the asymptotic behavior of the solution as the fractional power coefficient of the second operator tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of the second operator appears.

  • P. Colli, A. Signori, J. Sprekels, Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis, ESAIM. Control, Optimisation and Calculus of Variations, 27 (2021), pp. 73/1--73/46, DOI 10.1051/cocv/2021072 .
    Abstract
    This paper concerns a distributed optimal control problem for a tumor growth model of Cahn--Hilliard type including chemotaxis with possibly singular anpotentials, where the control and state variables are nonlinearly coupled. First, we discuss the weak well-posedness of the system under very general assumptions for the potentials, which may be singular and nonsmooth. Then, we establish the strong well-posedness of the system in a reduced setting, which however admits the logarithmic potential: this analysis will lay the foundation for the study of the corresponding optimal control problem. Concerning the optimization problem, we address the existence of minimizers and establish both first-order necessary and second-order sufficient conditions for optimality. The mathematically challenging second-order analysis is completely performed here, after showing that the solution mapping is twice continuously differentiable between suitable Banach spaces via the implicit function theorem. Then, we completely identify the second-order Fréchet derivative of the control-to-state operator and carry out a thorough and detailed investigation about the related properties.

  • P. Colli, G. Gilardi, J. Sprekels, Deep quench approximation and optimal control of general Cahn--Hilliard systems with fractional operators and double obstacle potentials, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 243--271, DOI 10.3934/dcdss.2020213 .
    Abstract
    Recently, the authors derived well-posedness and regularity results for general evolutionary operator equations having the structure of a Cahn--Hilliard system. The involved operators were fractional versions in the spectral sense of general linear operators that have compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions. The class of admissible double-well potentials driving the phase separation process modeled by the Cahn--Hilliard system included polynomial, logarithmic, and double obstacle nonlinearities. In a subsequent paper, distributed optimal control problems for such systems were investigated, where only differentiable polynomial and logarithmic potentials were admitted. Existence of optimizers and first-order optimality conditions were derived. In this paper, these results are complemented for nondifferentiable double obstacle nonlinearities. It is well known that for such nonlinearities standard constraint qualifications to construct Lagrange multipliers cannot be applied. To overcome this difficulty, we follow the so-called “deep quench” method, which has proved to be a powerful tool in optimal control problems with double obstacle potentials. We give a general convergence analysis of the deep quench approximation, including an error estimate, and demonstrate that its use leads to meaningful first-order necessary optimality conditions.

  • TH. Frenzel, M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 395--425, DOI 10.3934/dcdss.2020345 .
    Abstract
    The notion of Energy-Dissipation-Principle convergence (EDP-convergence) is used to derive effective evolution equations for gradient systems describing diffusion in a structure consisting of several thin layers in the limit of vanishing layer thickness. The thicknesses of the sublayers tend to zero with different rates and the diffusion coefficients scale suitably. The Fokker--Planck equation can be formulated as gradient-flow equation with respect to the logarithmic relative entropy of the system and a quadratic Wasserstein-type gradient structure. The EDP-convergence of the gradient system is shown by proving suitable asymptotic lower limits of the entropy and the total dissipation functional. The crucial point is that the limiting evolution is again described by a gradient system, however, now the dissipation potential is not longer quadratic but is given in terms of the hyperbolic cosine. The latter describes jump processes across the thin layers and is related to the Marcelin--de Donder kinetics.

  • R. Kraaij, F. Redig, W. van Zuijlen, A Hamilton--Jacobi point of view on mean-field Gibbs-non-Gibbs transitions, Transactions of the American Mathematical Society, 374 (2021), pp. 5287--5329, DOI 10.1090/tran/8408 .
    Abstract
    We study the loss, recovery, and preservation of differentiability of time-dependent large deviation rate functions. This study is motivated by mean-field Gibbs-non-Gibbs transitions. The gradient of the rate-function evolves according to a Hamiltonian flow. This Hamiltonian flow is used to analyze the regularity of the time dependent rate function, both for Glauber dynamics for the Curie-Weiss model and Brownian dynamics in a potential. We hereby create a unifying framework for the treatment of mean-field Gibbs-non-Gibbs transitions, based on Hamiltonian dynamics and viscosity solutions of Hamilton-Jacobi equations.

  • J. Sprekels, F. Tröltzsch, Sparse optimal control of a phase field system with singular potentials arising in the modeling of tumor growth, ESAIM. Control, Optimisation and Calculus of Variations, 27 (2021), pp. S26/1--S26/27, DOI 10.1051/cocv/2020088 .
    Abstract
    In this paper, we study an optimal control problem for a nonlinear system of reaction-diffusion equations that constitutes a simplified and relaxed version of a thermodynamically consistent phase field model for tumor growth originally introduced in [13]. The model takes the effect of chemotaxis into account but neglects velocity contributions. The unknown quantities of the governing state equations are the chemical potential, the (normalized) tumor fraction, and the nutrient extra-cellular water concentration. The equation governing the evolution of the tumor fraction is dominated by the variational derivative of a double-well potential which may be of singular (e.g., logarithmic) type. In contrast to the recent paper [10] on the same system, we consider in this paper sparsity effects, which means that the cost functional contains a nondifferentiable (but convex) contribution like the L1-norm. For such problems, we derive first-order necessary optimality conditions and conditions for directional sparsity, both with respect to space and time, where the latter case is of particular interest for practical medical applications in which the control variables are given by the administration of cytotoxic drugs or by the supply of nutrients. In addition to these results, we prove that the corresponding control-to-state operator is twice continuously differentiable between suitable Banach spaces, using the implicit function theorem. This result, which complements and sharpens a differentiability result derived in [10], constitutes a prerequisite for a future derivation of second-order sufficient optimality conditions.

  • A.F.M. TER Elst, R. Haller-Dintelmann, J. Rehberg, P. Tolksdorf, On the $L^p$-theory for second-order elliptic operators in divergence form with complex coefficients, Journal of Evolution Equations, 21 (2021), pp. 3963--4003, DOI 10.1007/s00028-021-00711-4 .
    Abstract
    Given a complex, elliptic coefficient function we investigate for which values of p the corresponding second-order divergence form operator, complemented with Dirichlet, Neumann or mixed boundary conditions, generates a strongly continuous semigroup on Lp(Ω). Additional properties like analyticity of the semigroup, H-calculus and maximal regularity arealso discussed. Finally we prove a perturbation result for real coefficients that gives the whole range of p's for small imaginary parts of the coefficients. Our results are based on the recent notion of p-ellipticity, reverse Hölder inequalities and Gaussian estimates for the real coefficients.

  • A. Glitzky, M. Liero, G. Nika, Analysis of a hybrid model for the electrothermal behavior of semiconductor heterostructures, Journal of Mathematical Analysis and Applications, 507 (2022), pp. 125815/1--125815/26 (published online on 16.11.2021), DOI 10.1016/j.jmaa.2021.125815 .
    Abstract
    We prove existence of a weak solution for a hybrid model for the electro-thermal behavior of semiconductor heterostructures. This hybrid model combines an electro-thermal model based on drift-diffusion with thermistor type models in different subregions of the semiconductor heterostructure. The proof uses a regularization method and Schauder's fixed point theorem. For boundary data compatible with thermodynamic equilibrium we verify, additionally, uniqueness. Moreover, we derive bounds and higher integrability properties for the electrostatic potential and the quasi Fermi potentials as well as the temperature.

  • A. Glitzky, M. Liero, G. Nika, An existence result for a class of electrothermal drift-diffusion models with Gauss--Fermi statistics for organic semiconductors, Analysis and Applications, 19 (2021), pp. 275--304, DOI 10.1142/S0219530519500246 .
    Abstract
    This work is concerned with the analysis of a drift-diffusion model for the electrothermal behavior of organic semiconductor devices. A "generalized Van Roosbroeck” system coupled to the heat equation is employed, where the former consists of continuity equations for electrons and holes and a Poisson equation for the electrostatic potential, and the latter features source terms containing Joule heat contributions and recombination heat. Special features of organic semiconductors like Gauss--Fermi statistics and mobilities functions depending on the electric field strength are taken into account. We prove the existence of solutions for the stationary problem by an iteration scheme and Schauder's fixed point theorem. The underlying solution concept is related to weak solutions of the Van Roosbroeck system and entropy solutions of the heat equation. Additionally, for data compatible with thermodynamic equilibrium, the uniqueness of the solution is verified. It was recently shown that self-heating significantly influences the electronic properties of organic semiconductor devices. Therefore, modeling the coupled electric and thermal responses of organic semiconductors is essential for predicting the effects of temperature on the overall behavior of the device. This work puts the electrothermal drift-diffusion model for organic semiconductors on a sound analytical basis.

  • A. Glitzky, M. Liero, G. Nika, Analysis of a bulk-surface thermistor model for large-area organic LEDs, Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 78 (2021), pp. 187--210, DOI 10.4171/PM/2066 .
    Abstract
    The existence of a weak solution for an effective system of partial differential equations describing the electrothermal behavior of large-area organic light-emitting diodes (OLEDs) is proved. The effective system consists of the heat equation in the three-dimensional bulk glass substrate and two semi-linear equations for the current flow through the electrodes coupled to algebraic equations for the continuity of the electrical fluxes through the organic layers. The electrical problem is formulated on the (curvilinear) surface of the glass substrate where the OLED is mounted. The source terms in the heat equation are due to Joule heating and are hence concentrated on the part of the boundary where the current-flow equation is posed. The existence of weak solutions to the effective system is proved via Schauder's fixed-point theorem. Moreover, since the heat sources are a priori only in $L^1$, the concept of entropy solutions is used.

  • M. Thomas, S. Tornquist, Discrete approximation of dynamic phase-field fracture in visco-elastic materials, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 3865--3924, DOI 10.3934/dcdss.2021067 .
    Abstract
    This contribution deals with the analysis of models for phase-field fracture in visco-elastic materials with dynamic effects. The evolution of damage is handled in two different ways: As a viscous evolution with a quadratic dissipation potential and as a rate-independent law with a positively 1-homogeneous dissipation potential. Both evolution laws encode a non-smooth constraint that ensures the unidirectionality of damage, so that the material cannot heal. Suitable notions of solutions are introduced in both settings. Existence of solutions is obtained using a discrete approximation scheme both in space and time. Based on the convexity properties of the energy functional and on the regularity of the displacements thanks to their viscous evolution, also improved regularity results with respect to time are obtained for the internal variable: It is shown that the damage variable is continuous in time with values in the state space that guarantees finite values of the energy functional.

  • TH. Eiter, On the spatially asymptotic structure of time-periodic solutions to the Navier--Stokes equations, Proceedings of the American Mathematical Society, 149 (2021), pp. 3439--3451, DOI 10.1090/proc/15482 .
    Abstract
    The asymptotic behavior of weak time-periodic solutions to the Navier--Stokes equations with a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed into a time-independent and a remaining part, and separate asymptotic expansions are derived for both parts and their gradients. One observes that the behavior at spatial infinity is determined by the corresponding Oseen fundamental solutions.

  • TH. Eiter, G.P. Galdi, Spatial decay of the vorticity field of time-periodic viscous flow past a body, Archive for Rational Mechanics and Analysis, 242 (2021), pp. 149--178, DOI 10.1007/s00205-021-01690-z .
    Abstract
    We study the asymptotic spatial behavior of the vorticity field associated to a time-periodic Navier-Stokes flow past a body in the class of weak solutions satisfying a Serrin-like condition. We show that outside the wake region the vorticity field decays pointwise at an exponential rate, uniformly in time. Moreover, decomposing it into its time-average over a period and a so-called purely periodic part, we prove that inside the wake region, the time-average has the same algebraic decay as that known for the associated steady-state problem, whereas the purely periodic part decays even faster, uniformly in time. This implies, in particular, that “sufficiently far” from the body, the time-periodic vorticity field behaves like the vorticity field of the corresponding steady-state problem.

  • TH. Eiter, M. Kyed, Viscous flow around a rigid body performing a time-periodic motion, Journal of Mathematical Fluid Mechanics, 23 (2021), pp. 28/1--28/23, DOI 10.1007/s00021-021-00556-4 .
    Abstract
    The equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.

  • TH. Eiter, K. Hopf, A. Mielke, Leray--Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 65 (2022), pp. 103491/1--103491/30 (published online on 20.12.2021), DOI 10.1016/j.nonrwa.2021.103491 .
    Abstract
    We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba--Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions for the stress tensor.

  • D. Hömberg, R. Lasarzik, Weak entropy solutions to a model in induction hardening, existence and weak-strong uniqueness, Mathematical Models & Methods in Applied Sciences, 31 (2021), pp. 1867--1918, DOI 10.1142/S021820252150041X .
    Abstract
    In this paper, we investigate a model describing induction hardening of steel. The related system consists of an energy balance, an ODE for the different phases of steel, and Maxwell's equations in a potential formulation. The existence of weak entropy solutions is shown by a suitable regularization and discretization technique. Moreover, we prove the weak-strong uniqueness of these solutions, i.e., that a weak entropy solutions coincides with a classical solution emanating form the same initial data as long as the classical one exists. The weak entropy solution concept has advantages in comparison to the previously introduced weak solutions, e.g., it allows to include free energy functions with low regularity properties corresponding to phase transitions.

  • R. Lasarzik, Analysis of a thermodynamically consistent Navier--Stokes--Cahn--Hilliard model, Nonlinear Analysis. An International Mathematical Journal, 213 (2021), pp. 112526/1--112526/33, DOI 10.1016/j.na.2021.112526 .
    Abstract
    In this paper, existence of generalized solutions to a thermodynamically consistent Navier--Stokes--Cahn--Hilliard model introduced in [19] is proven in any space dimension. The generalized solvability concepts are measure-valued and dissipative solutions. The measure-valued formulation incorporates an entropy inequality and an energy inequality instead of an energy balance in a nowadays standard way, the Gradient flow of the internal variable is fulfilled in a weak and the momentum balance in a measure-valued sense. In the dissipative formulation, the distributional relations of the momentum balance and the energy as well as entropy inequality are replaced by a relative energy inequality. Additionally, we prove the weak-strong uniqueness of the proposed solution concepts and that all generalized solutions with additional regularity are indeed strong solutions.

  • R. Lasarzik, Maximally dissipative solutions for incompressible fluid dynamics, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 73 (2022), pp. 1/1--1/21 (published online on 11.11.2021), DOI 10.1007/s00033-021-01628-1 .
    Abstract
    We introduce the new concept of maximal dissipative solutions for the Navier--Stokes and Euler equations and show that these solutions exist and the solution set is closed and convex. The concept of maximal dissipative solutions coincides with the concept of weak solutions as long as the weak solutions inherits enough regularity to be unique. A maximal dissipative solution is defined as the minimizer of a convex functional and we argue that this definition bears several advantages.

  • X. Liu, E. Titi, Local well-posedness of strong solutions to the three-dimensional compressible primitive equations, Archive for Rational Mechanics and Analysis, 241 (2021), pp. 729--764, DOI 10.1007/s00205-021-01662-3 .
    Abstract
    This work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity.

  • A. Mielke, Relating a rate-independent system and a gradient system for the case of one-homogeneous potentials, Journal of Dynamics and Differential Equations, 34 (2022), pp. 3143--3164 (published online on 31.05.2021), DOI 10.1007/s10884-021-10007-3 .
    Abstract
    We consider a non-negative and one-homogeneous energy functional $mathcal J$ on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-inpendent system given in terms of the time-dependent functional $mathcal E(t,u)=t mathcal J(u)$ and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutins of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.

  • A. Mielke, R.R. Netz, S. Zendehroud, A rigorous derivation and energetics of a wave equation with fractional damping, Journal of Evolution Equations, 21 (2021), pp. 3079--3102, DOI 10.1007/s00028-021-00686-2 .
    Abstract
    We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water-air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally-damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy-dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally-damped wave equation with a time derivative of order 3/2.

  • W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke, Analysis of improved Nernst--Planck--Poisson models of compressible isothermal electrolytes, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 71 (2020), pp. 119/1--119/68, DOI 10.1007/s00033-020-01341-5 .
    Abstract
    We consider an improved Nernst--Planck--Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convection--diffusion--reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross--diffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the existence of a global--in--time weak solution for the full model, allowing for a general structure of the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time. With respect to our former study [DDGG16], we also essentially improve the a priori estimates, in particular concerning the relative chemical potentials.

  • P.-É. Druet, A. Jüngel, Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient, SIAM Journal on Mathematical Analysis, 52 (2020), pp. 2179--2197, DOI 10.1137/19M1301473 .
    Abstract
    The convective transport in a multicomponent isothermal compressible fluid subject to the mass continuity equations is considered. The velocity is proportional to the negative pressure gradient, according to Darcy?s law, and the pressure is defined by a state equation imposed by the volume extension of the mixture. These model assumptions lead to a parabolic-hyperbolic system for the mass densities. The global-in-time existence of classical and weak solutions is proved in a bounded domain with no-penetration boundary conditions. The idea is to decompose the system into a porous-medium-type equation for the volume extension and transport equations for the modified number fractions. The existence proof is based on parabolic regularity theory, the theory of renormalized solutions, and an approximation of the velocity field.

  • N.A. Dao, J.I. Díaz, Q.B.H. Nguyen, Pointwise gradient estimates in multi-dimensional slow diffusion equations with a singular quenching term, Advanced Nonlinear Studies, 20 (2020), pp. 373--384, DOI 10.1515/ans-2020-2076 .

  • R. Rossi, U. Stefanelli, M. Thomas, Rate-independent evolution of sets, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 89--119 (published online in March 2020), DOI 10.3934/dcdss.2020304 .
    Abstract
    The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes. In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.

  • D. Belomestny, J.G.M. Schoenmakers, Optimal stopping of McKean--Vlasov diffusions via regression on particle systems, SIAM Journal on Control and Optimization, 58 (2020), pp. 529--550, DOI 10.1137/18M1195590 .
    Abstract
    In this note we consider the problem of using regression on interacting particles to compute conditional expectations for McKean-Vlasov SDEs. We prove general result on convergence of linear regression algorithms and establish the corresponding rates of convergence. Application to optimal stopping and variance reduction are considered.

  • J.A. Carrillo, K. Hopf, M.-Th. Wolfram, Numerical study of Bose--Einstein condensation in the Kaniadakis--Quarati model for bosons, Kinetic and Related Models, 13 (2020), pp. 507--529, DOI 10.3934/krm.2020017 .
    Abstract
    Kaniadakis and Quarati (1994) proposed a Fokker--Planck equation with quadratic drift as a PDE model for the dynamics of bosons in the spatially homogeneous setting. It is an open question whether this equation has solutions exhibiting condensates in finite time. The main analytical challenge lies in the continuation of exploding solutions beyond their first blow-up time while having a linear diffusion term. We present a thoroughly validated time-implicit numerical scheme capable of simulating solutions for arbitrarily large time, and thus enabling a numerical study of the condensation process in the Kaniadakis--Quarati model. We show strong numerical evidence that above the critical mass rotationally symmetric solutions of the Kaniadakis--Quarati model in 3D form a condensate in finite time and converge in entropy to the unique minimiser of the natural entropy functional at an exponential rate. Our simulations further indicate that the spatial blow-up profile near the origin follows a universal power law and that transient condensates can occur for sufficiently concentrated initial data.

  • J.A. Carrillo, K. Hopf, J.L. Rodrigo, On the singularity formation and relaxation to equilibrium in 1D Fokker--Planck model with superlinear drift, Advances in Mathematics, 360 (2020), pp. 106883/1--106883/66, DOI 10.1016/j.aim.2019.106883 .
    Abstract
    We consider a class of Fokker--Planck equations with linear diffusion and superlineardrift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical mass above which the measure minimising the associated entropy functional displays a singular component. Our approach, which addresses the one-dimensional case, is based on a reformulation of the problem in terms of the pseudo-inverse distribution function. Motivated by the structure of the equation in the new variables, we establish a general framework for global-in-time existence, uniqueness and regularity of monotonic viscosity solutions to a class of nonlinear degenerate (resp. singular) parabolic equations, using as a key tool comparison principles and maximum arguments. We then focus on a specific equation and study in more detail the regularity and dynamics of solutions. In particular, blow-up behaviour, formation of condensates (i.e. Dirac measures at zero) and long-time asymptotics are investigated. As a consequence, in the mass-supercritical case,solutions will blow up in L in finite time and--understood in a generalised, measure sense--they will eventually have condensate. We further show that the singular part of the measure solution does in general interact with the density and that condensates can be transient. The equations considered are motivated by a model for bosons introduced by Kaniadakis and Quarati (1994), which has a similar entropy structure and a critical mass if d≥3.

  • R. Chill, H. Meinlschmidt, J. Rehberg, On the numerical range of second order elliptic operators with mixed boundary conditions in L$^p$, Journal of Evolution Equations, 21 (2021), pp. 3267--3288 (published online on 20.10.2020), DOI 10.1007/s00028-020-00642-6 .
    Abstract
    We consider second order elliptic operators with real, nonsymmetric coefficient functions which are subject to mixed boundary conditions. The aim of this paper is to provide uniform resolvent estimates for the realizations of these operators on Lp in a most direct way and under minimal regularity assumptions on the domain. This is analogous to the main result in [7]. Ultracontractivity of the associated semigroups is also considered. All results are for two different form domains realizing mixed boundary conditions. We further consider the case of Robin- instead of classical Neumann boundary conditions and also allow for operators inducing dynamic boundary conditions. The results are complemented by an intrinsic characterization of elements of the form domains inducing mixed boundary conditions.

  • P. Colli, M.H. Farshbaf Shaker, K. Shirakawa, N. Yamazaki, Optimal control for shape memory alloys of the one-dimensional Frémond model, Numerical Functional Analysis and Optimization. An International Journal, 41 (2020), pp. 1421-1471, DOI 10.1080/01630563.2020.1774892 .
    Abstract
    In this paper, we consider optimal control problems for the one-dimensional Frémond model for shape memory alloys. This model is constructed in terms of basic functionals like free energy and pseudo-potential of dissipation. The state problem is expressed by a system of partial differential equations involving the balance equations for energy and momentum. We prove the existence of an optimal control that minimizes the cost functional for a nonlinear and nonsmooth state problem. Moreover, we show the necessary condition of the optimal pair by using optimal control problems for approximating systems.

  • P. Colli, G. Gilardi, J. Sprekels, Asymptotic analysis of a tumor growth model with fractional operators, Asymptotic Analysis, 120 (2020), pp. 41--72, DOI 10.3233/ASY-191578 .
    Abstract
    In this paper, we study a system of three evolutionary operator equations involving fractional powers of selfadjoint, monotone, unbounded, linear operators having compact resolvents. This system constitutes a generalized and relaxed version of a phase field system of Cahn--Hilliard type modelling tumor growth that has originally been proposed in Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24). The original phase field system and certain relaxed versions thereof have been studied in recent papers co-authored by the present authors and E. Rocca. The model consists of a Cahn--Hilliard equation for the tumor cell fraction φ, coupled to a reaction-diffusion equation for a function S representing the nutrient-rich extracellular water volume fraction. Effects due to fluid motion are neglected. Motivated by the possibility that the diffusional regimes governing the evolution of the different constituents of the model may be of different (e.g., fractional) type, the present authors studied in a recent note a generalization of the systems investigated in the abovementioned works. Under rather general assumptions, well-posedness and regularity results have been shown. In particular, by writing the equation governing the evolution of the chemical potential in the form of a general variational inequality, also singular or nonsmooth contributions of logarithmic or of double obstacle type to the energy density could be admitted. In this note, we perform an asymptotic analysis of the governing system as two (small) relaxation parameters approach zero separately and simultaneously. Corresponding well-posedness and regularity results are established for the respective cases; in particular, we give a detailed discussion which assumptions on the admissible nonlinearities have to be postulated in each of the occurring cases.

  • P. Colli, G. Gilardi, J. Sprekels, Longtime behavior for a generalized Cahn--Hilliard system with fractional operators, Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze, Fisiche, Matematiche e Naturali. AAPP. Physical, Mathematical, and Natural Sciences, 98 (2020), pp. A4/1--A4/18, DOI 10.1478/AAPP.98S2A4 .
    Abstract
    In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn--Hilliard system, with possibly singular potentials, which we recently investigated in the paper "Well-posedness and regularity for a generalized fractional CahnHilliard system". More precisely, we give a complete characterization of the Omega-limit of the phase parameter. The characterization depends on the first eigenvalue of one of the involved operators: if this eigenvalue is positive, then the chemical potential vanishes at infinity, and every element of the Omega-limit is a stationary solution to the phase equation; if it is zero instead, then every element of the Omega-limit solves a problem containing a real function which is related to the chemical potential. Such a function is nonunique and time dependent, in general, as we show by means of an example; however, we give sufficient conditions for it to be uniquely determined and constant.

  • TH. Frenzel, M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 395--425 (published online in May 2020), DOI 10.3934/dcdss.2020345 .
    Abstract
    The notion of Energy-Dissipation-Principle convergence (EDP-convergence) is used to derive effective evolution equations for gradient systems describing diffusion in a structure consisting of several thin layers in the limit of vanishing layer thickness. The thicknesses of the sublayers tend to zero with different rates and the diffusion coefficients scale suitably. The Fokker--Planck equation can be formulated as gradient-flow equation with respect to the logarithmic relative entropy of the system and a quadratic Wasserstein-type gradient structure. The EDP-convergence of the gradient system is shown by proving suitable asymptotic lower limits of the entropy and the total dissipation functional. The crucial point is that the limiting evolution is again described by a gradient system, however, now the dissipation potential is not longer quadratic but is given in terms of the hyperbolic cosine. The latter describes jump processes across the thin layers and is related to the Marcelin--de Donder kinetics.

  • J. Maas, A. Mielke, Modeling of chemical reaction systems with detailed balance using gradient structures, Journal of Statistical Physics, 181 (2020), pp. 2257--2303, DOI 10.1007/s10955-020-02663-4 .
    Abstract
    We consider various modeling levels for spatially homogeneous chemical reaction systems, namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate equation. Throughout we restrict our study to the case where the microscopic system satisfies the detailed-balance condition. The latter allows us to enrich the systems with a gradient structure, i.e. the evolution is given by a gradient-flow equation. We present the arising links between the associated gradient structures that are driven by the relative entropy of the detailed-balance steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling different modeling levels.

  • H. Meinlschmidt, Ch. Meyer, J. Rehberg, Regularization for optimal control problems associated to nonlinear evolution equations, Journal of Convex Analysis, 27 (2020), pp. 443--485, DOI 10.20347/WIAS.PREPRINT.2576 .
    Abstract
    It is well-known that in the case of a sufficiently nonlinear general optimal control problem there is very frequently the necessity for a compactness argument in order to pass to the limit in the state equation in the standard “calculus of variations” proof for the existence of optimal controls. For time-dependent state equations, i.e., evolution equations, this is in particular unfortunate due to the difficult structure of compact sets in Bochner-type spaces. In this paper, we propose an abstract function space and a suitable regularization- or Tychonov term for the objective functional which allows for the usual standard reasoning in the proof of existence of optimal controls and which admits a reasonably favorable structure in the characterization of optimal solutions via first order necessary conditions in, generally, the form of a variational inequality of obstacle-type in time. We establish the necessary properties of the function space and the Tychonov term and derive the aforementioned variational inequality. The variational inequality can then be reformulated as a projection identity for the optimal control under additional assumptions. We give sufficient conditions on when these are satisfied. The considerations are complemented with a series of practical examples of possible constellations and choices in dependence on the varying control spaces required for the evolution equations at hand.

  • H. Neidhardt, A. Stephan, V.A. Zagrebnov, Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems, Publications of the Research Institute for Mathematical Sciences, 56 (2020), pp. 83--135, DOI 10.4171/PRIMS/56-1-5 .
    Abstract
    In the present paper we advocate the Howland-Evans approach to solution of the abstract non-autonomous Cauchy problem (non-ACP) in a separable Banach space X. The main idea is to reformulate this problem as an autonomous Cauchy problem (ACP) in a new Banach space Lp(J,X), consisting of X-valued functions on the time-interval J. The fundamental observation is a one-to-one correspondence between solution operators (propagators) for a non-ACP and the corresponding evolution semigroups for ACP in Lp(J,X). We show that the latter also allows to apply a full power of the operator-theoretical methods to scrutinise the non-ACP including the proof of the Trotter product approximation formulae with operator-norm estimate of the rate of convergence. The paper extends and improves some recent results in this direction in particular for Hilbert spaces.

  • A. Glitzky, M. Liero, G. Nika, Dimension reduction of thermistor models for large-area organic light-emitting diodes, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 3953--3971 (published online on 28.11.2020), DOI 10.3934/dcdss.2020460 .
    Abstract
    An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional φ(x)-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter ε > 0 which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.

  • M. Thomas, C. Bilgen, K. Weinberg, Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 100 (2020), pp. e201900288/1--e201900288/51, DOI 10.1002/zamm.201900288 .
    Abstract
    Phase-field models have already been proven to predict complex fracture patterns in two and three dimensions for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. We here present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split and the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions are carried out in the range of validity of the analytical results.

  • A. Alphonse, M. Hintermüller, C.N. Rautenberg, Existence, iteration procedures and directional differentiability for parabolic QVIs, Calculus of Variations and Partial Differential Equations, 59 (2020), pp. 95/1--95/53, DOI 10.1007/s00526-020-01732-6 .
    Abstract
    We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two methods: one by time discretisation through elliptic QVIs and the second by iteration through parabolic variational inequalities (VIs). Using these results, we show the directional differentiability (in a certain sense) of the solution map which takes the source term of a parabolic QVI into the set of solutions, and we relate this result to the contingent derivative of the aforementioned map. We finish with an example where the obstacle mapping is given by the inverse of a parabolic differential operator.

  • P.-É. Druet, A theory of generalised solutions for ideal gas mixtures with Maxwell--Stefan diffusion, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 4035--4067 (published online in Nov 2020), DOI 10.3934/dcdss.2020458 .
    Abstract
    After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic-hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids emphex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.

  • A. Mielke, T. Roubíček, Thermoviscoelasticity in Kelvin--Voigt rheology at large strains, Archive for Rational Mechanics and Analysis, 238 (2020), pp. 1--45, DOI 10.1007/s00205-020-01537-z .
    Abstract
    The frame-indifferent thermodynamically-consistent model of thermoviscoelasticity at large strain is formulated in the reference configuration with using the concept of the second-grade nonsimple materials. We focus on physically correct viscous stresses that are frame indifferent under time-dependent rotations. Also elastic stresses are frame indifferent under rotations and respect positivity of the determinant of the deformation gradient. The heat transfer is governed by the Fourier law in the actual deformed configuration, which leads to a nontrivial description when pulled back into the reference configuration. Existence of weak solutions in the quasistatic setting, i.e. inertial forces are ignored, is shown by time discretization.

  • K. Disser, J. Rehberg, The 3D transient semiconductor equations with gradient-dependent and interfacial recombination, Mathematical Models & Methods in Applied Sciences, 29 (2019), pp. 1819--1851, DOI 10.1142/S0218202519500350 .
    Abstract
    We establish the well-posedness of the transient van Roosbroeck system in three space dimensions under realistic assumptions on the data: non-smooth domains, discontinuous coefficient functions and mixed boundary conditions. Moreover, within this analysis, recombination terms may be concentrated on surfaces and interfaces and may not only depend on charge-carrier densities, but also on the electric field and currents. In particular, this includes Avalanche recombination. The proofs are based on recent abstract results on maximal parabolic and optimal elliptic regularity of divergence-form operators.

  • M. Heida, S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptotic Analysis, 112 (2019), pp. 185--212, DOI 10.3233/ASY-181502 .
    Abstract
    In this work we deal with the stochastic homogenization of the initial boundary value problems of monotone type. The models of monotone type under consideration describe the deformation behaviour of inelastic materials with a microstructure which can be characterised by random measures. Based on the Fitzpatrick function concept we reduce the study of the asymptotic behaviour of monotone operators associated with our models to the problem of the stochastic homogenization of convex functionals within an ergodic and stationary setting. The concept of Fitzpatrick's function helps us to introduce and show the existence of the weak solutions for rate-dependent systems. The derivations of the homogenization results presented in this work are based on the stochastic two-scale convergence in Sobolev spaces. For completeness, we also present some two-scale homogenization results for convex functionals, which are related to the classical Gamma-convergence theory.

  • D. Peschka, S. Haefner, L. Marquant, K. Jacobs, A. Münch, B. Wagner, Signatures of slip in dewetting polymer films, Proceedings of the National Academy of Sciences of the United States of America, 116 (2019), pp. 9275--9284, DOI 10.1073/pnas.1820487116 .

  • A. Bacho, E. Emmrich, A. Mielke, An existence result and evolutionary Gamma-convergence for perturbed gradient systems, Journal of Evolution Equations, 19 (2019), pp. 479--522, DOI 10.1007/s00028-019-00484-x .
    Abstract
    We consider the initial-value problem for the perturbed gradient flows, where a differential inclusion is formulated in terms of a subdifferential of an energy functional, a subdifferential of a dissipation potential and a more general perturbation, which is assumed to be continuous and to satisfy a suitable growth condition. Under additional assumptions on the dissipation potential and the energy functional, existence of strong solutions is shown by proving convergence of a semi-implicit discretization scheme with a variational approximation technique.

  • P. Colli, G. Gilardi, J. Sprekels, A distributed control problem for a fractional tumor growth model, Mathematics - Open Access Journal, 7 (2019), pp. 792/1--792/32, DOI 10.3390/math7090792 .
    Abstract
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three selfadjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn--Hilliard type phase field system modeling tumor growth that goes back to Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24.) The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in the recent work Adv. Math. Sci. Appl. 28 (2019), 343--375 by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type.

  • P. Colli, G. Gilardi, J. Sprekels, Deep quench approximation and optimal control of general Cahn--Hilliard systems with fractional operators and double obstacle potentials, Discrete and Continuous Dynamical Systems -- Series S, 14 (2021), pp. 243--271 (published online on 21.12.2019), DOI 10.3934/dcdss.2020213 .
    Abstract
    In the recent paper ”Well-posedness and regularity for a generalized fractional Cahn--Hilliard system”, the same authors derived general well-posedness and regularity results for a rather general system of evolutionary operator equations having the structure of a Cahn--Hilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the Cahn--Hilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper ”Optimal distributed control of a generalized fractional Cahn--Hilliard system” (Appl. Math. Optim. (2018), https://doi.org/10.1007/s00245-018-9540-7) by the same authors, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived, where more restrictive conditions on the operators A and B had to be assumed in order to be able to show differentiability properties for the associated control-to-state operator. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called ”deep quench” method. This technique, in which the nondifferentiable double obstacle nonlinearity is approximated by differentiable logarithmic nonlinearities, was first developed by P. Colli, M.H. Farshbaf-Shaker and J. Sprekels in the paper ”A deep quench approach to the optimal control of an Allen--Cahn equation with dynamic boundary conditions and double obstacles” (Appl. Math. Optim. 71 (2015), pp. 1-24) and has proved to be a powerful tool in a number of optimal control problems with double obstacle potentials in the framework of systems of Cahn--Hilliard type. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.

  • P. Colli, G. Gilardi, J. Sprekels, Recent results on well-posedness and optimal control for a class of generalized fractional Cahn--Hilliard systems, Control and Cybernetics, 48 (2019), pp. 153--197.

  • P. Colli, G. Gilardi, J. Sprekels, Well-posedness and regularity for a fractional tumor growth model, Advances in Mathematical Sciences and Applications, 28 (2019), pp. 343--375.
    Abstract
    2613

  • P. Colli, G. Gilardi, J. Sprekels, Well-posedness and regularity for a generalized fractional Cahn--Hilliard system, Rendiconti Lincei -- Matematica e Applicazioni, 30 (2019), pp. 437--478.
    Abstract
    In this paper, we investigate a rather general system of two operator equations that has the structure of a viscous or nonviscous Cahn--Hilliard system in which nonlinearities of double-well type occur. Standard cases like regular or logarithmic potentials, as well as non-differentiable potentials involving indicator functions, are admitted. The operators appearing in the system equations are fractional versions of general linear operators A and B, where the latter are densely defined, unbounded, self-adjoint and monotone in a Hilbert space of functions defined in a smooth domain and have compact resolvents. In this connection, we remark the fact that our definition of the fractional power of operators uses the approach via spectral theory. Typical cases are given by standard second-order elliptic differential operators (e.g., the Laplacian) with zero Dirichlet or Neumann boundary conditions, but also other cases like fourth-order systems or systems involving the Stokes operator are covered by the theory. We derive in this paper general well-posedness and regularity results that extend corresponding results which are known for either the non-fractional Laplacian with zero Neumann boundary condition or the fractional Laplacian with zero Dirichlet condition. These results are entirely new if at least one of the operators A and B differs from the Laplacian. It turns out that the first eigenvalue λ1 of A plays an important und not entirely obvious role: if λ1 is positive, then the operators A and B may be completely unrelated; if, however, λ1 equals zero, then it must be simple and the corresponding one-dimensional eigenspace has to consist of the constant functions and to be a subset of the domain of definition of a certain fractional power of B. We are able to show general existence, uniqueness, and regularity results for both these cases, as well as for both the viscous and the nonviscous system.

  • P. Colli, A. Signori, J. Sprekels, Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 83 (2021), pp. 2017--2049 (published online on 21.10.2019), and 2021 Correction to: Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials (https://doi.org/10.1007/s00245-021-09771-x), DOI 10.1007/s00245-019-09618-6 .
    Abstract
    A distributed optimal control problem for an extended model of phase field type for tumor growth is addressed. In this model, the chemotaxis effects are also taken into account. The control is realized by two control variables that design the dispensation of some drugs to the patient. The cost functional is of tracking type, whereas the potential setting has been kept quite general in order to allow regular and singular potentials to be considered. In this direction, some relaxation terms have been introduced in the system. We show the well-posedness of the state system, the Fréchet differentiability of the control-to-state operator in a suitable functional analytic framework, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a variational inequality involving the adjoint variables.

  • P. Dondl, Th. Frenzel, A. Mielke, A gradient system with a wiggly energy and relaxed EDP-convergence, ESAIM. Control, Optimisation and Calculus of Variations, 25 (2019), pp. 68/1--68/45, DOI 10.1051/cocv/2018058 .
    Abstract
    If gradient systems depend on a microstructure, we want to derive a macroscopic gradient structure describing the effective behavior of the microscopic system. We introduce a notion of evolutionary Gamma-convergence that relates the microscopic energy and the microscopic dissipation potential with their macroscopic limits via Gamma-convergence. We call this notion relaxed EDP-convergence since the special structure of the dissipation functional may not be preserved under Gamma-convergence. However, by investigating the kinetic relation we derive the macroscopic dissipation potential.

  • E. Emmrich, R. Lasarzik, Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations, IMA Journal of Applied Mathematics, 84 (2019), pp. 1143--1176, DOI 10.1093/imamat/hxz030 .
    Abstract
    A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A liquid crystals under flow is studied. In comparison to previously considered models, this particular model takes into account possible undulations of the layers away from equilibrium, which has been observed in experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin approximation with eigenfunctions of the associated linear differential operators in the three-dimensional case.

  • S.P. Frigeri, C.G. Gal, M. Grasselli, J. Sprekels, Strong solutions to nonlocal 2D Cahn--Hilliard--Navier--Stokes systems with nonconstant viscosity, degenerate mobility and singular potential, Nonlinearity, 32 (2019), pp. 678--727, DOI 10.1088/1361-6544/aaedd0 .
    Abstract
    We consider a nonlinear system which consists of the incompressible Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface model which describes the motion of an incompressible isothermal mixture of two (partially) immiscible fluids having the same density. We suppose that the viscosity depends smoothly on the order parameter as well as the mobility. Moreover, we assume that the mobility is degenerate at the pure phases and that the potential is singular (e.g. of logarithmic type). This system is endowed with no-slip boundary condition for the (average) velocity and homogeneous Neumann boundary condition for the chemical potential. Thus the total mass is conserved. In the two-dimensional case, this problem was already analyzed in some joint papers of the first three authors. However, in the present general case, only the existence of a global weak solution, the (conditional) weak-strong uniqueness and the existence of the global attractor were proven. Here we are able to establish the existence of a (unique) strong solution through an approximation procedure based on time discretization. As a consequence, we can prove suitable uniform estimates which allow us to show some smoothness of the global attractor. Finally, we discuss the existence of strong solutions for the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three dimensional case as well.

  • G. Gilardi, J. Sprekels, Asymptotic limits and optimal control for the Cahn--Hilliard system with convection and dynamic boundary conditions, Nonlinear Analysis. An International Mathematical Journal, 178 (2019), pp. 1--31, DOI 10.1016/j.na.2018.07.007 .
    Abstract
    In this paper, we study initial-boundary value problems for the Cahn--Hilliard system with convection and nonconvex potential, where dynamic boundary conditions are assumed for both the associated order parameter and the corresponding chemical potential. While recent works addressed the case of viscous Cahn--Hilliard systems, the `pure' nonviscous case is investigated here. In its first part, the paper deals with the asymptotic behavior of the solutions as time approaches infinity. It is shown that the $omega$-limit of any trajectory can be characterized in terms of stationary solutions, provided the initial data are sufficiently smooth. The second part of the paper deals with the optimal control of the system by the fluid velocity. Results concerning existence and first-order necessary optimality conditions are proved. Here, we have to restrict ourselves to the case of everywhere defined smooth potentials. In both parts of the paper, we start from corresponding known results for the viscous case, derive sufficiently strong estimates that are uniform with respect to the (positive) viscosity parameter, and then let the viscosity tend to zero to establish the sought results for the nonviscous case.

  • V. Laschos, A. Mielke, Geometric properties of cones with applications on the Hellinger--Kantorovich space, and a new distance on the space of probability measures, Journal of Functional Analysis, 276 (2019), pp. 3529--3576, DOI 10.1016/j.jfa.2018.12.013 .
    Abstract
    By studying general geometric properties of cone spaces, we prove the existence of a distance on the space of Probability measures that turns the Hellinger--Kantorovich space into a cone space over the space of probabilities measures. Here we exploit a natural two-parameter scaling property of the Hellinger-Kantorovich distance. For the new space, we obtain a full characterization of the geodesics. We also provide new geometric properties for the original space, including a two-parameter rescaling and reparametrization of the geodesics, local-angle condition and some partial K-semiconcavity of the squared distance, that it will be used in a future paper to prove existence of gradient flows.

  • J. Sprekels, H. Wu, Optimal distributed control of a Cahn--Hilliard--Darcy system with mass sources, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 83 (2021), pp. 489--530 (published online on 24.01.2019), DOI 10.1007/s00245-019-09555-4 .
    Abstract
    In this paper, we study an optimal control problem for a two-dimensional Cahn--Hilliard--Darcy system with mass sources that arises in the modeling of tumor growth. The aim is to monitor the tumor fraction in a finite time interval in such a way that both the tumor fraction, measured in terms of a tracking type cost functional, is kept under control and minimal harm is inflicted to the patient by administering the control, which could either be a drug or nutrition. We first prove that the optimal control problem admits a solution. Then we show that the control-to-state operator is Fréchet differentiable between suitable Banach spaces and derive the first-order necessary optimality conditions in terms of the adjoint variables and the usual variational inequality.

  • A.F.M. TER Elst, J. Rehberg, Consistent operator semigroups and their interpolation, Journal of Operator Theory, 82 (2019), pp. 3--21, DOI 10.7900/jot.2017nov15.2233 .
    Abstract
    Under a mild regularity condition we prove that the generator of the interpolation of two C0-semigroups is the interpolation of the two generators.

  • R. Lasarzik, Approximation and optimal control of dissipative solutions to the Ericksen--Leslie system, Numerical Functional Analysis and Optimization. An International Journal, 40 (2019), pp. 1721--1767, DOI 10.1080/01630563.2019.1632895 .
    Abstract
    We analyze the Ericksen--Leslie system equipped with the Oseen--Frank energy in three space dimensions. Recently, the author introduced the concept of dissipative solutions. These solutions show several advantages in comparison to the earlier introduced measure-valued solutions. In this article, we argue that dissipative solutions can be numerically approximated by a relative simple scheme, which fulfills the norm-restriction on the director in every step. We introduce a semi-discrete scheme and derive an approximated version of the relative-energy inequality for solutions of this scheme. Passing to the limit in the semi-discretization, we attain dissipative solutions. Additionally, we introduce an optimal control scheme, show the existence of an optimal control and a possible approximation strategy. We prove that the cost functional is lower semi-continuous with respect to the convergence of this approximation and argue that an optimal control is attained in the case that there exists a solution admitting additional regularity.

  • R. Lasarzik, Measure-valued solutions to the Ericksen--Leslie model equipped with the Oseen--Frank energy, Nonlinear Analysis. An International Mathematical Journal, 179 (2019), pp. 146--183, DOI 10.1016/j.na.2018.08.013 .
    Abstract
    In this article, we prove the existence of measure-valued solutions to the Ericksen-Leslie system equipped with the Oseen--Frank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation, we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.

  • R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen--Leslie model equipped with the Oseen--Frank free energy, Journal of Mathematical Analysis and Applications, 470 (2019), pp. 36--90, DOI 10.1016/j.jmaa.2018.09.051 .
    Abstract
    We analyze the Ericksen-Leslie system equipped with the Oseen--Frank energy in three space dimensions. Recently, the author introduced the concept of measure-valued solutions to this system and showed the global existence of these generalized solutions. In this paper, we show that suitable measure-valued solutions, which fulfill an associated energy inequality, enjoy the weak-strong uniqueness property, i.e. the measure-valued solution agrees with a strong solution if the latter exists. The weak-strong uniqueness is shown by a relative energy inequality for the associated nonconvex energy functional.

  • M. Liero, S. Melchionna, The weighted energy-dissipation principle and evolutionary Gamma-convergence for doubly nonlinear problems, ESAIM. Control, Optimisation and Calculus of Variations, 25 (2019), pp. 36/1--36/38, DOI 10.1051/cocv/2018023 .
    Abstract
    We consider a family of doubly nonlinear evolution equations that is given by families of convex dissipation potentials, nonconvex energy functionals, and external forces parametrized by a small parameter ε. For each of these problems, we introduce the so-called weighted energy-dissipation (WED) functional, whose minimizer correspond to solutions of an elliptic-in-time regularization of the target problems with regularization parameter δ. We investigate the relation between the Γ-convergence of the WED functionals and evolutionary Γ-convergence of the associated systems. More precisely, we deal with the limits δ→0, ε→0, as well as δ+ ε→0 either in the sense of Γ-convergence of functionals or in the sense of evolutionary Γ-convergence of functional-driven evolution problems, or both. Additionally, we provide some quantitative estimates on the rate of convergence for the limit ε→0, in the case of quadratic dissipation potentials and uniformly λ-convex energy functionals. Finally, we discuss a homogenization problem as an example of application.

  • A. Alphonse, Ch.M. Elliott, J. Terra, A coupled ligand-receptor bulk-surface system on a moving domain: Well posedness, regularity and convergence to equilibrium, SIAM Journal on Mathematical Analysis, 50 (2018), pp. 1544--1592, DOI 10.1137/16M110808X .
    Abstract
    We prove existence, uniqueness, and regularity for a reaction-diffusion system of coupled bulk-surface equations on a moving domain modelling receptor-ligand dynamics in cells. The nonlinear coupling between the three unknowns is through the Robin boundary condition for the bulk quantity and the right hand sides of the two surface equations. Our results are new even in the non-moving setting, and in this case we also show exponential convergence to a steady state. The primary complications in the analysis are indeed the nonlinear coupling and the Robin boundary condition. For the well posedness and essential boundedness of solutions we use several De Giorgi-type arguments, and we also develop some useful estimates to allow us to apply a Steklov averaging technique for time-dependent operators to prove that solutions are strong. Some of these auxiliary results presented in this paper are of independent interest by themselves.

  • M. Heida, M. Röger, Large deviation principle for a stochastic Allen--Cahn equation, Journal of Theoretical Probability, 31 (2018), pp. 364--401, DOI 10.1007/s10959-016-0711-7 .
    Abstract
    The Allen-Cahn equation is a prototype model for phase separation processes, a fundamental example of a nonlinear spatial dynamic and an important approximation of a geometric evolution equation by a reaction-diffusion equation. Stochastic perturbations, especially in the case of additive noise, to the Allen-Cahn equation have attracted considerable attention. We consider here an alternative random perturbation determined by a Brownian flow of spatial diffeomorphism that was introduced by Röger and Weber [Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013)]. We first provide a large deviation principle for stochastic flows in spaces of functions that are Hölder-continuous in time, which extends results by Budhiraja, Dupuis and Maroulas [Ann. Probab. 36 (2008)]. From this result and a continuity argument we deduce a large deviation principle for the Allen-Cahn equation perturbed by a Brownian flow in the limit of small noise. Finally, we present two asymptotic reductions of the large deviation functional.

  • M. Heida, On convergences of the squareroot approximation scheme to the Fokker--Planck operator, Mathematical Models & Methods in Applied Sciences, 28 (2018), pp. 2599--2635, DOI 10.1142/S0218202518500562 .
    Abstract
    We study the qualitative convergence properties of a finite volume scheme that recently was proposed by Lie, Fackeldey and Weber [SIAM Journal on Matrix Analysis and Applications 2013 (34/2)] in the context of conformation dynamics. The scheme was derived from physical principles and is called the squareroot approximation (SQRA) scheme. We show that solutions to the SQRA equation converge to solutions of the Fokker-Planck equation using a discrete notion of G-convergence. Hence the squareroot approximation turns out to be a usefull approximation scheme to the Fokker-Planck equation in high dimensional spaces. As an example, in the special case of stationary Voronoi tessellations we use stochastic two-scale convergence to prove that this setting satisfies the G-convergence property. In particular, the class of tessellations for which the G-convergence result holds is not trivial.

  • E. Meca Álvarez, A. Münch, B. Wagner, Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 97 (2018), pp. 012801/1--012801/12, DOI 10.1103/PhysRevE.97.012801 .
    Abstract
    We study numerically and analytically the instabilities associated with phase separation in a solid layer on which an external material flux is imposed. The first instability is localized within a boundary layer at the exposed free surface by a process akin to spinodal decomposition. In the limiting static case, when there is no material flux, the coherent spinodal decomposition is recovered. In the present problem stability analysis of the time-dependent and non-uniform base states as well as numerical simulations of the full governing equations are used to establish the dependence of the wavelength and onset of the instability on parameter settings and its transient nature as the patterns eventually coarsen into a flat moving front. The second instability is related to the Mullins-Sekerka instability in the presence of elasticity and arises at the moving front between the two phases when the flux is reversed. Stability analyses of the full model and the corresponding sharp-interface model are carried out and compared. Our results demonstrate how interface and bulk instabilities can be analysed within the same framework which allows to identify and distinguish each of them clearly. The relevance for a detailed understanding of both instabilities and their interconnections in a realistic setting are demonstrated for a system of equations modelling the lithiation/delithiation processes within the context of Lithium ion batteries.

  • A. Ceretani, C.N. Rautenberg, The Boussinesq system with mixed non-smooth boundary conditions and ``do-nothing'' boundary flow, Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 70 (2019), pp. 14/1--14/24 (published online on 07.12.2018), DOI 10.1007/s00033-018-1058-y .
    Abstract
    A stationary Boussinesq system for an incompressible viscous fluid in a bounded domain with a nontrivial condition at an open boundary is studied. We consider a novel non-smooth boundary condition associated to the heat transfer on the open boundary that involves the temperature at the boundary, the velocity of the fluid, and the outside temperature. We show that this condition is compatible with two approaches at dealing with the do-nothing boundary condition for the fluid: 1) the directional do-nothing condition and 2) the do-nothing condition together with an integral bound for the backflow. Well-posedness of variational formulations is proved for each problem.

  • K. Disser, M. Liero, J. Zinsl, On the evolutionary Gamma-convergence of gradient systems modeling slow and fast chemical reactions, Nonlinearity, 31 (2018), pp. 3689--3706, DOI 10.1088/1361-6544/aac353 .
    Abstract
    We investigate the limit passage for a system of ordinary differential equations modeling slow and fast chemical reaction of mass-action type, where the rates of fast reactions tend to infinity. We give an elementary proof of convergence to a reduced dynamical system acting in the slow reaction directions on the manifold of fast reaction equilibria. Then we study the entropic gradient structure of these systems and prove an E-convergence result via Γ-convergence of the primary and dual dissipation potentials, which shows that this structure carries over to the fast reaction limit. We recover the limit dynamics as a gradient flow of the entropy with respect to a pseudo-metric.

  • M. Becker, Th. Frenzel, Th. Niedermeyer, S. Reichelt, A. Mielke, M. Bär, Local control of globally competing patterns in coupled Swift--Hohenberg equations, Chaos. An Interdisciplinary Journal of Nonlinear Science, 28 (2018), pp. 043121/1--043121/11, DOI 10.1063/1.5018139 .
    Abstract
    We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift--Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left and right traveling waves. In particular, these complex Ginzburg--Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other; and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.

  • D. Belomestny, J.G.M. Schoenmakers, Projected particle methods for solving McKean--Vlasov equations, SIAM Journal on Numerical Analysis, 56 (2018), pp. 3169--3195, DOI 10.1137/17M1111024 .
    Abstract
    We propose a novel projection-based particle method for solving McKean--Vlasov stochastic differential equations. Our approach is based on a projection-type estimation of the marginal density of the solution in each time step. The projection-based particle method leads in many situations to a significant reduction of numerical complexity compared to the widely used kernel density estimation algorithms. We derive strong convergence rates and rates of density estimation. The convergence analysis, particularly in the case of linearly growing coefficients, turns out to be rather challenging and requires some new type of averaging technique. This case is exemplified by explicit solutions to a class of McKean--Vlasov equations with affine drift. The performance of the proposed algorithm is illustrated by several numerical examples.

  • P. Colli, G. Gilardi, J. Sprekels, On a Cahn--Hilliard system with convection and dynamic boundary conditions, Annali di Matematica Pura ed Applicata. Serie Quarta. Fondazione Annali di Matematica Pura ed Applicata, c/o Dipartimento di Matematica ``U. Dini'', Firenze; Springer-Verlag, Heidelberg. English, French, German, Italian, English abstracts., 197 (2018), pp. 1445--1475, DOI 10.1007/s10231-018-0732-1 .
    Abstract
    This paper deals with an initial and boundary value problem for a system coupling equation and boundary condition both of Cahn--Hilliard type; an additional convective term with a forced velocity field, which could act as a control on the system, is also present in the equation. Either regular or singular potentials are admitted in the bulk and on the boundary. Both the viscous and pure Cahn--Hilliard cases are investigated, and a number of results is proven about existence of solutions, uniqueness, regularity, continuous dependence, uniform boundedness of solutions, strict separation property. A complete approximation of the problem, based on the regularization of maximal monotone graphs and the use of a Faedo--Galerkin scheme, is introduced and rigorously discussed.

  • P. Colli, G. Gilardi, J. Sprekels, On the longtime behavior of a viscous Cahn--Hilliard system with convection and dynamic boundary conditions, Journal of Elliptic and Parabolic Equations, 4 (2018), pp. 327--347, DOI 10.1007/s41808-018-0021-6 .
    Abstract
    In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective Cahn--Hilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were are assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energies functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of Cahn--Hilliard type, general well-posedness results have been established in piera recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the ω-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the omegalimit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.

  • P. Colli, G. Gilardi, J. Sprekels, Optimal distributed control of a generalized fractional Cahn--Hilliard system, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 82 (2020), pp. 551--589 (published online on 15.11.2018), DOI 10.1007/s00245-018-9540-7 .
    Abstract
    In the recent paper “Well-posedness and regularity for a generalized fractional Cahn--Hilliard system” by the same authors, general well-posedness results have been established for a class of evolutionary systems of two equations having the structure of a viscous Cahn--Hilliard system, in which nonlinearities of double-well type occur. The operators appearing in the system equations are fractional versions in the spectral sense of general linear operators A,B, having compact resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. In this work we complement the results given in quoted paper by studying a distributed control problem for this evolutionary system. The main difficulty in the analysis is to establish a rigorous Fréchet differentiability result for the associated control-to-state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes it necessary to postulate an additional global boundedness assumption. One typical situation, in which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four. Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assumption, we establish existence and first-order necessary optimality conditions for the optimal control problem in terms of a variational inequality and the associated adjoint state system.

  • E. Emmrich, S.H.L. Klapp, R. Lasarzik, Nonstationary models for liquid crystals: A fresh mathematical perspective, Journal of Non-Newtonian Fluid Mechanics, 259 (2018), pp. 32--47, DOI 10.1016/j.jnnfm.2018.05.003 .

  • E. Emmrich, R. Lasarzik, Existence of weak solutions to the Ericksen--Leslie model for a general class of free energies, Mathematical Methods in the Applied Sciences, 41 (2018), pp. 6492--6518.

  • E. Emmrich, R. Lasarzik, Weak-strong uniqueness for the general Ericksen--Leslie system in three dimensions, Discrete and Continuous Dynamical Systems, 38 (2018), pp. 4617--4635, DOI 10.3934/dcds.2018202 .

  • P. Gurevich, S. Reichelt, Pulses in FitzHugh--Nagumo systems with rapidly oscillating coefficients, Multiscale Modeling & Simulation. A SIAM Interdisciplinary Journal, 16 (2018), pp. 833--856.
    Abstract
    This paper is devoted to pulse solutions in FitzHugh-Nagumo systems that are coupled parabolic equations with rapidly periodically oscillating coefficients. In the limit of vanishing periods, there arises a two-scale FitzHugh-Nagumo system, which qualitatively and quantitatively captures the dynamics of the original system. We prove existence and stability of pulses in the limit system and show their proximity on any finite time interval to pulse-like solutions of the original system.

  • J. Haskovec, S. Hittmeir, P. Markowich, A. Mielke, Decay to equilibrium for energy-reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 50 (2018), pp. 1037--1075, DOI 10.1137/16M1062065 .
    Abstract
    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitely calculable constants and establish the convergence to thermodynamical equilibrium, at first in entropy and further in L1 using Cziszar-Kullback-Pinsker type inequalities.

  • G. Lazzaroni, R. Rossi, M. Thomas, R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia, Journal of Dynamics and Differential Equations, 30 (2018), pp. 1311--1364, DOI 10.1007/s10884-018-9666-y .
    Abstract
    We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio-Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.

  • A. Muntean, S. Reichelt, Corrector estimates for a thermo-diffusion model with weak thermal coupling, Multiscale Modeling & Simulation. A SIAM Interdisciplinary Journal, 16 (2018), pp. 807--832, DOI 10.1137/16M109538X .
    Abstract
    The present work deals with the derivation of corrector estimates for the two-scale homogenization of a thermo-diffusion model with weak thermal coupling posed in a heterogeneous medium endowed with periodically arranged high-contrast microstructures. The terminology “weak thermal coupling” refers here to the variable scaling in terms of the small homogenization parameter ε of the heat conduction-diffusion interaction terms, while the “high-contrast” is thought particularly in terms of the heat conduction properties of the composite material. As main target, we justify the first-order terms of the multiscale asymptotic expansions in the presence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like effects. The contrasting heat conduction combined with cross coupling lead to the main mathematical difficulty in the system. Our approach relies on the method of periodic unfolding combined with ε-independent estimates for the thermal and concentration fields and for their coupled fluxes

  • M. Thomas, C. Bilgen, K. Weinberg, Phase-field fracture at finite strains based on modified invariants: A note on its analysis and simulations, GAMM-Mitteilungen, 40 (2018), pp. 207--237, DOI 10.1002/gamm.201730004 .
    Abstract
    Phase-field models have already been proven to predict complex fracture patterns in two and three dimensions for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. We here present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split and the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions %Second the mathematical background of the approach is examined and and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions are carried out in the range of validity of the analytical results.

  • R. Lasarzik, Dissipative solution to the Ericksen--Leslie system equipped with the Oseen--Frank energy, Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 70 (2019), pp. 39 (published online on 29.11.2018, urlhttps://doi.org/10.1007/s00033-018-1053-3, DOI 10.1007/s00033-018-1053-3 .
    Abstract
    We analyze the Ericksen-Leslie system equipped with the Oseen-Frank energy in three space dimensions. The new concept of dissipative solutions is introduced. Recently, the author introduced the concept of measure-valued solutions to the considered system and showed global existence as well as weak-strong uniqueness of these generalized solutions. In this paper, we show that the expectation of the measure valued solution is a dissipative solution. The concept of a dissipative solution itself relies on an inequality instead of an equality, but is described by functions instead of parametrized measures. These solutions exist globally and fulfill the weak-strong uniqueness property. Additionally, we generalize the relative energy inequality to solutions fulfilling different nonhomogeneous Dirichlet boundary conditions and incorporate the influence of a temporarily constant electromagnetic field. Relying on this generalized energy inequality, we investigate the long-time behavior and show that all solutions converge for the large time limit to a certain steady state.

  • M. Liero, S. Reichelt, Homogenization of Cahn--Hilliard-type equations via evolutionary Gamma-convergence, NoDEA. Nonlinear Differential Equations and Applications, 25 (2018), pp. 6/1--6/31, DOI 10.1007/s00030-018-0495-9 .
    Abstract
    In this paper we discuss two approaches to evolutionary Γ-convergence of gradient systems in Hilbert spaces. The formulation of the gradient system is based on two functionals, namely the energy functional and the dissipation potential, which allows us to employ Γ-convergence methods. In the first approach we consider families of uniformly convex energy functionals such that the limit passage of the time-dependent problems can be based on the theory of evolutionary variational inequalities as developed by Daneri and Savaré 2010. The second approach uses the equivalent formulation of the gradient system via the energy-dissipation principle and follows the ideas of Sandier and Serfaty 2004. We apply both approaches to rigorously derive homogenization limits for Cahn-Hilliard-type equations. Using the method of weak and strong two-scale convergence via periodic unfolding, we show that the energy and dissipation functionals Γ-converge. In conclusion, we will give specific examples for the applicability of each of the two approaches.

  • S. Bergmann, D.A. Barragan-Yani, E. Flegel, K. Albe, B. Wagner, Anisotropic solid-liquid interface kinetics in silicon: An atomistically informed phase-field model, Modelling and Simulation in Materials Science and Engineering, 25 (2017), pp. 065015/1--065015/20, DOI 10.1088/1361-651X/aa7862 .
    Abstract
    We present an atomistically informed parametrization of a phase-field model for describing the anisotropic mobility of liquid-solid interfaces in silicon. The model is derived from a consistent set of atomistic data and thus allows to directly link molecular dynamics and phase field simulations. Expressions for the free energy density, the interfacial energy and the temperature and orientation dependent interface mobility are systematically fitted to data from molecular dynamics simulations based on the Stillinger-Weber interatomic potential. The temperature-dependent interface velocity follows a Vogel-Fulcher type behavior and allows to properly account for the dynamics in the undercooled melt.

  • K. Disser, A.F.M. TER Elst, J. Rehberg, On maximal parabolic regularity for non-autonomous parabolic operators, Journal of Differential Equations, 262 (2017), pp. 2039--2072.
    Abstract
    We consider linear inhomogeneous non-autonomous parabolic problems associated to sesquilinear forms, with discontinuous dependence of time. We show that for these problems, the property of maximal parabolic regularity can be extrapolated to time integrability exponents r ≠ 2. This allows us to prove maximal parabolic Lr-regularity for discontinuous non-autonomous second-order divergence form operators in very general geometric settings and to prove existence results for related quasilinear equations.

  • K. Disser, J. Rehberg, A.F.M. TER Elst, Hölder estimates for parabolic operators on domains with rough boundary, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, XVII (2017), pp. 65--79.
    Abstract
    In this paper we investigate linear parabolic, second-order boundary value problems with mixed boundary conditions on rough domains. Assuming only boundedness/ellipticity on the coefficient function and very mild conditions on the geometry of the domain -- including a very weak compatibility condition between the Dirichlet boundary part and its complement -- we prove Hölder continuity of the solution in space and time.

  • S. Reichelt, Corrector estimates for a class of imperfect transmission problems, Asymptotic Analysis, 105 (2017), pp. 3--26, DOI 10.3233/ASY-171432 .
    Abstract
    Based on previous homogenization results for imperfect transmission problems in two-component domains with periodic microstructure, we derive quantitative estimates for the difference between the microscopic and macroscopic solution. This difference is of order ερ, where ε > 0 describes the periodicity of the microstructure and ρ ∈ (0 , ½] depends on the transmission condition at the interface between the two components. The corrector estimates are proved without assuming additional regularity for the local correctors using the periodic unfolding method.

  • M. Heida, A. Mielke, Averaging of time-periodic dissipation potentials in rate-independent processes, Discrete and Continuous Dynamical Systems -- Series S, 10 (2017), pp. 1303--1327.
    Abstract
    We study the existence and well-posedness of rate-independent systems (or hysteresis operators) with a dissipation potential that oscillates in time with period ε. In particular, for the case of quadratic energies in a Hilbert space, we study the averaging limit ε→0 and show that the effctive dissipation potential is given by the minimum of all friction thresholds in one period, more precisely as the intersection of all the characteristic domains. We show that the rates of the process do not converge weakly, hence our analysis uses the notion of energetic solutions and relies on a detailed estimates to obtain a suitable equi-continuity of the solutions in the limit ε→0.

  • M. Heida, Stochastic homogenization of rate-independent systems, Continuum Mechanics and Thermodynamics, 29 (2017), pp. 853--894, DOI 10.1007/s00161-017-0564-z .
    Abstract
    We study the stochastic and periodic homogenization 1-homogeneous convex functionals. We proof some convergence results with respect to stochastic two-scale convergence, which are related to classical Gamma-convergence results. The main result is a general liminf-estimate for a sequence of 1-homogeneous functionals and a two-scale stability result for sequences of convex sets. We apply our results to the homogenization of rateindependent systems with 1-homogeneous dissipation potentials and quadratic energies. In these applications, both the energy and the dissipation potential have an underlying stochastic microscopic structure. We study the particular homogenization problems of Prandlt-Reuss plasticity, Coulomb friction on a macroscopic surface and Coulomb friction on microscopic fissure.

  • M. Liero, A. Mielke, M.A. Peletier, D.R.M. Renger, On microscopic origins of generalized gradient structures, Discrete and Continuous Dynamical Systems -- Series S, 10 (2017), pp. 1--35, DOI 10.3934/dcdss.2017001 .
    Abstract
    Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, Poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary Gamma-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.

  • CH. Dörlemann, M. Heida, B. Schweizer, Transmission conditions for the Helmholtz equation in perforated domains, Vietnam Journal of Mathematics, 45 (2017), pp. 241--253, DOI 10.1007/s10013-016-0222-y .

  • R. Rossi, M. Thomas, Coupling rate-independent and rate-dependent processes: Existence results, SIAM Journal on Mathematical Analysis, 49 (2017), pp. 1419--1494.
    Abstract
    We address the analysis of an abstract system coupling a rate-independet process with a second order (in time) nonlinear evolution equation. We propose suitable weak solution concepts and obtain existence results by passing to the limit in carefully devised time-discretization schemes. Our arguments combine techniques from the theory of gradient systems with the toolbox for rate-independent evolution, thus reflecting the mixed character of the problem. Finally, we discuss applications to a class of rate-independent processes in visco-elastic solids with inertia, and to a recently proposed model for damage with plasticity.

  • R. Rossi, M. Thomas, From adhesive to brittle delamination in visco-elastodynamics, Mathematical Models & Methods in Applied Sciences, 27 (2017), pp. 1489--1546, DOI 10.1142/S0218202517500257 .
    Abstract
    In this paper we analyze a system for brittle delamination between two visco-elastic bodies, also subject to inertia, which can be interpreted as a model for dynamic fracture. The rate-independent flow rule for the delamination parameter is coupled with the momentum balance for the displacement, including inertia. This model features a nonsmooth constraint ensuring the continuity of the displacements outside the crack set, which is marked by the support of the delamination parameter. A weak solvability concept, generalizing the notion of energetic solution for rate-independent systems to the present mixed rate-dependent/rate-independent frame, is proposed. Via refined variational convergence techniques, existence of solutions is proved by passing to the limit in approximating systems which regularize the nonsmooth constraint by conditions for adhesive contact. The presence of the inertial term requires the design of suitable recovery spaces small enough to provide compactness but large enough to recover the information on the crack set in the limit.

  • P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), pp. 2518--2546.
    Abstract
    In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by Hawkins--Daruud et al. in citeHZO. The model consists of a Cahn-Hilliard equation for the tumor cell fraction $vp$ coupled to a reaction-diffusion equation for a function $s$ representing the nutrient-rich extracellular water volume fraction. The distributed control $u$ monitors as a right-hand side the equation for $s$ and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

  • P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Asymptotic analyses and error estimates for a Cahn--Hilliard type phase field system modelling tumor growth, Discrete and Continuous Dynamical Systems, 10 (2017), pp. 37--54.
    Abstract
    This paper is concerned with a phase field system of Cahn--Hilliard type that is related to a tumor growth model and consists of three equations in gianni terms of the variables order parameter, chemical potential and nutrient concentration. This system has been investigated in the recent papers citeCGH and citeCGRS gianni from the viewpoint of well-posedness, long time bhv and asymptotic convergence as two positive viscosity coefficients tend to zero at the same time. Here, we continue the analysis performed in citeCGRS by showing two independent sets of results as just one of the coefficents tends to zero, the other remaining fixed. We prove convergence results, uniqueness of solutions to the two resulting limit problems, and suitable error estimates

  • P. Colli, G. Gilardi, J. Sprekels, Global existence for a nonstandard viscous Cahn--Hilliard system with dynamic boundary condition, SIAM Journal on Mathematical Analysis, 49 (2017), pp. 1732--1760, DOI 10.1137/16M1087539 .
    Abstract
    In this paper, we study a model for phase segregation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105-118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter. This boundary condition models an additional nonconserving phase transition occurring on the surface of the domain. Different well-posedness results are shown, depending on the smoothness properties of the involved bulk and surface free energies.

  • CH. Heinemann, Ch. Kraus, E. Rocca, R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Archive for Rational Mechanics and Analysis, 225 (2017), pp. 177--247.
    Abstract
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [C. Heinemann, C. Kraus: Existence results of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21 (2011), 321--359] and [C. Heinemann, C. Kraus: Existence results for diffuse interface models describing phase separation and damage. European J. Appl. Math. 24 (2013), 179--211]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in [E. Feireisl: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53 (2007), 461--490] in the framework of Fourier-Navier-Stokes systems and then recently employed in [E. Feireisl, H. Petzeltová, E. Rocca: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32 (2009), 1345--1369], [E. Rocca, R. Rossi: "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal., 47 (2015), 2519--2586] for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

  • P. Krejčí, E. Rocca, J. Sprekels, Unsaturated deformable porous media flow with thermal phase transition, Mathematical Models & Methods in Applied Sciences, 27 (2017), pp. 2675--2710, DOI 10.1142/S0218202517500555 .
    Abstract
    In the present paper, a continuum model is introduced for fluid flow in a deformable porous medium, where the fluid may undergo phase transitions. Typically, such problems arise in modeling liquid-solid phase transformations in groundwater flows. The system of equations is derived here from the conservation principles for mass, momentum, and energy and from the Clausius-Duhem inequality for entropy. It couples the evolution of the displacement in the matrix material, of the capillary pressure, of the absolute temperature, and of the phase fraction. Mathematical results are proved under the additional hypothesis that inertia effects and shear stresses can be neglected. For the resulting highly nonlinear system of two PDEs, one ODE and one ordinary differential inclusion with natural initial and boundary conditions, existence of global in time solutions is proved by means of cut-off techniques and suitable Moser-type estimates.

  • H. Meinlschmidt, Ch. Meyer, J. Rehberg, Optimal control of the thermistor problem in three spatial dimensions. Part 1: Existence of optimal solutions, SIAM Journal on Control and Optimization, 55 (2017), pp. 2876--2904, DOI 10.1137/16M1072644 .
    Abstract
    This paper is concerned with the state-constrained optimal control of the three-dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Local existence, uniqueness and continuity for the state system are derived by employing maximal parabolic regularity in the fundamental theorem of Prüss. Global solutions are addressed, which includes analysis of the linearized state system via maximal parabolic regularity, and existence of optimal controls is shown if the temperature gradient is under control. The adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem in form of a qualified optimality system. The theoretical findings are illustrated by numerical results.

  • H. Meinlschmidt, Ch. Meyer, J. Rehberg, Optimal control of the thermistor problem in three spatial dimensions. Part 2: Optimality conditions, SIAM Journal on Control and Optimization, 55 (2017), pp. 2368--2392, DOI 10.1137/16M1072656 .
    Abstract
    This paper is concerned with the state-constrained optimal control of the three-dimensional thermistor problem, a fully quasilinear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Local existence, uniqueness and continuity for the state system are derived by employing maximal parabolic regularity in the fundamental theorem of Prüss. Global solutions are addressed, which includes analysis of the linearized state system via maximal parabolic regularity, and existence of optimal controls is shown if the temperature gradient is under control. The adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem in form of a qualified optimality system. The theoretical findings are illustrated by numerical results.

  • A. Roggensack, Ch. Kraus, Existence of weak solutions for the Cahn--Hilliard reaction model including elastic effects and damage, Journal of Partial Differential Equations, 30 (2017), pp. 111-145, DOI 10.4208/jpde.v30.n2.2 .
    Abstract
    In this paper, we introduce and study analytically a vectorial Cahn-Hilliard reaction model coupled with rate-dependent damage processes. The recently proposed Cahn-Hilliard reaction model can e.g. be used to describe the behavior of electrodes of lithium-ion batteries as it includes both the intercalation reactions at the surfaces and the separation into different phases. The coupling with the damage process allows considering simultaneously the evolution of a damage field, a second important physical effect occurring during the charging or discharging of lithium-ion batteries. Mathematically, this is realized by a Cahn-Larché system with a non-linear Newton boundary condition for the chemical potential and a doubly non-linear differential inclusion for the damage evolution. We show that this system possesses an underlying generalized gradient structure which incorporates the non-linear Newton boundary condition. Using this gradient structure and techniques from the field of convex analysis we are able to prove constructively the existence of weak solutions of the coupled PDE system.

  • J. Sprekels, E. Valdinoci, A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation, SIAM Journal on Control and Optimization, 55 (2017), pp. 70--93.
    Abstract
    In this paper, we consider a rather general linear evolution equation of fractional type, namely a diffusion type problem in which the diffusion operator is the power of a positive definite operator having a positive and discrete spectrum. We prove existence, uniqueness and differentiability properties with respect to the fractional parameter. These results are then employed to derive existence as well as first-order necessary and second-order sufficient optimality conditions for a minimization problem, which is inspired by considerations in mathematical biology. In this problem, the fractional parameter $s$ serves as the “control parameter” that needs to be chosen in such a way as to minimize a given cost functional. This problem constitutes a new classof identification problems: while usually in identification problems the type of the differential operator is prescribed and one or several of its coefficient functions need to be identified, in the present case one has to determine the type of the differential operator itself. This problem exhibits the inherent analytical difficulty that with changing fractional parameter also the domain of definition, and thus the underlying function space, of the fractional operator changes.

  • A. Glitzky, M. Liero, Analysis of p(x)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 34 (2017), pp. 536--562.
    Abstract
    We study a stationary thermistor model describing the electrothermal behavior of organic semiconductor devices featuring non-Ohmic current-voltage laws and self-heating effects. The coupled system consists of the current-flow equation for the electrostatic potential and the heat equation with Joule heating term as source. The self-heating in the device is modeled by an Arrhenius-like temperature dependency of the electrical conductivity. Moreover, the non-Ohmic electrical behavior is modeled by a power law such that the electrical conductivity depends nonlinearly on the electric field. Notably, we allow for functional substructures with different power laws, which gives rise to a $p(x)$-Laplace-type problem with piecewise constant exponent. We prove the existence and boundedness of solutions in the two-dimensional case. The crucial point is to establish the higher integrability of the gradient of the electrostatic potential to tackle the Joule heating term. The proof of the improved regularity is based on Caccioppoli-type estimates, Poincaré inequalities, and a Gehring-type Lemma for the $p(x)$-Laplacian. Finally, Schauder's fixed-point theorem is used to show the existence of solutions.

  • M. Thomas, Ch. Zanini, Cohesive zone-type delamination in visco-elasticity, Discrete and Continuous Dynamical Systems -- Series S, 10 (2017), pp. 1487--1517, DOI 10.3934/dcdss.2017077 .
    Abstract
    We study a model for the rate-independent evolution of cohesive zone delamination in a visco-elastic solid, also exposed to dynamics effects. The main feature of this model, inspired by [Ortiz&Pandoli99Int.J.Numer.Meth.Eng.], is that the surface energy related to the crack opening depends on the history of the crack separation between the two sides of the crack path, and allows for different responses upon loading and unloading.

    Due to the presence of multivalued and unbounded operators featuring non-penetration and the `memory'-constraint in the strong formulation of the problem, we prove existence of a weaker notion of solution, known as semistable energetic solution, pioneered in [Roubicek09M2AS] and refined in [Rossi&Thomas15WIAS-Preprint2113].

  • N. Ahmed, T.Ch. Rebollo, V. John, S. Rubino, A review of variational multiscale methods for the simulation of turbulent incompressible flows, Archives of Computational Methods in Engineering. State of the Art Reviews, 24 (2017), pp. 115--164.
    Abstract
    Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier--Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

  • N. Ahmed, T.Ch. Rebollo, V. John, S. Rubino, Analysis of a full space-time discretization of the Navier--Stokes equations by a local projection stabilization method, IMA Journal of Numerical Analysis, 37 (2017), pp. 1437--1467, DOI 10.1093/imanum/drw048 .
    Abstract
    A finite element error analysis of a local projection stabilization (LPS) method for the time-dependent Navier--Stokes equations is presented. The focus is on the high-order term-by-term stabilization method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard LPS methods is replaced by an interpolation-stabilized structure. The main contribution is on proving, theoretically and numerically, the optimal convergence order of the arising fully discrete scheme. In addition, the asymptotic energy balance is obtained for slightly smooth flows. Numerical studies support the analytical results and illustrate the potential of the method for the simulation of turbulent flows. Smooth unsteady flows are simulated with optimal order of accuracy.

  • N. Ahmed, On the grad-div stabilization for the steady Oseen and Navier--Stokes equations, Calcolo. A Quarterly on Numerical Analysis and Theory of Computation, 54 (2017), pp. 471--501, DOI 10.1007/s10092-016-0194-z .
    Abstract
    This paper studies the parameter choice in the grad-div stabilization applied to the generalized problems of Oseen type. Stabilization parameters based on minimizing the H1(Ω) error of the velocity are derived which do not depend on the viscosity parameter. For the proposed parameter choices, the H1(Ω) error of the velocity is derived that shows a direct dependence on the viscosity parameter. Differences and common features to the situation for the Stokes equations are discussed. Numerical studies are presented which confirm the theoretical results. Moreover, for the Navier- Stokes equations, numerical simulations were performed on a two-dimensional ow past a circular cylinder. It turns out, for the MINI element, that the best results can be obtained without grad-div stabilization.

  • M. Hintermüller, C.N. Rautenberg, On the uniqueness and numerical approximation of solutions to certain parabolic quasi-variational inequalities, Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 74 (2017), pp. 1--35.
    Abstract
    A class of abstract nonlinear evolution quasi-variational inequality (QVI) problems in function space is considered. The abstract framework developed in this paper includes constraint sets of obstacle and gradient type. The paper address the existence, uniqueness and approximation of solutions when the constraint set mapping is of a special form. Uniqueness is addressed through contractive behavior of a nonlinear mapping whose fixed points are solutions to the QVI. An axiomatic semi-discrete approximation scheme is developed, which is proven to be convergent and which is numerically implemented. The paper ends by a report on numerical tests for several nonlinear constraints of gradient-type.

  • A. Mielke, M. Mittnenzweig, Convergence to equilibrium in energy-reaction-diffusion systems using vector-valued functional inequalities, Journal of Nonlinear Science, 28 (2018), pp. 765--806 (published online on 11.11.2017), DOI 10.1007/s00332-017-9427-9 .
    Abstract
    We discuss how the recently developed energy-dissipation methods for reactiondi usion systems can be generalized to the non-isothermal case. For this we use concave entropies in terms of the densities of the species and the internal energy, where the importance is that the equilibrium densities may depend on the internal energy. Using the log-Sobolev estimate and variants for lower-order entropies as well as estimates for the entropy production of the nonlinear reactions we give two methods to estimate the relative entropy by the total entropy production, namely a somewhat restrictive convexity method, which provides explicit decay rates, and a very general, but weaker compactness method.

  • A. Mielke, C. Patz, Uniform asymptotic expansions for the infinite harmonic chain, Zeitschrift fur Analysis und ihre Anwendungen. Journal for Analysis and its Applications, 36 (2017), pp. 437--475, DOI 10.4171/ZAA/1596 .
    Abstract
    We study the dispersive behavior of waves in linear oscillator chains. We show that for general general dispersions it is possible to construct an expansion such that the remainder can be estimated by $1/t$ uniformly in space. In particalur we give precise asymptotics for the transition from the $1/t^1/2$ decay of nondegenerate wave numbers to the generate $1/t^1/3$ decay of generate wave numbers. This involves a careful description of the oscillatory integral involving the Airy function.

  • A. Mielke, R.I.A. Patterson, M.A. Peletier, D.R.M. Renger, Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics, SIAM Journal on Applied Mathematics, 77 (2017), pp. 1562--1585, DOI 10.1137/16M1102240 .
    Abstract
    We study stochastic interacting particle systems that model chemical reaction networks on the micro scale, converging to the macroscopic Reaction Rate Equation. One abstraction level higher, we study the ensemble of such particle systems, converging to the corresponding Liouville transport equation. For both systems, we calculate the corresponding large deviations and show that under the condition of detailed balance, the large deviations induce a non-linear relation between thermodynamic fluxes and free energy driving force.

  • E. Cinti, J. Davila, M. Del Pino, Solutions of the fractional Allen--Cahn equation which are invariant under screw motion, Journal of the London Mathematical Society. Second Series, 94 (2016), pp. 295--313.
    Abstract
    We establish existence and non-existence results for entire solutions to the fractional Allen--Cahn equation in R3 , which vanish on helicoids and are invariant under screw-motion. In addition, we prove that helicoids are surfaces with vanishing nonlocal mean curvature.

  • K. Disser, G.P. Galdi, G. Mazzone, P. Zunino, Inertial motions of a rigid body with a cavity filled with a viscous liquid, Archive for Rational Mechanics and Analysis, 221 (2016), pp. 487--526.
    Abstract
    We consider the system of equations modeling the free motion of a rigid body with a cavity filled by a viscous (Navier-Stokes) liquid. Zhukovskiy's Theorem states that in the limit of time going to infinity, the relative fluid velocity tends to 0 and the rigid velocity of the full structure tends to a steady rotation around one of the principle axes of inertia. We give a rigorous proof of this result.
    In particular, we prove that every global weak solution in a suitable class is subject to Zhukovskiy's Theorem, and note that existence of these solutions has been established. Independently of the geometry and of parameters, this shows that the presence of fluid prevents precession of the body in the limit. In general, we cannot predict which axis will be attained, but we can show stability of the largest axis and provide criteria on the initial data which are decisive in special cases.

  • A. Alphonse, Ch.M. Elliott, Well-posedness of a fractional porous medium equation on an evolving surface, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 137 (2016), pp. 3--42.

  • M. Cozzi, A. Farina, E. Valdinoci, Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs, Advances in Mathematics, 293 (2016), pp. 343--381.
    Abstract
    We consider possibly degenerate and singular elliptic equations in a possibly anisotropic medium. We obtain monotonicity results for the energy density, rigidity results for the solutions and classi?cation results for the singularity/degeneracy/anisotropy allowed. As far as we know, these results are new even in the case of non-singular and non- degenerate anisotropic equations.

  • S.P. Frigeri, Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities, Mathematical Models & Methods in Applied Sciences, 26 (2016), pp. 1957--1993.
    Abstract
    We consider a diffuse interface model for an incompressible isothermal mixture of two viscous Newtonian fluids with different densities in a bounded domain in two or three space dimensions. The model is the nonlocal version of the one recently derived by Abels, Garcke and Grün and consists of a Navier-Stokes type system coupled with a convective nonlocal Cahn-Hilliard equation. The density of the mixture depends on an order parameter. For this nonlocal system we prove existence of global dissipative weak solutions for the case of singular double-well potentials and non degenerate mobilities. To this goal we devise an approach which is completely independent of the one employed by Abels, Depner and Garcke to establish existence of weak solutions for the local Abels et al. model.

  • M. Heida, B. Schweizer, Non-periodic homogenization of infinitesimal strain plasticity equations, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 96 (2016), pp. 5--23.

  • M. Liero, A. Mielke, G. Savaré, Optimal transport in competition with reaction: The Hellinger--Kantorovich distance and geodesic curves, SIAM Journal on Mathematical Analysis, 48 (2016), pp. 2869--2911.
    Abstract
    We discuss a new notion of distance on the space of finite and nonnegative measures on Ω ⊂ ℝ d, which we call Hellinger-Kantorovich distance. It can be seen as an inf-convolution of the well-known Kantorovich-Wasserstein distance and the Hellinger-Kakutani distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and some of its properties. In particular, the distance can be equivalently described by an optimal transport problem on the cone space over the underlying space Ω. We give a construction of geodesic curves and discuss examples and their general properties.

  • D. Peschka, N. Rotundo, M. Thomas, Towards doping optimization of semiconductor lasers, Journal of Computational and Theoretical Transport, 45 (2016), pp. 410--423.
    Abstract
    We discuss analytical and numerical methods for the optimization of optoelectronic devices by performing optimal control of the PDE governing the carrier transport with respect to the doping profile. First, we provide a cost functional that is a sum of a regularization and a contribution, which is motivated by the modal net gain that appears in optoelectronic models of bulk or quantum-well lasers. Then, we state a numerical discretization, for which we study optimized solutions for different regularizations and for vanishing weights.

  • M. Dai, E. Feireisl, E. Rocca, G. Schimperna, M.E. Schonbek, On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptotic Analysis, 97 (2016), pp. 189--210.
    Abstract
    We study a PDE system describing the motion of liquid crystals by means of the Q?tensor description for the crystals coupled with the incompressible Navier-Stokes system. Using the method of Fourier splitting, we show that solutions of the system tend to the isotropic state at the rate (1 + t)?? as t ? ? 1 for a certain ? > 2 .

  • S. Dipierro, O. Savin, E. Valdinoci, Graph properties for nonlocal minimal surfaces, Calculus of Variations and Partial Differential Equations, 55 (2016), pp. 86/1--86/25.
    Abstract
    In this paper we show that a nonlocal minimal surface which is a graph outside a cylinder is in fact a graph in the whole of the space. As a consequence, in dimension 3, we show that the graph is smooth. The proofs rely on convolution techniques and appropriate integral estimates which show the pointwise validity of an Euler?Lagrange equation related to the nonlocal mean curvature.

  • S. Patrizi, E. Valdinoci, Relaxation times for atom dislocations in crystals, Calculus of Variations and Partial Differential Equations, 55 (2016), pp. 71/1--71/44.
    Abstract
    We study the relaxation times for a parabolic differential equation whose solution represents the atom dislocation in a crystal. The equation that we consider comprises the classical Peierls?Nabarro model as a particular case, and it allows also long range interactions. It is known that the dislocation function of such a model has the tendency to concentrate at single points, which evolve in time according to the external stress and a singular, long range potential. Depending on the orientation of the dislocation function at these points, the potential may be either attractive or repulsive, hence collisions may occur in the latter case and, at the collision time, the dislocation function does not disappear. The goal of this paper is to provide accurate estimates on the relaxation times of the system after collision. More precisely, we take into account the case of two and three colliding points, and we show that, after a small transition time subsequent to the collision, the dislocation function relaxes exponentially fast to a steady state. In this sense, the system exhibits two different decay behaviors, namely an exponential time decay versus a polynomial decay in the space variables (and these two homogeneities are kept separate during the time evolution).

  • P. Bringmann, C. Carstensen, Ch. Merdon, Guaranteed error control for the pseudostress approximation of the Stokes equations, Numerical Methods for Partial Differential Equations. An International Journal, 32 (2016), pp. 1411--1432.
    Abstract
    The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in $L^2$. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.

  • M. Bulíček, A. Glitzky, M. Liero, Systems describing electrothermal effects with p(x)-Laplacian like structure for discontinuous variable exponents, SIAM Journal on Mathematical Analysis, 48 (2016), pp. 3496--3514.
    Abstract
    We consider a coupled system of two elliptic PDEs, where the elliptic term in the first equation shares the properties of the p(x)-Laplacian with discontinuous exponent, while in the second equation we have to deal with an a priori L1 term on the right hand side. Such a system of equations is suitable for the description of various electrothermal effects, in particular those, where the non-Ohmic behavior can change dramatically with respect to the spatial variable. We prove the existence of a weak solution under very weak assumptions on the data and also under general structural assumptions on the constitutive equations of the model. The main difficulty consists in the fact that we have to overcome simultaneously two obstacles - the discontinuous variable exponent (which limits the use of standard methods) and the L1 right hand side of the heat equation. Our existence proof based on Galerkin approximation is highly constructive and therefore seems to be suitable also for numerical purposes.

  • P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the viscous Cahn--Hilliard equation with dynamic boundary conditions, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 73 (2016), pp. 195--225, DOI 10.1007/s00245-015-9299-z .
    Abstract
    A boundary control problem for the viscous Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first order necessary conditions for optimality are proved.

  • P. Colli, G. Gilardi, J. Sprekels, Constrained evolution for a quasilinear parabolic equation, Journal of Optimization Theory and Applications, 170 (2016), pp. 713--734.
    Abstract
    In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the Cauchy--Neumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set K of L2(Ω). Then, we consider convex sets of obstacle or double-obstacle type, and we can act on the factor of the feedback control in order to be able to reach the convex set within a finite time, by proving rigorously this property.

  • P. Colli, G. Gilardi, J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Mathematics, 1 (2016), pp. 246--281.
    Abstract
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

  • P. Colli, G. Gilardi, J. Sprekels, On an application of Tikhonov's fixed point theorem to a nonlocal Cahn--Hilliard type system modeling phase separation, Journal of Differential Equations, 260 (2016), pp. 7940--7964.
    Abstract
    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006) 105-118. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.

  • J. Dávila, M. Del Pino, S. Dipierro, E. Valdinoci, Nonlocal Delaunay surfaces, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 137 (2016), pp. 357--380.
    Abstract
    We construct codimension 11 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).

  • A. Farina, E. Valdinoci, 1D symmetry for semilinear PDEs from the limit interface of the solution, Communications in Partial Differential Equations, 41 (2016), pp. 665--682.
    Abstract
    We study bounded, monotone solutions of ?u = W?(u) in the whole of ?n, where W is a double-well potential. We prove that under suitable assumptions on the limit interface and on the energy growth, u is 1D. In particular, differently from the previous literature, the solution is not assumed to have minimal properties and the cases studied lie outside the range of ?-convergence methods. We think that this approach could be fruitful in concrete situations, where one can observe the phase separation at a large scale and wishes to deduce the values of the state parameter in the vicinity of the interface. As a simple example of the results obtained with this point of view, we mention that monotone solutions with energy bounds, whose limit interface does not contain a vertical line through the origin, are 1D, at least up to dimension 4.

  • R. Haller-Dintelmann, A. Jonsson, D. Knees, J. Rehberg, Elliptic and parabolic regularity for second order divergence operators with mixed boundary conditions, Mathematical Methods in the Applied Sciences, 39 (2016), pp. 5007--5026, DOI 10.1002/mma.3484/abstract .
    Abstract
    We study second order equations and systems on non-Lipschitz domains including mixed boundary conditions. The key result is interpolation for suitable function spaces.

  • H. Meinlschmidt, J. Rehberg, Hölder-estimates for non-autonomous parabolic problems with rough data, Evolution Equations and Control Theory, 5 (2016), pp. 147--184.
    Abstract
    In this paper we establish Hölder estimates for solutions to non-autonomous parabolic equations on non-smooth domains which are complemented with mixed boundary conditions. The corresponding elliptic operators are of divergence type, the coefficient matrix of which depends only measurably on time. These results are in the tradition of the classical book of Ladyshenskaya et al., which also serves as the starting point for our investigations.

  • X. Ros-Oton, E. Valdinoci, The Dirichlet problem for nonlocal operators with kernels: Convex and nonconvex domains, Advances in Mathematics, 288 (2016), pp. 732--790.
    Abstract
    We study the interior regularity of solutions to a Dirichlet problem for anisotropic operators of fractional type. A prototype example is given by the sum of one-dimensional fractional Laplacians in fixed, given directions. We prove here that an interior differentiable regularity theory holds in convex domains. When the spectral measure is a bounded function and the domain is smooth, the same regularity theory applies. In particular, solutions always possess a classical first derivative. The assumptions on the domain are sharp, since if the domain is not convex and the spectral measure is singular, we construct an explicit counterexample.

  • S. Reichelt, Error estimates for elliptic equations with not exactly periodic coefficients, Advances in Mathematical Sciences and Applications, 25 (2016), pp. 117--131.
    Abstract
    This note is devoted to the derivation of quantitative estimates for linear elliptic equations with coefficients that are not exactly ε-periodic and the ellipticity constant may degenerate for vanishing ε. Here ε>0 denotes the ratio between the microscopic and the macroscopic length scale. It is shown that for degenerating and non-degenerating coefficients the error between the original solution and the effective solution is of order √ε. Therefore suitable test functions are constructed via the periodic unfolding method and a gradient folding operator making only minimal additional assumptions on the given data and the effective solution with respect to the macroscopic scale.

  • N. Ahmed, G. Matthies, Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent convection-diffusion-reaction equations, Journal of Scientific Computing, 67 (2016), pp. 988--1018.
    Abstract
    This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamline-upwind Petrov-Galerkin (SUPG) and local projection stabilization (LPS) methods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) methods and continuous Galerkin-Petrov (cGP) methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters of the spatial discretizations are discussed. Finally the long-time behavior of overshoots and undershoots is investigated.

  • M.H. Farshbaf Shaker, C. Hecht, Optimal control of elastic vector-valued Allen--Cahn variational inequalities, SIAM Journal on Control and Optimization, 54 (2016), pp. 129--152.
    Abstract
    In this paper we consider a elastic vector-valued Allen--Cahn MPCC (Mathematical Programs with Complementarity Constraints) problem. We use a regularization approach to get the optimality system for the subproblems. By passing to the limit in the optimality conditions for the regularized subproblems, we derive certain generalized first-order necessary optimality conditions for the original problem.

  • S.P. Frigeri, E. Rocca, J. Sprekels, Optimal distributed control of a nonlocal Cahn--Hilliard/Navier--Stokes system in two dimensions, SIAM Journal on Control and Optimization, 54 (2016), pp. 221 -- 250.
    Abstract
    We study a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids coupling the Navier-Stokes system with a convective nonlocal Cahn-Hilliard equation in two dimensions of space. We apply recently proved well-posedness and regularity results in order to establish existence of optimal controls as well as first-order necessary optimality conditions for an associated optimal control problem in which a distributed control is applied to the fluid flow.

  • CH. Heinemann, K. Sturm, Shape optimisation for a class of semilinear variational inequalities with applications to damage models, SIAM Journal on Mathematical Analysis, 48 (2016), pp. 3579--3617, DOI 10.1137/16M1057759 .
    Abstract
    The present contribution investigates shape optimisation problems for a class of semilinear elliptic variational inequalities with Neumann boundary conditions. Sensitivity estimates and material derivatives are firstly derived in an abstract operator setting where the operators are defined on polyhedral subsets of reflexive Banach spaces. The results are then refined for variational inequalities arising from minimisation problems for certain convex energy functionals considered over upper obstacle sets in $H^1$. One particularity is that we allow for dynamic obstacle functions which may arise from another optimisation problems. We prove a strong convergence property for the material derivative and establish state-shape derivatives under regularity assumptions. Finally, as a concrete application from continuum mechanics, we show how the dynamic obstacle case can be used to treat shape optimisation problems for time-discretised brittle damage models for elastic solids. We derive a necessary optimality system for optimal shapes whose state variables approximate desired damage patterns and/or displacement fields.

  • A. Mielke, M.A. Peletier, D.R.M. Renger, A generalization of Onsager's reciprocity relations to gradient flows with nonlinear mobility, Journal of Non-Equilibrium Thermodynamics, 41 (2016), pp. 141--149.
    Abstract
    Onsager's 1931 `reciprocity relations' result connects microscopic time-reversibility with a symmetry property of corresponding macroscopic evolution equations. Among the many consequences is a variational characterization of the macroscopic evolution equation as a gradient-flow, steepest-ascent, or maximal-entropy-production equation. Onsager's original theorem is limited to close-to-equilibrium situations, with a Gaussian invariant measure and a linear macroscopic evolution. In this paper we generalize this result beyond these limitations, and show how the microscopic time-reversibility leads to natural generalized symmetry conditions, which take the form of generalized gradient flows.

  • A. Mielke, T. Roubíček, Rate-independent elastoplasticity at finite strains and its numerical approximation, Mathematical Models & Methods in Applied Sciences, 26 (2016), pp. 2203--2236.
    Abstract
    Gradient plasticity at large strains with kinematic hardening is analyzed as quasistatic rate-independent evolution. The energy functional with a frame-indifferent polyconvex energy density and the dissipation are approximated numerically by finite elements and implicit time discretization, such that a computationally implementable scheme is obtained. The non-selfpenetration as well as a possible frictionless unilateral contact is considered and approximated numerically by a suitable penalization method which keeps polyconvexity and simultaneously by-passes the Lavrentiev phenomenon. The main result concerns the convergence of the numerical scheme towards energetic solutions.
     
    In the case of incompressible plasticity and of nonsimple materials, where the energy depends on the second derivative of the deformation, we derive an explicit stability criterion for convergence relating the spatial discretization and the penalizations.

  • A. Mielke, R. Rossi, G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, Journal of the European Mathematical Society (JEMS), 18 (2016), pp. 2107--2165.
    Abstract
    Balanced Viscosity solutions to rate-independent systems arise as limits of regularized rate-independent ows by adding a superlinear vanishing-viscosity dissipation. We address the main issue of proving the existence of such limits for in nite-dimensional systems and of characterizing them by a couple of variational properties that combine a local stability condition and a balanced energy-dissipation identity. A careful description of the jump behavior of the solutions, of their di erentiability properties, and of their equivalent representation by time rescaling is also presented. Our techniques rely on a suitable chain-rule inequality for functions of bounded variation in Banach spaces, on re ned lower semicontinuity-compactness arguments, and on new BVestimates that are of independent interest.

  • R.I.A. Patterson, Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries, Journal of Evolution Equations, 16 (2016), pp. 261--291.
    Abstract
    Well posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed while the spatial domain is a bounded region of $d$-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded measures on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one dimensional extension establishes the convergence of the simulation processes studied in [Patterson, Stoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.

  • K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis. International Mathematical Journal of Analysis and its Applications, 35 (2015), pp. 309--317.

  • K. Disser, M. Meyries, J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, Journal of Mathematical Analysis and Applications, 430 (2015), pp. 1102--1123.
    Abstract
    In this paper we consider scalar parabolic equations in a general non-smooth setting with emphasis on mixed interface and boundary conditions. In particular, we allow for dynamics and diffusion on a Lipschitz interface and on the boundary, where diffusion coefficients are only assumed to be bounded, measurable and positive semidefinite. In the bulk, we additionally take into account diffusion coefficients which may degenerate towards a Lipschitz surface. For this problem class, we introduce a unified functional analytic framework based on sesquilinear forms and show maximal regularity for the corresponding abstract Cauchy problem.

  • K. Disser, M. Liero, On gradient structures for Markov chains and the passage to Wasserstein gradient flows, Networks and Heterogeneous Media, 10 (2015), pp. 233-253.
    Abstract
    We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then, we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.

  • K. Disser, H.-Chr. Kaiser, J. Rehberg, Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems, SIAM Journal on Mathematical Analysis, 47 (2015), pp. 1719--1746.
    Abstract
    On bounded three-dimensional domains, we consider divergence-type operators including mixed homogeneous Dirichlet and Neumann boundary conditions and discontinuous coefficient functions. We develop a geometric framework in which it is possible to prove that the operator provides an isomorphism of suitable function spaces. In particular, in these spaces, the gradient of solutions turns out to be integrable with exponent larger than the space dimension three. Relevant examples from real-world applications are provided in great detail.

  • S. Patrizi, E. Valdinoci, Crystal dislocations with different orientations and collisions, Archive for Rational Mechanics and Analysis, 217 (2015), pp. 231--261.
    Abstract
    We study a parabolic differential equation whose solution represents the atom dislocation in a crystal for a general type of Peierls-Nabarro model with possibly long range interactions and an external stress. Differently from the previous literature, we treat here the case in which such dislocation is not the superpositions of transitions all occurring with the same orientations (i.e. opposite orientations are allowed as well). We show that, at a long time scale, and at a macroscopic space scale, the dislocations have the tendency to concentrate as pure jumps at points which evolve in time, driven by the external stress and by a singular potential. Due to differences in the dislocation orientations, these points may collide in finite time.

  • S. Patrizi, E. Valdinoci, Homogenization and Orowan's law for anisotropic fractional operators of any order, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 119 (2015), pp. 3--36.
    Abstract
    We consider an anisotropic fractional operator and we consider the homogenization properties of an evolution equation. The scaling properties and the effective Hamiltonian that we obtain is different according to the fractional parameter. In the isotropic onedimensional case, we also prove a statement related to the so-called Orowan's law, that is an appropriate scaling of the effective Hamiltonian presents a linear behavior.

  • E. Rocca, R. Rossi, ``Entropic'' solutions to a thermodynamically consistent PDE system for phase transitions and damage, SIAM Journal on Mathematical Analysis, 74 (2015), pp. 2519--2586.
    Abstract
    In this paper we analyze a PDE system modelling (non-isothermal) phase transitions and dam- age phenomena in thermoviscoelastic materials. The model is thermodynamically consistent: in particular, no small perturbation assumption is adopted, which results in the presence of quadratic terms on the right-hand side of the temperature equation, only estimated in L^1. The whole system has a highly nonlinear character. We address the existence of a weak notion of solution, referred to as “entropic”, where the temperature equation is formulated with the aid of an entropy inequality, and of a total energy inequality. This solvability concept reflects the basic principles of thermomechanics as well as the thermodynamical consistency of the model. It allows us to obtain global-in-time existence theorems without imposing any restriction on the size of the initial data. We prove our results by passing to the limit in a time discretization scheme, carefully tailored to the nonlinear features of the PDE system (with its “entropic” formulation), and of the a priori estimates performed on it. Our time-discrete analysis could be useful towards the numerical study of this model.

  • E. Rocca, J. Sprekels, Optimal distributed control of a nonlocal convective Cahn--Hilliard equation by the velocity in three dimensions, SIAM Journal on Control and Optimization, 53 (2015), pp. 1654--1680.
    Abstract
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn-Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: the state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem.

  • P.-É. Druet, Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations, Discrete and Continuous Dynamical Systems, 8 (2015), pp. 479--496.
    Abstract
    We show that Lp vector fields over a Lipschitz domain are integrable to higher exponents if their generalized divergence and rotation can be identified with bounded linear operators acting on standard Sobolev spaces. A Div-Curl Lemma-type argument provides compact embedding results for such vector fields. We investigate the regularity of the solution fields for the low-frequency approximation of the Maxwell equations in time-harmonic regime. We focus on the weak formulation 'in H' of the problem, in a reference geometrical setting allowing for material heterogeneities.

  • P.-É. Druet, Some mathematical problems related to the second order optimal shape of a crystallization interface, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 2443--2463.
    Abstract
    We consider the problem to optimize the stationary temperature distribution and the equilibrium shape of the solid-liquid interface in a two-phase system subject to a temperature gradient. The interface satisfies the minimization principle of the free energy, while the temperature is solving the heat equation with a radiation boundary conditions at the outer wall. Under the condition that the temperature gradient is uniformly negative in the direction of crystallization, the interface is expected to have a global graph representation. We reformulate this condition as a pointwise constraint on the gradient of the state, and we derive the first order optimality system for a class of objective functionals that account for the second surface derivatives, and for the surface temperature gradient.

  • S.P. Frigeri, M. Grasselli, E. Rocca, A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility, Nonlinearity, 28 (2015), pp. 1257--1293.
    Abstract
    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective nonlocal Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of the global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective nonlocal Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.

  • M. Heida, Existence of solutions for two types of generalized versions of the Cahn--Hilliard equation, Applications of Mathematics, 60 (2015), pp. 51--90.
    Abstract
    We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration u, gradient of concentration ?u and the chemical potential ?u?s?(u). The existence is shown using a newly developed generalization of gradient flows by the author and the theory of Young measures.

  • M. Heida, On systems of Cahn--Hilliard and Allen--Cahn equations considered as gradient flows in Hilbert spaces, Journal of Mathematical Analysis and Applications, 423 (2015), pp. 410--455.

  • M. Liero, Th. Koprucki, A. Fischer, R. Scholz, A. Glitzky, p-Laplace thermistor modeling of electrothermal feedback in organic semiconductors, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 66 (2015), pp. 2957--2977.
    Abstract
    In large-area Organic Light-Emitting Diodes (OLEDs) spatially inhomogeneous luminance at high power due to inhomogeneous current flow and electrothermal feedback can be observed. To describe these self-heating effects in organic semiconductors we present a stationary thermistor model based on the heat equation for the temperature coupled to a p-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior of the organic material. Moreover, an Arrhenius-like temperature dependency of the electrical conductivity is considered. We introduce a finite-volume scheme for the system and discuss its relation to recent network models for OLEDs. In two spatial dimensions we derive a priori estimates for the temperature and the electrostatic potential and prove the existence of a weak solution by Schauder's fixed point theorem.

  • S. Yanchuk, L. Lücken, M. Wolfrum, A. Mielke, Spectrum and amplitude equations for scalar delay-differential equations with large delay, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 537--553.
    Abstract
    The subject of the paper are scalar delay-differential equations with large delay. Firstly, we describe the asymptotic properties of the spectrum of linear equations. Using these properties, we classify possible types of destabilization of steady states. In the limit of large delay, this classification is similar to the one for parabolic partial differential equations. We present a derivation and error estimates for amplitude equations, which describe universally the local behavior of scalar delay-differential equations close to the destabilization threshold.

  • S. Yanchuk, G. Giacomelli, Dynamical systems with multiple, long delayed feedbacks: Multiscale analysis and spatio-temporal equivalence, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 92 (2015), pp. 042903/1--042903/12.
    Abstract
    Dynamical systems with multiple, hierarchically long delayed feedback are introduced and studied. Focusing on the phenomenological model of a Stuart-Landau oscillator with two feedbacks, we show the multiscale properties of its dynamics and demonstrate them by means of a space-time representation. For sufficiently long delays, we derive a normal form describing the system close to the destabilization. The space and temporal variables, which are involved in the space-time representation, correspond to suitable timescales of the original system. The physical meaning of the results, together with the interpretation of the description at different scales, is presented and discussed. In particular, it is shown how this representation uncovers hidden multiscale patterns such as spirals or spatiotemporal chaos. The effect of the delays size and the features of the transition between small to large delays is also analyzed. Finally, we comment on the application of the method and on its extension to an arbitrary, but finite, number of delayed feedback terms.

  • E. Bonetti, Ch. Heinemann, Ch. Kraus, A. Segatti, Modeling and analysis of a phase field system for damage and phase separation processes in solids, Journal of Partial Differential Equations, 258 (2015), pp. 3928--3959.
    Abstract
    In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system with material dependent coefficients for the strain tensor and a doubly nonlinear differential inclusion for the damage function. The main aim of this paper is to show existence of weak solutions for the introduced model, where, in contrast to existing damage models in the literature, different elastic properties of damaged and undamaged material are regarded. To prove existence of weak solutions for the introduced system, we start with a regularized version. Then, by passing to the limit, existence results of weak solutions for the proposed model are obtained via suitable variational techniques.

  • A. Di Castro, M. Novaga, R. Berardo, E. Valdinoci, Nonlocal quantitative isoperimetric inequalities, Calculus of Variations and Partial Differential Equations, 54 (2015), pp. 2421--2464.

  • S. Dipierro, E. Valdinoci, A density property for fractional weighted Sobolev spaces, Rendiconti Lincei -- Matematica e Applicazioni, 26 (2015), pp. 397--422.
    Abstract
    In this paper we show a density property for fractional weighted Sobolev spaces. That is, we prove that any function in a fractional weighted Sobolev space can be approximated by a smooth function with compact support. The additional difficulty in this nonlocal setting is caused by the fact that the weights are not necessarily translation invariant.

  • S. Dipierro, E. Valdinoci, On a fractional harmonic replacement, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 3377--3392.
    Abstract
    Given $s ∈(0,1)$, we consider the problem of minimizing the Gagliardo seminorm in $H^s$ with prescribed condition outside the ball and under the further constraint of attaining zero value in a given set $K$. We investigate how the energy changes in dependence of such set. In particular, under mild regularity conditions, we show that adding a set $A$ to $K$ increases the energy of at most the measure of $A$ (this may be seen as a perturbation result for small sets $A$). Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the boundary conditions.

  • S. Dipierro, O. Savin, E. Valdinoci, A nonlocal free boundary problem, SIAM Journal on Mathematical Analysis, 47 (2015), pp. 4559--4605.
    Abstract
    We consider a nonlocal free boundary problem built by a fractional Dirichlet norm plus a fractional perimeter. Among other results, we prove a monotonicity formula for the minimizers, glueing lemmata, uniform energy bounds, convergence results, a regularity theory for the planar cones and a trivialization result for the flat case. Several classical free boundary problems are limit cases of the one that we consider in this paper.

  • R. Rossi, M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM. Control, Optimisation and Calculus of Variations, 21 (2015), pp. 1--59.
    Abstract
    We address the analysis of a model for brittle delamination of two visco-elastic bodies, bonded along a prescribed surface. The model also encompasses thermal effects in the bulk. The related PDE system for the displacements, the absolute temperature, and the delamination variable has a highly nonlinear character. On the contact surface, it features frictionless Signorini conditions and a nonconvex, brittle constraint acting as a transmission condition for the displacements. We prove the existence of (weak/energetic) solutions to the associated Cauchy problem, by approximating it in two steps with suitably regularized problems. We perform the two consecutive passages to the limit via refined variational convergence techniques.

  • R. Servadei, E. Valdinoci, The Brezis--Nirenberg result for the fractional Laplacian, Transactions of the American Mathematical Society, 367 (2015), pp. 67--102.

  • P. Auscher, N. Badr, R. Haller-Dintelmann, J. Rehberg, The square root problem for second order, divergence form operators with mixed boundary condition on $L^p$, Journal of Evolution Equations, 15 (2015), pp. 165--208.

  • P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Vanishing viscosities and error estimate for a Cahn--Hilliard type phase field system related to tumor growth, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 26 (2015), pp. 93--108.
    Abstract
    In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn--Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in [Colli-Gilardi-Hilhorst 2015], letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.

  • P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the pure Cahn--Hilliard equation with dynamic boundary conditions, Advances in Nonlinear Analysis, 4 (2015), pp. 311--325.
    Abstract
    A boundary control problem for the pure Cahn--Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.

  • P. Colli, M.H. Farshbaf Shaker, G. Gilardi, J. Sprekels, Optimal boundary control of a viscous Cahn--Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM Journal on Control and Optimization, 53 (2015), pp. 2696--2721.
    Abstract
    In this paper, we investigate optimal boundary control problems for Cahn--Hilliard variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace--Beltrami operator. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy, which follows the lines of the recent approach by Colli, Farshbaf-Shaker, Sprekels (see Appl. Math. Optim., 2014) to the (simpler) Allen--Cahn case, is the following: we use the results that were recently established by Colli, Gilardi, Sprekels in the preprint arXiv:1407.3916 [math.AP] for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.

  • P. Colli, M.H. Farshbaf Shaker, G. Gilardi, J. Sprekels, Second-order analysis of a boundary control problem for the viscous Cahn--Hilliard equation with dynamic boundary conditions, Annals of the Academy of Romanian Scientists. Mathematics and its Applications., 7 (2015), pp. 41--66.
    Abstract
    In this paper we establish second-order sufficient optimality conditions for a boundary control problem that has been introduced and studied by three of the authors in the preprint arXiv:1407.3916. This control problem regards the viscous Cahn--Hilliard equation with possibly singular potentials and dynamic boundary conditions.

  • P. Colli, M.H. Farshbaf Shaker, J. Sprekels, A deep quench approach to the optimal control of an Allen--Cahn equation with dynamic boundary conditions and double obstacles, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 71 (2015), pp. 1--24.
    Abstract
    In this paper, we investigate optimal control problems for Allen-Cahn variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace-Beltrami operator. The approach covers both the cases of distributed controls and of boundary controls. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy is the following: we use the results that were recently established by two of the authors for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.

  • J. Dávila, M. Del Pino, S. Dipierro, E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Analysis & PDE, 8 (2015), pp. 1165--1235.
    Abstract
    For a smooth, bounded Euclidean domain, we consider a nonlocal Schrödinger equation with zero Dirichlet datum. We construct a family of solutions that concentrate at an interior point of the domain in the form of a scaling of the ground state in entire space. Unlike the classical case, the leading order of the associated reduced energy functional in a variational reduction procedure is of polynomial instead of exponential order on the distance from the boundary, due to the nonlocal effect. Delicate analysis is needed to overcome the lack of localization, in particular establishing the rather unexpected asymptotics for the Green function in the expanding domain.

  • M. Egert, R. Haller-Dintelmann, J. Rehberg, Hardy's inequality for functions vanishing on a part of the boundary, Potential Analysis, 43 (2015), pp. 49--78.
    Abstract
    We develop a geometric framework for Hardy's inequality on a bounded domain when the functions do vanish only on a closed portion of the boundary.

  • M.M. Fall, F. Mahmoudi, E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), pp. 1937--1961.
    Abstract
    We consider here solutions of the nonlinear fractional Schrödinger equation. We show that concentration points must be critical points for the potential. We also prove that, if the potential is coercive and has a unique global minimum, then ground states concentrate suitably at such minimal point. In addition, if the potential is radial, then the minimizer is unique.

  • E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball--Majumdar free energy, Annali di Matematica Pura ed Applicata. Serie Quarta. Fondazione Annali di Matematica Pura ed Applicata, c/o Dipartimento di Matematica ``U. Dini'', Firenze; Springer-Verlag, Heidelberg. English, French, German, Italian, English abstracts., 194 (2015), pp. 1269--1299.
    Abstract
    In this paper we prove the existence of global in time weak solutions for an evolutionary PDE system modelling nonisothermal Landau-de Gennes nematic liquid crystal (LC) flows in three dimensions of space. In our model, the incompressible Navier-Stokes system for the macroscopic velocity $vu$ is coupled to a nonlinear convective parabolic equation describing the evolution of the Q-tensor $QQ$, namely a tensor-valued variable representing the normalized second order moments of the probability distribution function of the LC molecules. The effects of the (absolute) temperature $vt$ are prescribed in the form of an energy balance identity complemented with a global entropy production inequality. Compared to previous contributions, we can consider here the physically realistic singular configuration potential $f$ introduced by Ball and Majumdar. This potential gives rise to severe mathematical difficulties since it introduces, in the Q-tensor equation, a term which is at the same time singular in $QQ$ and degenerate in $vt$. To treat it a careful analysis of the properties of $f$, particularly of its blow-up rate, is carried out.

  • A. Fiscella, R. Servadei, E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Mathematical Methods in the Applied Sciences, 38 (2015), pp. 3551--3563.
    Abstract
    In this paper we study a non-local fractional Laplace equation, depending on a parameter, with asymptotically linear right-hand side. Our main result concerns the existence of weak solutions for this equation and it is obtained using variational and topological methods. We treat both the nonresonant case and the resonant one.

  • D.A. Gomes, S. Patrizi, Obstacle mean-field game problem, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 17 (2015), pp. 55--68.
    Abstract
    In this paper, we introduce and study a first-order mean-field game obstacle problem. We examine the case of local dependence on the measure under assumptions that include both the logarithmic case and power-like nonlinearities. Since the obstacle operator is not differentiable, the equations for first-order mean field game problems have to be discussed carefully. Hence, we begin by considering a penalized problem. We prove this problem admits a unique solution satisfying uniform bounds. These bounds serve to pass to the limit in the penalized problem and to characterize the limiting equations. Finally, we prove uniqueness of solutions.

  • F. Punzo, E. Valdinoci, Uniqueness in weighted Lebesgue spaces for a class of fractional parabolic and elliptic equations, Journal of Differential Equations, 258 (2015), pp. 555--587.

  • T. Roubíček, M. Thomas, Ch. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 22 (2015), pp. 645--663.
    Abstract
    A unilateral contact problem between elastic bodies at small strains glued by a brittle adhesive is addressed in the quasistatic rate-independent setting. The delamination process is modelled as governed by stresses rather than by energies. This results in a specific scaling of an approximating elastic adhesive contact problem, discretised by a semi-implicit scheme and regularized by a BV-type gradient term. An analytical zero-dimensional example motivates the model and a specific local-solution concept. Two-dimensional numerical simulations performed on an engineering benchmark problem of debonding a fiber in an elastic matrix further illustrate the validity of the model, convergence, and algorithmical efficiency even for very rigid adhesives with high elastic moduli.

  • A.F.M. TER Elst, J. Rehberg, Hölder estimates for second-order operators with mixed boundary conditions, Advances in Differential Equations, 20 (2015), pp. 299--360.
    Abstract
    In this paper we investigate linear elliptic, second-order boundary value problems with mixed boundary conditions. Assuming only boundedness/ellipticity on the coefficient function and very mild conditions on the geometry of the domain -- including a very weak compatibility condition between the Dirichlet boundary part and its complement -- we prove first Hölder continuity of the solution. Secondly, Gaussian Hölder estimates for the corresponding heat kernel are derived. The essential instruments are De Giorgi and Morrey-Campanato estimates.

  • M. Thomas, Uniform Poincaré--Sobolev and relative isoperimetric inequalities for classes of domains, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 2741--2761.
    Abstract
    The aim of this paper is to prove an isoperimetric inequality relative to a d-dimensional, bounded, convex domain &Omega intersected with balls with a uniform relative isoperimetric constant, independent of the size of the radius r>0 and the position y∈cl(&Omega) of the center of the ball. For this, uniform Sobolev, Poincaré and Poincaré-Sobolev inequalities are deduced for classes of (not necessarily convex) domains that satisfy a uniform cone property. It is shown that the constants in all of these inequalities solely depend on the dimensions of the cone, space dimension d, the diameter of the domain and the integrability exponent p∈[1,d).

  • N. Ahmed, G. Matthies, Higher order continuous Galerkin--Petrov time stepping schemes for transient convection-diffusion-reaction equations, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), pp. 1429--1450.
    Abstract
    We present the analysis for the higher order continuous Galerkin--Petrov (cGP) time discretization schemes in combination with the one-level local projection stabilization in space applied to time-dependent convection-diffusion-reaction problems. Optimal a-priori error estimates will be proved. Numerical studies support the theoretical results. Furthermore, a numerical comparison between continuous Galerkin--Petrov and discontinuous Galerkin time discretization schemes will be given.

  • W. Dreyer, R. Huth, A. Mielke, J. Rehberg, M. Winkler, Global existence for a nonlocal and nonlinear Fokker--Planck equation, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 66 (2015), pp. 293--315.
    Abstract
    We consider a Fokker-Planck equation on a compact interval where, as a constraint, the first moment is a prescribed function of time. Eliminating the associated Lagrange multiplier one obtains nonlinear and nonlocal terms. After establishing suitable local existence results, we use the relative entropy as an energy functional. However, the time-dependent constraint leads to a source term such that a delicate analysis is needed to show that the dissipation terms are strong enough to control the work done by the constraint. We obtain global existence of solutions as long as the prescribed first moment stays in the interior of an interval. If the prescribed moment converges to a constant value inside the interior of the interval, then the solution stabilises to the unique steady state.

  • M.H. Farshbaf Shaker, A relaxation approach to vector-valued Allen--Cahn MPEC problems, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 72 (2015), pp. 325--351.

  • M.H. Farshbaf Shaker, Ch. Heinemann, A phase field approach for optimal boundary control of damage processes in two-dimensional viscoelastic media, Mathematical Models & Methods in Applied Sciences, 25 (2015), pp. 2749--2793.
    Abstract
    In this work we investigate a phase field model for damage processes in two-dimensional viscoelastic media with nonhomogeneous Neumann data describing external boundary forces. In the first part we establish global-in-time existence, uniqueness, a priori estimates and continuous dependence of strong solutions on the data. The main difficulty is caused by the irreversibility as well as boundedness of the phase field variable which results in a doubly constrained PDE system. In the last part we consider an optimal control problem where a cost functional penalizes maximal deviations from prescribed damage profiles. The goal is to minimize the cost functional with respect to exterior forces acting on the boundary which play the role of the control variable in the considered model . To this end, we prove existence of minimizers and study a family of “local” approximations via adapted cost functionals.

  • H. Hanke, D. Knees, Homogenization of elliptic systems with non-periodic, state dependent coefficients, Asymptotic Analysis, 92 (2015), pp. 203--234.
    Abstract
    In this paper, a homogenization problem for an elliptic system with non-periodic, state dependent coefficients representing microstructure is investigated. The state functions defining the tensor of coefficients are assumed to have an intrinsic length scale denoted by ε > 0. The aim is the derivation of an effective model by investigating the limit process ε → 0 of the state functions rigorously. The effective model is independent of the parameter ε > 0 but preserves the microscopic structure of the state functions (ε > 0), meaning that the effective tensor is given by a unit cell problem prescribed by a suitable microscopic tensor. Due to the non-periodic structure of the state functions and the corresponding microstructure, the effective tensor turns out to vary from point to point (in contrast to a periodic microscopic model). In a forthcoming paper, these states will be solutions of an additional evolution law describing changes of the microstructure. Such changes could be the consequences of temperature changes, phase separation or damage progression, for instance. Here, in addition to the above and as a preparation for an application to time-dependent damage models (discussed in a future paper), we provide a Γ-convergence result of sequences of functionals being related to the previous microscopic models with state dependent coefficients. This requires a penalization term for piecewise constant state functions that allows us to extract from bounded sequences those sequences converging to a Sobolev function in some sense. The construction of the penalization term is inspired by techniques for Discontinuous Galerkin methods and is of own interest. A compactness and a density result are provided.

  • CH. Heinemann, Ch. Kraus, A degenerating Cahn--Hilliard system coupled with complete damage processes, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 22 (2015), pp. 388--403.
    Abstract
    Complete damage in elastic solids appears when the material looses all its integrity due to high exposure. In the case of alloys, the situation is quite involved since spinodal decomposition and coarsening also occur at sufficiently low temperatures which may lead locally to high stress peaks. Experimental observations on solder alloys reveal void and crack growth especially at phase boundaries. In this work, we investigate analytically a degenerating PDE system with a time-depending domain for phase separation and complete damage processes under time-varying Dirichlet boundary conditions. The evolution of the system is described by a degenerating parabolic differential equation of fourth order for the concentration, a doubly nonlinear differential inclusion for the damage process and a degenerating quasi-static balance equation for the displacement field. All these equations are strongly nonlinearly coupled. Because of the doubly degenerating character and the doubly nonlinear differential inclusion we are confronted with introducing a suitable notion of weak solutions. We choose a notion of weak solutions which consists of weak formulations of the diffusion equation and the momentum balance, a one-sided variational inequality for the damage function and an energy estimate. For the introduced degenerating system, we prove existence of weak solutions in an $SBV$-framework. The existence result is based on an approximation system, where the elliptic degeneracy of the displacement field and the parabolic degeneracy of the concentration are eliminated. In the framework of phase separation and damage, this means that the approximation system allows only for partial damage and a non-degenerating mobility tensor. For the approximation system, existence results are established. Then, a passage to the limit shows existence of weak solutions of the degenerating system.

  • CH. Heinemann, Ch. Kraus, Complete damage in linear elastic materials -- Modeling, weak formulation and existence results, Calculus of Variations and Partial Differential Equations, 54 (2015), pp. 217--250.
    Abstract
    We introduce a complete damage model with a time-depending domain for linear-elastically stressed solids under time-varying Dirichlet boundary conditions. The evolution of the system is described by a doubly nonlinear differential inclusion for the damage process and a quasi-static balance equation for the displacement field. For the introduced complete damage model, we propose a classical formulation and a corresponding suitable weak formulation in an $SBV$-framework. We show that the classical differential inclusion can be regained from the notion of weak solutions under certain regularity assumptions. The main aim of this work is to prove local-in-time existence and global-in-time existence in some weaker sense for the introduced model. In contrast to incomplete damage theories, the material can be exposed to damage in the proposed model in such a way that the elastic behavior may break down on the damaged parts of the material, i.e. we loose coercivity properties of the free energy. This leads to several mathematical difficulties. For instance, it might occur that not completely damaged material regions are isolated from the Dirichlet boundary. In this case, the deformation field cannot be controlled in the transition from incomplete to complete damage. To tackle this problem, we consider the evolution process on a time-depending domain. In this context, two major challenges arise: Firstly, the time-dependent domain approach leads to jumps in the energy which have to be accounted for in the energy inequality of the notion of weak solutions. To handle this problem, several energy estimates are established by $Gamma$-convergence techniques. Secondly, the time-depending domain might have bad smoothness properties such that Korn's inequality cannot be applied. To this end, a covering result for such sets with smooth compactly embedded domains has been shown.

  • CH. Heinemann, Ch. Kraus, Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 2565--2590.
    Abstract
    In this paper, we consider a coupled PDE system describing phase separation and damage phenomena in elastically stressed alloys in the presence of inertial effects. The material is considered on a bounded Lipschitz domain with mixed boundary conditions for the displacement variable. The main aim of this work is to establish existence of weak solutions for the introduced hyperbolic-parabolic system. To this end, we first generalize the notion of weak solution introduced in WIAS 1520. Then we prove existence of weak solutions by means of regularization, time-discretization and different variational techniques.

  • CH. Heinemann, Ch. Kraus, Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary conditions on non-smooth domains, SIAM Journal on Mathematical Analysis, 47 (2015), pp. 2044--2073.
    Abstract
    The aim of this paper is to prove existence of weak solutions of hyperbolic-parabolic evolution inclusions defined on Lipschitz domains with mixed boundary conditions describing, for instance, damage processes and elasticity with inertial effects. To this end, we first present a suitable weak formulation in order to deal with such evolution inclusions. Then, existence of weak solutions is proven by utilizing time-discretization, $H^2$--regularization and variational techniques.

  • CH. Heinemann, E. Rocca, Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients, Mathematical Methods in the Applied Sciences, 38 (2015), pp. 4587--4612.
    Abstract
    In this paper we prove existence of global in time weak solutions for a highly nonlinear PDE system arising in the context of damage phenomena in thermoviscoelastic materials. The main novelty of the present contribution with respect to the ones already present in the literature consists in the possibility of taking into account a damage-dependent thermal expansion coefficient. This term implies the presence of nonlinear couplings in the PDE system, which make the analysis more challenging.

  • A. Mielke, J. Naumann, Global-in-time existence of weak solutions to Kolmogorov's two-equation model of turbulence, Comptes Rendus Mathematique. Academie des Sciences. Paris, 353 (2015), pp. 321--326.
    Abstract
    We consider Kolmogorov's model for the turbulent motion of an incompressible fluid in ℝ3. This model consists in a Navier-Stokes type system for the mean flow u and two further partial differential equations: an equation for the frequency ω and for the kinetic energy k each. We investigate this system of partial differential equations in a cylinder Ω x ]0,T[ (Ω ⊂ ℝ3 cube, 0 < T < +∞) under spatial periodic boundary conditions on ∂Ω x ]0,T[ and initial conditions in Ω x {0}. We present an existence result for a weak solution {u, ω, k} to the problem under consideration, with ω, k obeying the inequalities formula1 and formula2.

  • A. Mielke, Deriving amplitude equations via evolutionary Gamma convergence, Discrete and Continuous Dynamical Systems, 35 (2015), pp. 2679--2700.
    Abstract
    We discuss the justification of the Ginzburg-Landau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional Swift-Hohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary Gamma convergence by reformulating both equations as gradient systems. Using a suitable linear transformation we show Gamma convergence of the associated energies in suitable function spaces. The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savaré 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in L2, while for the case of a quadratic nonlinearity we need to impose weak convergence in H1. However, we do not need wellpreparedness of the initial conditions.

  • A. Mielke, J. Haskovec, P.A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, Journal of Dynamics and Differential Equations, 27 (2015), pp. 897--928.
    Abstract
    In this work we derive entropy decay estimates for a class of nonlinear reaction-diffusion systems modeling reversible chemical reactions under the assumption of detailed balance. In particular, we provide explicit bounds for the exponential decay of the relative logarithmic entropy, being based essentially on the application of the log-Sobolev inequality and a convexification argument only, making it quite robust to model variations. An important feature of our analysis is the interaction of the two different dissipative mechanisms: pure diffusion, forcing the system asymptotically to the homogeneous state, and pure reaction, forcing the solution to the (possibly inhomogeneous) chemical equilibrium. Only the interaction of both mechanisms provides the convergence to the homogeneous equilibrium. Moreover, we introduce two generalizations of the main result: we allow for vanishing diffusion constants in some chemical components, and we consider different entropy functionals. We provide a few examples to highlight the usability of our approach and shortly discuss possible further applications and open questions.

  • E. Rocca, R. Rossi, A degenerating PDE system for phase transitions and damage, Mathematical Models & Methods in Applied Sciences, 24 (2014), pp. 1265--1341.

  • S. Heinz, On the structure of the quasiconvex hull in planar elasticity, Calculus of Variations and Partial Differential Equations, 50 (2014), pp. 481--489.
    Abstract
    Let K and L be compact sets of real 2x2 matrices with positive determinant. Suppose that both sets are frame invariant, meaning invariant under the left action of the special orthogonal group. Then we give an algebraic characterization for K and L to be incompatible for homogeneous gradient Young measures. This result permits a simplified characterization of the quasiconvex hull and the rank-one convex hull in planar elasticity.

  • S. Jachalski, G. Kitavtsev, R. Taranets, Weak solutions to lubrication systems describing the evolution of bilayer thin films, Communications in Mathematical Sciences, 12 (2014), pp. 527--544.
    Abstract
    The existence of global nonnegative weak solutions is proved for coupled one-dimen- sional lubrication systems that describe the evolution of nanoscopic bilayer thin polymer films that take account of Navier-slip or no-slip conditions at both liquid-liquid and liquid-solid interfaces. In addition, in the presence of attractive van der Waals and repulsive Born intermolecular interactions existence of positive smooth solutions is shown.

  • B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Archive for Rational Mechanics and Analysis, 213 (2014), pp. 629--650.

  • A. Cesaroni, M. Novaga, E. Valdinoci, A symmetry result for the Ornstein--Uhlenbeck operator, Discrete and Continuous Dynamical Systems, 34 (2014), pp. 2451--2467.

  • R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 144 (2014), pp. 831--855.

  • N. Abatangelo, E. Valdinoci, A notion of nonlocal curvature, Numerical Functional Analysis and Optimization. An International Journal, 35 (2014), pp. 793--815.

  • P. Colli, G. Gilardi, P. Krejčí, P. Podio-Guidugli, J. Sprekels, Analysis of a time discretization scheme for a nonstandard viscous Cahn--Hilliard system, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), pp. 1061--1087.
    Abstract
    In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.

  • P. Colli, G. Gilardi, P. Krejčí, J. Sprekels, A continuous dependence result for a nonstandard system of phase field equations, Mathematical Methods in the Applied Sciences, 37 (2014), pp. 1318--1324.
    Abstract
    The present note deals with a nonstandard systems of differential equations describing a two-species phase segregation. This system naturally arises in the asymptotic analysis carried out recently by the same authors, as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, an existence result has been proved for the limit system in a very general framework. On the contrary, uniqueness was shown by assuming a constant mobility coefficient. Here, we generalize this result and prove a continuous dependence property in the case that the mobility coefficient suitably depends on the chemical potential.

  • P. Colli, G. Gilardi, P. Krejčí, J. Sprekels, A vanishing diffusion limit in a nonstandard system of phase field equations, Evolution Equations and Control Theory, 3 (2014), pp. 257--275.
    Abstract
    We are concerned with a nonstandard phase field model of Cahn--Hilliard type. The model, which was introduced by Podio-Guidugli (Ric. Mat. 2006), describes two-species phase segregation and consists of a system of two highly nonlinearly coupled PDEs. It has been recently investigated by Colli, Gilardi, Podio-Guidugli, and Sprekels in a series of papers: see, in particular, SIAM J. Appl. Math. 2011, and Boll. Unione Mat. Ital. 2012. In the latter contribution, the authors can treat the very general case in which the diffusivity coefficient of the parabolic PDE is allowed to depend nonlinearly on both variables. In the same framework, this paper investigates the asymptotic limit of the solutions to the initial-boundary value problems as the diffusion coefficient $sigma$ in the equation governing the evolution of the order parameter tends to zero. We prove that such a limit actually exists and solves the limit problem, which couples a nonlinear PDE of parabolic type with an ODE accounting for the phase dynamics. In the case of a constant diffusivity, we are able to show uniqueness and to improve the regularity of the solution.

  • P. Colli, G. Gilardi, J. Sprekels, On the Cahn--Hilliard equation with dynamic boundary conditions and a dominating boundary potential, Journal of Mathematical Analysis and Applications, 419 (2014), pp. 972--994.
    Abstract
    The Cahn--Hilliard and viscous Cahn--Hilliard equations with singular and possibly nonsmooth potentials and dynamic boundary condition are considered and some well-posedness and regularity results are proved.

  • M. Cozzi, A. Farina, E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations, Communications in Mathematical Physics, 331 (2014), pp. 189--214.

  • M.M. Fall, E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of (-Delta) su+u=up in RN when s is close to 1, Communications in Mathematical Physics, 329 (2014), pp. 383--404.

  • A. Farina, E. Valdinoci, Gradient bounds for anisotropic partial differential equations, Calculus of Variations and Partial Differential Equations, 49 (2014), pp. 923--936.

  • A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 94 (2014), pp. 156--170.

  • A. Gloria, S. Neukamm, F. Otto, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), pp. 325--346.
    Abstract
    We establish an optimal, linear rate of convergence for the stochastic homogenization of discrete linear elliptic equations. We consider the model problem of independent and identically distributed coefficients on a discretized unit torus. We show that the difference between the solution to the random problem on the discretized torus and the first two terms of the two-scale asymptotic expansion has the same scaling as in the periodic case. In particular the L2-norm in probability of the H1-norm in space of this error scales like ε, where ε is the discretization parameter of the unit torus. The proof makes extensive use of previous results by the authors, and of recent annealed estimates on the Greens function by Marahrens and the third author.

  • R. Haller-Dintelmann, W. Höppner, H.-Chr. Kaiser, J. Rehberg, G. Ziegler, Optimal elliptic Sobolev regularity near three-dimensional, multi-material Neumann vertices, Functional Analysis and its Applications, 48 (2014), pp. 208--222.
    Abstract
    We investigate optimal elliptic regularity (within the scale of Sobolev spaces) of anisotropic div-grad operators in three dimensions at a multi-material vertex on the Neumann boundary part of the polyhedral spatial domain. The gradient of a solution to the corresponding elliptic PDE (in a neighbourhood of the vertex) is integrable to an index greater than three.

  • P. Hornung, S. Neukamm, I. Velcic, Derivation of a homogenized nonlinear plate theory from 3D elasticity, Calculus of Variations and Partial Differential Equations, 51 (2014), pp. 677--699.

  • S. Melchionna, E. Rocca, On a nonlocal Cahn--Hilliard equation with a reaction term, Advances in Mathematical Sciences and Applications, 24 (2014), pp. 461--497.
    Abstract
    We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn- Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in u reaction term g(x, t, u).

  • A. Miranville, E. Rocca, G. Schimperna, A. Segatti, The Penrose--Fife phase-field model with coupled dynamic boundary conditions, Discrete and Continuous Dynamical Systems, 34 (2014), pp. 4259--4290.

  • O. Savin, E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm, Journal de Mathématiques Pures et Appliquées, 101 (2014), pp. 1--26.

  • A.F.M. TER Elst, M. Meyries, J. Rehberg, Parabolic equations with dynamical boundary conditions and source terms on interfaces, Annali di Matematica Pura ed Applicata. Serie Quarta. Fondazione Annali di Matematica Pura ed Applicata, c/o Dipartimento di Matematica ``U. Dini'', Firenze; Springer-Verlag, Heidelberg. English, French, German, Italian, English abstracts., 193 (2014), pp. 1295--1318.
    Abstract
    We consider parabolic equations with mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hypersurface, enforcing a jump in the conormal derivative. Only minimal regularity assumptions on the domain and the coefficients are imposed. It is shown that the corresponding linear operator enjoys maximal parabolic regularity in a suitable Lp-setting. The linear results suffice to treat also the corresponding nondegenerate quasilinear problems.

  • D.A. Gomes, S. Patrizi, V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 99 (2014), pp. 49--79.

  • A. Mielke, S. Reichelt, M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Networks Heterogeneous Media, 9 (2014), pp. 353--382.
    Abstract
    We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.

  • A. Mielke, Ch. Ortner, Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM Journal on Mathematical Analysis, 46 (2014), pp. 1317--1347.
    Abstract
    We formulate quasistatic nonlinear finite-strain viscoelasticity of rate-type as a gradient system. Our focus is on nonlinear dissipation functionals and distances that are related to metrics on weak diffeomorphisms and that ensure time-dependent frame-indifference of the viscoelastic stress. In the multidimensional case we discuss which dissipation distances allow for the solution of the time-incremental problem. Because of the missing compactness the limit of vanishing timesteps can only be obtained by proving some kind of strong convergence. We show that this is possible in the one-dimensional case by using a suitably generalized convexity in the sense of geodesic convexity of gradient flows. For a general class of distances we derive discrete evolutionary variational inequalities and are able to pass to the time-continuous in some case in a specific case.

  • A. Mielke, M.A. Peletier, D.R.M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Analysis, 41 (2014), pp. 1293--1325.
    Abstract
    Motivated by the occurence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions ℒ that induce a flow, given by ℒ(zt,żt)=0. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when ℒ is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure.

  • A. Mielke, S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, XIII (2014), pp. 67--135.
    Abstract
    We consider quasilinear parabolic systems with a nonsmooth rate-independent dissipation term in the limit of very slow loading rates, or equivalently with fixed loading and vanishing viscosity $varepsilon>0$. Because for nonconvex energies the solutions will develop jumps, we consider the vanishing-viscosity limit for the graphs of the solutions in the extended state space in arclength parametrization, where the norm associated with the viscosity is used to keep the subdifferential structure of the problem. A crucial point in the analysis are new a priori estimates that are rate independent and that allows us to show that the total length of the graph remains bounded in the vanishing-viscosity limit. To derive these estimates we combine parabolic regularity estimates with ideas from rate-independent systems.

  • S. Neukamm, H. Olbermann, Homogenization of the nonlinear bending theory for plates, Calculus of Variations and Partial Differential Equations, (published online on Sept. 14, 2014), DOI 10.1007/s00526-014-0765-2 .
    Abstract
    We carry out the spatially periodic homogenization of nonlinear bending theory for plates. The derivation is rigorous in the sense of Gamma-convergence. In contrast to what one naturally would expect, our result shows that the limiting functional is not simply a quadratic functional of the second fundamental form of the deformed plate as it is the case in nonlinear plate theory. It turns out that the limiting functional discriminates between whether the deformed plate is locally shaped like a "cylinder" or not. For the derivation we investigate the oscillatory behavior of sequences of second fundamental forms associated with isometric immersions, using two-scale convergence. This is a non-trivial task, since one has to treat two-scale convergence in connection with a nonlinear differential constraint.

  • P.-É. Druet, Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface, Mathematica Bohemica, 138 (2013), pp. 185--224.
    Abstract
    We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a compatibility condition for the angle of contact of the two surfaces and the boundary data, we prove the existence of square-integrable second derivatives, and the global Lipschitz continuity of the solution. We show that the second weak derivatives remain integrable to a certain power less than two if the compatibility condition is violated.

  • CH. Heinemann, Ch. Kraus, Existence results for diffuse interface models describing phase separation and damage, European Journal of Applied Mathematics, 24 (2013), pp. 179--211.
    Abstract
    In this paper we analytically investigate Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. We are interested in the case where the free energy contains logarithmic terms of the chemical concentration variable and quadratic terms of the gradient of the damage variable. For elastic Cahn-Hilliard and Allen-Cahn systems coupled with uni-directional damage processes, an appropriate notion of weak solutions is presented as well as an existence result based on certain regularization methods and an higher integrability result for the strain.

  • K. Götze, Strong solutions for the interaction of a rigid body and a viscoelastic fluid, Journal of Mathematical Fluid Mechanics, 15 (2013), pp. 663--688.
    Abstract
    We study a coupled system of equations describing the movement of a rigid body which is immersed in a viscoelastic fluid. It is shown that under natural assumptions on the data and for general goemetries of the rigid body, excluding contact scenarios, a unique local-in-time strong solution exists.

  • M. Liero, U. Stefanelli, A new minimum principle for Lagrangian mechanics, Journal of Nonlinear Science, 23 (2013), pp. 179--204.
    Abstract
    We present a novel variational approach to Lagrangian mechanics based on elliptic regularization with respect to time. A class of parameter-dependent global-in-time minimization problems is presented and the convergence of the respective minimizers to the solution of the system of Lagrange's equations is ascertained. Moreover, we extend this perspective to mixed dissipative/nondissipative situations, present a finite time-horizon version of this approach, and provide related Gamma-convergence results. Finally, some discussion on corresponding time-discrete versions of the principle is presented.

  • M. Liero, U. Stefanelli, Weighted Inertia-Dissipation-Energy functionals for semilinear equations, Bollettino della Unione Matematica Italiana. Serie 9, VI (2013), pp. 1--27.

  • M. Liero, A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Philosophical Transactions of the Royal Society A : Mathematical, Physical & Engineering Sciences, 371 (2013), pp. 20120346/1--20120346/28.
    Abstract
    We consider systems of reaction-diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic lambda-convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift-diffusion system, provide a survey on the applicability of the theory. We consider systems of reaction-diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic lambda-convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift-diffusion system, provide a survey on the applicability of the theory.

  • M. Liero, Passing from bulk to bulk/surface evolution in the Allen--Cahn equation, NoDEA. Nonlinear Differential Equations and Applications, 20 (2013), pp. 919--942.
    Abstract
    In this paper we formulate a boundary layer approximation for an Allen-Cahn-type equation involving a small parameter $eps$. Here, $eps$ is related to the thickness of the boundary layer and we are interested in the limit when $eps$ tends to 0 in order to derive nontrivial boundary conditions. The evolution of the system is written as an energy balance formulation of the L^2-gradient flow with the corresponding Allen-Cahn energy functional. By transforming the boundary layer to a fixed domain we show the convergence of the solutions to a solution of a limit system. This is done by using concepts related to Gamma- and Mosco convergence. By considering different scalings in the boundary layer we obtain different boundary conditions.

  • S. Neukamm, I. Velcic, Derivation of a homogenized von-Kármán plate theory from 3D nonlinear elasticity, Mathematical Models & Methods in Applied Sciences, 23 (2013), pp. 2701--2748.
    Abstract
    We rigorously derive a homogenized von-Kármán plate theory as a Gamma-limit from nonlinear three-dimensional elasticity by combining homogenization and dimension reduction. Our starting point is an energy functional that describes a nonlinear elastic, three-dimensional plate with spatially periodic material properties. The functional features two small length scales: the period $epsilon$ of the elastic composite material, and the thickness h of the slender plate. We study the behavior as $epsilon$ and h simultaneously converge to zero in the von-Kármán scaling regime. The obtained limit is a homogenized von-Kármán plate model. Its effective material properties are determined by a relaxation formula that exposes a non-trivial coupling of the behavior of the out-of-plane displacement with the oscillatory behavior in the in-plane directions. In particular, the homogenized coefficients depend on the relative scaling between h and $epsilon$, and different values arise for h<<$epsilon$, $epsilon$   h and $epsilon$ << h.

  • A. Fiaschi, D. Knees, S. Reichelt, Global higher integrability of minimizers of variational problems with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 401 (2013), pp. 269--288.
    Abstract
    We consider integral functionals with densities of p-growth, with respect to gradients, on a Lipschitz domain with mixed boundary conditions. The aim of this paper is to prove that, under uniform estimates within certain classes of p-growth and coercivity assumptions on the density, the minimizers are of higher integrability order, meaning that they belong to the space of first order Sobolev functions with an integrability of order p+ε for a uniform ε >0. The results are applied to a model describing damage evolution in a nonlinear elastic body and to a model for shape memory alloys.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, An asymptotic analysis for a nonstandard Cahn--Hilliard system with viscosity, Discrete and Continuous Dynamical Systems -- Series S, 6 (2013), pp. 353--368.
    Abstract
    This paper is concerned with a diffusion model of phase-field type, consisting of a parabolic system of two partial differential equations, interpreted as balances of microforces and microenergy, for two unknowns: the problem's order parameter $rho$ and the chemical potential $mu$; each equation includes a viscosity term -- respectively, $varepsilon,partial_tmu$ and $delta,partial_trho$ -- with $varepsilon$ and $delta$ two positive parameters; the field equations are complemented by Neumann homogeneous boundary conditions and suitable initial conditions. In a recent paper [5], we proved that this problem is well-posed and investigated the long-time behavior of its $(varepsilon,delta)-$solutions. Here we discuss the asymptotic limit of the system as $eps$ tends to 0. We prove convergence of $(varepsilon,delta)-$solutions to the corresponding solutions for the case $eps$ =0, whose long-time behavior we characterize; in the proofs, we employ compactness and monotonicity arguments.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn--Hilliard system with viscosity, Journal of Differential Equations, 254 (2013), pp. 4217--4244.
    Abstract
    Existence and uniqueness are investigated for a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. This system aims to model two-species phase segregation on an atomic [19]; in the balance equations of microforces and microenergy, the two unknowns are the order parameter $rho$ and the chemical potential $mu$. A simpler version of the same system has recently been discussed in [8]. In this paper, a fairly more general phase-field equation for $rho$ is coupled with a genuinely nonlinear diffusion equation for $mu$. The existence of a global-in-time solution is proved with the help of suitable a priori estimates. In the case of costant atom mobility, a new and rather unusual uniqueness proof is given, based on a suitable combination of variables.

  • M.H. Duong, V. Laschos, M. Renger, Wasserstein gradient flows from large deviations of many-particle limits, ESAIM. Control, Optimisation and Calculus of Variations, 19 (2013), pp. 1166--1188.

  • M. Geissert, K. Götze, M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Transactions of the American Mathematical Society, 365 (2013), pp. 1393--1439.
    Abstract
    Consider the system of equations describing the motion of a rigid body immersed in a viscous, incompressible fluid of Newtonian or generalized Newtonian type. The class of fluids considered includes in particular shear-thinning or shear-thickening fluids of power-law type of exponent $ dgeq 1$. We develop a method to prove that this system admits a unique, local, strong solution in the $ L^p$-setting. The approach presented in the case of generalized Newtonian fluids is based on the theory of quasi-linear evolution equations and requires that the exponent $ p$ satisfies the condition $ p>5$.

  • M.A. Peletier, M. Renger, M. Veneroni, Variational formulation of the Fokker--Planck equation with decay: A particle approach, Communications in Contemporary Mathematics, 15 (2013), pp. 1350017/1--1350017/43.

  • A. Glitzky, A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 64 (2013), pp. 29--52.
    Abstract
    We derive gradient-flow formulations for systems describing drift-diffusion processes of a finite number of species which undergo mass-action type reversible reactions. Our investigations cover heterostructures, where material parameter may depend in a nonsmooth way on the space variable. The main results concern a gradient flow formulation for electro-reaction-diffusion systems with active interfaces permitting drift-diffusion processes and reactions of species living on the interface and transfer mechanisms allowing bulk species to jump into an interface or to pass through interfaces. The gradient flows are formulated in terms of two functionals: the free energy and the dissipation potential. Both functionals consist of a bulk and an interface integral. The interface integrals determine the interface dynamics as well as the self-consistent coupling to the model in the bulk. The advantage of the gradient structure is that it automatically generates thermodynamically consistent models.

  • D. Knees, R. Rossi, Ch. Zanini, A vanishing viscosity approach to a rate-independent damage model, Mathematical Models & Methods in Applied Sciences, 23 (2013), pp. 565--616.
    Abstract
    We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jumps.

  • D. Knees, A. Schröder, Computational aspects of quasi-static crack propagation, Discrete and Continuous Dynamical Systems -- Series S, 6 (2013), pp. 63--99.
    Abstract
    The focus of this note lies on the numerical analysis of models describing the propagation of a single crack in a linearly elastic material. The evolution of the crack is modeled as a rate-independent process based on the Griffith criterion. We follow two different approaches for setting up mathematically well defined models: the global energetic approach and an approach based on a viscous regularization. We prove the convergence of solutions of fully discretized models (i.e. with respect to time and space) and derive relations between the discretization parameters (mesh size, time step size, viscosity parameter, crack increment) which guarantee the convergence of the schemes. Further, convergence rates are provided for the approximation of energy release rates by certain discrete energy release rates. Thereby we discuss both, models with self-contact conditions on the crack faces as well as models with pure Neumann conditions on the crack faces. The convergence proofs rely on regularity estimates for the elastic fields close to the crack tip and local and global finite element error estimates. Finally the theoretical results are illustrated with some numerical calculations.

  • M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete and Continuous Dynamical Systems -- Series S, 6 (2013), pp. 235--255.
    Abstract
    An existence result for energetic solutions of rate-independent damage processes is established. We consider a body consisting of a physically linearly elastic material undergoing infinitesimally small deformations and partial damage. In [ThomasMielke10DamageZAMM] an existence result in the small strain setting was obtained under the assumption that the damage variable z satisfies z∈ W1,r(Ω) with r∈(1,∞) for Ω⊂Rd. We now cover the case r=1. The lack of compactness in W1,1(Ω) requires to do the analysis in BV(Ω). This setting allows it to consider damage variables with values in 0,1. We show that such a brittle damage model is obtained as the Γ-limit of functionals of Modica-Mortola type.

  • D. Hömberg, K. Krumbiegel, J. Rehberg, Optimal control of a parabolic equation with dynamic boundary condition, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 67 (2013), pp. 3--31.
    Abstract
    We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the Robin boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an $L^p$ function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.

  • A. Mielke, R. Rossi, G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations, Calculus of Variations and Partial Differential Equations, 46 (2013), pp. 253--310.
    Abstract
    In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional, for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an application to a material model in finite-strain elasticity.

  • A. Mielke, E. Rohan, Homogenization of elastic waves in fluid-saturated porous media using the Biot model, Mathematical Models & Methods in Applied Sciences, 23 (2013), pp. 873--916.
    Abstract
    We consider periodically heterogeneous fluid-saturated poroelastic media described by the Biot model with inertia effects. The weak and semistrong formulations for displacement, seepage and pressure fields involve three equations expressing the momentum and mass balance and the Darcy law. Using the two-scale homogenization method we obtain the limit two-scale problem and prove the existence and uniqueness of its weak solutions. The Laplace transformation in time is used to decouple the macroscopic and microscopic scales. It is shown that the seepage velocity is eliminated form the macroscopic equations involving strain and pressure fields only. The plane harmonic wave propagation is studied using an example of layered medium. Illustrations show some influence of the orthotropy on the dispersion phenomena.

  • A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calculus of Variations and Partial Differential Equations, 48 (2013), pp. 1-31.
    Abstract
    We consider finite-dimensional, time-continuous Markov chains satisfying the detailed balance condition as gradient systems with the relative entropy E as driving functional. The Riemannian metric is defined via its inverse matrix called the Onsager matrix K. We provide methods for establishing geodesic λ-convexity of the entropy and treat several examples including some more general nonlinear reaction systems

  • A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete and Continuous Dynamical Systems -- Series S, 6 (2013), pp. 479--499.
    Abstract
    We show that many couplings between parabolic systems for processes in solids can be formulated as a gradient system with respect to the total free energy or the total entropy. This includes Allen-Cahn, Cahn-Hilliard, and reaction-diffusion systems and the heat equation. For this, we write the coupled system as an Onsager system (X,Φ,K) defining the evolution $dot U$= - K(U) DΦ(U). Here Φ is the driving functional, while the Onsager operator K(U) is symmetric and positive semidefinite. If the inverse G=K-1 exists, the triple (X,Φ,G) defines a gradient system. Onsager systems are well suited to model bulk-interface interactions by using the dual dissipation potential Ψ*(U, Ξ)= ½ ⟨Ξ K(U) Ξ⟩. Then, the two functionals Φ and Ψ* can be written as a sum of a volume integral and a surface integral, respectively. The latter may contain interactions of the driving forces in the interface as well as the traces of the driving forces from the bulk. Thus, capture and escape mechanisms like thermionic emission appear naturally in Onsager systems, namely simply through integration by parts.

  • P.-E. Druet, The classical solvability of the contact angle problem for generalized equations of mean curvature type, Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 69 (2012), pp. 233--258.
    Abstract
    In this paper, mean curvature type equations with general potentials and contact angle boundary conditions are considered. We extend the ideas of Ural'tseva, formulating sharper hypotheses for the existence of a classical solution. Corner stone for these results is a method to estimate quantities on the boundary of the free surface. We moreover provide alternative proofs for the higher-order estimates, and for the existence result.

  • M. Liero, Th. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via $Gamma$-convergence, NoDEA. Nonlinear Differential Equations and Applications, 19 (2012), pp. 437--457.
    Abstract
    This paper deals with dimension reduction in linearized elastoplasticity in the rate-independent case. The reference configuration of the elastoplastic body is given by a two-dimensional middle surface and a small but positive thickness. We derive a limiting model for the case in which the thickness of the plate tends to 0. This model contains membrane and plate deformations which are coupled via plastic strains. The convergence analysis is based on an abstract Gamma convergence theory for rate-independent evolution formulated in the framework of energetic solutions. This concept is based on an energy-storage functional and a dissipation functional, such that the notion of solution is phrased in terms of a stability condition and an energy balance.

  • A. Fiaschi, D. Knees, U. Stefanelli, Young measure quasi-static damage evolution, Archive for Rational Mechanics and Analysis, 203 (2012), pp. 415--453.

  • S. Arnrich, A. Mielke, M.A. Peletier, G. Savaré, M. Veneroni, Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calculus of Variations and Partial Differential Equations, 44 (2012), pp. 419--454.
    Abstract
    We study a singular-limit problem arising in the modelling of chemical reactions. At finite $e>0$, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by $1/e$, and in the limit $eto0$, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the propety of being a emphcurve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. We then prove a Gamma-convergence result for the functional in this topology, and we identify the limiting functional and the differential equation that it represents. A consequence of these results is that solutions of the $e$-problem converge to a solution of the limiting problem.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Continuous dependence for a nonstandard Cahn--Hilliard system with nonlinear atom mobility, Rendiconti del Seminario Matematico. Universita e Politecnico Torino, 70 (2012), pp. 27--52.
    Abstract
    This note is concerned with a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. The system arises from a model of two-species phase segregation on an atomic lattice [Podio-Guidugli 2006]; it consists of the balance equations of microforces and microenergy; the two unknowns are the order parameter $rho$ and the chemical potential $mu$. Some recent results obtained for this class of problems is reviewed and, in the case of a nonconstant and nonlinear atom mobility, uniqueness and continuous dependence on the initial data are shown with the help of a new line of argumentation developed in Colli/Gilardi/Podio-Guidugli/Sprekels 2012.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Continuum Mechanics and Thermodynamics, 24 (2012), pp. 437--459.
    Abstract
    We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard type. The model describes two-species phase segregation on an atomic lattice under the presence of diffusion; it has been introduced recently in [4], on the basis of the theory developed in [15], and consists of a system of two highly nonlinearly coupled PDEs. For this reason, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Global existence for a strongly coupled Cahn--Hilliard system with viscosity, Bollettino della Unione Matematica Italiana. Serie 9, 5 (2012), pp. 495--513.
    Abstract
    An existence result is proved for a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. This system is meant to model two-species phase segregation on an atomic lattice under the presence of diffusion. A similar system has been recently introduced and analyzed in [CGPS11]. Both systems conform to the general theory developed in [Pod06]: two parabolic PDEs, interpreted as balances of microforces and microenergy, are to be solved for the order parameter $rho$ and the chemical potential $mu$. In the system studied in this note, a phase-field equation in $rho$ fairly more general than in [CGPS11] is coupled with a highly nonlinear diffusion equation for $mu$, in which the conductivity coefficient is allowed to depend nonlinearly on both variables.

  • P. Colli, G. Gilardi, J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan Journal of Mathematics, 80 (2012), pp. 119--149.
    Abstract
    We investigate a nonstandard phase field model of Cahn-Hilliard type. The model, which was introduced in Podio-Guidugli (2006), describes two-species phase segregation and consists of a system of two highly nonlinearly coupled PDEs. It has been studied recently in Colli, Gilardi, Podio-Guidugli, and Sprekels (2011a and b) for the case of homogeneous Neumann boundary conditions. In this paper, we investigate the case that the boundary condition for one of the unknowns of the system is of third kind and nonhomogeneous. For the resulting system, we show well-posedness, and we study optimal boundary control problems. Existence of optimal controls is shown, and the first-order necessary optimality conditions are derived. Owing to the strong nonlinear couplings in the PDE system, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional will be of standard type.

  • K. Hackl, S. Heinz, A. Mielke, A model for the evolution of laminates in finite-strain elastoplasticity, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 92 (2012), pp. 888--909.
    Abstract
    We study the time evolution in elastoplasticity within the rate-independent framework of generalized standard materials. Our particular interest is the formation and the evolution of microstructure. Providing models where existence proofs are possible is a challenging task since the presence of microstructure comes along with a lack of convexity and, hence, compactness arguments cannot be applied to prove the existence of solutions. In order to overcome this problem, we will incorporate information on the microstructure into the internal variable, which is still compatible with generalized standard materials. More precisely, we shall allow for such microstructure that is given by simple or sequential laminates. We will consider a model for the evolution of these laminates and we will prove a theorem on the existence of solutions to any finite sequence of time-incremental minimization problems. In order to illustrate the mechanical consequences of the theory developed some numerical results, especially dealing with the rotation of laminates, are presented.

  • A.F.M. TER Elst, J. Rehberg, $L^infty$-estimates for divergence operators on bad domains, Analysis and Applications, 10 (2012), pp. 207--214.
    Abstract
    In this paper, we prove $L^infty$-estimates for solutions of divergence operators in case of mixed boundary conditions. In this very general setting, the Dirichlet boundary part may be arbitrarily wild, i.e. no regularity conditions have to be imposed on it.

  • G. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, Ch. Kraus, A diffuse interface model for quasi-incompressible flows: Sharp interface limits and numerics, ESAIM Proceedings, 38 (2012), pp. 54--77.
    Abstract
    In this contribution, we investigate a diffuse interface model for quasi-incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn-Hilliard equation numerically by a Local Discontinuous Galerkin scheme.

  • A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM Journal on Mathematical Analysis, 44 (2012), pp. 3874--3900.
    Abstract
    We introduce an electronic model for solar cells taking into account heterostructures with active interfaces and energy resolved volume and interface trap densities. The model consists of continuity equations for electrons and holes with thermionic emission transfer conditions at the interface and of ODEs for the trap densities with energy level and spatial position as parameters, where the right hand sides contain generation-recombination as well as ionization reactions. This system is coupled with a Poisson equation for the electrostatic potential. We show the thermodynamic correctness of the model and prove a priori estimates for the solutions to the evolution system. Moreover, existence and uniqueness of weak solutions of the problem are proven. For this purpose we solve a regularized problem and verify bounds of the corresponding solution not depending on the regularization level.

  • D. Knees, A. Schröder, Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints, Mathematical Methods in the Applied Sciences, 35 (2012), pp. 1859--1884.
    Abstract
    A global higher differentiability result in Besov spaces is proved for the displacement fields of linear elastic models with self contact. Domains with cracks are studied, where nonpenetration conditions/Signorini conditions are imposed on the crack faces. It is shown that in a neighborhood of crack tips (in 2D) or crack fronts (3D) the displacement fields are B 3/2 2,∞ regular. The proof relies on a difference quotient argument for the directions tangential to the crack. In order to obtain the regularity estimates also in the normal direction, an argument due to Ebmeyer/Frehse/Kassmann is modified. The methods are then applied to further examples like contact problems with nonsmooth rigid foundations, to a model with Tresca friction and to minimization problems with nonsmooth energies and constraints as they occur for instance in the modeling of shape memory alloys. Based on Falk's approximation Theorem for variational inequalities, convergence rates for FE-discretizations of contact problems are derived relying on the proven regularity properties. Several numerical examples illustrate the theoretical results.

  • W. Dreyer, J. Giesselmann, Ch. Kraus, Ch. Rohde, Asymptotic analysis for Korteweg models, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 14 (2012), pp. 105--143.
    Abstract
    This paper deals with a sharp interface limit of the isothermal Navier-Stokes-Korteweg system. The sharp interface limit is performed by matched asymptotic expansions of the fields in powers of the interface width. These expansions are considered in the interfacial region (inner expansions) and in the bulk (outer expansion) and are matched order by order. Particularly we consider the first orders of the corresponding inner equations obtained by a change of coordinates in an interfacial layer. For a specific scaling we establish solvability criteria for these inner equations and recover the results within the general setting of jump conditions for sharp interface models.

  • A. Mielke, R. Rossi, G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces, Milan Journal of Mathematics, 80 (2012), pp. 381--410.
    Abstract
    We study the asymptotic behaviour of families of gradient flows in a general metric setting, when the metric-dissipation potentials degenerate in the limit to a dissipation with linear growth. We present a general variational definition of BV solutions to metric evolutions, showing the different characterization of the solution in the absolutely continuous regime, on the singular Cantor part, and along the jump transitions. By using tools of metric analysis, BV functions and blow-up by time rescaling, we show that this variational notion is stable with respect to a wide class of perturbations involving energies, distances, and dissipation potentials. As a particular application, we show that BV solutions to rate-independent problems arise naturally as a limit of p-gradient flows, p>1, when the exponents p converge to 1.

  • A. Mielke, Emergence of rate-independent dissipation from viscous systems with wiggly energies, Continuum Mechanics and Thermodynamics, 24 (2012), pp. 591--606.
    Abstract
    We consider the passage from viscous system to rate-independent system in the limit of vanishing viscosity and for wiggly energies. Our new convergence approach is based on the (R,R*) formulation by De Giorgi, where we pass to the Γ limit in the dissipation functional. The difficulty is that the type of dissipation changes from a quadratic functional to one that is homogeneous of degree 1. The analysis uses the decomposition of the restoring force into a macroscopic part and a fluctuating part, where the latter is handled via homogenization.

  • CH. Heinemann, Ch. Kraus, Existence of weak solutions for Cahn--Hilliard systems coupled with elasticity and damage, Advances in Mathematical Sciences and Applications, 21 (2011), pp. 321--359.
    Abstract
    The Cahn-Hilliard model is a typical phase field approach for describing phase separation and coarsening phenomena in alloys. This model has been generalized to the so-called Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation phenomena, which occurs during phase separation in the material. Evolving microstructures such as phase separation and coarsening processes have a strong influence on damage initiation and propagation in alloys. We develop the existing framework of Cahn-Hilliard and Cahn-Larché systems by coupling these systems with a unidirectional evolution inclusion for an internal variable, describing damage processes. After establishing a weak notion of the corresponding evolutionary system, we prove existence of weak solutions for rate-dependent damage processes under certain growth conditions of the energy functional.

  • P. Colli, P. Krejčí, E. Rocca, J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity, Journal of Differential Equations, 251 (2011), pp. 1354--1387.

  • P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn--Hilliard system, SIAM Journal on Applied Mathematics, 71 (2011), pp. 1849--1870.
    Abstract
    We study a diffusion model of phase field type, consisting of a system of two partial differential equations encoding the balances of microforces and microenergy; the two unknowns are the order parameter and the chemical potential. By a careful development of uniform estimates and the deduction of certain useful boundedness properties, we prove existence and uniqueness of a global-in-time smooth solution to the associated initial/boundary-value problem; moreover, we give a description of the relative $omega$-limit set.

  • R. Haller-Dintelmann, H.-Chr. Kaiser, J. Rehberg, Direct computation of elliptic singularities across anisotropic, multi-material edges, Journal of Mathematical Sciences (New York), 172 (2011), pp. 589--622.
    Abstract
    We characterise the singularities of elliptic div-grad operators at points or edges where several materials meet on a Dirichlet or Neumann part of the boundary of a two- or three-dimensional domain. Special emphasis is put on anisotropic coefficient matrices. The singularities can be computed as roots of a characteristic transcendental equation. We establish uniform bounds for the singular values for several classes of three- and four-material edges. These bounds can be used to prove optimal regularity results for elliptic div-grad operators on three-dimensional, heterogeneous, polyhedral domains with mixed boundary conditions. We demonstrate this for the benchmark L--shape problem.

  • K. Hermsdörfer, Ch. Kraus, D. Kröner, Interface conditions for limits of the Navier--Stokes--Korteweg model, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 13 (2011), pp. 239--254.
    Abstract
    In this contribution we will study the behaviour of the pressure across phase boundaries in liquid-vapour flows. As mathematical model we will consider the static version of the Navier-Stokes-Korteweg model which belongs to the class of diffuse interface models. From this static equation a formula for the pressure jump across the phase interface can be derived. If we perform then the sharp interface limit we see that the resulting interface condition for the pressure seems to be inconsistent with classical results of hydrodynamics. Therefore we will present two approaches to recover the results of hydrodynamics in the sharp interface limit at least for special situations.

  • A. Glitzky, Analysis of electronic models for solar cells including energy resolved defect densities, Mathematical Methods in the Applied Sciences, 34 (2011), pp. 1980--1998.
    Abstract
    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level.

  • CH. Kraus, The degenerate and non-degenerate Stefan problem with inhomogeneous and anisotropic Gibbs--Thomson law, European Journal of Applied Mathematics, 22 (2011), pp. 393--422.
    Abstract
    The Stefan problem is coupled with a spatially inhomogeneous and anisotropic Gibbs-Thomson condition at the phase boundary. We show the long-time existence of weak solutions for the non-degenerate Stefan problem with a spatially inhomogeneous and anisotropic Gibbs-Thomson law and a conditional existence result for the corresponding degenerate Stefan problem. To this end approximate solutions are constructed by means of variational functionals with spatially inhomogeneous and anisotropic interfacial energy. By passing to the limit, we establish solutions of the Stefan problem with a spatially inhomogeneous and anisotropic Gibbs-Thomson law in a weak generalized BV-formulation.

  • A. Mielke, U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM. Control, Optimisation and Calculus of Variations, 17 (2011), pp. 52--85.
    Abstract
    We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz in “A class of minimum principles for characterizing the trajectories of dissipative systems”. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from S. Conti and M. Ortiz “Minimum principles for the trajectories of systems governed by rate problems”.

  • A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), pp. 1329--1346.
    Abstract
    In recent years the theory of Wasserstein distances has opened up a new treatment of the diffusion equations as gradient systems, where the entropy takes the role of the driving functional and where the space is equipped with the Wasserstein metric. We show that this structure can be generalized to closed reaction-diffusion systems, where the free energy (or the entropy) is the driving functional and further conserved quantities may exists, like the total number of chemical species. The metric is constructed by using the dual dissipation potential, which is a convex function of the chemical potentials. In particular, it is possible to treat diffusion and reaction terms simultaneously. The same ideas extend to semiconductor equations involving the electron and hole densities, the electrostatic potential, and the temperature.

  • A. Mielke, Complete-damage evolution based on energies and stresses, Discrete and Continuous Dynamical Systems -- Series S, 4 (2011), pp. 423--439.
    Abstract
    The rate-independent damage model recently developed in Bouchitté, Mielke, Roubíček “A complete-damage problem at small strains" allows for complete damage, such that the deformation is no longer well-defined. The evolution can be described in terms of energy densities and stresses. Using concepts of parametrized Gamma convergence, we generalize the theory to convex, but non-quadratic elastic energies by providing Gamma convergence of energetic solutions from partial to complete damage under rather general conditions.

  • A. Glitzky, Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems, Mathematische Nachrichten, 284 (2011), pp. 2159--2174.
    Abstract
    Our focus are energy estimates for discretized reaction-diffusion systems for a finite number of species. We introduce a discretization scheme (Voronoi finite volume in space and fully implicit in time) which has the special property that it preserves the main features of the continuous systems, namely positivity, dissipativity and flux conservation. For a class of Voronoi finite volume meshes we investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the discrete free energy to its equilibrium value with a unified rate of decay for this class of discretizations. The essential idea is an estimate of the free energy by the dissipation rate which is proved indirectly by taking into account sequences of Voronoi finite volume meshes. Essential ingredient in that proof is a discrete Sobolev-Poincaré inequality.

  • J.A. Griepentrog, L. Recke, Local existence, uniqueness, and smooth dependence for nonsmooth quasilinear parabolic problems, Journal of Evolution Equations, 10 (2010), pp. 341--375.
    Abstract
    A general theory on local existence, uniqueness, regularity, and smooth dependence in Hölder spaces for a general class of quasilinear parabolic initial boundary value problems with nonsmooth data has been developed. As a result the gap between low smoothness of the data, which is typical for many applications, and high smoothness of the solutions, which is necessary for the applicability of differential calculus to the abstract formulations of the initial boundary value problems, has been closed. The main tools are new maximal regularity results of the first author in Sobolev-Morrey spaces, linearization techniques and the Implicit Function Theorem. Typical applications are transport processes of charged particles in semiconductor heterostructures, phase separation processes of nonlocally interacting particles, chemotactic aggregation in heterogeneous environments as well as optimal control by means of quasilinear elliptic and parabolic PDEs with nonsmooth data.

  • M. Thomas, A. Mielke, Damage of nonlinearly elastic materials at small strain --- Existence and regularity results, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 90 (2010), pp. 88--112.
    Abstract
    In this paper an existence result for energetic solutions of rate-independent damage processes is established and the temporal regularity of the solution is discussed. We consider a body consisting of a physically nonlinearly elastic material undergoing small deformations and partial damage. The present work is a generalization of [Mielke-Roubicek 2006] concerning the properties of the stored elastic energy density as well as the suitable Sobolev space for the damage variable: While previous work assumes that the damage variable z satisfies z ∈ W^1,r (Omega) with r>d for Omega ⊂ R^d, we can handle the case r>1 by a new technique for the construction of joint recovery sequences. Moreover, this work generalizes the temporal regularity results to physically nonlinearly elastic materials by analyzing Lipschitz- and Hölder-continuity of solutions with respect to time.

  • H. Garcke, Ch. Kraus, An anisotropic, inhomogeneous, elastically modified Gibbs--Thomson law as singular limit of a diffuse interface model, Advances in Mathematical Sciences and Applications, 20 (2010), pp. 511--545.
    Abstract
    We consider the sharp interface limit of a diffuse phase field model with prescribed total mass taking into account a spatially inhomogeneous anisotropic interfacial energy and an elastic energy. The main aim is the derivation of a weak formulation of an anisotropic, inhomogeneous, elastically modified Gibbs-Thomson law in the sharp interface limit. To this end we show that one can pass to the limit in the weak formulation of the Euler-Lagrange equation of the diffuse phase field energy.

  • J. Giannoulis, A. Mielke, Ch. Sparber, High-frequency averaging in semi-classical Hartree-type equations, Asymptotic Analysis, 70 (2010), pp. 87--100.
    Abstract
    We investigate the asymptotic behavior of solutions to semi-classical Schröodinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.

  • P. Gruber, D. Knees, S. Nesenenko, M. Thomas, Analytical and numerical aspects of time-dependent models with internal variables, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 90 (2010), pp. 861--902.
    Abstract
    In this paper some analytical and numerical aspects of time-dependent models with internal variables are discussed. The focus lies on elasto/visco-plastic models of monotone type arising in the theory of inelastic behavior of materials. This class of problems includes the classical models of elasto-plasticity with hardening and viscous models of the Norton-Hoff type. We discuss the existence theory for different models of monotone type, give an overview on spatial regularity results for solutions to such models and illustrate a numerical solution algorithm at an example. Finally, the relation to the energetic formulation for rate-independent processes is explained and temporal regularity results based on different convexity assumptions are presented.

  • R. Haller-Dintelmann, J. Rehberg, Coercivity for elliptic operators and positivity of solutions on Lipschitz domains, Archiv der Mathematik, 95 (2010), pp. 457--468.
    Abstract
    We show that usual second order operators in divergence form satisfy coercivity on Lipschitz domains if they are either complemented with homogeneous Dirichlet boundary conditions on a set of non-zero boundary measure or if a suitable Robin boundary condition is posed. Moreover, we prove the positivity of solutions in a general, abstract setting, provided that the right hand side is a positive functional. Finally, positive elements from $W^-1,2$ are identified as positive measures.

  • W. Dreyer, Ch. Kraus, On the van der Waals--Cahn--Hilliard phase-field model and its equilibria conditions in the sharp interface limit, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 140 A (2010), pp. 1161--1186.
    Abstract
    We study the equilibria of liquid--vapor phase transitions of a single substance at constant temperature and relate the sharp interface model of classical thermodynamics to a phase field model that determines the equilibria by the stationary van der Waals--Cahn--Hilliard theory.
    For two reasons we reconsider this old problem. 1. Equilibria in a two phase system can be established either under fixed total volume of the system or under fixed external pressure. The latter case implies that the domain of the two--phase system varies. However, in the mathematical literature rigorous sharp interface limits of phase transitions are usually considered under fixed volume. This brings the necessity to extend the existing tools for rigorous sharp interface limits to changing domains since in nature most processes involving phase transitions run at constant pressure. 2. Thermodynamics provides for a single substance two jump conditions at the sharp interface, viz. the continuity of the specific Gibbs free energies of the adjacent phases and the discontinuity of the corresponding pressures, which is balanced by the mean curvature. The existing estimates for rigorous sharp interface limits show only the first condition. We identify the cause of this phenomenon and develop a strategy that yields both conditions up to the first order.
    The necessary information on the equilibrium conditions are achieved by an asymptotic expansion of the density which is valid for an arbitrary double well potential. We establish this expansion by means of local energy estimates, uniform convergence results of the density and estimates on the Laplacian of the density.

  • A. Glitzky, K. Gärtner, Existence of bounded steady state solutions to spin-polarized drift-diffusion systems, SIAM Journal on Mathematical Analysis, 41 (2010), pp. 2489--2513.
    Abstract
    We study a stationary spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. In 3D we prove the existence and boundedness of steady states. If the Dirichlet conditions are compatible or nearly compatible with thermodynamic equilibrium the solution is unique. The same properties are obtained for a space discretized version of the problem: Using a Scharfetter-Gummel scheme on 3D boundary conforming Delaunay grids we show existence, boundedness and, for small applied voltages, the uniqueness of the discrete solution.

  • D. Hömberg, Ch. Meyer, J. Rehberg, W. Ring, Optimal control for the thermistor problem, SIAM Journal on Control and Optimization, 48 (2010), pp. 3449--3481.
    Abstract
    This paper is concerned with the state-constrained optimal control of the two-dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Existence, uniqueness and continuity for the state system are derived by employing maximal elliptic and parabolic regularity. By similar arguments the linearized state system is discussed, while the adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem.

  • H.-Chr. Kaiser, J. Rehberg, Optimal elliptic regularity at the crossing of a material interface and a Neumann boundary edge, Journal of Mathematical Sciences (New York), 169 (2010), pp. 145--166.
    Abstract
    We investigate optimal elliptic regularity of anisotropic div-grad operators in three dimensions at the crossing of a material interface and an edge of the spatial domain on the Neumann boundary part within the scale of Sobolev spaces.

  • D. Knees, On global spatial regularity and convergence rates for time dependent elasto-plasticity, Mathematical Models & Methods in Applied Sciences, 20 (2010), pp. 1823--1858.

  • A. Mielke, T. Roubíček, J. Zeman, Complete damage in elastic and viscoelastic media and its energetics, Computer Methods in Applied Mechanics and Engineering, 199 (2010), pp. 1242--1253.
    Abstract
    A model for the evolution of damage that allows for complete disintegration is addressed. Small strains and a linear response function are assumed. The “flow rule” for the damage parameter is rate-independent. The stored energy involves the gradient of the damage variable, which determines an internal length-scale. Quasi-static fully rate-independent evolution is considered as well as rate-dependent evolution including viscous/inertial effects. Illustrative 2-dimensional computer simulations are presented, too.

  • J. Sprekels, H. Wu, A note on parabolic equation with nonlinear dynamical boundary condition, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 72 (2010), pp. 3028--3048.

  • K. Hoke, H.-Chr. Kaiser, J. Rehberg, Analyticity for some operator functions from statistical quantum mechanics, Annales Henri Poincare. A Journal of Theoretical and Mathematical Physics, 10 (2009), pp. 749--771.
    Abstract
    For rather general thermodynamic equilibrium distribution functions the density of a statistical ensemble of quantum mechanical particles depends analytically on the potential in the Schrödinger operator describing the quantum system. A key to the proof is that the resolvent to a power less than one of an elliptic operator with non-smooth coefficients, and mixed Dirichlet/Neumann boundary conditions on a bounded up to three-dimensional Lipschitz domain factorizes over the space of essentially bounded functions.

  • A. Petrov, M. Schatzman, Mathematical results on existence for viscoelastodynamic problems with unilateral constraints, SIAM Journal on Mathematical Analysis, 40 (2009), pp. 1882--1904.
    Abstract
    We study a damped wave equation and the evolution of a Kelvin-Voigt material, both problems have unilateral boundary conditions. Under appropriate regularity assumptions on the initial data, both problems possess a weak solution which is obtained as the limit of a sequence of penalized problems; the functional properties of all the traces are precisely identified through Fourier analysis, and this enables us to infer the existence of a strong solution.

  • G. Bouchitté, A. Mielke, T. Roubíček, A complete-damage problem at small strains, Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 60 (2009), pp. 205--236.
    Abstract
    The complete damage of a linearly-responding material that can thus completely disintegrate is addressed at small strains under time-varying Dirichlet boundary conditions as a rate-independent evolution problem in multidimensional situations. The stored energy involves the gradient of the damage variable. This variable as well as the stress and energies are shown to be well defined even under complete damage, in contrast to displacement and strain. Existence of an energetic solution is proved, in particular, by detailed investigating the $Gamma$-limit of the stored energy and its dependence on boundary conditions. Eventually, the theory is illustrated on a one-dimensional example.

  • R. Haller-Dintelmann, Ch. Meyer, J. Rehberg, A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems, Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 60 (2009), pp. 397--428.
    Abstract
    The well known De Giorgi result on Hölder continuity for solutions of the Dirichlet problem is re-established for mixed boundary value problems, provided that the underlying domain is a Lipschitz domain and the border between the Dirichlet and the Neumann boundary part satisfies a very general geometric condition. Implications of this result for optimal control theory are presented.

  • R. Haller-Dintelmann, J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions, Journal of Differential Equations, 247 (2009), pp. 1354--1396.
    Abstract
    We show that elliptic second order operators $A$ of divergence type fulfill maximal parabolic regularity on distribution spaces, even if the underlying domain is highly non-smooth and $A$ is complemented with mixed boundary conditions. Applications to quasilinear parabolic equations with non-smooth data are presented.

  • A. Mainik, A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, Journal of Nonlinear Science, 19 (2009), pp. 221--248.
    Abstract
    We provide a global existence result for the time-continuous elastoplasticity problem using the energetic formulation. For this we show that the geometric nonlinearities via the multiplicative decomposition of the strain can be controlled via polyconvexity and a priori stress bounds in terms of the energy density. While temporal oscillations are controlled via the energy dissipation the spatial compactness is obtain via the regularizing terms involving gradients of the internal variables.

  • S. Zelik, A. Mielke, Multi-pulse evolution and space-time chaos in dissipative systems, Memoirs of the American Mathematical Society, 198 (2009), pp. 1--97.

  • A. Glitzky, Energy estimates for electro-reaction-diffusion systems with partly fast kinetics, Discrete and Continuous Dynamical Systems, 25 (2009), pp. 159--174.
    Abstract
    We start from a basic model for the transport of charged species in heterostructures containing the mechanisms diffusion, drift and reactions in the domain and at its boundary. Considering limit cases of partly fast kinetics we derive reduced models. This reduction can be interpreted as some kind of projection scheme for the weak formulation of the basic electro--reaction--diffusion system. We verify assertions concerning invariants and steady states and prove the monotone and exponential decay of the free energy along solutions to the reduced problem and to its fully implicit discrete-time version by means of the results of the basic problem. Moreover we make a comparison of prolongated quantities with the solutions to the basic model.

  • A. Glitzky, K. Gärtner, Energy estimates for continuous and discretized electro-reaction-diffusion systems, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 70 (2009), pp. 788--805.
    Abstract
    We consider electro-reaction-diffusion systems consisting of continuity equations for a finite number of species coupled with a Poisson equation. We take into account heterostructures, anisotropic materials and rather general statistic relations.
    We investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the free energy to its equilibrium value. Here the essential idea is an estimate of the free energy by the dissipation rate which is proved indirectly.
    The same properties are shown for an implicit time discretized version of the problem. Moreover, we provide a space discretized scheme for the electro-reaction-diffusion system which is dissipative (the free energy decays monotonously). On a fixed grid we use for each species different Voronoi boxes which are defined with respect to the anisotropy matrix occurring in the flux term of this species.

  • H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, Classical solutions of drift-diffusion equations for semiconductor devices: The 2D case, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 71 (2009), pp. 1584--1605.
    Abstract
    We regard drift-diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue spaces. In particular, it turns out that the divergence of the electron and hole current is an integrable function. Hence, Gauss' theorem applies, and gives the foundation for space discretization of the equations by means of finite volume schemes. Moreover, the strong differentiability of the electron and hole density in time is constitutive for the implicit time discretization scheme. Finite volume discretization of space, and implicit time discretization are accepted custom in engineering and scientific computing. ---This investigation puts special emphasis on non-smooth spatial domains, mixed boundary conditions, and heterogeneous material compositions, as required in electronic device simulation.

  • H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, Monotonicity properties of the quantum mechanical particle density: An elementary proof, Monatshefte fur Mathematik, 158 (2009), pp. 179--185.
    Abstract
    An elementary proof of the anti-monotonicity of the quantum mechanical particle density with respect to the potential in the Hamiltonian is given for a large class of admissible thermodynamic equilibrium distribution functions. In particular the zero temperature case is included.

  • D. Knees, On global spatial regularity in elasto-plasticity with linear hardening, Calculus of Variations and Partial Differential Equations, 36 (2009), pp. 611--625.
    Abstract
    We study the global spatial regularity of solutions of elasto-plastic models with linear hardening. In order to point out the main idea, we consider a model problem on a cube, where we describe Dirichlet and Neumann boundary conditions on the top and the bottom, respectively, and periodic boundary conditions on the remaining faces. Under natural smoothness assumptions on the data we obtain u in L((0,T);H3/2-δ(Ω)) for the displacements and z in L((0,T);H1/2-δ(Ω)) for the internal variables. The proof is based on a difference quotient technique and a reflection argument.

  • P. Krejčí, M. Liero, Rate independent Kurzweil processes, Applications of Mathematics, 54 (2009), pp. 117--145.
    Abstract
    The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in $BV$ spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree one.

  • A. Mielke, F. Rindler, Reverse approximation of energetic solutions to rate-independent processes, NoDEA. Nonlinear Differential Equations and Applications, 16 (2009), pp. 17--40.
    Abstract
    Energetic solutions to rate-independent processes are usually constructed via time-incremental minimization problems. In this work we show that all energetic solutions can be approximated by incremental problems if we allow approximate minimizers, where the error in minimization has to be of the order of the time step. Moreover, we study sequences of problems where the energy functionals have a Gamma limit.

  • A. Mielke, R. Rossi, G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete and Continuous Dynamical Systems, 25 (2009), pp. 585--615.
    Abstract
    Rate-independent systems allow for solutions with jumps that need additional modeling. Here we suggest a formulation that arises as limit of viscous regularization of the solutions in the extended state space. Hence, our parametrized metric solutions of a rate-independent system are absolutely continuous mappings from a parameter interval into the extended state space. Jumps appear as generalized gradient flows during which the time is constant. The closely related notion of BV solutions is developed afterwards. Our approach is based on the abstract theory of generalized gradient flows in metric spaces, and comparison with other notions of solutions is given.

  • A. Mielke, T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, ESAIM: Mathematical Modelling and Numerical Analysis, 43 (2009), pp. 399--429.
    Abstract
    A general abstract approximation scheme for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The abstract theory is illustrated on several examples: plasticity with isotropic hardening, damage, debonding, magnetostriction, and two models of martensitic transformation in shape-memory alloys.

  • A. Mielke, L. Paoli, A. Petrov, On existence and approximation for a 3D model of thermally-induced phase transformations in shape-memory alloys, SIAM Journal on Mathematical Analysis, 41 (2009), pp. 1388--1414.
    Abstract
    This paper deals with a three-dimensional model for thermal stress-induced transformations in shape-memory materials. Microstructure, like twined martensites, is described mesoscopically by a vector of internal variables containing the volume fractions of each phase. We assume that the temperature variations are prescribed. The problem is formulated mathematically within the energetic framework of rate-independent processes. An existence result is proved and temporal regularity is obtained in case of uniform convexity. We study also space-time discretizations and establish convergence of these approximations.

  • H. Neidhardt, V.A. Zagrebnov, Linear non-autonomous Cauchy problems and evolution semigroups, Advances in Differential Equations, 14 (2009), pp. 289--340.
    Abstract
    The paper is devoted to the problem of existence of propagators for an abstract linear non-autonomous evolution Cauchy problem of hyperbolic type in separable Banach spaces. The problem is solved using the so-called evolution semigroup approach which reduces the existence problem for propagators to a perturbation problem of semigroup generators. The results are specified to abstract linear non-autonomous evolution equations in Hilbert spaces where the assumption is made that the domains of the quadratic forms associated with the generators are independent of time. Finally, these results are applied to time-dependent Schrödinger operators with moving point interactions in 1D.

  • H. Stephan, Modeling of drift-diffusion systems, ZAMP Zeitschrift fur Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathematiques et de Physique Appliquees, 60 (2009), pp. 33--53.
    Abstract
    We derive drift-diffusion systems describing transport processes starting from free energy and equilibrium solutions by a unique method. We include several statistics, heterostructures and cross diffusion. The resulting systems of nonlinear partial differential equations conserve mass and positivity, and have a Lyapunov function (free energy). Using the inverse Hessian as mobility, non-degenerate diffusivity matrices turn out to be diagonal, or - in the case of cross diffusion - even constant.

  • P.-É. Druet, Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L^p$ with $pge 1$, Mathematical Methods in the Applied Sciences, 32 (2008), pp. 135--166.
    Abstract
    Accurate modeling of heat transfer in high-temperatures situations requires to account for the effect of heat radiation. In complex applications such as Czochralski's method for crystal growth, in which the conduction radiation heat transfer problem couples to an induction heating problem and to the melt flow problem, we hardly can expect from the mathematical theory that the heat sources will be in a better space than L-1. In such situations, the known results on the unique solvability of the heat conduction problem with surface radiation do not apply, since a right-hand side in L-p with p < 6/5 no longer belongs to the dual of the Banach space in which coercivity is obtained. In this paper, we focus on a stationary heat equation with non-local boundary conditions and right-hand side in L-p with p>=1 arbitrary. Essentially, we construct an approximation procedure and, thanks to new coercivity results, we are able to produce energy estimates that involve only the L-p-norm of the heat-sources, and to pass to the limit.

  • J.A. Griepentrog, W. Höppner, H.-Chr. Kaiser, J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube, Note di Matematica, 28 (2008), pp. 185--201.
    Abstract
    We construct two bi-Lipschitz, volume preserving maps from Euclidean space onto itself which map the unit ball onto a cylinder and onto a cube, respectively. Moreover, we characterize invariant sets of these mappings.

  • S. Heinz, Quasiconvex functions can be approximated by quasiconvex polynomials, ESAIM. Control, Optimisation and Calculus of Variations, 14 (2008), pp. 795--801.

  • F. Auricchio, A. Mielke, U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials, Mathematical Methods in the Applied Sciences, 18 (2008), pp. 125--164.
    Abstract
    This note addresses a three-dimensional model for isothermal stress-induced transformation in shape-memory polycrystalline materials. We treat the problem within the framework of the energetic formulation of rate-independent processes and investigate existence and continuous dependence issues at both the constitutive relation and quasi-static evolution level. Moreover, we focus on time and space approximation as well as on regularization and parameter asymptotics.

  • H. Cornean, K. Hoke, H. Neidhardt, P.N. Racec, J. Rehberg, A Kohn--Sham system at zero temperature, Journal of Physics. A. Mathematical and General, 41 (2008), pp. 385304/1--385304/21.
    Abstract
    An one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schrödinger operator with effective Kohn-Sham potential and obtain $W^1,2$-bounds of the associated particle density operator. Afterwards, compactness and continuity results allow to apply Schauder's fixed point theorem. In case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero.

  • R. Haller-Dintelmann, H.-Chr. Kaiser, J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities, Journal de Mathématiques Pures et Appliquées, 89 (2008), pp. 25--48.

  • M. Hieber, J. Rehberg, Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains, SIAM Journal on Mathematical Analysis, 40 (2008), pp. 292--305.
    Abstract
    In this paper we investigate quasilinear systems of reaction-diffusion equations with mixed Dirichlet-Neumann bondary conditions on non smooth domains. Using techniques from maximal regularity and heat-kernel estimates we prove existence of a unique solution to systems of this type.

  • R. Rossi, A. Mielke, G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, VII (2008), pp. 97--169.
    Abstract
    This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slope for gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract doubly nonlinear equations in reflexive Banach spaces. The metric approach is also exploited to analyze a class of evolution equations in $L^1$ spaces.

  • J.C. DE Los Reyes, P. Merino, J. Rehberg, F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with finite-dimensional control space, Control and Cybernetics, 37 (2008), pp. 7--38.

  • A. Glitzky, R. Hünlich, Stationary solutions to an energy model for semiconductor devices where the equations are defined on different domains, Mathematische Nachrichten, 281 (2008), pp. 1676--1693.
    Abstract
    We discuss a stationary energy model from semiconductor modelling. We accept the more realistic assumption that the continuity equations for electrons and holes have to be considered only in a subdomain $Omega_0$ of the domain of definition $Omega$ of the energy balance equation and of the Poisson equation. Here $Omega_0$ corresponds to the region of semiconducting material, $OmegasetminusOmega_0$ represents passive layers. Metals serving as contacts are modelled by Dirichlet boundary conditions. We prove a local existence and uniqueness result for the two-dimensional stationary energy model. For this purpose we derive a $W^1,p$-regularity result for solutions of systems of elliptic equations with different regions of definition and use the Implicit Function Theorem.

  • A. Glitzky, Analysis of a spin-polarized drift-diffusion model, Advances in Mathematical Sciences and Applications, 18 (2008), pp. 401--427.
    Abstract
    We introduce a spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. We give a weak formulation of this problem and prove an existence and uniqueness result for the instationary problem. If the boundary data is compatible with thermodynamic equilibrium the free energy along the solution decays monotonously and exponentially to its equilibrium value. In other cases it may be increasing but we estimate its growth. Moreover we give upper and lower estimates for the solution.

  • A. Glitzky, Exponential decay of the free energy for discretized electro-reaction-diffusion systems, Nonlinearity, 21 (2008), pp. 1989--2009.
    Abstract
    Our focus are electro-reaction-diffusion systems consisting of continuity equations for a finite number of species coupled with a Poisson equation. We take into account heterostructures, anisotropic materials and rather general statistical relations. We introduce a discretization scheme (in space and fully implicit in time) using a fixed grid but for each species different Voronoi boxes which are defined with respect to the anisotropy matrix occurring in the flux term of this species. This scheme has the special property that it preserves the main features of the continuous systems, namely positivity, dissipativity and flux conservation. For the discretized electro-reaction-diffusion system we investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the free energy to its equilibrium value. The essential idea is an estimate of the free energy by the dissipation rate which is proved indirectly.

  • D. Knees, P. Neff, Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity, SIAM Journal on Mathematical Analysis, 40 (2008), pp. 21--43.
    Abstract
    In this note we investigate the question of higher regularity up to the boundary for quasilinear elliptic systems which origin from the time-discretization of models from infinitesimal elasto-plasticity. Our main focus lies on an elasto-plastic Cosserat model. More specifically we show that the time discretization renders $H^2$-regularity of the displacement and $H^1$-regularity for the symmetric plastic strain $varepsilon_p$ up to the boundary provided the plastic strain of the previous time step is in $H^1$, as well. This result contrasts with classical Hencky and Prandtl-Reuss formulations where it is known not to hold due to the occurrence of slip lines and shear bands. Similar regularity statements are obtained for other regularizations of ideal plasticity like viscosity or isotropic hardening. In the first part we recall the time continuous Cosserat elasto-plasticity problem, provide the update functional for one time step and show various preliminary results for the update functional (Legendre-Hadamard/monotonicity). Using non standard difference quotient techniques we are able to show the higher global regularity. Higher regularity is crucial for qualitative statements of finite element convergence. As a result we may obtain estimates linear in the mesh-width $h$ in error estimates.

  • D. Knees, A. Mielke, Energy release rate for cracks in finite-strain elasticity, Mathematical Methods in the Applied Sciences, 31 (2008), pp. 501--528.
    Abstract
    Griffith's fracture criterion describes in a quasistatic setting whether or not a pre-existing crack in an elastic body is stationary for given external forces. In terms of the energy release rate (ERR), which is the derivative of the deformation energy of the body with respect to a virtual crack extension, this criterion reads: If the ERR is less than a specific constant, then the crack is stationary, otherwise it will grow. In this paper, we consider geometrically nonlinear elastic models with polyconvex energy densities and prove that the ERR is well defined. Moreover, without making any assumption on the smoothness of minimizers, we derive rigorously the well-known Griffith formula and the $J$-integral, from which the ERR can be calculated. The proofs are based on a weak convergence result for Eshelby tensors.

  • D. Knees, A. Mielke, Ch. Zanini, On the inviscid limit of a model for crack propagation, Mathematical Models & Methods in Applied Sciences, 18 (2008), pp. 1529--1569.
    Abstract
    We study the evolution of a single crack in an elastic body and assume that the crack path is known in advance. The motion of the crack tip is modeled as a rate-independent process on the basis of Griffith's local energy release rate criterion. According to this criterion, the system may stay in a local minimum before it performs a jump. The goal of this paper is to prove existence of such an evolution and to shed light on the discrepancy between the local energy release rate criterion and models which are based on a global stability criterion (as for example the Francfort/Marigo model). We construct solutions to the local model via the vanishing viscosity method and compare different notions of weak, local and global solutions.

  • D. Knees, A. Mielke, On the energy release rate in finite-strain elasticity, Mechanics of Advanced Materials and Structures, 15 (2008), pp. 421--427.

  • D. Knees, Global stress regularity of convex and some nonconvex variational problems, Annali di Matematica Pura ed Applicata. Serie Quarta. Fondazione Annali di Matematica Pura ed Applicata, c/o Dipartimento di Matematica ``U. Dini'', Firenze; Springer-Verlag, Heidelberg. English, French, German, Italian, English abstracts., 187 (2008), pp. 157--184.

  • A. Mielke, Weak-convergence methods for Hamiltonian multiscale problems, Discrete and Continuous Dynamical Systems, 20 (2008), pp. 53--79.
    Abstract
    We consider Hamiltonian problems depending on a small parameter like in wave equations with rapidly oscillating coefficients or the embedding of an infinite atomic chain into a continuum by letting the atomic distance tend to $0$. For general semilinear Hamiltonian systems we provide abstract convergence results in terms of the existence of a family of joint recovery operators which guarantee that the effective equation is obtained by taking the $Gamma$-limit of the Hamiltonian. The convergence is in the weak sense with respect to the energy norm. Exploiting the well-developed theory of $Gamma$-convergence, we are able to generalize the admissible coefficients for homogenization in the wave equations. Moreover, we treat the passage from a discrete oscillator chain to a wave equation with general $rmL^infty$ coefficients

  • A. Mielke, A. Petrov, J.A.C. Martins, Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit, Journal of Mathematical Analysis and Applications, 348 (2008), pp. 1012--1020.
    Abstract
    This paper discusses the convergence of kinetic variational inequalities to rate-independent quasi-static variational inequalities. Mathematical formulations as well as existence and uniqueness results for kinetic and rate-independent quasi-static problems are provided. Sharp a priori estimates for the kinetic problem are derived that imply that the kinetic solutions converge to the rate-independent ones, when the size of initial perturbations and the rate of application of the forces tends to 0. An application to three-dimensional elastic-plastic systems with hardening is given.

  • J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev--Morrey spaces, Advances in Differential Equations, 12 (2007), pp. 1031--1078.
    Abstract
    This text is devoted to maximal regularity results for second order parabolic systems on LIPSCHITZ domains of space dimension greater or equal than three with diagonal principal part, nonsmooth coefficients, and nonhomogeneous mixed boundary conditions. We show that the corresponding class of initial boundary value problems generates isomorphisms between two scales of SOBOLEV-MORREY spaces for solutions and right hand sides introduced in the first part of our presentation. The solutions depend smoothly on the data of the problem. Moreover, they are HOELDER continuous in time and space up to the boundary for a certain range of MORREY exponents. Due to the complete continuity of embedding and trace maps these results remain true for a broad class of unbounded lower order coefficients.

  • J.A. Griepentrog, Sobolev--Morrey spaces associated with evolution equations, Advances in Differential Equations, 12 (2007), pp. 781--840.
    Abstract
    In this text we introduce new classes of SOBOLEV-MORREY spaces being adequate for the regularity theory of second order parabolic boundary value problems on LIPSCHITZ domains of space dimension greater or equal than three with nonsmooth coefficients and mixed boundary conditions. We prove embedding and trace theorems as well as invariance properties of these spaces with respect to localization, LIPSCHITZ transformation, and reflection. In the second part of our presentation we show that the class of second order parabolic systems with diagonal principal part generates isomorphisms between the above mentioned SOBOLEV-MORREY spaces of solutions and right hand sides.

  • J. Elschner, H.-Chr. Kaiser, J. Rehberg, G. Schmidt, $W^1,q$ regularity results for elliptic transmission problems on heterogeneous polyhedra, Mathematical Models & Methods in Applied Sciences, 17 (2007), pp. 593--615.

  • J. Elschner, J. Rehberg, G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 9 (2007), pp. 233--252.
    Abstract
    We prove an optimal regularity result for elliptic operators $-nabla cdot mu nabla:W^1,q_0 rightarrow W^-1,q$ for a $q>3$ in the case when the coefficient function $mu$ has a jump across a $C^1$ interface and is continuous elsewhere. A counterexample shows that the $C^1$ condition cannot be relaxed in general. Finally, we draw some conclusions for corresponding parabolic operators.

  • A. Glitzky, R. Hünlich, Resolvent estimates in $W^-1,p$ related to strongly coupled linear parabolic systems with coupled nonsmooth capacities, Mathematical Methods in the Applied Sciences, 30 (2007), pp. 2215--2232.
    Abstract
    We investigate linear parabolic systems with coupled nonsmooth capacities and mixed boundary conditions. We prove generalized resolvent estimates in $W^-1,p$ spaces. The method is an appropriate modification of a technique introduced by Agmon to obtain $L^p$ estimates for resolvents of elliptic differential operators in the case of smooth boundary conditions. Moreover, we establish an existence and uniqueness result.

  • A. Mielke, A. Petrov, Thermally driven phase transformation in shape-memory alloys, Advances in Mathematical Sciences and Applications, 17 (2007), pp. 667--685.
    Abstract
    This paper analyzes a model for phase transformation in shape-memory alloys induced by temperature changes and by mechanical loading. We assume that the temperature is prescribed and formulate the problem within the framework of the energetic theory of rate-independent processes. Existence and uniqueness results are proved.

  • A. Mielke, R. Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems, Mathematical Models & Methods in Applied Sciences, 17 (2007), pp. 81--123.

  • A. Mielke, A. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM Journal on Mathematical Analysis, 39 (2007), pp. 642--668.
    Abstract
    This paper is devoted to the two-scale homogenization for a class of rate-independent systems described by the energetic formulation or equivalently by an evolutionary variational inequality. In particular, we treat the classical model of linearized elastoplasticity with hardening. The associated nonlinear partial differential inclusion has periodically oscillating coefficients, and the aim is to find a limit problem for the case that the period tends to 0. Our approach is based on the notion of energetic solutions which is phrased in terms of a stability condition and an energy balance of an energy-storage functional and a dissipation functional. Using the recently developed method of weak and strong two-scale convergence via periodic unfolding, we show that these two functionals have a suitable two-scale limit, but now involving the macroscopic variable in the physical domain as well as the microscopic variable in the periodicity cell. Moreover, relying on an abstract theory of Gamma convergence for the energetic formulation using so-called joint recovery sequences it is possible to show that the solutions of the problem with periodicity converge to the energetic solution associated with the limit functionals.

  • A. Mielke, S. Zelik, Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in $R^n$, Journal of Dynamics and Differential Equations, 19 (2007), pp. 333--389.

  • A. Mielke, A model for temperature-induced phase transformations in finite-strain elasticity, IMA Journal of Applied Mathematics, 72 (2007), pp. 644--658.

  • F. Schmid, A. Mielke, Existence results for a contact problem with varying friction coefficient and nonlinear forces, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 87 (2007), pp. 616--631.
    Abstract
    We consider the rate-independent problem of a particle moving in a three - dimensional half space subject to a time-dependent nonlinear restoring force having a convex potential and to Coulomb friction along the flat boundary of the half space, where the friction coefficient may vary along the boundary. Our existence result allows for solutions that may switch arbitrarily often between unconstrained motion in the interior and contact where the solutions may switch between sticking and frictional sliding. However, our existence result is local and guarantees continuous solutions only as long as the convexity of the potential is strong enough to compensate the variation of the friction coefficient times the contact pressure. By simple examples we show that our sufficient conditions are also necessary. Our method is based on the energetic formulation of rate-independent systems as developed by Mielke and co-workers. We generalize the time-incremental minimization procedure of Mielke and Rossi for the present situation of a non-associative flow rule.

  • J. Giannoulis, A. Mielke, Dispersive evolution of pulses in oscillator chains with general interaction potentials, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 6 (2006), pp. 493--523.

  • M. Kočvara, A. Mielke, T. Roubíček, A rate-independent approach to the delamination problem, Mathematics and Mechanics of Solids, 11 (2006), pp. 423--447.

  • V. Pata, S. Zelik, A remark on the weakly damped wave equation, Communications on Pure and Applied Analysis, 5 (2006), pp. 609--614.

  • V. Pata, S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), pp. 1495--1506.

  • H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, Classical solutions of quasilinear parabolic systems on two dimensional domains, NoDEA. Nonlinear Differential Equations and Applications, 13 (2006), pp. 287-310.

  • D. Knees, Global regularity of the elastic fields of a power-low model on Lipschitz domains, Mathematical Methods in the Applied Sciences, 29 (2006), pp. 1363--1391.

  • A. Mielke, G. Francfort, Existence results for a class of rate-independent material models with nonconvex elastic energies, Journal fur die Reine und Angewandte Mathematik, 595 (2006), pp. 55--91.

  • A. Mielke, T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Mathematical Models & Methods in Applied Sciences, 16 (2006), pp. 177--209.

  • A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner--Husimi transforms, Archive for Rational Mechanics and Analysis, 181 (2006), pp. 401--448.

  • M. Baro, H. Neidhardt, J. Rehberg, Current coupling of drift-diffusion models and dissipative Schrödinger--Poisson systems: Dissipative hybrid models, SIAM Journal on Mathematical Analysis, 37 (2005), pp. 941--981.

  • H. Neidhardt, J. Rehberg, Uniqueness for dissipative Schrödinger--Poisson systems, Journal of Mathematical Physics, 46 (2005), pp. 113513/1--113513/28.

  • M. Kružík, A. Mielke, T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAINi, Meccanica. International Journal of the Italian Association of Theoretical and Applied Mechanics, 40 (2005), pp. 389--418.

  • N. Nefedov, M. Radziunas, K.R. Schneider, A. Vasil'eva, Change of the type of contrast structures in parabolic Neumann problems, Computational Mathematics and Mathematical Physics, 45 (2005), pp. 37--51.

  • W. Dreyer, B. Wagner, Sharp-interface model for eutectic alloys. Part I: Concentration dependent surface tension, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 7 (2005), pp. 199--227.

  • A. Glitzky, R. Hünlich, Global existence result for pair diffusion models, SIAM Journal on Mathematical Analysis, 36 (2005), pp. 1200--1225.

  • A. Glitzky, R. Hünlich, Stationary energy models for semiconductor devices with incompletely ionized impurities, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 85 (2005), pp. 778--792.

  • A. Mielke, A.L. Afendikov, Dynamical properties of spatially non-decaying 2D Navier--Stokes flows with Kolmogorov forcing in an infinite strip, Journal of Mathematical Fluid Mechanics, 7 (2005), pp. 51-67.

  • J. Rehberg, Quasilinear parabolic equations in $L^p$, Progress in Nonlinear Differential Equations and their Applications, 64 (2005), pp. 413-419.

  • B. Wagner, An asymptotic approach to second-kind similarity solutions of the modified porous medium equation, Journal of Engineering Mathematics, 53 (2005), pp. 201-220.

  • M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, A quantum transmitting Schrödinger-Poisson system, Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics, 16 (2004), pp. 281--330.

  • M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg, Dissipative Schrödinger--Poisson systems, Journal of Mathematical Physics, 45 (2004), pp. 21--43.

  • J. Griepentrog, On the unique solvability of a nonlocal phase separation problem for multicomponent systems, Banach Center Publications, 66 (2004), pp. 153-164.

  • V. Maz'ya, J. Elschner, J. Rehberg, G. Schmidt, Solutions for quasilinear nonsmooth evolution systems in $L^p$, Archive for Rational Mechanics and Analysis, 171 (2004), pp. 219--262.

  • H. Gajewski, I.V. Skrypnik, On unique solvability of nonlocal drift-diffusion-type problems, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 56 (2004), pp. 803--830.

  • H. Gajewski, I.V. Skrypnik, To the uniqueness problem for nonlinear parabolic equations, Discrete and Continuous Dynamical Systems, 10 (2004), pp. 315--336.

  • A. Glitzky, W. Merz, Single dopant diffusion in semiconductor technology, Mathematical Methods in the Applied Sciences, 27 (2004), pp. 133--154.

  • A. Glitzky, R. Hünlich, Stationary solutions of two-dimensional heterogeneous energy models with multiple species, Banach Center Publications, 66 (2004), pp. 135-151.

  • A. Glitzky, Electro-reaction-diffusion systems with nonlocal constraints, Mathematische Nachrichten, 277 (2004), pp. 14--46.

  • H. Gajewski, K. Zacharias, On a nonlocal phase separation model, Journal of Mathematical Analysis and Applications, 286 (2003), pp. 11--31.

  • H. Gajewski, I.V. Skrypnik, On the uniqueness of solutions for nonlinear elliptic-parabolic equations, Journal of Evolution Equations, 3 (2003), pp. 247--281.

  • H. Gajewski, I.V. Skrypnik, To the uniqueness problem for nonlinear elliptic equations, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 52 (2003), pp. 291--304.

  • M.A. Efendiev, H. Gajewski, S. Zelik, The finite dimensional attractor for a 4th order system of Cahn-Hilliard type with a supercritical nonlinearity, Advances in Differential Equations, 7 (2002), pp. 1073--1100.

  • G. Albinus, H. Gajewski, R. Hünlich, Thermodynamic design of energy models of semiconductor devices, Nonlinearity, 15 (2002), pp. 367--383.

  • J.A. Griepentrog, K. Gröger, H.-Chr. Kaiser, J. Rehberg, Interpolation for function spaces related to mixed boundary value problems, Mathematische Nachrichten, 241 (2002), pp. 110--120.

  • J.A. Griepentrog, Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals, Mathematische Nachrichten, 243 (2002), pp. 19--42.

  • A. Glitzky, R. Hünlich, Global properties of pair diffusion models, Advances in Mathematical Sciences and Applications, 11 (2001), pp. 293--321.

  • J.A. Griepentrog, H.-Chr. Kaiser, J. Rehberg, Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on $Lsp p$, Advances in Mathematical Sciences and Applications, 11 (2001), pp. 87--112.

  • W. Merz, A. Glitzky, R. Hünlich, K. Pulverer, Strong solutions for pair diffusion models in homogeneous semiconductors, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 2 (2001), pp. 541-567.

  • I.V. Skrypnik, H. Gajewski, On the uniqueness of solution to nonlinear elliptic problem (in Ukrainian), Dopovidi Natsionalnoi Akademii Nauk Ukraini. Matematika. Prirodoznavstvo. Tekhnichni Nauki, (2001), pp. 28--32.

  • J.A. Griepentrog, L. Recke, Linear elliptic boundary value problems with non-smooth data: Normal solvability on Sobolev-Campanato spaces, Mathematische Nachrichten, 225 (2001), pp. 39--74.

  • A. Glitzky, R. Hünlich, Electro-reaction-diffusion systems including cluster reactions of higher order, Mathematische Nachrichten, 216 (2000), pp. 95--118.

  • W. Dreyer, W.H. Müller, A study of the coarsening in tin/lead solders, International Journal of Solids and Structures, 37 (2000), pp. 3841--3871.

  • H.-Chr. Kaiser, J. Rehberg, About a stationary Schrödinger-Poisson system with Kohn-Sham potential in a bounded two- or three-dimensional domain, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 41 (2000), pp. 33--72.

  • J.A. Griepentrog, An application of the Implicit Function Theorem to an energy model of the semiconductor theory, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, 79 (1999), pp. 43--51.
    Abstract
    In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the electric field an drift-diffusion equations with temperature dependent coefficients describing the charge and current conservation, subject to general thermal and electrical boundary conditions. We prove the existence and uniqueness of Holder continuous weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the differentiability of maps corresponding to the weak formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary value problems in Sobolev-Campanato spaces.

  Contributions to Collected Editions

  • A.H. Erhardt, K. Tsaneva-Atanasova, G.T. Lines, E.A. Martens, Editorial: Dynamical systems, PDEs and networks for biomedical applications: Mathematical modeling, analysis and simulations, 10 of Front. Phys., Sec. Statistical and Computational Physics, Frontiers, Lausanne, Switzerland, 2023, pp. 01--03, DOI 10.3389/fphy.2022.1101756 .

  • A. Glitzky, M. Liero, A bulk-surface model for the electrothermal feedback in large-area organic light-emitting diodes, in: 93rd Annual Meeting 2023 of the International Association of Applied Mathematics and Mechanics (GAMM), 23 of Proc. Appl. Math. Mech. (Special Issue), Wiley-VCH Verlag, Weinheim, 2023, pp. e202300018/1--e202300018/8, DOI 10.1002/pamm.202300018 .
    Abstract
    This work deals with an effective bulk-surface thermistor model describing the electrothermal behavior of large-area thin-film organic light-emitting diodes (OLEDs). This model was rigorously derived from a -Laplace thermistor model by dimension reduction and consists of the heat equation in the three-dimensional glass substrate and two semi-linear equations describing the current flow through the electrodes coupled to algebraic equations that express the continuity of the electrical fluxes through the organic layers. The electrical problem lives on the surface of the glass substrate where the OLED is mounted. The source terms in the heat equation result from Joule heating and are concentrated on the part of the boundary where the current-flow problem is formulated. Schauder's fixed-point theorem is used to establish the existence of weak solutions to this effective system. Since the heat source terms at the surface are a priori only in L1, the concept of entropy solutions for the heat equation is worked with.

  • B. Wagner, M. Timme, Editorial Announcement, in: Special Issue of EJAM: The Mathematics in Renewable Energies, B. Wagner, M. Timme, eds., 34 of European Journal of Applied Mathematics, Cambridge University Press, 2023, pp. 425--428, DOI 10.1017/S0956792523000013 .

  • M. Thomas, M. Heida, GENERIC for dissipative solids with bulk-interface interaction, in: Research in the Mathematics of Materials Science, M.I. Espanõl, M. Lewicka, L. Scardia, A. Schlömkemper, eds., 31 of Association for Women in Mathematics Series, Springer, Cham, 2022, pp. 333--364, DOI 10.1007/978-3-031-04496-0_15 .
    Abstract
    The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition functional derivatives we propose a GENERIC framework for systems with bulk-interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.

  • A. Stephan, EDP convergence for nonlinear fast-slow reaction systems, in: Report 29: Variational Methods for Evolution (hybrid meeting), A. Mielke, M. Peletier, D. Slepcev, eds., 17 of Oberwolfach Reports, European Mathematical Society Publishing House, Zurich, 2021, pp. 1456--1459, DOI 10.4171/OWR/2020/29 .

  • R. Rossi, U. Stefanelli, M. Thomas, Rate-independent evolution of sets, in: Analysis of Evolutionary and Complex Systems: Issue on the Occasion of Alexander Mielke's 60th Birthday, M. Liero, S. Reichelt, G. Schneider, F. Theil, M. Thomas, eds., 14 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Sciences, Springfield, 2021, pp. 89--119, DOI 10.3934/dcdss.2020304 .
    Abstract
    The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of (the complement of) a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes.In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.

  • M. Horák, M. Kružík, P. Pelech, A. Schlömerkemper, Gradient polyconvexity and modeling of shape memory alloys, in: Variational Views in Mechanics, P.M. Mariano, ed., 46 of Advances in Mechanics and Mathematics, Birkhäuser, Cham, 2021, pp. 133--156, DOI 10.1007/978-3-030-90051-9_5 .
    Abstract
    We show existence of an energetic solution to a model of shape memory alloys in which the elastic energy is described by means of a gradient-polyconvex functional. This allows us to show existence of a solution based on weak continuity of nonlinear minors of deformation gradients in Sobolev spaces. Admissible deformations do not necessarily have integrable second derivatives. Under suitable assumptions, our model allows for solutions which are orientation-preserving and globally injective everywhere in the domain representing the specimen. Theoretical results are supported by three-dimensional computational examples. This work is an extended version of [36].

  • K. Hopf, Global existence analysis of energy-reaction-diffusion systems, in: Report 29: Variational Methods for Evolution (hybrid meeting), A. Mielke, M. Peletier, D. Slepcev, eds., 17 of Oberwolfach Reports, European Mathematical Society Publishing House, Zurich, 2021, pp. 1418--1421, DOI 10.4171/OWR/2020/29 .

  • D. Peschka, M. Thomas, T. Ahnert, A. Münch, B. Wagner, Gradient structures for flows of concentrated suspensions, in: Topics in Applied Analysis and Optimisation, M. Hintermüller, J.F. Rodrigues, eds., CIM Series in Mathematical Sciences, Springer Nature Switzerland AG, Cham, 2019, pp. 295--318, DOI 10.1007/978-3-030-33116-0 .
    Abstract
    In this work we investigate a two-phase model for concentrated suspensions. We construct a PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and solid phase as well as different driving forces. Our construction is based on the concept of flow maps that also allows it to account for flows in moving domains with free boundaries. The major difference compared to similar existing approaches is the incorporation of a non-smooth two-homogeneous term to the dissipation potential, which creates a normal pressure even for pure shear flows.

  • P. Colli, G. Gilardi, J. Sprekels, Nonlocal phase field models of viscous Cahn--Hilliard type, in: Topics in Applied Analysis and Optimisation, M. Hintermüller, J.F. Rodrigues, eds., CIM Series in Mathematical Sciences, Springer Nature Switzerland AG, Cham, 2019, pp. 71--100, DOI 10.1007/978-3-030-33116-0 .
    Abstract
    A nonlocal phase field model of viscous Cahn--Hilliard type is considered. This model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The resulting system of differential equations consists of a highly nonlinear parabolic equation coupled to a nonlocal ordinary differential equation, which has singular terms that render the analysis difficult. Some results are presented on the well-posedness and stability of the system as well as on the distributed optimal control problem.

  • S. Bartels, M. Milicevic, M. Thomas, Numerical approach to a model for quasistatic damage with spatial $BV$-regularization, in: Proceedings of the INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, Rome, Italy, September 2016, E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin, eds., 27 of Springer INdAM Series, Springer International Publishing, Cham, 2018, pp. 179--203, DOI 10.1007/978-3-319-75940-1_9 .
    Abstract
    We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV-regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove convergence of the method and show that discrete solutions approximate a semistable energetic solution of the rate-independent system. Moreover, we present our numerical results for two benchmark problems.

  • P. Colli, G. Gilardi, J. Sprekels, Limiting problems for a nonstandard viscous Cahn--Hilliard system with dynamic boundary conditions, in: Proceedings of the INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, Rome, Italy, September 2016, E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin, eds., 27 of Springer INdAM Series, Springer International Publishing, Cham, 2018, pp. 217--242, DOI 10.1007/978-3-319-75940-1_11 .
    Abstract
    This note is concerned with a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by boundary and initial conditions. The system arises from a model of two-species phase segregation on an atomic lattice and was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp.105--118. The two unknowns are the phase parameter and the chemical potential. In contrast to previous investigations about this PDE system, we consider here a dynamic boundary condition for the phase variable that involves the Laplace-Beltrami operator and models an additional nonconserving phase transition occurring on the surface of the domain. We are interested to some asymptotic analysis and first discuss the asymptotic limit of the system as the viscosity coefficient of the order parameter equation tends to 0: the convergence of solutions to the corresponding solutions for the limit problem is proven. Then, we study the long-time behavior of the system for both problems, with positive or zero viscosity coefficient, and characterize the omega-limit set in both cases.

  • M. Thomas, A comparison of delamination models: Modeling, properties, and applications, in: Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Proceedings of the International Conference CoMFoS16, P. VAN Meurs, M. Kimura, H. Notsu, eds., 30 of Mathematics for Industry, Springer Nature, Singapore, 2018, pp. 27--38, DOI 10.1007/978-981-10-6283-4_3 .
    Abstract
    This contribution presents recent results in the modeling and the analysis of delamination problems. It addresses adhesive contact, brittle, and cohesive zone models both in a quasistatic and a viscous, dynamic setting for the bulk part. Also different evolution laws for the delaminating surface are discussed.

  • A. Mielke, Uniform exponential decay for reaction-diffusion systems with complex-balanced mass-action kinetics, in: Patterns of Dynamics, P. Gurevich, J. Hell, B. Sandstede, A. Scheel, eds., Proceedings in Mathematics & Statistics, Springer, 2017, pp. 149--171, DOI 10.1007/978-3-319-64173-7_10 .
    Abstract
    We consider reaction-diffusion systems on a bounded domain with no-flux boundary conditions. All reactions are given by the mass-action law and are assumed to satisfy the complex-balance condition. In the case of a diagonal diffusion matrix, the relative entropy is a Liapunov functional. We give an elementary proof for the Liapunov property as well a few explicit examples for the condition of complex or detailed balancing.
     
    We discuss three methods to obtain energy-dissipation estimates, which guarantee exponential decay of the relative entropy, all of which rely on the log-Sobolev estimate and suitable handling of the reaction terms as well as the mass-conservation relations. The three methods are (i) a convexification argument based on the author's joint work with Haskovec and Markowich, (ii) a series of analytical estimates derived by Desvillettes, Fellner, and Tang, and (iii) a compactness argument of developed by Glitzky and Hünlich.

  • M. Bulíček, A. Glitzky, M. Liero, Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions, in: PDE 2015: Theory and Applications of Partial Differential Equations, H.-Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., 10 of Discrete and Continuous Dynamical Systems, Series S, no. 4, American Institute of Mathematical Sciences, Springfield, 2017, pp. 697--713.
    Abstract
    We show the existence of solutions to a system of elliptic PDEs, that was recently introduced to describe the electrothermal behavior of organic semiconductor devices. Here, two difficulties appear: (i) the elliptic term in the current-flow equation is of p(x)-Laplacian-type with discontinuous exponent p, which limits the use of standard methods, and (ii) in the heat equation, we have to deal with an a priori L1 term on the right hand side describing the Joule heating in the device. We prove the existence of a weak solution under very weak assumptions on the data. Our existence proof is based on Schauder's fixed point theorem and the concept of entropy solutions for the heat equation. Here, the crucial point is the continuous dependence of the entropy solutions on the data of the problem.

  • P. Colli, J. Sprekels, Optimal boundary control of a nonstandard Cahn--Hilliard system with dynamic boundary condition and double obstacle inclusions, in: Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs: In Honour of Prof. Gianni Gilardi, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels, eds., 22 of Springer INdAM Series, Springer International Publishing AG, Cham, 2017, pp. 151--182, DOI 10.1007/978-3-319-64489-9 .
    Abstract
    In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by P.Podio-Guidugli in Ric. Mat. 55 (2006), pp.105-118. The model consists of a strongly coupled system of nonlinear parabolic differential inclusions, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically; the system is complemented by initial and boundary conditions. For the order parameter of the phase separation process, a dynamic boundary condition involving the Laplace-Beltrami operator is assumed, which models an additional nonconserving phase transition occurring on the surface of the domain. We complement in this paper results that were established in the recent contribution appeared in Evol. Equ. Control Theory 6 (2017), pp. 35-58, by the two authors and Gianni Gilardi. In contrast to that paper, in which differentiable potentials of logarithmic type were considered, we investigate here the (more difficult) case of nondifferentiable potentials of double obstacle type. For such nonlinearities, the standard techniques of optimal control theory to establish the existence of Lagrange multipliers for the state constraints are known to fail. To overcome these difficulties, we employ the following line of approach: we use the results contained in the preprint arXiv:1609.07046 [math.AP] (2016), pp. 1-30, for the case of (differentiable) logarithmic potentials and perform a so-called "deep quench limit". Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (nondifferentiable) double obstacle potentials.

  • N. Ahmed, A. Linke, Ch. Merdon, Towards pressure-robust mixed methods for the incompressible Navier--Stokes equations, in: Finite Volumes for Complex Applications VIII -- Methods and Theoretical Aspects, FVCA 8, Lille, France, June 2017, C. Cancès, P. Omnes, eds., 199 of Springer Proceedings in Mathematics & Statistics, Springer International Publishing AG, Cham, 2017, pp. 351--359.

  • G. Lazzaroni, R. Rossi, M. Thomas, R. Toader, Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics, in: MURPHYS-HSFS-2014: 7th International Workshop on MUlti-Rate Processes and HYSteresis (MURPHYS) & 2nd International Workshop on Hysteresis and Slow-Fast Systems (HSFS), O. Klein, M. Dimian, P. Gurevich, D. Knees, D. Rachinskii, S. Tikhomirov, eds., 727 of Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012009/1--012009/20.
    Abstract
    This note deals with the analysis of a model for partial damage, where the rate-independent, unidirectional flow rule for the damage variable is coupled with the rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity according to Kelvin-Voigt rheology. The results presented here combine the approach from [Roubíček M2AS'09, SIAM'10] with the methods from Lazzaroni/Rossi/Thomas/Toader [WIAS Preprint 2025]. The present analysis encompasses, differently from [Roubíček SIAM'10], the monotonicity in time of damage and the dependence of the viscous tensor on damage and temperature, and, unlike [WIAS Preprint 2025], a nonconstant heat capacity and a time-dependent Dirichlet loading.

  • M. Thomas, E. Bonetti, E. Rocca, R. Rossi, A rate-independent gradient system in damage coupled with plasticity via structured strains, in: Gradient Flows: From Theory to Application, B. Düring, C.-B. Schönlieb, M.-Th. Wolfram, eds., 54 of ESAIM Proceedings and Surveys, EDP Sciences, 2016, pp. 54--69.
    Abstract
    This contribution deals with a class of models combining isotropic damage with plasticity. It has been inspired by a work by Freddi and Royer-Carfagni, including the case where the inelastic part of the strain only evolves in regions where the material is damaged. The evolution both of the damage and of the plastic variable is assumed to be rate-independent. Existence of solutions is established in the abstract energetic framework elaborated by Mielke and coworkers.

  • A. Mielke, R. Rossi, G. Savaré, Balanced-Viscosity solutions for multi-rate systems, in: MURPHYS-HSFS-2014: 7th MUlti-Rate Processes and HYSteresis (MURPHYS) & 2nd International Workshop on Hysteresis and Slow-Fast Systems (HSFS), O. Klein, M. Dimian, P. Gurevich, D. Knees, D. Rachinskii, S. Tikhomirov, eds., 727 of Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012010/1--012010/26.
    Abstract
    Several mechanical systems are modeled by the static momentum balance for the displacement u coupled with a rate-independent flow rule for some internal variable z. We consider a class of abstract systems of ODEs which have the same structure, albeit in a finite-dimensional setting, and regularize both the static equation and the rate-independent flow rule by adding viscous dissipation terms with coefficients εα and ε, where 0<ε<1 and α>0 is a fixed parameter. Therefore for α different from 1 the variables u and z have different relaxation rates. We address the vanishing-viscosity analysis as ε tends to 0 in the viscous system. We prove that, up to a subsequence, (reparameterized) viscous solutions converge to a parameterized curve yielding a Balanced Viscosity solution to the original rate-independent system and providing an accurate description of the system behavior at jumps. We also give a reformulation of the notion of Balanced Viscosity solution in terms of a system of subdifferential inclusions, showing that the viscosity in u and the one in z are involved in the jump dynamics in different ways, according to whether α >1, α=1, or 0<α<1.

  • A. Mielke, Deriving effective models for multiscale systems via evolutionary $Gamma$-convergence, in: Control of Self-Organizing Nonlinear Systems, E. Schöll, S. Klapp, P. Hövel, eds., Understanding Complex Systems, Springer International Publishing AG Switzerland, Cham, 2016, pp. 235--251.

  • A. Mielke, Evolutionary relaxation of a two-phase model, in: Scales in Plasticity, Mini-Workshop, November 8--14, 2015, G.A. Francfort, S. Luckhaus, eds., 12 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2015, pp. 3027--3030.

  • A. Mielke, On thermodynamical couplings of quantum mechanics and macroscopic systems, in: Mathematical Results in Quantum Mechanics. Proceedings of the QMath12 Conference, P. Exner, W. König, H. Neidhardt, eds., World Scientific Publishing, Singapore, 2015, pp. 331--348.
    Abstract
    Pure quantum mechanics can be formulated as a Hamiltonian system in terms of the Liouville equation for the density matrix. Dissipative effects are modeled via coupling to a macroscopic system, where the coupling operators act via commutators. Following Öttinger (2010) we use the GENERIC framework to construct thermodynamically consistent evolution equations as a sum of a Hamiltonian and a gradient-flow contribution, which satisfy a particular non-interaction condition:
    formel
    We give three applications of the theory. First, we consider a finite-dimensional quantum system that is coupled to a finite number of simple heat baths, each of which is described by a scalar temperature variable. Second, we model quantum system given by a one-dimensional Schrödinger operator connected to a one-dimensional heat equation on the left and on the right. Finally, we consider thermo-opto-electronics, where the Maxwell-Bloch system of optics is coupled to the energy-drift-diffusion system for semiconductor electronics.

  • A. Fiebach, A. Glitzky, Uniform estimate of the relative free energy by the dissipation rate for finite volume discretized reaction-diffusion systems, in: Finite Volumes for Complex Applications VII -- Methods and Theoretical Aspects -- FVCA 7, Berlin, June 2014, J. Fuhrmann, M. Ohlberger, Ch. Rohde, eds., 77 of Springer Proceedings in Mathematics & Statistics, Springer International Publishing, Cham et al., 2014, pp. 275--283.
    Abstract
    We prove a uniform Poincare-like estimate of the relative free energy by the dissipation rate for implicit Euler, finite volume discretized reaction-diffusion systems. This result is proven indirectly and ensures the exponential decay of the relative free energy with a unified decay rate for admissible finite volume meshes.

  • A. Glitzky, A. Mielke, L. Recke, M. Wolfrum, S. Yanchuk, D2 -- Mathematics for optoelectronic devices, in: MATHEON -- Mathematics for Key Technologies, M. Grötschel, D. Hömberg, J. Sprekels, V. Mehrmann ET AL., eds., 1 of EMS Series in Industrial and Applied Mathematics, European Mathematical Society Publishing House, Zurich, 2014, pp. 243--256.

  • D. Knees, R. Kornhuber, Ch. Kraus, A. Mielke, J. Sprekels, C3 -- Phase transformation and separation in solids, in: MATHEON -- Mathematics for Key Technologies, M. Grötschel, D. Hömberg, J. Sprekels, V. Mehrmann ET AL., eds., 1 of EMS Series in Industrial and Applied Mathematics, European Mathematical Society Publishing House, Zurich, 2014, pp. 189--203.

  • K. Götze, Free fall of a rigid body in a viscoelastic fluid, in: Geophysical Fluid Dynamics, Workshop, February 18--22, 2013, 10 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2013, pp. 554--556.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion systems, in: Material Theory, Workshop, Dezember 16--20, 2013, A. Desimone, S. Luckhaus, L. Truskinovsky, eds., 10 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2013, pp. 3455--3458.

  • K. Götze, Maximal $L^p$-regularity of a 2D fluid-solid interaction problem, in: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, W. Arendt, J.A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann, C. Trunk, eds., 221 of Operator Theory: Advances and Applications, Birkhäuser, Basel, 2012, pp. 373--384.
    Abstract
    We study a coupled system of equations which appears as a suitable linearisation of the model for the free motion of a rigid body in a Newtonian fluid in two space dimensions. For this problem, we show maximal Lp-regularity estimates.

  • A. Mielke, Multiscale gradient systems and their amplitude equations, in: Dynamics of Pattern, Workshop, Dezember 16--22, 2012, 9 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2012, pp. 3588--3591.

  • R. Haller-Dintelmann, J. Rehberg, Maximal parabolic regularity for divergence operators on distribution spaces, in: Parabolic Problems: The Herbert Amann Festschrift, J. Escher, P. Guidotti, M. Hieber, P. Mucha, J.W. Pruess, Y. Shibata, G. Simonett, Ch. Walker, W. Zajaczkowski, eds., 80 of Progress in Nonlinear Differential Equations and Their Applications, Springer, Basel, 2011, pp. 313--342.
    Abstract
    We show that elliptic second order operators A of divergence type fulfill maximal parabolic regularity on distribution spaces, even if the underlying domain is highly non-smooth, the coefficients of A are discontinuous and A is complemented with mixed boundary conditions. Applications to quasilinear parabolic equations with non-smooth data are presented.

  • D. Knees, R. Rossi, C. Zanini, A vanishing viscosity approach in damage mechanics, in: Variational Methods for Evolution, Workshop, December 4--10, 2011, A. Mielke, F. Otto, G. Savaré, U. Stefanelli, eds., 8 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2011, pp. 3153--3155.

  • M. Thomas, Modeling and analysis of rate-independent damage and delamination processes, in: Proceedings of the 19th International Conference on Computer Methods in Mechanics (online only), 2011, pp. 1--6.

  • P. Krejčí, E. Rocca, J. Sprekels, Liquid-solid phase transitions in a deformable container, in: Continuous Media with Microstructure, B. Albers, ed., Springer, Berlin/Heidelberg, 2010, pp. 285-300.

  • A. Mielke, Existence theory for finite-strain crystal plasticity with gradient regularization, in: IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, K. Hackl, ed., 21 of IUTAM Bookseries, Springer, Heidelberg, 2010, pp. 171--183.

  • H. Gajewski, J.A. Griepentrog, A. Mielke, J. Beuthan, U. Zabarylo, O. Minet, Image segmentation for the investigation of scattered-light images when laser-optically diagnosing rheumatoid arthritis, in: Mathematics -- Key Technology for the Future, W. Jäger, H.-J. Krebs, eds., Springer, Heidelberg, 2008, pp. 149--161.

  • A. Mielke, Numerical approximation techniques for rate-independent inelasticity, in: Proceedings of the IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, B.D. Reddy, ed., 11 of IUTAM Bookseries, Springer, 2008, pp. 53--63.

  • A. Petrov, J.A.C. Martins, M.D.P. Monteiro Marques, Mathematical results on the stability of quasi-static paths of elastic-plastic systems with hardening, in: Topics on Mathematics for Smart Systems, B. Miara, G. Stavroulakis, V. Valente, eds., World Scientific, Singapore, 2007, pp. 167--182.

  • A. Petrov, Thermally driven phase transformation in shape-memory alloys, in: Analysis and Numerics of Rate-Independent Processes, Workshop, February 26 -- March 2, 2007, 4 of Oberwolfach Reports, Mathematisches Forschungsinstitut Oberwolfach, 2007, pp. 605--607.

  • M. Eleuteri, Some P.D.E.s with hysteresis, in: Free Boundary Problems. Theory and Applications, I.N. Figueiredo, J.F. Rodrigues, L. Santos, eds., 154 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 2007, pp. 159-168.

  • A. Glitzky, Energy models where the equations are defined on different domains, in: GAMM Annual Meeting 2006 -- Berlin, Special Issue (Vol. 6, Issue 1) of PAMM (Proceedings of Applied Mathematics and Mechanics), Wiley-VCH Verlag, Weinheim, 2006, pp. 629--630.

  • R. Hünlich, G. Albinus, H. Gajewski, A. Glitzky, W. Röpke, J. Knopke, Modelling and simulation of power devices for high-voltage integrated circuits, in: Mathematics --- Key Technology for the Future. Joint Projects Between Universities and Industry, W. Jäger, H.-J. Krebs, eds., Springer, Berlin [u.a.], 2003, pp. 401--412.

  • I.V. Skrypnik, H. Gajewski, On the uniqueness of solutions to nonlinear elliptic and parabolic problems (in Russian), in: Differ. Uravn. i Din. Sist., dedicated to the 80th anniversary of the Academician Evgenii Frolovich Mishchenko, Suzdal, 2000, 236 of Tr. Mat. Inst. Steklova, Moscow, Russia, 2002, pp. 318--327.

  • R. Hünlich, A. Glitzky, On energy estimates for electro-diffusion equations arising in semiconductor technology, in: Partial differential equations. Theory and numerical solution, W. Jäger, J. Nečas, O. John, K. Najzar, eds., 406 of Chapman & Hall Research Notes in Mathematics, Chapman & Hall, Boca Raton, FL, 2000, pp. 158--174.

  • H.-Chr. Kaiser, J. Rehberg, About some mathematical questions concerning the embedding of Schrödinger-Poisson systems into the drift-diffusion model of semiconductor devices, in: EQUADIFF 99: International Conference on Differential Equations, Berlin 1999, B. Fiedler, K. Gröger, J. Sprekels, eds., 2, World Scientific, Singapore [u. a.], 2000, pp. 1328--1333.

  Preprints, Reports, Technical Reports

  • A. Alphonse, C. Christof, M. Hintermüller, I. Papadopoulos, A globalized inexact semismooth Newton method for nonsmooth fixed--point equations involving variational inequalities, Preprint no. 3132, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3132 .
    Abstract, PDF (23 MByte)
    We develop a semismooth Newton framework for the numerical solution of fixed-point equations that are posed in Banach spaces. The framework is motivated by applications in the field of obstacle-type quasi-variational inequalities and implicit obstacle problems. It is discussed in a general functional analytic setting and allows for inexact function evaluations and Newton steps. Moreover, if a certain contraction assumption holds, we show that it is possible to globalize the algorithm by means of the Banach fixed-point theorem and to ensure q-superlinear convergence to the problem solution for arbitrary starting values. By means of a localization technique, our Newton method can also be used to determine solutions of fixed-point equations that are only locally contractive and not uniquely solvable. We apply our algorithm to a quasi-variational inequality which arises in thermoforming and which not only involves the obstacle problem as a source of nonsmoothness but also a semilinear PDE containing a nondifferentiable Nemytskii operator. Our analysis is accompanied by numerical experiments that illustrate the mesh-independence and q -superlinear convergence of the developed solution algorithm.

  • J. Ginster, A. Pešić, B. Zwicknagl, Nonlinear interpolation inequalities with fractional Sobolev norms and pattern formation in biomembranes, Preprint no. 3131, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3131 .
    Abstract, PDF (343 kByte)
    We consider a one-dimensional version of a variational model for pattern formation in biological membranes. The driving term in the energy is a coupling between the order parameter and the local curvature of the membrane. We derive scaling laws for the minimal energy. As a main tool we present new nonlinear interpolation inequalities that bound fractional Sobolev seminorms in terms of a Cahn--Hillard/Modica--Mortola energy.

  • R. Lasarzik, E. Rocca, R. Rossi, Existence and weak-strong uniqueness for damage systems in viscoelasticity, Preprint no. 3129, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3129 .
    Abstract, PDF (524 kByte)
    In this paper we investigate the existence of solutions and their weak-strong uniqueness property for a PDE system modelling damage in viscoelastic materials. In fact, we address two solution concepts, emphweak and emphstrong solutions. For the former, we obtain a global-in-time existence result, but the highly nonlinear character of the system prevents us from proving their uniqueness. For the latter, we prove local-in-time existence. Then, we show that the strong solution, as long as it exists, is unique in the class of weak solutions. This emphweak-strong uniqueness statement is proved by means of a suitable relative energy inequality.

  • P. Colli, J. Sprekels, Hyperbolic relaxation of the chemical potential in the viscous Cahn--Hilliard equation, Preprint no. 3128, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3128 .
    Abstract, PDF (300 kByte)
    In this paper, we study a hyperbolic relaxation of the viscous Cahn--Hilliard system with zero Neumann boundary conditions. In fact, we consider a relaxation term involving the second time derivative of the chemical potential in the first equation of the system. We develop a well-posedness, continuous dependence and regularity theory for the initial-boundary value problem. Moreover, we investigate the asymptotic behavior of the system as the relaxation parameter tends to 0 and prove the convergence to the viscous Cahn--Hilliard system.

  • A. Mielke, R. Rossi, On De Giorgi's lemma for variational interpolants in metric and Banach spaces, Preprint no. 3127, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3127 .
    Abstract, PDF (349 kByte)
    Variational interpolants are an indispensable tool for the construction of gradient-flow solutions via the Minimizing Movement Scheme. De Giorgi's lemma provides the associated discrete energy-dissipation inequality. It was originally developed for metric gradient systems. Drawing from this theory we study the case of generalized gradient systems in Banach spaces, where a refined theory allows us to extend the validity of the discrete energy-dissipation inequality and to establish it as an equality. For the latter we have to impose the condition of radial differentiability of the dissipation potential. Several examples are discussed to show how sharp the results are.

  • W. van Oosterhout, Linearization of finite-strain poro-visco-elasticity with degenerate mobility, Preprint no. 3123, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3123 .
    Abstract, PDF (344 kByte)
    A quasistatic nonlinear model for finite-strain poro-visco-elasticity is considered in the Lagrangian frame using Kelvin--Voigt rheology. The model consists of a mechanical equation which is coupled to a diffusion equation with a degenerate mobility. Having shown existence of weak solutions in a previous work, the focus is first on showing boundedness of the concentration using Moser iteration. Afterwards, it is assumed that the external loading is small, and it is rigorously shown that solutions of the nonlinear, finite-strain system converge to solutions of the linear, small-strain system.

  • A. Alphonse, D. Caetano, Ch.M. Elliott, Ch. Venkataraman, Free boundary limits of coupled bulk--surface models for receptor--ligand interactions on evolving domains, Preprint no. 3122, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3122 .
    Abstract, PDF (5947 kByte)
    We derive various novel free boundary problems as limits of a coupled bulk-surface reaction-diffusion system modelling ligand-receptor dynamics on evolving domains. These limiting free boundary problems may be formulated as Stefan-type problems on an evolving hypersurface. Our results are new even in the setting where there is no domain evolution. The models are of particular relevance to a number of applications in cell biology. The analysis utilises L-estimates in the manner of De Giorgi iterations and other technical tools, all in an evolving setting. We also report on numerical simulations.

  • P. Colli, G. Gilardi, A. Signori, J. Sprekels, Solvability and optimal control of a multi-species Cahn--Hilliard--Keller--Segel tumor growth model, Preprint no. 3118, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3118 .
    PDF (367 kByte)

  • T. Böhnlein, M. Egert, J. Rehberg, Bounded functional calculus for divergence form operators with dynamical boundary conditions, Preprint no. 3115, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3115 .
    Abstract, PDF (417 kByte)
    We consider divergence form operators with complex coefficients on an open subset of Euclidean space. Boundary conditions in the corresponding parabolic problem are dynamical, that is, the time derivative appears on the boundary. As a matter of fact, the elliptic operator and its semigroup act simultaneously in the interior and on the boundary. We show that the elliptic operator has a bounded holomorphic calculus in Lebesgue spaces if the coefficients satisfy a p-adapted ellipticity condition. A major challenge in the proof is that different parts of the spatial domain of the operator have different dimensions. Our strategy relies on extending a contractivity criterion due to Nittka and a non-linear heat flow method recently popularized by Carbonaro--Dragicevic to our setting.

  • P. Colli, J. Sprekels, Second-order optimality conditions for the sparse optimal control of nonviscous Cahn--Hilliard systems, Preprint no. 3114, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3114 .
    Abstract, PDF (363 kByte)
    In this paper we study the optimal control of an initial-boundary value problem for the classical nonviscous Cahn--Hilliard system with zero Neumann boundary conditions. Phase field systems of this type govern the evolution of diffusive phase transition processes with conserved order parameter. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a sparsity-enhancing nondifferentiable term like the $L^1$-norm. For such cases, we establish first-order necessary and second-order sufficient optimality conditions for locally optimal controls, where in the approach to second-order sufficient conditions we employ a technique introduced by E. Casas, C. Ryll and F. Tröltzsch in the paper SIAM J. Control Optim. 53 (2015), 2168--2202. The main novelty of this paper is that this method, which has recently been successfully applied to systems of viscous Cahn--Hilliard type, can be adapted also to the classical nonviscous case. Since in the case without viscosity the solutions to the state and adjoint systems turn out to be considerably less regular than in the viscous case, numerous additional technical difficulties have to be overcome, and additional conditions have to be imposed. In particular, we have to restrict ourselves to the case when the nonlinearity driving the phase separation is regular, while in the presence of a viscosity term also nonlinearities of logarithmic type turn could be admitted. In addition, the implicit function theorem, which was employed to establish the needed differentiability properties of the control-to-state operator in the viscous case, does not apply in our situation and has to be substituted by other arguments.

  • A. Mielke, T. Roubiček, A general thermodynamical model for finitely-strained continuum with inelasticity and diffusion, its GENERIC derivation in Eulerian formulation, and some application, Preprint no. 3107, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3107 .
    Abstract, PDF (484 kByte)
    A thermodynamically consistent visco-elastodynamical model at finite strains is derived that also allows for inelasticity (like plasticity or creep), thermal coupling, and poroelasticity with diffusion. The theory is developed in the Eulerian framework and is shown to be consistent with the thermodynamic framework given by General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC). For the latter we use that the transport terms are given in terms of Lie derivatives. Application is illustrated by two examples, namely volumetric phase transitions with dehydration in rocks and martensitic phase transitions in shape-memory alloys. A strategy towards a rigorous mathematical analysis is only very briefly outlined.

  • M. Heida, B. Jahnel, A.D. Vu, An ergodic and isotropic zero-conductance model with arbitrarily strong local connectivity, Preprint no. 3095, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3095 .
    Abstract, PDF (377 kByte)
    We exhibit a percolating ergodic and isotropic lattice model in all but at least two dimensions that has zero effective conductivity in all spatial directions and for all non-trivial choices of the connectivity parameter. The model is based on the so-called randomly stretched lattice where we additionally elongate layers containing few open edges.

  • P. Colli, J. Sprekels, F. Tröltzsch, Optimality conditions for sparse optimal control of viscous Cahn--Hilliard systems with logarithmic potential, Preprint no. 3094, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3094 .
    Abstract, PDF (407 kByte)
    In this paper we study the optimal control of a parabolic initial-boundary value problem of viscous Cahn--Hilliard type with zero Neumann boundary conditions. Phase field systems of this type govern the evolution of diffusive phase transition processes with conserved order parameter. It is assumed that the nonlinear function driving the physical processes within the spatial domain are double-well potentials of logarithmic type whose derivatives become singular at the boundary of their respective domains of definition. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a nondifferentiable term like the $L^1$-norm, which leads to sparsity of optimal controls. For such cases, we establish first-order necessary and second-order sufficient optimality conditions for locally optimal controls. In the approach to second-order sufficient conditions, the main novelty of this paper, we adapt a technique introduced by E. Casas, C. Ryll and F. Tröltzsch in the paper SIAM J. Control Optim. 53 (2015), 2168--2202. In this paper, we show that this method can also be successfully applied to systems of viscous Cahn--Hilliard type with logarithmic nonlinearity. Since the Cahn--Hilliard system corresponds to a fourth-order partial differential equation in contrast to the second-order systems investigated before, additional technical difficulties have to be overcome.

  • A. Alphonse, M. Hintermüller, C.N. Rautenberg, G. Wachsmuth, Minimal and maximal solution maps of elliptic QVIs: Penalisation, Lipschitz stability, differentiability and optimal control, Preprint no. 3093, WIAS, Berlin, 2024.
    Abstract, PDF (501 kByte)
    Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions that can be ordered. We study a multitude of properties of the operator mapping the source term to the minimal or maximal solution of such QVIs. We prove that the solution maps are locally Lipschitz continuous and directionally differentiable and show existence of optimal controls for problems that incorporate these maps as the control-to-state operator. We also consider a Moreau?Yosida-type penalisation for the QVI wherein we show that it is possible to approximate the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively) of certain PDEs, which have a simpler structure and offer a convenient characterisation in particular for computation. For solution mappings of these penalised problems, we prove a number of properties including Lipschitz and differential stability. Making use of the penalised equations, we derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand stationarity we get from the differentiability result.

  • TH. Eiter, A.L. Silvestre, Representation formulas and far-field behavior of time-periodic flow past a body, Preprint no. 3091, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3091 .
    Abstract, PDF (325 kByte)
    This paper is concerned with integral representations and asymptotic expansions of solutions to the time-periodic incompressible Navier-Stokes equations for fluid flow in the exterior of a rigid body that moves with constant velocity. Using the time-periodic Oseen fundamental solution, we derive representation formulas for solutions with suitable regularity. From these formulas, the decomposition of the velocity component of the fundamental solution into steady-state and purely periodic parts and their detailed decay rate in space, we deduce complete information on the asymptotic structure of the velocity and pressure fields.

  • J. Li, X. Liu, D. Peschka, Local well-posedness and global stability of one-dimensional shallow water equations with surface tension and constant contact angle, Preprint no. 3084, WIAS, Berlin, 2024, DOI 10.20347/WIAS.PREPRINT.3084 .
    Abstract, PDF (405 kByte)
    We consider the one-dimensional shallow water problem with capillary surfaces and moving contact lines. An energy-based model is derived from the two-dimensional water wave equations, where we explicitly discuss the case of a stationary force balance at a moving contact line and highlight necessary changes to consider dynamic contact angles. The moving contact line becomes our free boundary at the level of shallow water equations, and the depth of the shallow water degenerates near the free boundary, which causes singularities for the derivatives and degeneracy for the viscosity. This is similar to the physical vacuum of compressible flows in the literature. The equilibrium, the global stability of the equilibrium, and the local well-posedness theory are established in this paper.

  • A. Agosti, R. Lasarzik, E. Rocca, Energy-variational solutions for viscoelastic fluid models, Preprint no. 3048, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3048 .
    Abstract, PDF (329 kByte)
    In this article, we introduce the concept of energy-variational solutions for a large class of systems of nonlinear evolutionary partial differential equations. Under certain convexity assumptions, the existence of such solutions can be shown constructively by an adapted minimizing movement scheme. Weak-strong uniqueness follows by a suitable relative energy inequality.
    Our main motivation is to apply the general framework to viscoelastic fluid models. Therefore, we give a short overview on different versions of such models and their derivation. The abstract result is applied to two of these viscoelastic fluid models in full detail. In the conclusion, we comment on further applications of the general theory and its possible impact.

  • L. Andreis, T. Iyer, E. Magnanini, Gelation, hydrodynamic limits and uniqueness in cluster coagulation processes, Preprint no. 3039, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3039 .
    Abstract, PDF (627 kByte)
    We consider the problem of gelation in the cluster coagulation model introduced by Norris [Comm. Math. Phys., 209(2):407-435 (2000)]; this model is general enough to incorporate various inhomogenieties in the evolution of clusters, for example, their shape, or their location in space. We derive general, sufficient criteria for stochastic gelation in this model, and for trajectories associated with this process to concentrate among solutions of a generalisation of the Flory equation; thus providing sufficient criteria for the equation to have gelling solutions. As particular cases, we extend results related to the classical Marcus-Lushnikov coagulation process and Smoluchowski coagulation equation, showing that reasonable 'homogenous' coagulation processes with exponent γ larger than 1 yield gelation. In another special case, we prove a law of large numbers for the trajectory of the empirical measure of the stochastic cluster coagulation process, by means of a uniqueness result for the solution of the aforementioned generalised Flory equation. Finally, we use coupling arguments with inhomogeneous random graphs to deduce sufficient criterion for strong gelation (the emergence of a particle of size O(N)).

  • A. Mielke, R. Rossi, A. Stephan, On time-splitting methods for gradient flows with two dissipation mechanisms, Preprint no. 3033, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3033 .
    Abstract, PDF (530 kByte)
    We consider generalized gradient systems in Banach spaces whose evolutions are generated by the interplay between an energy functional and a dissipation potential. We focus on the case in which the dual dissipation potential is given by a sum of two functionals and show that solutions of the associated gradient-flow evolution equation with combined dissipation can be constructed by a split-step method, i.e. by solving alternately the gradient systems featuring only one of the dissipation potentials and concatenating the corresponding trajectories. Thereby the construction of solutions is provided either by semiflows, on the time-continuous level, or by using Alternating Minimizing Movements in the time-discrete setting. In both cases the convergence analysis relies on the energy-dissipation principle for gradient systems.

  • A. Stephan, Trotter-type formula for operator semigroups on product spaces, Preprint no. 3030, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3030 .
    Abstract, PDF (252 kByte)
    We consider a Trotter-type-product formula for approximating the solution of a linear abstract Cauchy problem (given by a strongly continuous semigroup), where the underlying Banach space is a product of two spaces. In contrast to the classical Trotter-product formula, the approximation is given by freezing subsequently the components of each subspace. After deriving necessary stability estimates for the approximation, which immediately provide convergence in the natural strong topology, we investigate convergence in the operator norm. The main result shows that an almost optimal convergence rate can be established if the dominant operator generates a holomorphic semigroup and the off-diagonal coupling operators are bounded.

  • A. Mielke, An introduction to the analysis of gradients systems, Preprint no. 3022, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3022 .
    Abstract, PDF (862 kByte)
    The present notes provide an extended version of a small lecture course (of 36 hours) given at the Humboldt-Universität zu Berlin in the Winter Term 2022/23. The material starting in Section 5.4 was added afterwards. The aim of these notes to give an introductory overview on the analytical approaches for gradient-flow equations in Hilbert spaces, Banach spaces, and metric spaces and to show that on the first entry level these theories have a lot in common. The theories and their specific setups are illustrated by suitable examples and counterexamples.

  • A. Mielke, T. Roubíček, U. Stefanelli, A model of gravitational differentiation of compressible self-gravitating planets, Preprint no. 3015, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3015 .
    Abstract, PDF (444 kByte)
    We present a dynamic model for inhomogeneous viscoelastic media at finite strains. The model features a Kelvin--Voigt rheology, and includes a self-generated gravitational field in the actual evolving configuration. In particular, a fully Eulerian approach is adopted. We specialize the model to viscoelastic (barotropic) fluids and prove existence and a certain regularity of global weak solutions by a Faedo--Galerkin semi-discretization technique. Then, an extension to multi-component chemically reacting viscoelastic fluids based on a phenomenological approach by Eckart and Prigogine, is advanced and studied. The model is inspired by planetary geophysics. In particular, it describes gravitational differentiation of inhomogeneous planets and moons, possibly undergoing volumetric phase transitions.

  • A. Mielke, S. Schindler, Convergence to self-similar profiles in reaction-diffusion systems, Preprint no. 3008, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3008 .
    Abstract, PDF (380 kByte)
    We study a reaction-diffusion system on the real line, where the reactions of the species are given by one reversible reaction pair satisfying the mass-action law. We describe different positive limits at both sides of infinityand investigate the long-time behavior. Rescaling space and time according to the parabolic scaling, we show that solutions converge exponentially to a similarity profile when the scaled time goes to infinity. In the original variables, these profiles correspond to asymptotically self-similar behavior describing the phenomenon of diffusive mixing of the different states at infinity.Our method provides global exponential convergence for all initial states with finite relative entropy. For the case with equal stoichiometric coefficients, we can allow for self-similar profiles with arbitrary equilibrated states,while in the other case we need to assume that the two states atinfinity are sufficiently close such that the self-similar profile is relative flat.

  • A. Mielke, S. Schindler, Existence of similarity profiles for diffusion equations and systems, Preprint no. 3007, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3007 .
    Abstract, PDF (403 kByte)
    We study the existence of self-similar profiles for diffusion equations and reaction-diffusion systems on the real line, where different nontrivial limits are imposed at both sides of infinity. The theses profiles solve a coupled system of nonlinear ODEs that can be treated by monotone operator theory.

  • K. Hopf, A. Jüngel, Convergence of a finite volume scheme and dissipative measure-valued--strong stability for a hyperbolic-parabolic cross-diffusion system, Preprint no. 3006, WIAS, Berlin, 2023, DOI 10.20347/WIAS.PREPRINT.3006 .
    Abstract, PDF (444 kByte)
    This article is concerned with the approximation of hyperbolic-parabolic cross-diffusion systems modeling segregation phenomena for populations by a fully discrete finite-volume scheme. It is proved that the numerical scheme converges to a dissipative measure-valued solution of the PDE system and that, whenever the latter possesses a strong solution, the convergence holds in the strong sense. Furthermore, the “parabolic density part” of the limiting measure-valued solution is atomic and converges to its constant state for long times. The results are based on Young measure theory and a weak-strong stability estimate combining Shannon and Rao entropies. The convergence of the numerical scheme is achieved by means of discrete entropy dissipation inequalities and an artificial diffusion, which vanishes in the continuum limit.

  • G. Dong, M. Hintermüller, K. Papafitsoros, K. Völkner, First-order conditions for the optimal control of learning-informed nonsmooth PDEs, Preprint no. 2940, WIAS, Berlin, 2022, DOI 10.20347/WIAS.PREPRINT.2940 .
    Abstract, PDF (408 kByte)
    In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.

  • A. Stephan, H. Stephan, Positivity and polynomial decay of energies for square-field operators, Preprint no. 2901, WIAS, Berlin, 2021, DOI 10.20347/WIAS.PREPRINT.2901 .
    Abstract, PDF (328 kByte)
    We show that for a general Markov generator the associated square-field (or carré du champs) operator and all their iterations are positive. The proof is based on an interpolation between the operators involving the generator and their semigroups, and an interplay between positivity and convexity on Banach lattices. Positivity of the square-field operators allows to define a hierarchy of quadratic and positive energy functionals which decay to zero along solutions of the corresponding evolution equation. Assuming that the Markov generator satisfies an operator-theoretic normality condition, the sequence of energies is log-convex. In particular, this implies polynomial decay in time for the energy functionals along solutions.

  • M.H. Farshbaf Shaker, M. Thomas, Analysis of a compressible Stokes-flow with degenerating and singular viscosity, Preprint no. 2786, WIAS, Berlin, 2020, DOI 10.20347/WIAS.PREPRINT.2786 .
    Abstract, PDF (744 kByte)
    In this paper we show the existence of a weak solution for a compressible single-phase Stokes flow with mass transport accounting for the degeneracy and the singular behavior of a density-dependent viscosity. The analysis is based on an implicit time-discrete scheme and a Galerkin-approximation in space. Convergence of the discrete solutions is obtained thanks to a diffusive regularization of p-Laplacian type in the transport equation that allows for refined compactness arguments on subdomains.

  • S. Bartels, M. Milicevic, M. Thomas, N. Weber, Fully discrete approximation of rate-independent damage models with gradient regularization, Preprint no. 2707, WIAS, Berlin, 2020, DOI 10.20347/WIAS.PREPRINT.2707 .
    Abstract, PDF (3444 kByte)
    This work provides a convergence analysis of a time-discrete scheme coupled with a finite-element approximation in space for a model for partial, rate-independent damage featuring a gradient regularization as well as a non-smooth constraint to account for the unidirectionality of the damage evolution. The numerical algorithm to solve the coupled problem of quasistatic small strain linear elasticity with rate-independent gradient damage is based on a Variable ADMM-method to approximate the nonsmooth contribution. Space-discretization is based on P1 finite elements and the algorithm directly couples the time-step size with the spatial grid size h. For a wide class of gradient regularizations, which allows both for Sobolev functions of integrability exponent r ∈ (1, ∞) and for BV-functions, it is shown that solutions obtained with the algorithm approximate as h → 0 a semistable energetic solution of the original problem. The latter is characterized by a minimality property for the displacements, a semistability inequality for the damage variable and an energy dissipation estimate. Numerical benchmark experiments confirm the stability of the method.

  • H. Stephan, Millions of Perrin pseudoprimes including a few giants, Preprint no. 2657, WIAS, Berlin, 2019, DOI 10.20347/WIAS.PREPRINT.2657 .
    Abstract, PDF (244 kByte)
    The calculation of many and large Perrin pseudoprimes is a challenge. This is mainly due to their rarity. Perrin pseudoprimes are one of the rarest known pseudoprimes. In order to calculate many such large numbers, one needs not only a fast algorithm but also an idea how most of them are structured to minimize the amount of numbers one have to test. We present a quick algorithm for testing Perrin pseudoprimes and develop some ideas on how Perrin pseudoprimes might be structured. This leads to some conjectures that still need to be proved.
    We think that we have found well over 90% of all 20-digit Perrin pseudoprimes. Overall, we have been able to calculate over 9 million Perrin pseudoprimes with our method, including some very large ones. The largest number found has 1436 digits. This seems to be a breakthrough, compared to the previously known just over 100,000 Perrin pseudoprimes, of which the largest have 20 digits.
    In addition, we propose two sequences that do not provide any pseudoprimes up to 1,000,000,000 at all.

  • A. Münch, B. Wagner, Self-consistent field theory for a polymer brush. Part II: The effective chemical potential, Preprint no. 2649, WIAS, Berlin, 2019, DOI 10.20347/WIAS.PREPRINT.2649 .
    Abstract, PDF (318 kByte)
    The most successful mean-field model to describe the collective behaviour of the large class of macromolecular polymers is the self-consistent field theory (SCFT). Still, even for the simple system of a grafted dry polymer brush, the mean-field equations have to be solved numerically. As one of very few alternatives that offer some analytical tractability the strong-stretching theory (SST) has led to explicit expressions for the effective chemical potential and consequently the free energy to promote an understanding of the underlying physics. Yet, a direct derivation of these analytical results from the SCFT model is still outstanding. In this study we present a systematic asymptotic theory based on matched asymtptotic expansions to obtain the effective chemical potential from the SCFT model for a dry polymer brush for large but finite stretching.

  • A. Münch, B. Wagner, Self-consistent field theory for a polymer brush. Part I: Asymptotic analysis in the strong-stretching limit, Preprint no. 2648, WIAS, Berlin, 2019, DOI 10.20347/WIAS.PREPRINT.2648 .
    Abstract, PDF (854 kByte)
    In this study we consider the self-consistent field theory for a dry, in- compressible polymer brush, densely grafted on a substrate, describing the average segment density of a polymer in terms of an effective chemical potential for the interaction between the segments of the polymer chain. We present a systematic singular perturbation analysis of the self-consistent field theory in the strong-stretching limit, when the length scale of the ratio of the radius of gyration of the polymer chain to the extension of the brush from the substrate vanishes. Our analysis yields, for the first time, an approximation for the average segment density that is correct to leading order in the outer scaling and resolves the boundary layer singularity at the end of the polymer brush in the strong-stretching limit. We also show that in this limit our analytical results agree increasingly well with our numerical solutions to the full model equations comprising the self-consistent field theory.

  • A.F.M. TER Elst, H. Meinlschmidt, J. Rehberg, Essential boundedness for solutions of the Neumann problem on general domains, Preprint no. 2574, WIAS, Berlin, 2019, DOI 10.20347/WIAS.PREPRINT.2574 .
    Abstract, PDF (220 kByte)
    Let the domain under consideration be bounded. Under the suppositions of very weak Sobolev embeddings we prove that the solutions of the Neumann problem for an elliptic, second order divergence operator are essentially bounded, if the right hand sides are taken from the dual of a Sobolev space which is adapted to the above embedding.

  • M. Heida, S. Neukamm, M. Varga, Stochastic unfolding and homogenization, Preprint no. 2460, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2460 .
    Abstract, PDF (596 kByte)
    The notion of periodic two-scale convergence and the method of periodic unfolding are prominent and useful tools in multiscale modeling and analysis of PDEs with rapidly oscillating periodic coefficients. In this paper we are interested in the theory of stochastic homogenization for continuum mechanical models in form of PDEs with random coefficients, describing random heterogeneous materials. The notion of periodic two-scale convergence has been extended in different ways to the stochastic case. In this work we introduce a stochastic unfolding method that features many similarities to periodic unfolding. In particular it allows to characterize the notion of stochastic two-scale convergence in the mean by mere convergence in an extended space. We illustrate the method on the (classical) example of stochastic homogenization of convex integral functionals, and prove a stochastic homogenization result for an non-convex evolution equation of Allen-Cahn type. Moreover, we discuss the relation of stochastic unfolding to previously introduced notions of (quenched and mean) stochastic two-scale convergence. The method introduced in this paper extends discrete stochastic unfolding, as recently introduced by the second and third author in the context of discrete-to-continuum transition.

  • P.-É. Druet, Analysis of improved Nernst--Planck--Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix, Preprint no. 2321, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2321 .
    Abstract, PDF (387 kByte)
    We continue our investigations of the improved Nernst-Planck-Poisson model introduced by Dreyer, Guhlke and Müller 2013. In the paper by Dreyer, Druet, Gajewski and Guhlke 2016, the analysis relies on the hypothesis that the mobility matrix has maximal rank under the constraint of mass conservation (rank N-1 for the mixture of N species). In this paper we allow for the case that the positive eigenvalues of the mobility matrix tend to zero along with the partial mass densities of certain species. In this approach the mobility matrix has a variable rank between zero and N-1 according to the number of locally available species. We set up a concept of weak solution able to deal with this scenario, showing in particular how to extend the fundamental notion of emphdifferences of chemical potentials that supports the modelling and the analysis in Dreyer, Druet, Gajewski and Guhlke 2016. We prove the global-in-time existence in this solution class.

  • K. Disser, Global existence, uniqueness and stability for nonlinear dissipative systems of bulk-interface interaction, Preprint no. 2313, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2313 .
    Abstract, PDF (302 kByte)
    We consider a general class of nonlinear parabolic systems corresponding to thermodynamically consistent gradient structure models of bulk-interface interaction. The setting includes non-smooth geometries and e.g. slow, fast and "entropic” diffusion processes under mass conservation. The main results are global well-posedness and exponential stability of equilibria. As a part of the proof, we show bulk-interface maximum principles and a bulk-interface Poincaré inequality. The method of proof for global existence is a simple but very versatile combination of maximal parabolic regularity of the linearization, a priori L-bounds and a Schaefer's fixed point argument. This allows us to extend the setting e.g. to Allen-Cahn dissipative dynamics and to include large classes of inhomogeneous boundary conditions and external forces.

  • W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke, Existence of weak solutions for improved Nernst--Planck--Poisson models of compressible reacting electrolytes, Preprint no. 2291, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2291 .
    Abstract, PDF (638 kByte)

    We consider an improved Nernst-Planck-Poisson model for compressible electrolytes first proposed by Dreyer et al. in 2013. The model takes into account the elastic deformation of the medium. In particular, large pressure contributions near electrochemical interfaces induce an inherent coupling of mass and momentum transport. The model consists of convection-diffusion-reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electrical potential. Cross-diffusion phenomena occur due to the principle of mass conservation. Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the system is degenerate parabolic. In this paper we establish the existence of a global-in- time weak solution for the full model, allowing for cross-diffusion and an arbitrary number of chemical reactions in the bulk and on the active boundary.
  • A. Farina, E. Valdinoci, Anisotropic nonlocal operators regularity and rigidity theorems for a class of anisotropic nonlocal operators, Preprint no. 2213, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2213 .
    Abstract, PDF (284 kByte)
    We consider here operators which are sum of (possibly) fractional derivatives, with (possibly different) order. The main constructive assumption is that the operator is of order $2$ in one variable. By constructing an explicit barrier, we prove a Lipschitz estimate which controls the oscillation of the solutions in such direction with respect to the oscillation of the nonlinearity in the same direction. As a consequence, we obtain a rigidity result that, roughly speaking, states that if the nonlinearity is independent of a coordinate direction, then so is any global solution (provided that the solution does not grow too much at infinity). A Liouville type result then follows as a byproduct.

  • A. Roggensack, Well-posedness of space and time dependent transport equations on a network, Preprint no. 2138, WIAS, Berlin, 2015, DOI 10.20347/WIAS.PREPRINT.2138 .
    Abstract, PDF (378 kByte)
    This article is concerned with the study of weak solutions of a linear transport equation on a bounded domain with coupled boundary data for general non smooth space and time dependent velocity fields. The existence of solutions, its uniqueness and the continuous dependence of the solution on the initial and boundary data as well on the velocity is proven. The results are based on the renormalization property. At the end, the theory is shown to be applicable to the continuity equation on a network.

  • V. Barbu, P. Colli, G. Gilardi, G. Marinoschi, E. Rocca, Sliding modes for a phase-field system, Preprint no. 2133, WIAS, Berlin, 2015, DOI 10.20347/WIAS.PREPRINT.2133 .
    Abstract, PDF (295 kByte)
    In the present contribution the sliding mode control (SMC) problem for a phase-field model of Caginalp type is considered. First we prove the well-posedness and some regularity results for the phase-field type state systems modified by the state- feedback control laws. Then, we show that the chosen SMC laws force the system to reach within finite time the sliding manifold (that we chose in order that one of the physical variables or a combination of them remains constant in time). We study three different types of feedback control laws: the first one appears in the internal energy balance and forces a linear combination of the temperature and the phase to reach a given (space dependent) value, while the second and third ones are added in the phase relation and lead the phase onto a prescribed target  $phi^*$. While the control law is non-local in space for the first two problems, it is local in the third one, i.e., its value at any point and any time just depends on the value of the state.

  • P. Gajewski, On existence and uniqueness of the equilibrium state for an improved Nernst--Planck--Poisson system, Preprint no. 2059, WIAS, Berlin, 2014, DOI 10.20347/WIAS.PREPRINT.2059 .
    Abstract, PDF (208 kByte)
    This work deals with a model for a mixture of charged constituents introduced in [W. Dreyer et al. Overcoming the shortcomings of the Nernst-Planck model. emphPhys. Chem. Chem. Phys., 15:7075-7086, 2013]. The aim of this paper is to give a first existence and uniqueness result for the equilibrium situation. A main difference to earlier works is a momentum balance involving the gradient of pressure and the Lorenz force which persists in the stationary situation and gives rise to the dependence of the chemical potentials on the particle densities of every species.

  • J. Ben-Artzi, D. Marahrens, S. Neukamm, Moment bounds on the corrector of stochastic homogenization of non-symmetric elliptic finite difference equations, Preprint no. 1985, WIAS, Berlin, 2014, DOI 10.20347/WIAS.PREPRINT.1985 .
    Abstract, PDF (413 kByte)
    We consider the corrector equation from the stochastic homogenization of uniformly elliptic finite-difference equations with random, possibly non-symmetric coefficients. Under the assumption that the coefficients are stationary and ergodic in the quantitative form of a Logarithmic Sobolev inequality (LSI), we obtain optimal bounds on the corrector and its gradient in dimensions d ≥ 2. Similar estimates have recently been obtained in the special case of diagonal coefficients making extensive use of the maximum principle and scalar techniques. Our new method only invokes arguments that are also available for elliptic systems and does not use the maximum principle. In particular, our proof relies on the LSI to quantify ergodicity and on regularity estimates on the derivative of the discrete Green's function in weighted spaces.

  • W. Dreyer, J. Giesselmann, Ch. Kraus, Modeling of compressible electrolytes with phase transition, Preprint no. 1955, WIAS, Berlin, 2014, DOI 10.20347/WIAS.PREPRINT.1955 .
    Abstract, PDF (457 kByte)
    A novel thermodynamically consistent diffuse interface model is derived for compressible electrolytes with phase transitions. The fluid mixtures may consist of N constituents with the phases liquid and vapor, where both phases may coexist. In addition, all constituents may consist of polarizable and magnetizable matter. Our introduced thermodynamically consistent diffuse interface model may be regarded as a generalized model of Allen-Cahn/Navier-Stokes/Poisson type for multi-component flows with phase transitions and electrochemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e. a non-coupled and a coupled regime, where the coupling takes place between the smallness parameter in the Poisson equation and the width of the interface. We recover in the sharp interface limit a generalized Allen-Cahn/Euler/Poisson system for mixtures with electrochemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satisfy, for instance, a generalized Gibbs-Thomson law and a dynamic Young-Laplace law.

  • J.A. Griepentrog, On regularity, positivity and long-time behavior of solutions to an evolution system of nonlocally interacting particles, Preprint no. 1932, WIAS, Berlin, 2014, DOI 10.20347/WIAS.PREPRINT.1932 .
    Abstract, PDF (1279 kByte)
    An analytical model for multicomponent systems of nonlocally interacting particles is presented. Its derivation is based on the principle of minimization of free energy under the constraint of conservation of particle number and justified by methods established in statistical mechanics. In contrast to the classical Cahn-Hilliard theory with higher order terms, the nonlocal theory leads to an evolution system of second order parabolic equations for the particle densities, weakly coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction potential differences. Applying fixed-point arguments and comparison principles we prove the existence of variational solutions in suitable Hilbert spaces for evolution systems. Moreover, using maximal regularity for nonsmooth parabolic boundary value problems in Sobolev-Morrey spaces and comparison principles, we show uniqueness, global regularity and uniform positivity of solutions under minimal assumptions on the regularity of interaction. Applying a refined version of the Łojasiewicz-Simon gradient inequality, this paves the way to the convergence of solutions to equilibrium states. We conclude our considerations with the presentation of simulation results for a phase separation process in ternary systems.

  • P.-É. Druet, A curvature estimate for open surfaces subject to a general mean curvature operator and natural contact conditions at their boundary, Preprint no. 1897, WIAS, Berlin, 2013, DOI 10.20347/WIAS.PREPRINT.1897 .
    Abstract, PDF (251 kByte)
    In the seventies, L. Simon showed that the main curvatures of two-dimensional hypersurfaces obeying a general equation of mean curvature type are a priori bounded by the Hölder norm of the coefficients of the surface differential operator. This was an essentially interior estimate. In this paper, we provide a complement to the theory, proving a global curvature estimate for open surfaces that satisfy natural contact conditions at the intersection with a given boundary.

  • D. Knees, R. Rossi, Ch. Zanini, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Preprint no. 1867, WIAS, Berlin, 2013, DOI 10.20347/WIAS.PREPRINT.1867 .
    Abstract, Postscript (3780 kByte), PDF (685 kByte)
    This paper focuses on rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-independent systems may fail to accurately describe the behavior of the system at jumps. Therefore, we resort to the (by now well-established) vanishing viscosity approach to rate-independent modeling and approximate the model by its viscous regularization. In fact, the analysis of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equations, with careful regularity estimates tailored to this specific system relying on a q-Laplacian type gradient regularization of the damage variable. Hence, for the viscous problem we conclude the existence of weak solutions satisfying a suitable energy-dissipation inequality that is the starting point for the vanishing viscosity analysis. The latter leads to the notion of (weak) parameterized solution to our rate-independent system, which encompasses the influence of viscosity in the description of the jump regime.

  • A. Lamacz, S. Neukamm, F. Otto, Moment bounds for the corrector in stochastic homogenization of a percolation model, Preprint no. 1836, WIAS, Berlin, 2013, DOI 10.20347/WIAS.PREPRINT.1836 .
    Abstract, PDF (472 kByte)
    We study the corrector equation in stochastic homogenization for a simplified Bernoulli percolation model on Z^d, d > 2. The model is obtained from the classical Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate direction to be open. As a main result we prove (in fact for a slightly more general model) that stationary correctors exist and that all finite moments of the corrector are bounded. This extends a previous result by Gloria and the third author, where uniformly elliptic conductances are treated, to the degenerate case. Our argument is based on estimates on the gradient of the elliptic Green's function.

  • J. Rehberg, A criterion for a two-dimensional domain to be Lipschitzian, Preprint no. 1695, WIAS, Berlin, 2012, DOI 10.20347/WIAS.PREPRINT.1695 .
    Abstract, Postscript (187 kByte), PDF (64 kByte)
    We prove that a two-dimensional domain is already Lipschitzian if only its boundary admits locally a one-dimensional, bi-Lipschitzian parametrization.

  • S. Heinz, Quasiconvexity equals rank-one convexity for isotropic sets of 2x2 matrices, Preprint no. 1637, WIAS, Berlin, 2011, DOI 10.20347/WIAS.PREPRINT.1637 .
    Abstract, Postscript (275 kByte), PDF (130 kByte)
    Let K be a given compact set of real 2x2 matrices that is isotropic, meaning invariant under the left and right action of the special orthogonal group. Then we show that the quasiconvex hull of K coincides with the rank-one convex hull (and even with the lamination convex hull of order 2). In particular, there is no difference between quasiconvexity and rank-one convexity for K. This is a generalization of a known result for connected sets.

  • L. Paoli, A. Petrov, Existence result for a class of generalized standard materials with thermomechanical coupling, Preprint no. 1635, WIAS, Berlin, 2011, DOI 10.20347/WIAS.PREPRINT.1635 .
    Abstract, Postscript (474 kByte), PDF (254 kByte)
    This paper deals with the study of a three-dimensional model of thermomechanical coupling for viscous solids exhibiting hysteresis effects. This model is written in accordance with the formalism of generalized standard materials. It is composed by the momentum equilibrium equation combined with the flow rule, which describes some stress-strain dependance, and the heat-transfer equation. An existence result for this thermodynamically consistent problem is obtained by using a fixed-point argument and some qualitative properties of the solutions are established.

  • L. Paoli, A. Petrov, Thermodynamics of multiphase problems in viscoelasticity, Preprint no. 1628, WIAS, Berlin, 2011, DOI 10.20347/WIAS.PREPRINT.1628 .
    Abstract, Postscript (330 kByte), PDF (177 kByte)
    This paper deals with a three-dimensional mixture model describing materials undergoing phase transition with thermal expansion. The problem is formulated within the framework of generalized standard solids by the coupling of the momentum equilibrium equation and the flow rule with the heat transfer equation. A global solution for this thermodynamically consistent problem is obtained by using a fixed-point argument combined with global energy estimates.

  • L. Paoli, A. Petrov, Global existence result for thermoviscoelastic problems with hysteresis, Preprint no. 1616, WIAS, Berlin, 2011, DOI 10.20347/WIAS.PREPRINT.1616 .
    Abstract, Postscript (426 kByte), PDF (243 kByte)
    We consider viscoelastic solids undergoing thermal expansion and exhibiting hysteresis effects due to plasticity or phase transformations. Within the framework of generalized standard solids, the problem is described in a 3D setting by the momentum equilibrium equation, the flow rule describing the dependence of the stress on the strain history, and the heat transfer equation. Under appropriate regularity assumptions on the data, a local existence result for this thermodynamically consistent system is established, by combining existence results for ordinary differential equations in Banach spaces with a fixed-point argument. Then global estimates are obtained by using both the classical energy estimate and more specific techniques for the heat equation introduced by Boccardo and Gallouet. Finally a global existence result is derived.

  • M.D. Korzec, P. Rybka, On a higher order convective Cahn--Hilliard type equation, Preprint no. 1582, WIAS, Berlin, 2010, DOI 10.20347/WIAS.PREPRINT.1582 .
    Abstract, Postscript (648 kByte), PDF (288 kByte)
    A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in $L^2(0,T; dot H^3_per)$. Furthermore stronger regularity results have been derived and these are used to prove uniqueness of the solutions. Additionally a numerical study shows that solutions behave similarly as for the better known convective Cahn-Hilliard equation. The transition from coarsening to roughening is analyzed, indicating that the characteristic length scale decreases logarithmically with increasing deposition rate.

  • M.D. Korzec, P. Nayar, P. Rybka, Global weak solutions to a sixth order Cahn--Hilliard type equation, Preprint no. 1581, WIAS, Berlin, 2010, DOI 10.20347/WIAS.PREPRINT.1581 .
    Abstract, Postscript (249 kByte), PDF (130 kByte)
    In this paper we study a sixth order Cahn-Hilliard type equation that arises as a model for the faceting of a growing surface. We show global in time existence of weak solutions and uniform in time a priori estimates in the H^3 norm. These bounds enable us to show the uniqueness of weak solutions.

  Talks, Poster

  • I. Papadopoulos, A semismooth Newton method for obstacle--type quasivariational inequalities, Firedrake 2024, September 16 - 18, 2024, University of Oxford, UK, September 18, 2024.

  • A. Mielke, Analysis of (fast-slow) reaction-diffusion systems using gradient structures, Conference on Differential Equations and their Applications (EQUADIFF 24), June 10 - 14, 2024, Karlstad University, Sweden, June 14, 2024.

  • A. Mielke, Asymptotic self-similar behavior in reaction-diffusion systems, Analysis Seminars, Heriot-Watt University, Mathematical and Computer Sciences, Edinburgh, UK, March 20, 2024.

  • A. Mielke, Asymptotic self-similar behaviour in reaction-diffusion systems on Rd, Dynamical Systems Approaches towards Nonlinear PDEs, August 28 - 30, 2024, Universität Stuttgart, August 29, 2024.

  • A. Mielke, Balanced-viscosity solutions for generalized gradient systems and a delamination problem, Measures and Materials, March 25 - 28, 2024, University of Warwick, Coventry, UK, March 25, 2024.

  • A. Mielke, Balanced-viscosity solutions for generalized gradient systems in mechanics, Frontiers of the Calculus of Variations, September 16 - 20, 2024, University of the Aegean, Karlovasi, Greece, September 17, 2024.

  • A. Mielke, Non-equilibrium steady states for port gradient systems, 23rd Symposium on Trends in Applications of Mathematics to Mechanics (STAMM 2024), April 3 - 5, 2024, Julius-Maximilians-Universität Würzburg, April 4, 2024.

  • A. Mielke, On EVI flows for gradient systems on the (spherical) Hellinger--Kantorovich space, Workshop ``Applications of Optimal Transportation'', February 5 - 9, 2024, Mathematisches Forschungsinstitut Oberwolfach, February 5, 2024.

  • A. Mielke, On the stability of NESS in gradient systems with ports, Gradient Flows face-to-face 4, September 9 - 12, 2024, Technische Universität München, Raitenhaslach, September 10, 2024.

  • A. Glitzky, Analysis of a drift-diffusion model for perovskite solar cells, 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2024), Session 14.07 ``Various topics in Applied Analysis'', March 18 - 22, 2024, Otto-von-Guericke-Universität Magdeburg, March 21, 2024.

  • K. Hopf, On the equilibrium solutions in a model for electro-energy-reaction-diffusion systems, Modelling, PDE Analysis and Computational Mathematics in Materials Science, September 22 - 27, 2024, Prague, Czech Republic, September 27, 2024.

  • M. Thomas, Analysis of a model for visco-elastoplastic two-phase flows in geodynamics, 23rd Symposium on Trends in Applications of Mathematics to Mechanics (STAMM 2024), April 3 - 5, 2024, Julius-Maximilians-Universität Würzburg, April 5, 2024.

  • M. Thomas, Analysis of a model for visco-elastoplastic two-phase flows in geodynamics, 9th European Congress of Mathematics (9ECM), Minisymposium 27 ``New Trends in Calculus of Variations'', July 15 - 19, 2024, Universidad de Sevilla, Spain, July 16, 2024.

  • M. Thomas, Analysis of a model for visco-elastoplastic two-phase flows in geodynamics, Seminar on Nonlinear Partial Differential Equations, Texas A&M University, Department of Mathematics, College Station, USA, March 19, 2024.

  • M. Thomas, Nonlinear fracture dynamics: Modeling, analysis, approximation, and applications, Jahrestreffen des SPP 2256, September 25 - 27, 2024, Universität Regensburg, September 25, 2024.

  • A. Alphonse, Risk--averse optimal control of elliptic variational inequalities, 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2024), Session 19.01 ``Various topics in Optimization of Differential Equations (1)'', March 18 - 22, 2024, Otto-von-Guericke-Universität Magdeburg, March 19, 2024.

  • TH. Eiter, Artificial boundary conditions for oscillatory flow past a body, Mathematical Fluid Mechanics, Czech Academy of Sciences, Prague, Czech Republic, August 22, 2024.

  • TH. Eiter, Far-field behavior of oscillatory viscous flow past an obstacle, Oberseminar Analysis und Angewandte Mathematik, Universität Kassel, July 15, 2024.

  • TH. Eiter, The effect of time-periodic boundary flux on the decay of viscous flow past, Conference on Differential Equations and their Applications (EQUADIFF 24), Minisymposium 12 ``Fluid-structure Interactions'', June 10 - 14, 2024, Karlstad University, Sweden, June 11, 2024.

  • TH. Eiter, Time-periodic flow past a body: Approximation by problems on bounded domains, 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2024), Session 14.05 ``PDEs Related to Fluid Mechanics'', March 18 - 22, 2024, Otto-von-Guericke-Universität Magdeburg, March 20, 2024.

  • M.I. Gau, Dimension reduction of a thermo-visco-elastic problem at small strains, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs'' 2024, September 16 - 19, 2024, Czech Academy of Sciences, Prague, Czech Republic, September 16, 2024.

  • G. Heinze, Fast-slow limits for gradient flows on metric graphs, 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2024), Session 14.01 ``Various Topics in Applied Analysis'', March 18 - 22, 2024, Otto-von-Guericke-Universität Magdeburg, March 19, 2024.

  • G. Heinze, Fast-slow limits for gradient flows on metric graphs, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs'' 2024, September 16 - 19, 2024, Czech Academy of Sciences, Prague, Czech Republic, September 17, 2024.

  • G. Heinze, Graph-based nonlocal gradient systems and their local limits, Aggregation-Diffusion Equations & Collective Behavior: Analysis, Numerics and Applications, Marseille, France, April 8 - 12, 2024.

  • W. van Oosterhout, Finite-strain poro-visco-elasticity with degenerate mobility, Spring School 2024 ``Mathematical Advances for Complex Materials with Microstructures'', April 8 - 12, 2024.

  • W. van Oosterhout, Linearization of finite-strain poro-viscoelasticity with degenerate mobility, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs'' 2024, September 16 - 19, 2024, Czech Academy of Sciences, Prague, Czech Republic, September 16, 2024.

  • L. Schmeller, Gel models for phase separation at finite strains, Conference ``Calculus of Variations and Applications'', June 19 - 21, 2023, Université Paris-Cité (Campus des Grands Moulins), France, June 19, 2023.

  • J. Kern, Young measures and the hydrodynamic limit of asymmetric exclusion processes, Seminar Stochastics, Technical University of Lisbon, Lisbon, Portugal, July 10, 2023.

  • L. Schütz, M. Heida, M. Thomas, Materials with discontinuities on many scales, SCCS Days 2023 of the Collaborative Research Center -- CRC 1114 ``Scaling Cascades in Complex Systems'', November 13 - 15, 2023.

  • L. Schütz, An existence theory for solitary waves on a ferrofluid jet, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), Session 14 ``Applied Analysis'', May 30 - June 2, 2023, Technische Universität Dresden, May 30, 2023.

  • L. Schütz, Towards stochastic homogenization of a rate-independent delamination model, Hausdorff School ``Analysis of PDEs: Variational and Geometric Perspectives'', Bonn, July 10 - 14, 2023.

  • M. Kniely, A thermodynamically correct framework for electro-energy-reaction-diffusion systems, 22nd ECMI Conference on Industrial and Applied Mathematics, June 26 - 30, 2023, Wrocław University of Science and Technology, Poland, June 30, 2023.

  • M. Kniely, On a thermodynamically consistent electro-energy-reaction-diffusion system, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), Session 14 ``Applied Analysis'', May 30 - June 2, 2023, Technische Universität Dresden, June 1, 2023.

  • J. Rehberg, Maximal parabolic regularity for the treatment of real world problems, Oberseminar für Optimale Steuerung und Inverse Probleme, Universität Duisburg-Essen, Fakultät für Mathematik, May 4, 2023.

  • J. Rehberg, A view on the Kohn-Sham system from the perspective of functional analysists, Technische Universität Braunschweig Institut für Analysis und Algebra, November 13, 2023.

  • J. Rehberg, Nonsmooth elliptic and parabolic regularity, Technische Universität Darmstadt, Fachbereich Mathematik, November 27, 2023.

  • J. Sprekels, Sparse optimal control of singular Allen--Cahn systems with dynamic boundary conditions, Kolloquium, Università di Pavia, Dipartimento di Matematica ``F. Casorati'', Italy, April 18, 2023.

  • A. Glitzky, An effective bulk-surface thermistor model for large-area organic light-emitting diodes, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), Session 14 ``Applied Analysis'', May 30 - June 2, 2023, Technische Universität Dresden, May 30, 2023.

  • K. Hopf, Normal form and the Cauchy problem for cross-diffusive mixtures, Workshop ``Variational Methods for Evolution'', December 3 - 8, 2023, Mathematisches Forschungsinstitut Oberwolfach, December 4, 2023.

  • K. Hopf, On cross-diffusive coupling of hyperbolic-parabolic type, Variational and Geometric Structures for Evolution, October 9 - 13, 2023, Centro Internazionale per la Ricerca Matematica (CIRM), Levico Terme, Italy, October 13, 2023.

  • K. Hopf, Structure and approximation of cross-diffusive mixtures with incomplete diffusion, Universität Kassel, Fachbereich Mathematik und Naturwissenschaften, September 21, 2023.

  • K. Hopf, Structure, dynamics, and approximation of cross-diffusive mixtures with incomplete diffusion, Universität Hamburg, Fachbereich Mathematik, May 10, 2023.

  • K. Hopf, The Cauchy problem for multi-component systems with strong cross-diffusion, Johannes Gutenberg-Universität Mainz, Fachbereich Physik, Mathematik und Informatik, January 11, 2023.

  • E. Magnanini, Gelation and hydrodynamic limits in a spatial Marcus--Lushnikov process, In Search of Model Structures for Non-equilibrium Systems, Münster, April 24 - 28, 2023.

  • E. Magnanini, Gelation and hydrodynamic limits in a spatial Marcus--Lushnikov process, Workshop ``In search of model structures for non-equilibrium systems'', April 24 - 28, 2023, Westfälische Wilhelms-Universität Münster, Fachbereich Mathematik und Informatik, April 25, 2023.

  • E. Magnanini, Gelation in a spatial Marcus--Lushnikov process, Workshop MathMicS 2023: Mathematics and Microscopic Theory for Random Soft Matter Systems, Düsseldorf, February 13 - 15, 2023.

  • E. Magnanini, Gelation in a spatial Marcus--Lushnikov process, Workshop MathMicS 2023: Mathematics and microscopic theory for random Soft Matter systems, February 13 - 15, 2023, Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II - Soft Matter, February 14, 2023.

  • M. Thomas, Approximating dynamic phase-field fracture with a first-order formulation for velocity and stress, Annual Workshop of the GAMM Activity Group on Analysis of PDEs, September 18 - 20, 2023, Katholische Universität Eichstätt-Ingolstadt, September 20, 2023.

  • M. Thomas, Damage in viscoelastic materials at finite strains, Workshop ``Variational Methods for Evolution'', December 3 - 8, 2023, Mathematisches Forschungsinstitut Oberwolfach, December 7, 2023.

  • M. Thomas, Some aspects of damage in nonlinearly elastic materials: From damage to delamination in nonlinearly elastic materials, Variational and Geometric Structures for Evolution, October 9 - 13, 2023, Università Commerciale Luigi Bocconi, Levico Terme, Italy, October 10, 2023.

  • M. Thomas, Approximating dynamic phase-field fracture with a first-order formulation for velocity and stress, Nonlinear PDEs: Recent Trends in the Analysis of Continuum Mechanics, July 17 - 21, 2023, Universität Bonn, Hausdorff School for Advanced Studies in Mathematics, July 17, 2023.

  • M. Thomas, Approximating dynamic phase-field fracture with a first-order formulation for velocity and stress, Seminar für Angewandte Mathematik, Technische Universität Dresden, June 5, 2023.

  • M. Thomas, Nonlinear fracture dynamics: Modeling, analysis, approximation, and applications, Presentation of project proposals in SPP 2256 ``Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials'', Bad Honnef, March 27, 2023.

  • A. Alphonse, Analysis of a quasi-variational contact problem arising in thermoelasticity, European Conference on Computational Optimization (EUCCO), Session ``Non-smooth Optimization'', September 25 - 27, 2023, Universität Heidelberg, September 25, 2023.

  • TH. Eiter, R. Lasarzik, Analysis of energy-variational solutions for hyperbolic conservation laws, Presentation of project proposals in SPP 2410 ``Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness'', Bad Honnef, April 28, 2023.

  • TH. Eiter, Artificial boundary conditions for time-periodic flow past a body, 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023), Minisymposium 00558 ``Bifurcations, Periodicity and Stability in Fluid-structure Interactions'', August 20 - 25, 2023, Waseda University, Tokyo, Japan, August 21, 2023.

  • TH. Eiter, Energy-variational solutions for a class of hyperbolic conservation laws, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), Session 14 ``Applied Analysis'', May 30 - June 2, 2023, Technische Universität Dresden, June 2, 2023.

  • TH. Eiter, The concept of energy-variational solutions for hyperbolic conservation laws, Seminar on Partial Differential Equations, Czech Academy of Sciences, Institute of Mathematics, Prague, Czech Republic, March 28, 2023.

  • R. Lasarzik, Energy-variational solutions for conservation laws, Università degli Studi di Pavia, Dipartimento di Matematica, Italy, February 7, 2023.

  • R. Lasarzik, Energy-variational solutions for conservation laws, CRC Colloquium, Freie Universität Berlin, Department of Mathematics and Computer Science, October 19, 2023.

  • R. Lasarzik, Energy-variational solutions for different viscoelastic fluid models, Workshop ``Energetic Methods for Multi-Component Reactive Mixtures Modelling, Stability, and Asymptotic Analysis'', September 13 - 15, 2023, WIAS Berlin, September 15, 2023.

  • R. Lasarzik, Solvability for viscoelastic materials via the energy-variational approach, DMV Annual Meeting 2023, September 25 - 28, 2023, Technische Universität Ilmenau, September 25, 2023.

  • M. Liero, Analysis for thermo-mechanical models with internal variables, Presentation of project proposals in SPP 2256 ``Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials'', Bad Honnef, March 27, 2023.

  • M. Liero, Balanced-viscosity solutions for a Penrose--Fife phasefield model with friction, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), SPP 2256 ``Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials'', May 30 - June 2, 2023, Technische Universität Dresden, June 1, 2023.

  • M. Liero, EDP-convergence for evolutionary systems with gradient flow structure, 29th Nordic Congress of Mathematicians with EMS, July 3 - 7, 2023, Aalborg University, Department of Mathematical Sciences, Denmark, July 4, 2023.

  • M. Liero, On the geometry of the Hellinger--Kantorovich space (hybrid talk), Seminar ``Modern Methods in Applied Stochastics and Nonparametric Statistics'', WIAS Berlin, January 31, 2023.

  • A. Mielke, Variational and geometric structures for thermomechanical systems, Variational and Geometric Structures for Evolution, October 9 - 13, 2023, Centro Internazionale per la Ricerca Matematica (CIRM), Levico Terme, Italy, October 11, 2023.

  • A. Mielke, Asymptotic self-similar behavior in reaction-diffusion systems on the real line, Minisymposium ``Interacting Particle Systems and Variational Methods'', Einhoven University of Technology, Department of Mathematics and Computer Science, Netherlands, February 3, 2023.

  • A. Mielke, Balanced-viscosity solutions as limits in generalized gradient systems under slow loading, Hausdorff School ``Analysis of PDEs: Variational and Geometric Perspectives'', July 10 - 14, 2023, Universität Bonn, Hausdorff School for Advanced Studies in Mathematics.

  • A. Mielke, EDP-convergence for gradient systems and non-equilibrium steady states, Nonlinear Diffusion and Nonlocal Interaction Models -- Entropies, Complexity, and Multi-Scale Structures, May 28 - June 2, 2023, Universidad de Granada, Spain, May 30, 2023.

  • A. Mielke, Viscoelastic fluid models for geodynamic processes in the lithosphere, ``SPP Meets TP'' Workshop: Variational Methods for Complex Phenomena in Solids, February 21 - 24, 2023, Universität Bonn, Hausdorff Institute for Mathematics, February 24, 2023.

  • A. Stephan, Gradient systems and time-splitting methods (online talk), PDE & Applied Mathematics Seminar, University of California, Riverside, Department of Mathematics, USA, November 8, 2023.

  • A. Stephan, On time-splitting methods for gradient flows with two dissipation mechanisms, Gradient Flows face-to-face 3, September 11 - 14, 2023, Université Claude Bernard Lyon 1, France, September 11, 2023.

  • A. Stephan, On time-splitting methods for gradient flows with two dissipation mechanisms, PDE Afternoon, Technische Universität Wien, Austria, December 13, 2023.

  • A. Stephan, Positivity and polynomial decay of energies for square-field operators, Variational and Geometric Structures for Evolution, October 9 - 13, 2023, Centro Internazionale per la Ricerca Matematica (CIRM), Levico Terme, Italy, October 13, 2023.

  • A. Stephan, Fast-slow chemical reaction systems: Gradient systems and EDP-convergence, Oberseminar Dynamics, Technische Universität München, Department of Mathematics, April 17, 2023.

  • A. Stephan, On time-splitting methods for gradient flows with two dissipation mechanisms, In Search of Model Structures for Non-equilibrium Systems, April 24 - 28, 2023, Westfälische Wilhelms-Universität Münster, April 28, 2023.

  • A. Stephan, On time-splitting methods for gradient flows with two dissipation mechanisms, 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023), Minisymposium 01181 ``Variational Methods for Multi-scale Dynamics'', August 20 - 25, 2023, Waseda University, Tokyo, Japan, August 24, 2023.

  • W. van Oosterhout, Analysis of poro-visco-elastic solids at finite strains, 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023), Session 14 ``Applied Analysis'', May 30 - June 2, 2023, Technische Universität Dresden, June 2, 2023.

  • W. van Oosterhout, Poro-visco-elastic solids at finite strains with degenerate mobilities, Nonlinear PDEs: Recent Trends in the Analysis of Continuum Mechanics, July 17 - 21, 2023, Universität Bonn, Hausdorff School for Advanced Studies in Mathematics, July 19, 2023.

  • W. van Zuijlen, Anderson models, from Schrödinger operators to singular SPDEs, Oberseminar Analysis und Theoretische Physik, Leibniz Universität Hannover, Institut für Angewandte Mathematik, December 12, 2023.

  • L. Plato, Generalized solutions in the context of a nonlocal predator-prey model (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium ``Generalized Solvability Concepts for Evolutionary PDEs and their Properties'', March 14 - 18, 2022, March 16, 2022.

  • S. Schindler, Convergence to self-similar profiles for a coupled reaction-diffusion system on the real line, CRC 910: Workshop on Control of Self-Organizing Nonlinear Systems, Wittenberg, September 26 - 28, 2022.

  • S. Schindler, Energy approach for a coupled reaction-diffusion system on the real line (online talk), SFB 910 Symposium ``Pattern formation and coherent structure in dissipative systems'' (Online Event), Technische Universität Berlin, January 14, 2022.

  • S. Schindler, Entropy method for a coupled reaction-diffusion system on the real line, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs" 2022, October 5 - 7, 2022, Institute of Science and Technology Austria (ISTA), Klosterneuburg, October 5, 2022.

  • S. Schindler, On asymptotic self-similar behavior of solutions to parabolic systems (hybrid talk), SFB910: International Conference on Control of Self-Organizing Nonlinear Systems (Hybrid Event), November 23 - 26, 2022, Technische Universität Berlin, Potsdam, November 25, 2022.

  • L. Schmeller, Gradient flows for coupling order parameters and mechanics, Universitá di Brescia, Mathematical Analysis, Italy, June 14, 2022.

  • A. Alphonse, Directional differentiability and optimal control for quasi-variational inequalities (online talk), ``Partial Differential Equations and their Applications'' Seminar, University of Warwick, Mathematics Institute, UK, January 25, 2022.

  • M. Bongarti, Boundary stabilization of nonlinear dynamics of acoustic waves under the JMGT equation, Oberseminar Partielle Differentialgleichungen, Universität Konstanz, November 17, 2022.

  • M. Bongarti, Boundary stabilization of nonlinear dynamics of acoustics waves under the JMGT equation (online talk), Early Career Math Colloquium, University of Arizona, Tucson, USA, October 12, 2022.

  • M. Bongarti, Boundary feedback stabilization of a critical nonlinear JMGT equation with Neumann-undissipated part of the boundary, Waves Conference 2022, July 24 - 29, 2022, ENSTA Institut Polytechnique de Paris, France, July 25, 2022.

  • M. Bongarti, Boundary feedback stabilization of a critical nonlinear JMGT equation with Neumann-undissipated part of the boundary, IFIP TC7 System Modeling and Optimization, July 4 - 8, 2022, University of Technology, Warsaw, Poland, July 4, 2022.

  • M. Bongarti, Nonlinear gas transport on a network of pipelines, IFIP TC7 System Modeling and Optimization, July 4 - 8, 2022, University of Technology, Warsaw, Poland, July 4, 2022.

  • M. Heida, Convergence of the infinite range SQRA operator, 92th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022), Session 14 ``Applied Analysis'', August 15 - 19, 2022, Rheinisch-Westfälische Technische Hochschule Aachen, August 17, 2022.

  • P. Pelech, Balanced-viscosity solutions for a Penrose--Fife model with rate-independent friction (hybrid talk), Oberseminar ``Mathematik in den Naturwissenschaften'', Julius-Maximilians-Universität Würzburg, December 8, 2022.

  • P. Pelech, Penrose--Fife model as a gradient flow - interplay between signed measures and functionals on Sobolev spaces, DMV Annual Meeting 2022, Section 09 ``Applied Analysis and Partial Differential Equations", September 12 - 16, 2022, Freie Universität Berlin, September 13, 2022.

  • P. Pelech, Penrose--Fife model as a gradient flow - interplay between signed measures and functionals on Sobolev spaces, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs" 2022, October 5 - 7, 2022, Institute of Science and Technology Austria (ISTA), Klosterneuburg, October 7, 2022.

  • A. Stephan, EDP-convergence for a linear reaction-diffusion systems with fast reversible reaction (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium MS11: ``Bridging Gradient Flows, Hypocoercivity and Reaction-Diffusion Systems'', March 14 - 18, 2022, March 14, 2022.

  • A. Zafferi, Analysis of a reactive-diffusive porous media model for rock dehydration processes, 92th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022), Session 14 ``Applied Analysis'', August 15 - 19, 2022, Rheinisch-Westfälische Technische Hochschule Aachen, August 17, 2022.

  • M. Kniely, Degenerate random elliptic operators: Regularity aspects and stochastic homogenization, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs" 2022, October 5 - 7, 2022, Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria, October 6, 2022.

  • M. Kniely, Global renormalized solutions and equilibration of reaction-diffusion systems with nonlinear diffusion (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium ``Bridging Gradient Flows, Hypocoercivity and Reaction-Diffusion Systems'', March 14 - 18, 2022, March 14, 2022.

  • M. Kniely, Global solutions to a class of energy-reaction-diffusion systems, Conference on Differential Equations and Their Applications (EQUADIFF 15), Minisymposium NAA-03 ``Evolution Differential Equations with Application to Physics and Biology'', July 11 - 15, 2022, Masaryk University, Brno, Czech Republic, July 12, 2022.

  • J. Sprekels, Deep quench approach and sparsity in the optimal control of a phase field model for tumor growth, PHAse field MEthods in applied sciences (PHAME 2022), May 23 - 27, 2022, Istituto Nazionale di Alta Matematica, Rome, Italy, May 27, 2022.

  • A. Glitzky, A drift-diffusion based electrothermal model for organic thin-film devices including electrical and thermal environment, DMV Annual Meeting 2022, Section 09 ``Applied Analysis and Partial Differential Equations", September 12 - 16, 2022, Freie Universität Berlin, September 14, 2022.

  • K. Hopf, Relative entropies and stability in strongly coupled parabolic systems (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium ``Variational Evolution: Analysis and Multi-Scale Aspects'', March 14 - 18, 2022, March 16, 2022.

  • K. Hopf, The Cauchy problem for a cross-diffusion system with incomplete diffusion, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs'' 2022, October 5 - 7, 2022, Institute of Science and Technology Austria (ISTA), Klosterneuburg, October 5, 2022.

  • M. Thomas, First-order formulation for dynamic phase-field fracture in visco-elastic materials, PHAse field MEthods in applied sciences (PHAME 2022), May 23 - 27, 2022, Istituto Nazionale di Alta Matematica, Rome, Italy, May 25, 2022.

  • M. Thomas, First-order formulation for dynamic phase-field fracture in visco-elastic materials, Beyond Elasticity: Advances and Research Challenges, May 16 - 20, 2022, Centre International de Rencontres Mathématiques, Marseille, France, May 16, 2022.

  • M. Thomas, First-order formulation for dynamic phase-field fracture in visco-elastic materials, Jahrestreffen des SPP 2256, September 28 - 30, 2022, Universität Regensburg, September 30, 2022.

  • P.-É. Druet, Global existence and weak-strong uniqueness for isothermal ideal multicomponent flows, Against the Flow, October 18 - 22, 2022, Polish Academy of Sciences, Będlewo, Poland, October 19, 2022.

  • TH. Eiter, Energy-variational solutions for a viscoelastoplastic fluid model (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium ``Generalized Solvability Concepts for Evolutionary PDEs and their Properties'', March 14 - 18, 2022, March 16, 2022.

  • TH. Eiter, Existence of time-periodic flows in domains with oscillating boundaries, International Workshop on Multiphase Flows: Analysis, Modelling and Numerics, December 5 - 9, 2022, Waseda University, Tokyo, Japan, December 6, 2022.

  • TH. Eiter, Junior Richard von Mises Lecture: On time-periodic viscous flow around a moving body, Richard von Mises Lecture 2022, Humboldt-Universität zu Berlin, June 17, 2022.

  • TH. Eiter, On the resolvent problem associated with flow outside a rotating body, 92th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022), Session 14 ``Applied Analysis'', August 15 - 19, 2022, Rheinisch-Westfälische Technische Hochschule Aachen, August 16, 2022.

  • TH. Eiter, On the resolvent problems associated with rotating viscous flow, DMV Annual Meeting 2022, Section 09 ``Applied Analysis and Partial Differential Equations", September 12 - 16, 2022, Freie Universität Berlin, September 14, 2022.

  • TH. Eiter, On the time-periodic viscous flow outside a rotating body (online talk), SIAM Conference on Analysis of Partial Differential Equations, Minisymposium ``Recent Developments in the Mathematical Analysis of Viscous Fluids" (Online Event), March 14 - 18, 2022, Society for Industrial and Applied Mathematics, March 15, 2022.

  • TH. Eiter, On time-periodic Navier--Stokes flow around a rotating body (online talk), EDP non linéaires en dynamique des fluides (Hybrid Event), May 9 - 13, 2022, Centre International de Rencontres Mathématiques, Marseille, France, May 9, 2022.

  • TH. Eiter, On uniform resolvent estimates associated with time-periodic rotating viscous flow, Mathematical Fluid Mechanics in 2022 (Hybrid Event), August 22 - 26, 2022, Czech Academy of Sciences, Prague, Czech Republic, August 24, 2022.

  • TH. Eiter, On uniformity of the resolvent estimates associated with time-periodic flow past a rotating body, Germany-Japan Workshop on Free and Singular Boundaries in Fluid Dynamics and Related Topics (Hybrid Event), August 10 - 12, 2022, Heinrich-Heine-Universität Düsseldorf, August 10, 2022.

  • TH. Eiter, Resolvent estimates for the flow past a rotating body and existence of time-periodic solutions, CEMAT Seminar, University of Lisbon, Center for Computational and Stochastic Mathematics, Portugal, July 27, 2022.

  • TH. Eiter, The Navier--Stokes equations in domains with oscillating boundaries, Against the flow, October 18 - 22, 2022, Polish Academy of Sciences, Będlewo, Poland, October 20, 2022.

  • TH. Eiter, Time-periodic maximal Lp regularity by R-boundedness in the context of incompressible viscous flows, Research Seminar Function Spaces, Friedrich-Schiller-Universität Jena, November 4, 2022.

  • R. Lasarzik, Energy-variational solutions in the context of incompressible fluid dynamics (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22), MS 47: ``Generalized Solvability Concepts for Evolutionary PDEs and their Properties'' (Online Event), March 14 - 18, 2022, Society for Industrial and Applied Mathematics, March 16, 2022.

  • M. Liero, Analysis of an electrothermal drift-diffusion model for organic semiconductor devices, PHAse field MEthods in applied sciences (PHAME 2022), May 23 - 27, 2022, Istituto Nazionale di Alta Matematica, Rome, Italy, May 24, 2022.

  • M. Liero, EDP-convergence for evolutionary systems with gradient flow structure, 92th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022), Minisymposium 4 ``Evolution Equations with Gradient Flow Structure'', August 15 - 19, 2022, Rheinisch-Westfälische Technische Hochschule Aachen, August 16, 2022.

  • M. Liero, From diffusion to reaction-diffusion in thin structures via EDP-convergence (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium ``Bridging Gradient Flows, Hypocoercivity and Reaction-Diffusion Systems'', March 14 - 18, 2022, March 14, 2022.

  • M. Liero, Modeling, analysis, and simulation of electrothermal feedback in organic devices, Audit 2022, September 22 - 23, 2022, Weierstraß-Institut Berlin, September 22, 2022.

  • M. Liero, The impact of modeling, analysis, and simulation on organic semiconductor development (online talk), ERCOM Meeting 2022 (Hybrid Event), March 25 - 26, 2022, European Research Centers on Mathematics, Bilbao, Spain, March 26, 2022.

  • M. Liero, Viscoelastodynamics of solids at large strains coupled to diffusion processes, Jahrestreffen des SPP 2256, September 28 - 30, 2022, Universität Regensburg, September 29, 2022.

  • A. Mielke, Convergence of a split-step scheme for gradient flows with a sum of two dual dissipation potentials, Nonlinear Evolutionary Equations and Applications 2022, September 6 - 9, 2022, Technische Universität Chemnitz, September 8, 2022.

  • A. Mielke, Convergence to thermodynamic equilibrium in a degenerate parabolic system, DMV Annual Meeting 2022, Section 09 ``Applied Analysis and Partial Differential Equations'', September 12 - 16, 2022, Freie Universität Berlin, September 13, 2022.

  • A. Mielke, Gradient flows in the Hellinger--Kantorovich space, 92th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2022), Minisymposium 4 ``Evolution Equations with Gradient Flow Structure'', August 15 - 19, 2022, Rheinisch-Westfälische Technische Hochschule Aachen, August 16, 2022.

  • A. Mielke, Gradient flows: Existence and Gamma-convergence via the energy-dissipation principle, Horizons in Non-linear PDEs, September 26 - 30, 2022, Universität Ulm.

  • A. Mielke, On the existence and longtime behavior of solutions to a degenerate parabolic system (online talk), SIAM Conference on Analysis of Partial Differential Equations (PD22) (Online Event), Minisymposium MS43: ``Nonlinear Parabolic Equations and Systems'', March 14 - 18, 2022, March 16, 2022.

  • A. Mielke, On time-splitting methods for gradient flows with two dissipation mechanisms, Annual Workshop of the GAMM Activity Group ``Analysis of PDEs'' 2022, October 5 - 7, 2022, Institute of Science and Technology Austria (ISTA), Klosterneuburg, October 7, 2022.

  • J. Rehberg, Explicit Lp-estimates for second-order divergence operators, Oberseminar Analysis und Angewandte Mathematik, Universität Kassel, June 9, 2022.

  • J. Rehberg, On non-autonomous and quasilinear parabolic equations, Oberseminar AG Analysis, Technische Universität Darmstadt, December 8, 2022.

  • A. Stephan, EDP-convergence for a linear reaction-diffusion system with fast reversible reaction, Mathematical Models for Biological Multiscale Systems (Hybrid Event), September 12 - 14, 2022, WIAS Berlin, September 12, 2022.

  • A. Stephan, EDP-convergence for gradient systems and applications to fast-slow chemical reaction systems, Block Course ``Multiscale Problems and Homogenization'' at Freie Universität Berlin from Nov. 10 to Dec. 15, 2022, Berlin Mathematical School & Berlin Mathematics Research Center MATH+, November 24, 2022.

  • W. van Oosterhout, Analysis of a poro-visco-elastic material model, Summer School: Mathematical Models for Bio-Medical Sciences, Lake Como, Italy, June 20 - 24, 2022.

  • D. Abdel, P. Vágner, J. Fuhrmann, P. Farrell, Modeling and simulation of charge transport in perovskite solar cells, AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021.

  • D. Abdel, P. Vágner, J. Fuhrmann, P. Farrell, Modeling and simulation of charge transport in perovskite solar cells, Conference ``Asymptotic Behaviors of Systems of PDEs arising in Physics and Biology: Theoretical and Numerical Points of View'', Lille, Laboratoire Paul Painlevé, France, November 16 - 19, 2021.

  • S. Schindler, Self-similar diffusive equilibration for a coupled reaction-diffusion system with mass-action kinetics, SFB910: International Conference on Control of Self-Organizing Nonlinear Systems (Hybrid Event), August 29 - September 2, 2021, Technische Universität Berlin, Potsdam, September 1, 2021.

  • A. Alphonse, Directional differentiability and optimal control for elliptic quasi-variational inequalities (online talk), Workshop ``Challenges in Optimization with Complex PDE-Systems'' (Hybrid Workshop), February 14 - 20, 2021, Mathematisches Forschungsinstitut Oberwolfach, February 17, 2021.

  • A. Alphonse, Directional differentiability and optimal control for elliptic quasi-variational inequalities (online talk), Meeting of the Scientific Advisory Board of WIAS, WIAS Berlin, March 12, 2021.

  • A. Alphonse, Some aspects of sensitivity analysis and optimal control for elliptic QVIs (coauthors: Michael Hintermüller and Carlos Rautenberg, online talk), 91th Annual Meeting of the International Association of Applied Mathematics and Mechanics (Online Event), Session DFG-PP 1962 Non-smooth and Complementarity-based Distributed Parameter Systems, March 15 - 19, 2021, Universität Kassel, March 16, 2021.

  • A. Alphonse, Some aspects of sensitivity analysis and optimal control for elliptic QVIs (online talk), Annual Meeting of the DFG SPP 1962 (Virtual Conference), March 24 - 25, 2021, WIAS Berlin, March 25, 2021.

  • M.H. Farshbaf Shaker, D. Peschka, M. Thomas, B. Wagner, Variational methods for viscoelastic flows and gelation, MATH+ Day 2021 (Online Event), Technische Universität Berlin, November 5, 2021.

  • X. Liu, Justification of the primitive equations (online talk), Global Scientist Interdisciplinary Online Forum 2021, Southern University of Science and Technology, Shenzhen, China, January 9, 2021.

  • G. Nika, Derivation of an effective bulk-surface thermistor model for OLEDs, AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021.

  • P. Pelech, Balanced-viscosity solution for a Penrose--Fife model with rate-independent friction (online talk), Jahrestreffen des SPP 2256 (Online Event), September 22 - 24, 2021, Universität Regensburg, September 22, 2021.

  • P. Pelech, On compatibility of the natural configuration framework with general equation of non-equilibrium reversible-irreversible coupling (GENERIC), 16thJoint European Thermodynamics Conference (Hybrid Event), June 14 - 18, 2021, Charles University Prague, Czech Republic, June 14, 2021.

  • P. Pelech, Separately global solutions to rate-independent systems - applications to large-strain deformations of damageable solids (online talk), 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (Online Event), Section S14 ``Applied Analysis'', March 15 - 19, 2021, Universität Kassel, March 19, 2021.

  • A. Stephan, Coarse-graining via EDP-convergence for linear fast-slow reaction-diffusion systems (online talk), 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (Online Event), Section S14 ``Applied Analysis'', March 15 - 19, 2021, Universität Kassel, March 17, 2021.

  • P. Vágner , Generalized Nernst--Planck--Poisson model of solid oxide YSZ LSM O_2 electrode interface (online talk), 72nd Annual International Society of Electrochemistry (ISE) Meeting (Online Event), August 29 - September 3, 2021, Seoul National University, Jeju Island, Korea (Republic of), September 3, 2021.

  • P. Vágner , Generalized Nernst--Planck--Poisson model of solid oxide YSZ LSM O_2 electrode interface (online talk), AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021, WIAS Berlin, September 7, 2021.

  • B. Gaudeul, J. Fuhrmann, Two entropic finite volume schemes for a Nernst--Planck--Poisson system with ion volume constraints, AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021.

  • A. Glitzky, A coarse-grained electrothermal model for organic semiconductor devices (online talk), DMV-ÖMG Jahrestagung 2021 (Online Event), September 27 - October 1, 2021, Universität Passau, September 29, 2021.

  • M. Thomas, Convergence analysis for fully discretized damage and phase-field fracture models (online talk), 15th International Conference on Free Boundary Problems: Theory and Applications 2021 (FBP 2021, Online Event), Minisymposium ``Phase Field Models'', September 13 - 17, 2021, WIAS, Berlin, September 14, 2021.

  • G. Dong, A class of second-order quasi-linear PDEs and their applications, 15th International Conference on Free Boundary Problems: Theory and Applications 2021 (FBP 2021, Online Event), September 13 - 17, 2021, WIAS, Berlin, September 16, 2021.

  • P.-E. Druet, Modeling and analysis for multicomponent incompressible fluids (online talk), 8th European Congress of Mathematics (8ECM), Minisymposium ID 51 ``Partial Differential Equations describing Far-from-Equilibrium Open Systems'' (Online Event), June 20 - 26, 2021, Portorož, Slovenia, June 23, 2021.

  • P.-E. Druet, Well-posedness results for mixed-type systems modelling pressure-driven multicomponent fluid flows (online talk), 8th European Congress of Mathematics (8ECM), Minisymposium ID 42 ``Multicomponent Diffusion in Porous Media'' (Online Event), June 20 - 26, 2021, Portorož, Slovenia, June 22, 2021.

  • TH. Eiter, Viscoelastic fluid flows with nonsmooth stress dissipation (online talk), DMV-ÖMG Jahrestagung 2021 (Online Event), September 27 - October 1, 2021, Universität Passau, September 29, 2021.

  • P. Farrell, Y. Hadjimichael, Ch. Merdon, T. Streckenbach, Toward charge transport in bent nanowires, AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021.

  • R. Lasarzik, Energy-variational solutions for incompressible fluid dynamics, Oberseminar Angewandte Analysis, Universität Ulm, Institut für Angewandte Analysis, October 25, 2021.

  • R. Lasarzik, Energy-variational solutions for incompressible fluid dynamics, Technische Universität Berlin, Institut für Mathematik, November 8, 2021.

  • M. Liero, Machine learning and PDEs with Julia (online talk), FUHRI2021: Finite Volume Methoods for Real-world AppIications (Online Event), April 29, 2021, WIAS Berlin, April 29, 2021.

  • M. Liero, Heat and carrier flow in organic semiconductor devices -- Modeling, analysis, and simulation (online talk), AMaSiS 2021: Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems (Online Event), September 6 - 9, 2021, WIAS Berlin, September 6, 2021.

  • M. Liero, Mathematical research data in Applied Analysis (online talk), MaRDI Kickoff Workshop, November 2 - 4, 2021, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, November 2, 2021.

  • A. Mielke, A. Stephan, Effective models for materials and interfaces with multiple scales, CRC 1114 Conference 2021 (Online Event), March 1 - 3, 2021.

  • A. Mielke, Gradient structures and EDP convergence for reaction and diffusion (online talk), Recent Advances in Gradient Flows, Kinetic Theory, and Reaction-Diffusion Equations (Online Event), July 13 - 16, 2021, Universität Wien, July 15, 2021.

  • A. Mielke, On a rigorous derivation of a wave equation with fractional damping from a system with fluid-structure interaction (online talk), Tbilisi Analysis and PDE Seminar (Online Event), The University of Georgia, School of Science and Technology, December 20, 2021.

  • A. Mielke, Thermo-visco-elasticity at finite strain (online talk), 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (Online Event), Section S14 ``Applied Analysis'', March 15 - 19, 2021, Universität Kassel, March 19, 2021.

  • W. van Zuijlen, Quantitative heat kernel estimates for diffusions with distributional drift (online talk), 14th Oxford-Berlin Young Researchers Meeting on Applied Stochastic Analysis (Online Event), February 10 - 12, 2021, University of Oxford, Mathematical Institute, UK, February 12, 2021.

  • M. Heida, Stochastic homogenization in randomly perforated domains (online talk), Annual Workshop of the GAMM Activity Group on Analysis of PDEs (Online Event), September 30 - October 2, 2020, Institute of Science and Technology Austria (IST Austria), Klosterneuburg, October 2, 2020.

  • M. Heida, Stochastic homogenization on perforated domains, Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik, July 2, 2020.

  • M. Heida, Stochastic homogenization on perforated domains (online talk), MA4M: Mathematical Analysis for Mechanics (Online Event), November 23 - 25, 2020, WIAS Berlin, November 24, 2020.

  • D.R.M. Renger, Fast reaction limits via Γ-convergence of the Flux Rate Functional, Variational Methods for Evolution, September 13 - 19, 2020, Mathematisches Forschungszentrum Oberwolfach, September 18, 2020.

  • A. Stephan, On gradient flows and gradient systems (online talk), CRC 1114 PhD Seminar (Online Event), Freie Universität Berlin, November 11, 2020.

  • A. Stephan, On gradient systems and applications to interacting particle systems (online talk), CRC 1114 PhD Seminar (Online Event), Freie Universität Berlin, November 25, 2020.

  • M.H. Farshbaf Shaker, D. Peschka, M. Thomas, Modeling and analysis of suspension flows, MATH+ Day 2020 (Online Event), Berlin, November 6, 2020.

  • A. Glitzky, A hybrid model for the electrothermal behaviour of semiconductor devices (online talk), Annual Workshop of the GAMM Activity Group on Analysis of PDEs (Online Event), September 30 - October 2, 2020, Institute of Science and Technology Austria (IST Austria), Klosterneuburg, October 1, 2020.

  • K. Hopf, Global existence analysis of energy-reaction-diffusion systems, Workshop ``Variational Methods for Evolution'', September 13 - 19, 2020, Mathematisches Forschungsinstitut Oberwolfach, September 15, 2020.

  • M. Thomas, Modeling and analysis of flows of concentrated suspensions (online talk), Colloquium of the RTG 2339 ``Interfaces, Complex Structures, and Singular Limits'' (Online Event), Universität Regensburg, July 10, 2020.

  • M. Thomas, Nonlinear fracture dynamics: Modeling, analysis, approximation, and applications, Presentation of project proposals in SPP 2256 ``Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials'', Bad Honnef, January 30, 2020.

  • M. Thomas, Thermodynamical modelling via energy and entropy functionals (online talks), Thematic Einstein Semester on Energy-based Mathematical Methods for Reactive Multiphase Flows: Student Compact Course ``Variational Methods for Fluids and Solids'' (Online Event), October 12 - 23, 2020, WIAS Berlin.

  • M. Thomas, Weierstraß-Gruppe "Volumen-Grenzschicht-Prozesse", Sitzung des Wissenschaftlichen Beirats, WIAS Berlin, September 18, 2020.

  • TH. Eiter, Spatially asymptotic structure of time-periodic Navier--Stokes flows (online talk), MA4M: Mathematical Analysis for Mechanics (Online Event), November 23 - 25, 2020, WIAS Berlin, November 24, 2020.

  • TH. Eiter , Spatially asymptotic structure of time-periodic Navier--Stokes flows (online talk), Annual Workshop of the GAMM Activity Group on Analysis of PDEs (Online Event), September 30 - October 2, 2020, Institute of Science and Technology Austria (IST Austria), Klosterneuburg, October 1, 2020.

  • R. Lasarzik, Dissipative solutions in the context of the numerical approximation of nematic electrolytes (online talk), Oberseminar Numerik, Universität Bielefeld, Fakultät für Mathematik, June 23, 2020.

  • M. Liero, A. Mielke, Analysis for thermo-mechanical models with internal variables, Presentation of project proposals in DFG SPP 2256 ``Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials'', Bad Honnef, January 30, 2020.

  • M. Liero, Evolutionary Gamma-convergence for multiscale problems (online talks), Thematic Einstein Semester: Student Compact Course ``Variational Methods for Fluids and Solids'' (Online Event), October 12 - 23, 2020, WIAS Berlin, October 15, 2020.

  • A. Mielke, Finite-strain viscoelasticity with temperature coupling, Calculus of Variations and Applications, January 27 - February 1, 2020, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, January 28, 2020.

  • A. Mielke, Gradient systems and evolutionary Gamma-convergence (online talk), Oberseminar ``Mathematik in den Naturwissenschaften'' (Online Event), Julius-Maximilians-Universität Würzburg, June 5, 2020.

  • A. Mielke, On finite-strain thermo-viscoelasticity, Mechanics of Materials: Towards Predictive Methods for Kinetics in Plasticity, Fracture, and Damage, March 8 - 14, 2020, Mathematisches Forschungszentrum Oberwolfach, March 12, 2020.

  • A. Mielke, Differential equations as gradient flows, with applications in mechanics, stochastics, and chemistry (online talk), Würzburger Mathematisches Kolloquium (Online Event), Julius-Maximilians-Universität Würzburg, November 9, 2020.

  • A. Mielke, EDP-convergence for multiscale gradient systems with applications to fast-slow reaction systems (online talk), One World Dynamics Seminar (Online Event), Technische Universität München, November 13, 2020.

  • A. Mielke, Global existence for finite-strain viscoelasticity with temperature coupling (online talk), One World Dynamics Seminar (Online Event), University of Bath, UK, December 1, 2020.

  • A. Mielke, Similarity solutions for Kolmogorov's two-equation model for turbulence, Workshop on Control of Self-Organizing Nonlinear Systems, September 2 - 3, 2020, CRC 910, Technische Universität Berlin, September 2, 2020.

  • A. Mielke, Variational structures for the analysis of PDE systems (online talks), Thematic Einstein Semester on Energy-based Mathematical Methods for Reactive Multiphase Flows: Student Compact Course ``Variational Methods for Fluids and Solids'' (Online Event), October 12 - 23, 2020, WIAS Berlin, October 13, 2020.

  • J. Rehberg, Explicit and uniform estimates for second order divergence operators on $L^p$ spaces, Oberseminar ``Analysis und Theoretische Physik'', Leibniz Universität Hannover, Institut für Angewandte Mathematik, January 28, 2020.

  • M.H. Farshbaf Shaker, D. Peschka, M. Thomas, Modeling and analysis of suspension flows, Visit of the Scientific Advisory Board of MATH+, November 11, 2019.

  • M.H. Farshbaf Shaker, D. Peschka, M. Thomas, Modeling and analysis of suspension flows, 1st MATH+ Day, Berlin, December 13, 2019.

  • M. Heida, A. Mielke, A. Stephan, Effective models for materials and interfaces with multiple scales, SCCS Days 2019 of the Collaborative Research Center - CRC 1114, Zeuthen, May 20 - 22, 2019.

  • M. Heida, Convergences of the squareroot approximation scheme to the Fokker--Planck operator, ``9th International Congress on Industrial and Applied Mathematics" (ICIAM 2019), July 15 - 19, 2019, Universitat de València, Spain, July 17, 2019.

  • M. Heida, The SQRA operator: Convergence behaviour and applications, Universität Wien, Fakultät für Mathematik, Lehrstuhl Analysis, Austria, March 19, 2019.

  • M. Heida, The fractional p-Laplacian emerging from discrete homogenization of the random conductance model with degenerate ergodic weights, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Universität Wien, Technische Universität Wien, Austria, February 19, 2019.

  • M. Heida, What is... SQRA discretization of the Fokker--Planck equation?, CRC1114 Colloquium, Freie Universität Berlin, SFB 1114, April 25, 2019.

  • G. Nika, An existence result for a class of electrothermal drift-diffusion models with Gauss--Fermi statistics for organic semiconductors, DMV-Jahrestagung 2019, September 23 - 26, 2019, KIT - Karlsruher Institut für Technologie.

  • D. Peschka, Dynamic contact angles via gradient flows, 694. WE-Heraeus-Seminar ``Wetting on Soft or Microstructured Surfaces'', Bad Honnef, April 10 - 13, 2019.

  • A. Stephan, Evolutionary Gamma-convergence for a linear reaction-diffusion system with different time scales, COPDESC-Workshop ``Calculus of Variation and Nonlinear Partial Differential Equations", March 25 - 28, 2019, Universität Regensburg, March 26, 2019.

  • A. Stephan, On evolution semigroups and Trotter product operator-norm estimates, Operator Theory and Krein Spaces, December 19 - 22, 2019, Technische Universität Wien, Austria, December 20, 2019.

  • A. Zafferi, Some regularity results for a non-isothermal Cahn-Hilliard model, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Technische Universität Wien, Austria, February 20, 2019.

  • W. van Zuijlen, From periodic to Dirichlet and Neumann on boxes, 12th Oxford-Berlin Young Researchers Meeting on Applied Stochastic Analysis, December 4 - 6, 2019, University of Oxford, Mathematical Institute, UK, December 6, 2019.

  • W. van Zuijlen, From periodic to Dirichlet and Neumann on boxes, Seminar Forschergruppe 2402: Research Unit --- Rough paths, stochastic partial differential equations and related topics, Technische Universität Berlin, Institut für Mathematik, December 12, 2019.

  • W. van Zuijlen, Mini-course on Besov spaces I--III, Junior Trimester Program: Randomness, PDEs and Nonlinear Fluctuations (Sept. 2 to Dec. 19, 2019), October 16 - November 6, 2019, Hausdorff Research Institute for Mathematics (HIM), Bonn.

  • A. Glitzky, An existence result for a class of electrothermal drift-diffusion models with Gauss--Fermi statistics for organic semiconductors, ``Partial Differential Equations in Fluids and Solids" (PDE2019), September 9 - 13, 2019, WIAS Berlin, September 12, 2019.

  • A. Glitzky, Drift-diffusion problems with Gauss--Fermi statistics and field-dependent mobility for organic semiconductor devices, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Universität Wien, Technische Universität Wien, Austria, February 22, 2019.

  • K. Hopf, On the singularity formation and relaxation to equilibrium in 1D Fokker--Planck model with superlinear drift, Winter School ``Gradient Flows and Variational Methods in PDEs'', November 25 - 29, 2019, Universität Ulm, November 25, 2019.

  • K. Hopf, On the singularity formation and relaxation to equilibrium in 1D Fokker--Planck model with superlinear drift, Gradient Flows and Variational Methods in PDEs, November 25 - 29, 2019, Universität Ulm, November 25, 2019.

  • M. Thomas, Analysis for the discrete approximation of gradient-regularized damage models, Mathematics Seminar Brescia, Università degli Studi di Brescia, Italy, March 13, 2019.

  • M. Thomas, Analysis for the discrete approximation of gradient-regularized damage models, PDE Afternoon, Universität Wien, Austria, April 10, 2019.

  • M. Thomas, Analytical and numerical aspects for the approximation of gradient-regularized damage models, 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), Thematic Minisymposium MS A3-2-26 ``Phase-Field Models in Simulation and Optimization'', July 15 - 19, 2019, Valencia, Spain, July 17, 2019.

  • M. Thomas, Analytical and numerical aspects of rate-independent gradient-regularized damage models, Conference ``Dynamics, Equations and Applications (DEA 2019)'', Session D444 ``Topics in the Mathematical Modelling of Solids'', September 16 - 20, 2019, AGH University of Science and Technology, Kraków, Poland, September 19, 2019.

  • M. Thomas, Coupling of rate-independent and rate-dependent systems, MURPHYS-HSFS 2019 Summer School on Multi-Rate Processes, Slow-Fast Systems and Hysteresis, June 17 - 19, 2019, Politecnico di Torino, Turin, Italy.

  • M. Thomas, Coupling of rate-independent and rate-dependent systems with application to delamination processes in solids, Mathematics for Mechanics, October 29 - November 1, 2019, Czech Academy of Sciences, Prague, Czech Republic, October 31, 2019.

  • M. Thomas, Coupling of rate-independent and rate-dependent systems with application to delamination processes in solids, Seminar ``Applied and Computational Analysis'', University of Cambridge, UK, October 10, 2019.

  • M. Thomas, Gradient structures for flows of concentrated suspensions, 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), Thematic Minisymposium MS ME-7-75 ``Recent Advances in Understanding Suspensions and Granular Media Flow'', July 15 - 19, 2019, Valencia, Spain, July 17, 2019.

  • M. Thomas, Rate-independent evolution of sets and application to fracture processes, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Technische Universität Wien, Austria, February 20, 2019.

  • B. Wagner, Free boundary problems of active and driven hydrogels, PIMS-Germany Workshop on Modelling, Analysis and Numerical Analysis of PDEs for Applications, June 24 - 26, 2019, Universität Heidelberg, Interdisciplinary Center for Scientific Computing and BIOQUANT Center, June 24, 2019.

  • M. Heida, The SQRA operator: Convergence behaviour and applications, Politechnico di Milano, Dipartimento di Matematica, Italy, March 13, 2019.

  • M. Hintermüller, Optimal control of multiphase fluids and droplets, Colloquium of the Mathematical Institute, University of Oxford, UK, June 7, 2019.

  • R. Lasarzik, Weak entropic solutions to a model in induction hardening: Existence and weak-strong uniqueness, Decima Giornata di Studio Università di Pavia -- Politecnico di Milano Equazioni Differenziali e Calcolo delle Variazioni, Politecnico di Milano, Italy, February 21, 2019.

  • M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Universität Wien, Technische Universität Wien, Austria, February 20, 2019.

  • A. Mielke, An existence result for thermoviscoelasticity at finite strains, Mathematics for Mechanics, October 29 - November 1, 2019, Czech Academy of Sciences, Institute for Information Theory and Automation, Prague, Czech Republic, November 1, 2019.

  • A. Mielke, Effective kinetic relations and EDP convergence, COPDESC-Workshop ``Calculus of Variation and Nonlinear Partial Differential Equations'', March 25 - 28, 2019, Universität Regensburg, March 28, 2019.

  • A. Mielke, Effective kinetic relations and EDP convergence for gradient systems, Necas Seminar on Continuum Mechanics, Charles University, Prague, Czech Republic, March 18, 2019.

  • A. Mielke, Evolutionary Gamma-convergence for gradient systems, Mathematisches Kolloquium, Albert-Ludwigs-Universität Freiburg, January 24, 2019.

  • A. Mielke, Gamma convergence of dissipation functionals and EDP convergence for gradient systems, 6th Applied Mathematics Symposium Münster: Recent Advances in the Calculus of Variations, September 16 - 19, 2019, Westfälische Wilhelms-Universität Münster, September 17, 2019.

  • A. Mielke, Gradient systems and evolutionary Gamma-convergence, DMV-Jahrestagung 2019, September 23 - 26, 2019, KIT -- Karlsruher Institut für Technologie, September 24, 2019.

  • A. Mielke, On Kolmogorov's two-equation model for turbulence, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Section S14 ``Applied Analysis'', February 18 - 22, 2019, Universität Wien, Technische Universität Wien, Austria, February 21, 2019.

  • A. Mielke, On initial-boundary value problems for materials with internal variables or temperature dependence, Workshop on Mathematical Methods in Continuum Physics and Engineering: Theory, Models, Simulation, November 6 - 7, 2019, Technische Universität Darmstadt, November 6, 2019.

  • A. Mielke, Pattern formation in coupled parabolic systems on extended domains, Fundamentals and Methods of Design and Control of Complex Systems -- Introductory Lectures 2019/20 of CRC 910, Technische Universität Berlin, November 25, 2019.

  • A. Mielke, Variational methods in time-dependent material models with finite-strain deformations, Hausdorff School on Modeling and Analysis of Evolutionary Problems in Materials Science, September 23 - 27, 2019, Hausdorff Center for Mathematics, Universität Bonn.

  • A. Mielke, EDP convergence for the membrane limit in the porous medium equation, 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), Thematic Minisymposium MS ME-1-3 9 ``Entropy Methods for Multi-dimensional Systems in Mechanics'', July 15 - 19, 2019, Valencia, Spain, July 19, 2019.

  • A. Mielke, Effective models for materials and interfaces with multiple scales, SCCS Days 2019 of the Collaborative Research Center - CRC 1114, May 20 - 22, 2019, SFB 1114, Freie Universität Berlin, Zeuthen, May 21, 2019.

  • A. Mielke, Gradient systems and the derivation of effective kinetic relations via EDP convergence, Material Theories, Statistical Mechanics, and Geometric Analysis: A Conference in Honor of Stephan Luckhaus' 66th Birthday, June 3 - 6, 2019, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, June 5, 2019.

  • A. Mielke, Transport versus growth and decay: The (spherical) Hellinger--Kantorovich distance between arbitrary measures, Optimal Transport: From Geometry to Numerics, May 13 - 17, 2019, Erwin Schrödinger International Institute for Mathematics and Physics, Universität Wien, Austria, May 17, 2019.

  • J. Rehberg, An extrapolation for the Lax--Milgram isomorphism for second order divergence operators, Oberseminar ``Angewandte Analysis'', Technische Universität Darmstadt, February 7, 2019.

  • J. Rehberg, Explicit and uniform estimates for second order divergence operators on $L^P$ spaces, Evolution Equations: Applied and Abstract Perspectives, October 28 - November 1, 2019, Centre International de Rencontres Mathématiques (CIRM), Luminy, France, October 31, 2019.

  • J. Rehberg, Maximal parabolic regularity for the treatment of real world problems, 12th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (not only) for Junior Scientists (AANMPDE 12), July 1 - 5, 2019, Österreichische Akademie der Wissenschaften, St. Wolfgang / Strobl, Austria, July 2, 2019.

  • J. Rehberg, Well-posedness for the Keller--Segel model -- based on a pioneering result of Herbert Amann, International Conference ``Nonlinear Analysis'' in Honor of Herbert Amann's 80th Birthday, June 11 - 14, 2019, Scuola Normale Superiore di Pisa, Cortona, Italy, June 11, 2019.

  • S. Reichelt, Pulses in FitzHugh--Nagumo systems with rapidly oscillating coefficients, SIAM Annual Meeting, Minisymposium 101 ``Multiscale Analysis and Simulation on Heterogeneous Media'', July 9 - 13, 2018, Society for Industrial and Applied Mathematics, Oregon Convention Center (OCC), Portland, USA, July 12, 2018.

  • N. Rotundo, On a thermodynamically consistent coupling of quantum system and device equations, The 20th European Conference on Mathematics for Industry (ECMI 2018), Minisymposium ``Mathematical Modeling of Charge Transport in Graphene and Low Dimensional Structures'', August 18 - June 22, 2018, Budapest, Hungary, June 19, 2018.

  • M. Heida, Mathematische Mehrskalenmethoden in Natur und Technik, Seminar ``Angewandte Analysis'', Universität Konstanz, Institut für Mathematik, October 31, 2018.

  • M. Heida, On G-convergence and stochastic two-scale convergences of the square root approximation scheme to the Fokker--Planck operator, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2018), Section S14 ``Applied Analysis'', March 19 - 23, 2018, Technische Universität München, March 21, 2018.

  • M. Heida, On convergence of the square root approximation scheme to the Fokker--Planck operator, Technische Universität Berlin, Institut für Mathematik, May 14, 2018.

  • M. Heida, On convergence of the square root approximation scheme to the Fokker--Planck operator, Oberseminar ``Optimierung'', Humboldt-Universität zu Berlin, Institut für Mathematik, May 29, 2018.

  • M. Heida, On convergences of the square root approximation scheme to the Fokker--Planck operator, Workshop ``Interplay of Analysis and Probability in Applied Mathematics'', February 11 - 17, 2018, Mathematisches Forschungsinstitut Oberwolfach, February 13, 2018.

  • A. Zafferi, Regularity results for a thermodynamically consistent non-isothermal Cahn--Hilliard model, Summer School ``Dissipative Dynamical Systems and Applications'', September 3 - 7, 2018, University of Modena, Department of Physics, Informatics and Mathematics, Italy, September 6, 2018.

  • J. Sprekels, Cahn--Hilliard systems with general fractional operators, Workshop ``Challenges in Optimal Control of Nonlinear PDE-Systems'', April 9 - 13, 2018, Mathematisches Forschungsinstitut Oberwolfach, April 9, 2018.

  • J. Sprekels, Cahn--Hilliard systems with general fractional-order operators, Workshop ``Special Materials and Complex Systems'' (SMACS 2018), June 18 - 22, 2018, University of Milan/University of Pavia, Gargnano, Italy, June 22, 2018.

  • M. Thomas, D. Peschka, B. Wagner, V. Mehrmann, M. Rosenau, Modeling and analysis of suspension flows, MATH+ Center Days 2018, October 31 - November 2, 2018, Zuse-Institut Berlin (ZIB), Berlin, October 31, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2018), Section DFG Priority Programmes PP1748 ``Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis'', March 19 - 23, 2018, Technische Universität München, March 20, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, Workshop ``Special Materials and Complex Systems'' (SMACS 2018), June 18 - 22, 2018, University of Milan/University of Pavia, Gargnano, Italy, June 18, 2018.

  • M. Thomas, Analysis and simulation for a phase-field fracture model at finite strains based on modified invariants, Analysis Seminar, University of Brescia, Department of Mathematics, Italy, May 10, 2018.

  • M. Thomas, Analysis for the discrete approximation of damage and fracture, Applied Analysis Day, June 28 - 29, 2018, Technische Universität Dresden, Chair of Partial Differential Equations, June 29, 2018.

  • M. Thomas, Analysis for the discrete approximation of gradient-regularized damage models, Workshop ``Women in Mathematical Materials Science'', November 5 - 6, 2018, Universität Regensburg, Fakultät für Mathematik, November 6, 2018.

  • M. Thomas, Analytical and numerical approach to a class of damage models, The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 75 ``Mathematics and Materials: Models and Applications'', July 5 - 9, 2018, National Taiwan University, Taipeh, Taiwan, Province Of China, July 6, 2018.

  • M. Thomas, Analytical and numerical aspects of damage models, Berlin Dresden Prague Würzburg Workshop ``Mathematics of Continuum Mechanics'', November 29 - 30, 2018, Universität Würzburg, Institut für Mathematik, November 30, 2018.

  • M. Thomas, Gradient structures for flows of concentrated suspensions, The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 18 ``Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equations and Related Fields'', July 5 - 9, 2018, National Taiwan University, Taipeh, Taiwan, Province Of China, July 7, 2018.

  • M. Thomas, Optimization of the radiative emission for mechanically strained optoelectronic semiconductor devices, 9th International Conference ``Inverse Problems: Modeling and Simulation'' (IPMS 2018), Minisymposium M16 ``Inverse and Control Problems in Mechanics'', May 21 - 25, 2018, The Eurasian Association on Inverse Problems, Malta, May 24, 2018.

  • M. Thomas, Rate-independent evolution of sets & applications to damage and delamination, PDEs Friends, June 21 - 22, 2018, Politecnico di Torino, Dipartimento di Scienze Matematiche ``Giuseppe Luigi Lagrange'', Italy, June 22, 2018.

  • M. Thomas, Reliable error estimates for phase-field models of brittle fracture, MATH+ Center Days 2018, October 31 - November 2, 2018, Zuse-Institut Berlin (ZIB), Berlin, October 31, 2018.

  • R. Lasarzik, Generalised solutions to the Ericksen--Leslie model describing liquid crystal flow, Università degli Studi di Pavia, Dipartimento di Matematica ``F. Casorati'', Italy, June 7, 2018.

  • A. Mielke, Construction of effective gradient systems via EDP convergence, Workshop on Mathematical Aspects of Non-Equilibrium Thermodynamics, March 5 - 7, 2018, Rheinisch-Westfälische Technische Hochschule Aachen, March 6, 2018.

  • A. Mielke, Energy, dissipation, and evolutionary Gamma convergence for gradient systems, Kolloquium ``Applied Analysis'', Universität Bremen, December 18, 2018.

  • S. Reichelt, Corrector estimates for elliptic and parabolic equations with periodic coefficients, Analysis Seminar, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik, Erlangen, May 18, 2017.

  • S. Reichelt, Corrector estimates for elliptic and parabolic equations with periodic coefficients, Analysis Seminar, Universität Augsburg, Institut für Mathematik, May 23, 2017.

  • S. Reichelt, Corrector estimates for imperfect transmission problems, 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2017), Section S14 ``Applied Analysis'', March 6 - 10, 2017, Bauhaus Universität Weimar/Technische Universität Ilmenau, Weimar, March 7, 2017.

  • S. Reichelt, Pulses in FitzHugh--Nagumo systems with periodic coefficients, Seminar ``Dynamical Systems and Applications'', Technische Universität Berlin, Institut für Mathematik, May 3, 2017.

  • A. Alphonse, A coupled bulk-surface reaction-diffusion system on a moving domain, Workshop ``Emerging Developments in Interfaces and Free Boundaries'', January 23 - 28, 2017, Mathematisches Forschungszentrum Oberwolfach, January 25, 2017.

  • A. Alphonse, Optimal control of elliptic and parabolic quasi-variational inequalities, Annual Meeting of the DFG Priority Programme 1962, October 9 - 11, 2017, Kremmen (Sommerfeld), October 10, 2017.

  • M. Heida, On G-convergence and stochastic two-scale convergences of the squareroot approximation scheme to the Fokker--Planck operator, GAMM-Workshop on Analysis of Partial Differential Equations, September 27 - 29, 2017, Eindhoven University of Technology, Mathematics and Computer Science Department, Netherlands, September 28, 2017.

  • M. Liero, On entropy-transport problems and the Hellinger--Kantorovich distance, Seminar of Team EDP-AIRSEA-CVGI, Université Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble, France, January 26, 2017.

  • D.R.M. Renger, Large deviations and gradient flows, Spring School 2017: From Particle Dynamics to Gradient Flows, February 27 - March 3, 2017, Technische Universität Kaiserslautern, Fachbereich Mathematik, March 1, 2017.

  • J. Sprekels, A nonstandard viscous Cahn--Hilliard system with dynamic boundary condition and the DCH, Analysis of Boundary Value Problems for PDEs -- Workshop on the Occasion of the 70th Birthday of Gianni Gilardi, Pavia, Italy, February 20, 2017.

  • J. Sprekels, Optimal control of PDEs: From basic principles to hard applications, International School ``Frontiers in Partial Differential Equations and Solvers'', May 22 - 25, 2017, University of Pavia, Department of Mathematics, Italy.

  • J. Sprekels, Well-posedness and optimal control of a nonstandard Cahn--Hilliard system with dynamic boundary condition, Fudan University, School of Mathematical Sciences, China, April 10, 2017.

  • N. Ahmed, A numerical study of residual based variational multiscale methods for turbulent incompressible flow problems, American University of the Middle East, Dasman, Kuwait, November 2, 2017.

  • P.-É. Druet, Analysis of recent Nernst--Planck--Poisson--Navier--Stokes systems of electrolytes, 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2017), Section S14 ``Applied Analysis'', March 6 - 10, 2017, Bauhaus Universität Weimar/Technische Universität Ilmenau, Weimar, March 7, 2017.

  • P.-É. Druet, Existence of weak solutions for improved Nernst--Planck--Poisson models of compressible electrolytes, Seminar EDE, Czech Academy of Sciences, Institute of Mathematics, Department of Evolution Differential Equations (EDE), Prague, Czech Republic, January 10, 2017.

  • M. Hintermüller, Generalized Nash games with partial differential equations, Kolloquium Arbeitsgruppe Modellierung, Numerik, Differentialgleichungen, Technische Universität Berlin, June 20, 2017.

  • TH. Koprucki, Mathematical knowledge management as a route to sustainability in mathematical modeling and simulation, 2nd Leibniz MMS Days 2017, February 22 - 24, 2017, Technische Informationsbibliothek (TIB), Hannover, February 22, 2017, DOI 10.5446/21908 .

  • A. Mielke, A geometric approach to reaction-diffusion equations, Institutskolloquium, Universität Potsdam, Institut für Mathematik, January 25, 2017.

  • A. Mielke, Global existence results for viscoplasticity, 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2017), Section S14 ``Applied Analysis'', March 6 - 10, 2017, Bauhaus Universität Weimar/Technische Universität Ilmenau, Weimar, March 10, 2017.

  • A. Mielke, Optimal transport versus growth and decay, International Conference ``Calculus of Variations and Optimal Transportation'' in the Honor of Yann Brenier for his 60th Birthday, January 9 - 11, 2017, Institut Henri Poincaré, Paris, France, January 11, 2017.

  • A. Mielke, Perspectives for gradient flows, GAMM-Workshop on Analysis of Partial Differential Equations, September 27 - 29, 2017, Eindhoven University of Technology, Mathematics and Computer Science Department, Netherlands, September 28, 2017.

  • A. Mielke, Uniform exponential decay for energy-reaction-diffusion systems, Analysis Seminar, University of Pavia, Department of Mathematics, Italy, March 21, 2017.

  • J. Rehberg, Explicit and uniform resolvent estimates for second order divergence operators on $L^p$ spaces, Oberseminar Analysis, Technische Universität Darmstadt, Fachbereich Mathematik, November 9, 2017.

  • J. Rehberg, On optimal elliptic Sobolev regularity, Oberseminar Prof. Ira Neitzel, Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Numerische Simulation, February 2, 2017.

  • E. Cinti, Quantitative flatness results and BV-estimates for nonlocal minimal surfaces, Seminario di Equazioni Differenziali, Università degli Studi di Roma ``Tor Vergata'', Italy, April 19, 2016.

  • K. Disser, Convergence for gradient systems of slow and fast chemical reactions, Joint Annual Meeting of DMV and GAMM, Session ``Applied Analysis'', March 7 - 11, 2016, Technische Universität Braunschweig, Braunschweig, March 11, 2016.

  • K. Disser, E-convergence to the quasi-steady-state approximation in systems of chemical reactions, ERC Workshop on Modeling Materials and Fluids using Variational Methods, February 22 - 26, 2016, WIAS Berlin, Berlin, February 25, 2016.

  • S. Reichelt, Error estimates for elliptic and parabolic equations with oscillating coefficients, Karlstad Applied Analysis Seminar, Karlstad University, Department of Mathematics and Computer Science, Sweden, April 13, 2016.

  • S. Reichelt, Homogenization of Cahn--Hilliard-type equations via evolutionary $Gamma$-convergence, Joint Annual Meeting of DMV and GAMM, Young Researchers' Minisymposium ``Multiscale Evolutionary Problems'', March 7 - 11, 2016, Technische Universität Braunschweig, March 7, 2016.

  • S. Reichelt, Homogenization of Cahn--Hilliard-type equations via evolutionary Gamma-convergence, Workshop ``Patterns of Dynamics'', Freie Universität Berlin, Fachbereich Mathematik und Informatik, July 25 - 29, 2016.

  • S. Reichelt, Homogenization of Cahn--Hilliard-type equations via gradient structures, The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 2 ``Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equation'', July 1 - 5, 2016, The American Institute of Mathematical Sciences, Orlando (Florida), USA, July 3, 2016.

  • TH. Frenzel, EDP-convergence for delamination and a wiggly energy model, 2nd Berlin Dresden Prague Würzburg Workshop on Mathematics of Continuum Mechanics, Technische Universität Dresden, Fachbereich Mathematik, Dresden, December 5, 2016.

  • TH. Frenzel, Evolutionary Gamma-convergence for a delamination model, Workshop on Industrial and Applied Mathematics 2016, 5th Symposium of German SIAM Student Chapters, August 31 - September 2, 2016, University of Hamburg, Department of Mathematics, Hamburg, September 1, 2016.

  • TH. Frenzel, Evolutionary Gamma-convergence for amplitude equations and for wiggly energy models, Winter School 2016: Calculus of Variations in Physics and Materials Science, Würzburg, February 15 - 19, 2016.

  • TH. Frenzel, Examples of evolutionary Gamma-convergence, Workshop on Industrial and Applied Mathematics 2016, 5th Symposium of German SIAM Student Chapters, Hamburg, August 31 - September 2, 2016.

  • M. Heida, Large deviation principle for a stochastic Allen--Cahn equation, 9th European Conference on Elliptic and Parabolic Problems, May 23 - 27, 2016, University of Zurich, Institute of Mathematics, Gaeta, Italy, May 25, 2016.

  • M. Liero, Gradient structures for reaction-diffusion systems and optimal entropy-transport problems, Workshop ``Variational and Hamiltonian Structures: Models and Methods'', July 11 - 15, 2016, Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, July 11, 2016.

  • M. Liero, OLEDs - a hot matter? Electrothermal modeling of OLEDs., sc Matheon Workshop, 9th Annual Meeting ``Photonic Devices'', March 3 - 4, 2016, Zuse Institute Berlin, Berlin, March 4, 2016.

  • M. Liero, On $p(x)$-Laplace thermistor models describing eletrothermal feedback in organic semiconductors, The 19th European Conference on Mathematics for Industry (ECMI 2016), Minisymposium 23 ``Charge Transport in Semiconductor Materials: Emerging and Established Mathematical Topics'', June 13 - 17, 2016, Universidade de Santiago de Compostela, Spain, June 15, 2016.

  • M. Liero, On $p(x)$-Laplace thermistor models describing eletrothermal feedback in organic semiconductors, Joint Annual Meeting of DMV and GAMM, Section 14 ``Applied Analysis'', March 7 - 11, 2016, Technische Universität Braunschweig, Braunschweig, March 9, 2016.

  • M. Liero, On electrothermal feedback in organic light-emitting diodes, Berlin Dresden Prague Würzburg Workshop ``Mathematics of Continuum Mechanics'', Technische Universität Dresden, Fachbereich Mathematik, December 5, 2016.

  • M. Liero, On geodesic curves and convexity of functionals with respect to the Hellinger--Kantorovich distance, Workshop ``Optimal Transport and Applications'', November 7 - 11, 2016, Scuola Normale Superiore, Dipartimento di Matematica, Pisa, Italy, November 10, 2016.

  • E. Valdinoci, A notion of fractional perimeter and nonlocal minimal surfaces, Seminar, Universitá del Salento, Dipartimento di Matematics e Fisica ``Ennio de Giorgi'', Lecce, Italy, June 22, 2016.

  • E. Valdinoci, Interior and boundary properties of nonlocal minimal surfaces, Calcul des Variations & EDP, Université Aix-Marseille, Institut de Mathématiques de Marseille, France, February 25, 2016.

  • E. Valdinoci, Interior and boundary properties on nonlocal minimal surfaces, 3rd Conference on Nonlocal Operators and Partial Differential Equations, June 27 - July 1, 2016, Bedlewo, Poland, June 27, 2016.

  • E. Valdinoci, Nonlocal Equations and Applications, Spring School on Nonlinear PDEs and Related Problems, January 15 - 19, 2016, African Institute for Mathematical Sciences (AIMS), Mbour, Senegal.

  • E. Valdinoci, Nonlocal equations and applications, Calculus of Variations and Nonlinear Partial Differential Equations, May 16 - 27, 2016, Columbia University, Department of Mathematics, New York, USA, May 25, 2016.

  • E. Valdinoci, Nonlocal equations from different points of view, Research Seminar, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, August 31, 2016.

  • E. Valdinoci, Nonlocal equations from various perspectives, PIMS Workshop on Nonlocal Variational Problems and PDEs, June 13 - 17, 2016, University of British Columbia, Vancouver, Canada, June 13, 2016.

  • E. Valdinoci, Nonlocal minimal surfaces, Analysis, PDEs, and Geometry Seminar, Monash University, Clayton, Australia, August 9, 2016.

  • E. Valdinoci, Nonlocal minimal surfaces and phase transitions, Seminar, University of Leeds, School of Mathematics, UK, April 19, 2016.

  • E. Valdinoci, Nonlocal minimal surfaces, a geometric and analytic insight, Seminar on Differential Geometry and Analysis, Otto-von-Guericke-Universität Magdeburg, January 18, 2016.

  • E. Valdinoci, Nonlocal minimal surfaces: Regularity and quantitative properties, Conference on Recent Trends on Elliptic Nonlocal Equations, The Fields Institute for Research in Mathematical Sciences, Toronto, Canada, June 9, 2016.

  • E. Valdinoci, Planelike solutions in periodic media, Asymptotic Patterns in Variational Problems: PDE and Geometric Aspects, September 25 - 30, 2016, Banff International Research Station for Mathematical Innovation and Discovery, Oaxaca, Mexico, September 28, 2016.

  • E. Valdinoci, Superfici minime e transizioni di fase (non)locali, EDP e Dintorni II Incontro, Università di Bari, Dipartimento di Matematica, Italy, May 13, 2016.

  • M. Becker, Th. Frenzel, Th. Niedermayer, S. Reichelt, M. Bär, A. Mielke, Competing patterns in anti-symmetrically coupled Swift--Hohenberg equations, International Conference on Control of Complex Systems and Networks, SFB 910 ``Control of Self-Organizing Nonlinear Systems: Theoretical Methods and Concepts of Application'', Heringsdorf/Usedom, September 4 - 8, 2016.

  • A. Glitzky, $p(x)$-Laplace thermistor models for electrothermal effects in organic semiconductor devices, 7th European Congress of Mathematics (7ECM), Minisymposium 22 ``Mathematical Methods for Semiconductors'', July 18 - 22, 2016, Technische Universität Berlin, July 22, 2016.

  • A. Glitzky, $p(x)$-Laplace thermistor models for electrothermal feedback in organic semiconductor devices, 9th European Conference on Elliptic and Parabolic Problems, May 23 - 27, 2016, University of Zurich, Institute of Mathematics, Gaeta, Italy, May 23, 2016.

  • M. Thomas, Analysis and optimization for edge-emitting semiconductor heterostructures, 7th European Congress of Mathematics (ECM), session CS-8-A, July 18 - 22, 2016, Technische Universität Berlin, Berlin, July 19, 2016.

  • M. Thomas, Analysis and optimization for edge-emitting semiconductor heterostructures, The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 2 ``Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equation'', July 1 - 5, 2016, The American Institute of Mathematical Sciences, Orlando (Florida), USA, July 3, 2016.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Delamination models in visco-elastodynamics, Oberseminar ``Mathematik in den Naturwissenschaften'', Universität Würzburg, Institut für Mathematik, June 10, 2016.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Existence results, 7th European Congress of Mathematics (ECM), minisymposium ``Nonsmooth PDEs in the Modeling Damage, Delamination, and Fracture'', July 18 - 22, 2016, Technische Universität Berlin, Berlin, July 22, 2016.

  • M. Thomas, Energetic concepts for coupled rate-independent and rate-dependent processes: Damage & delamination in visco-elastodynamics, International Conference ``Mathematical Analysis of Continuum Mechanics and Industrial Applications II'' (CoMFoS16), October 22 - 24, 2016, Kyushu University, Fukuoka, Japan.

  • M. Thomas, From adhesive contact to brittle delamination in visco-elastodynamics, The 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, special session ``Rate-dependent and Rate-independent Evolution Problems in Continuum Mechanics: Analytical and Numerical Aspects'', July 1 - 5, 2016, The American Institute of Mathematical Sciences, Orlando (Florida), USA, July 4, 2016.

  • M. Thomas, From adhesive contact to brittle delamination in visco-elastodynamics, ERC Workshop on Modeling Materials and Fluids using Variational Methods, February 22 - 26, 2016, WIAS Berlin, Berlin, February 26, 2016.

  • M. Thomas, Non-smooth PDEs in material failure: Towards dynamic fracture, Joint Annual Meeting of DMV and GAMM, Section 14 ``Applied Analysis'', March 7 - 11, 2016, Technische Universität Braunschweig, March 10, 2016.

  • M. Thomas, Rate-independent evolution of sets, INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, September 5 - 8, 2016, The International Society for the Interaction of Mechanics and Mathematics (ISIMM), Rome, Italy, September 6, 2016.

  • M. Thomas, Rate-independent evolution of sets & application to fracture processes, Seminar on Analysis, Kanazawa University, Institute of Science and Engineering, Kanazawa, Japan, October 28, 2016.

  • N. Ahmed, On the grad-div stabilization for the steady Oseen and Navier--Stokes evaluations, International Conference of Boundary and Interior Layers (BAIL 2016), August 15 - 19, 2016, Beijing Computational Science Research Center, Beijing, China, August 15, 2016.

  • P.-É. Druet, Existence of global weak solutions for generalized Poisson--Nernst--Planck systems, 7th European Congress of Mathematics (ECM), minisymposium ``Analysis of Thermodynamically Consistent Models of Electrolytes in the Context of Battery Research'', July 18 - 22, 2016, Technische Universität Berlin, Berlin, July 20, 2016.

  • S.P. Frigeri, On a diffuse interface model of tumor growth, 9th European Conference on Elliptic and Parabolic Problems, May 23 - 27, 2016, University of Zurich, Institute of Mathematics, Gaeta, Italy, May 23, 2016.

  • M. Hintermüller, Optimal control of multiphase fluids and droplets, Salzburg Mathematics Colloquium, Universität Salzburg, Fachbereich Mathematik, Austria, June 9, 2016.

  • M. Hintermüller, Recent trends in optimal control problems with nonsmooth structures, Computational Methods for Control of Infinite-dimensional Systems, March 14 - 18, 2016, Institute for Mathematics and its Applications, Minneapolis, USA, March 14, 2016.

  • A. Mielke, Entropy-entropy production estimates for energy-reaction diffusion systems, Workshop ``Forefront of PDEs: Modelling, Analysis and Numerics'', December 12 - 14, 2016, Technische Universität Wien, Institut für Analysis and Scientific Computing, Austria, December 13, 2016.

  • A. Mielke, Evolution driven by energy and entropy, SFB1114 Kolloquium, Freie Universität Berlin, Berlin, June 30, 2016.

  • A. Mielke, Evolutionary Gamma-convergence, 2nd CENTRAL School on Analysis and Numerics for Partial Differential Equations, August 29 - September 2, 2016, Humboldt-Universität zu Berlin, Institut für Mathematik.

  • A. Mielke, Exponential decay into thermodynamical equilibrium for reaction-diffusion systems with detailed balance, Workshop ``Patterns of Dynamics'', July 25 - 29, 2016, Freie Universität Berlin, Fachbereich Mathematik und Informatik, July 28, 2016.

  • A. Mielke, Global existence for finite-strain viscoplasticity via the energy-dissipation principle, Seminar ``Analysis & Mathematical Physics'', Institute of Science and Technology Austria (IST Austria), Vienna, Austria, July 7, 2016.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion equation, Mathematisches Kolloquium, Westfälische Wilhelms-Universität, Institut für Mathematik, Münster, April 28, 2016.

  • A. Mielke, Mutual recovery sequences and evolutionary relaxation of a two-phase problem, 2nd Workshop on CENTRAL Trends in Analysis and Numerics for PDEs, May 26 - 28, 2016, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic, May 27, 2016.

  • A. Mielke, On the Hellinger--Kantorovich distance for reaction and diffusion, Workshop ``Interactions between Partial Differential Equations & Functional Inequalities'', September 12 - 16, 2016, The Royal Swedish Academy of Sciences, Institut Mittag--Leffler, Stockholm, Sweden, September 12, 2016.

  • A. Mielke, On the geometry of reaction and diffusion, INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, September 5 - 8, 2016, The International Society for the Interaction of Mechanics and Mathematics (ISIMM), Rome, Italy, September 7, 2016.

  • A. Mielke, Optimal transport versus reaction --- On the geometry of reaction-diffusion equations, Pure Analysis and PDEs Seminar, Imperial College London, Department of Mathematics, UK, May 12, 2016.

  • J. Rehberg, On Hölder continuity for elliptic and parabolic problems, 8th Singular Days, June 27 - 30, 2016, University of Lorraine, Department of Sciences and Technologies, Nancy, France, June 29, 2016.

  • J. Rehberg, On non-smooth parabolic equations, Oberseminar Analysis, Universität Kassel, Institut für Mathematik, May 2, 2016.

  • J. Rehberg, On non-smooth parabolic equations, Oberseminar Analysis, Leibniz Universität Hannover, Institut für Angewandte Mathematik, May 10, 2016.

  • J. Rehberg, On optimal elliptic Sobolev regularity, Oberseminar Analysis, Technische Universität Clausthal, Institut für Mathematik, Clausthal-Zellerfeld, January 20, 2016.

  • E. Valdinoci, Nonlocal equations in phase transitions, minimal surfaces, crystallography and life sciences, Escuela CAPDE Ecuaciones diferenciales parciales no lineales, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago de Chile, Chile.

  • E. Cinti, A quantitative weighted isoperimetric inequality via the ABP method, Oberseminar Analysis, Universität Bonn, Institut für Angewandte Mathematik, February 5, 2015.

  • E. Cinti, Quantitative flatness results for nonlocal minimal surfaces in low dimensions, Theory of Applications of Partial Differential Equations (PDE 2015), November 30 - December 4, 2015, WIAS Berlin, Berlin, December 2, 2015.

  • E. Cinti, Quantitative isoperimetric inequality via the ABP method, Università di Bologna, Dipartimento di Matematica, Bologna, Italy, July 17, 2015.

  • K. Disser, Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Mathematical Thermodynamics of Complex Fluids, June 29 - July 3, 2015, Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, June 30, 2015.

  • K. Disser, Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Workshop ``Young Researchers in Fluid Dynamics'', June 18 - 19, 2015, Technische Universität Darmstadt, Fachbereich Mathematik, Darmstadt, June 18, 2015.

  • K. Disser, Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Seminar ``Dynamische Systeme'', Technische Universität München, Zentrum Mathematik, München, February 2, 2015.

  • K. Disser, Asymptotic behavior of a rigid body with a cavity filled by a viscous liquid, Oberseminar ``Analysis'', Universität Kassel, Institut für Mathematik, Kassel, January 12, 2015.

  • K. Disser, Dynamik von Starrkörpern, die mit einer Flüssigkeit gefüllt sind, und das Ei-Problem, Mathematisches Kolloquium, Heinrich-Heine Universität Düsseldorf, Institut für Mathematik, Düsseldorf, April 10, 2015.

  • S. Patrizi, Dislocations dynamics: From microscopic models to macroscopic crystal plasticity, Analysis Seminar, The University of Texas at Austin, Department of Mathematics, USA, January 21, 2015.

  • S. Patrizi, Dislocations dynamics: From microscopic models to macroscopic crystal plasticity, Seminar, King Abdullah University of Science and Technologie, SRI -- Center for Uncertainty Quantification in Computational Science & Engineering, Jeddah, Saudi Arabia, March 25, 2015.

  • S. Patrizi, On a long range segregation model, Seminar, Università degli Studi di Salerno, Dipartimento di Matematica, Italy, May 19, 2015.

  • S. Patrizi, On a long range segregation model, Seminario di Analisi Matematica, Sapienza Università di Roma, Dipartimento di Matematica ``Guido Castelnuovo'', Italy, April 20, 2015.

  • E. Rocca, Optimal control of a nonlocal convective Cahn--Hilliard equation by the velocity, Numerical Analysis Seminars, Durham University, UK, March 13, 2015.

  • S.P. Frigeri, On a diffuse interface model of tumor growth, INdAM Workshop ``Special Materials in Complex Systems -- SMaCS 2015'', May 18 - 22, 2015, Rome, Italy, May 22, 2015.

  • S.P. Frigeri, On a nonlocal diffuse interface model for binary incompressible fluids with different densities, Mathematical Thermodynamics of Complex Fluids, June 28 - July 3, 2015, Fondazione CIME ``Roberto Conti'' (International Mathematical Summer Center), Cetraro, Italy, July 2, 2015.

  • S.P. Frigeri, Recent results on optimal control for Cahn--Hilliard/Navier--Stokes systems with nonlocal interactions, Control Theory and Related Topics, April 13 - 14, 2015, Politecnico di Milano, Italy, April 13, 2015.

  • M. Heida, Stochastic homogenization of Prandtl--Reuss plasticity, 3rd Workshop of the GAMM Activity Group ``Analysis of Partial Differential Equations'', September 30 - October 2, 2015, Universität Kassel, Institut für Mathematik, Kassel, October 1, 2015.

  • CH. Heinemann, Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients, 3rd Workshop of the GAMM Activity Group Analysis of Partial differential Equations, September 30 - October 2, 2015, Universität Kassel, Institut für Mathematik, October 1, 2015.

  • CH. Heinemann, On elastic Cahn--Hilliard systems coupled with evolution inclusions for damage processes, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), Young Researchers' Minisymposium 2, March 23 - 27, 2015, Lecce, Italy, March 23, 2015.

  • CH. Heinemann, Solvability of differential inclusions describing damage processes and applications to optimal control problems, Universität Essen-Duisburg, Fakultät für Mathematik, Essen, December 3, 2015.

  • M. Landstorfer, Theory, structure and experimental justification of the metal/electrolyte interface, Minisymposium `` Recent Developments on Electrochemical Interface Modeling'' of the 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), August 10 - 14, 2015, International Council for Industrial and Applied Mathematics, Beijing, China, August 11, 2015.

  • M. Liero, Electrothermal modeling of large-area OLEDs, sc Matheon Center Days, April 20 - 21, 2015, Technische Universität Berlin, Institut für Mathematik, Berlin, April 20, 2015.

  • M. Liero, On $p(x)$-Laplace thermistor models describing electrothermal feedback in organic semiconductor devices, Theory of Applications of Partial Differential Equations (PDE 2015), November 30 - December 4, 2015, WIAS Berlin, Berlin, December 3, 2015.

  • M. Liero, On a PDE thermistor system for large-area OLEDs, Applied Mathematics and Simulation for Semiconductors (AMaSiS 2015), March 11 - 13, 2015, WIAS Berlin, Berlin, March 12, 2015.

  • M. Liero, On dissipation distances for reaction-diffusion equations --- The Hellinger--Kantorovich distance, Workshop ``Collective Dynamics in Gradient Flows and Entropy Driven Structures'', June 1 - 5, 2015, Gran Sasso Science Institute, L'Aquila, Italy, June 3, 2015.

  • D. Peschka, Droplets on liquids and their long way into equilibrium, Minisymposium ``Recent Progress in Modeling and Simulation of Multiphase Thin-film Type Problems'' of the 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), August 10 - 14, 2015, International Council for Industrial and Applied Mathematics, Beijing, China, August 12, 2015.

  • D. Peschka, Thin-film equations with free boundaries, Jahrestagung der Deutschen Mathematiker-Vereinigung, Minisymposium ``Mathematics of Fluid Interfaces'', September 21 - 25, 2015, Universität Hamburg, Fakultät für Mathematik, Informatik und Naturwissenschaften, Hamburg, September 23, 2015.

  • D. Puzyrev, Multistability and bifurcations of laser cavity solitons induced by delayed feedback, International Workshop ``Nonlinear Photonics: Theory, Materials, Applications'', Session ``Laser Dynamics'', June 29 - July 2, 2015, Saint-Petersburg State University, Departmetnt of General Physics, Russian Federation, July 1, 2015.

  • E. Valdinoci, Dislocation dynamics in crystals: Nonlocal effects, collisions and relaxation, Mostly Maximum Principle, September 16 - 18, 2015, Castello Aragonese, Agropoli, Italy, September 16, 2015.

  • E. Valdinoci, Dislocation dynamics in crystals: Nonlocal effects, collisions and relaxation, Second Workshop on Trends in Nonlinear Analysis, September 24 - 26, 2015, GNAMPA, Universitá degli Studi die Cagliari, Dipartimento di Matematica e Informatica, Cagliari, Italy, September 26, 2015.

  • E. Valdinoci, Minimal surfaces and phase transitions with nonlocal interactions, Analysis Seminar, University of Edinburgh, School of Mathematics, UK, March 23, 2015.

  • E. Valdinoci, Nonlocal Problems in Analysis and Geometry, 2° Corso Intensivo di Calcolo delle Variazioni, June 15 - 20, 2015, Dipartimento di Matematica e Informatica di Catania, Italy.

  • E. Valdinoci, Nonlocal minimal surfaces, Seminario di Calcolo delle Variazioni & Equazioni alle Derivate Parziali, Università degli Studi di Firenze, Dipartimento di Matematica e Informatica ``Ulisse Dini'', Italy, March 13, 2015.

  • E. Valdinoci, Nonlocal problems -- Theory and applications, School/Workshop ``Phase Transition Problems and Nonlinear PDEs'', March 9 - 11, 2015, Università di Bologna, Dipartimento di Matematica.

  • E. Valdinoci, Nonlocal problems and applications, Summer School on ``Geometric Methods for PDEs and Dynamical Systems'', June 8 - 11, 2015, École Normale Supérieure de Lyon, Unité de Mathématiques Pures et Appliquées and Institut de Mathématiques, Equipe d'Analyse, Université Bordeaux 1, Porquerolles, France.

  • E. Valdinoci, Some models arising in crystal dislocations, Global Dynamics in Hamiltonian Systems, June 28 - July 4, 2015, Universitat Politècnica de Catalunya (BarcelonaTech), Girona, Spain, June 29, 2015.

  • E. Valdinoci, What is the (fractional) Laplacian?, Perlen-Kolloquium, Universität Basel, Fachbereich Mathematik, Switzerland, May 22, 2015.

  • S. Yanchuk, Multiscale jittering in oscillators with pulsatile delayed feedback, Short Thematic Program on Delay Differential Equations, May 11 - 15, 2015, The Fields Institute for Research in Mathematical Sciences, Toronto, Canada, May 14, 2015.

  • S. Yanchuk, Pattern formation in systems with multiple delayed feedbacks, Minisymposium ``Time-delayed Feedback'' of the SIAM Conference on Applications of Dynamical Systems, May 17 - 21, 2015, Society for Industrial and Applied Mathematics, Snowbird/Utah, USA, May 20, 2015.

  • S. Yanchuk, Stability of plane wave solutions in complex Ginzburg--Landau equation with delayed feedback, Jahrestagung der Deutschen Mathematiker-Vereinigung, Minisymposium ``Topics in Delay Differential Equations'', September 21 - 25, 2015, Universität Hamburg, Fakultät für Mathematik, Informatik und Naturwissenschaften, Hamburg, September 22, 2015.

  • S. Yanchuk, Time delays and plasticity in neuronal networks, Seminar ``Self-assembly and Self-organization in Computer Science and Biology'', September 27 - October 2, 2015, Leibniz-Zentrum für Informatik, Schloss Dagstuhl, September 28, 2015.

  • J. Sprekels, Optimal boundary control problems for Cahn--Hilliard systems with dynamic boundary conditions, INdAM Workshop ``Special Materials in Complex Systems -- SMaCS 2015'', May 18 - 22, 2015, Rome, Italy, May 21, 2015.

  • A. Glitzky, Analysis of $p(x)$-Laplace thermistor models for electrothermal feedback in organic semiconductor devices, 3rd Workshop of the GAMM Activity Group ``Analysis of Partial Differential Equations'', September 30 - October 2, 2015, Universität Kassel, Institut für Mathematik, Kassel, September 30, 2015.

  • A. Glitzky, Finite volume discretized reaction-diffusion systems in heterostructures, Conference on Partial Differential Equations, March 25 - 29, 2015, Technische Universität München, Zentrum Mathematik, München, March 28, 2015.

  • M. Thomas, Analysis for edge-emitting semiconductor heterostructures, Minisymposium ``Numerical and Analytical Aspects in Semiconductor Theory'' of the 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), August 10 - 14, 2015, International Council for Industrial and Applied Mathematics, Beijing, China, August 10, 2015.

  • M. Thomas, Analysis of nonsmooth PDE systems with application to material failure---towards dynamic fracture, Minisymposium ``Analysis of Nonsmooth PDE Systems with Application to Material Failure'' of the 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), August 10 - 14, 2015, International Council for Industrial and Applied Mathematics, Beijing, China, August 12, 2015.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Existence results, Applied Mathematics Seminar, Università di Pavia, Dipartimento di Matematica, Pavia, Italy, March 5, 2015.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Evolutionary Gamma-convergence results, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), Session on Applied Analysis, March 23 - 27, 2015, Università del Salento, Lecce, Italy, March 26, 2015.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Existence and evolutionary Gamma convergence, INdAM Workshop ``Special Materials in Complex Systems -- SMaCS 2015'', May 18 - 22, 2015, Rome, Italy, May 19, 2015.

  • M. Thomas, Coupling rate-independent and rate-dependent processes: Existence results, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), GAMM Juniors Poster Session, Lecce, Italy, March 23 - 27, 2015.

  • M. Thomas, Evolutionary Gamma convergence with application to damage and delamination, Seminar DICATAM, Università di Brescia, Dipartimento di Matematica, Brescia, Italy, June 3, 2015.

  • M. Thomas, Rate-independent damage models with spatial BV-regularization --- Existence & fine properties of solutions, Oberseminar ``Angewandte Analysis'', Universität Freiburg, Abteilung für Angewandte Mathematik, Freiburg, February 10, 2015.

  • M.H. Farshbaf Shaker, A deep quench approach to the optimal control of an Allen--Cahn equation with dynamic boundary conditions, National Institute for Mathematical Sciences, Division of Computational Mathematics, Daejeon, Korea (Republic of), May 20, 2015.

  • M.H. Farshbaf Shaker, Multi-material phase field approach to structural topology optimization and its relation to sharp interface approach, University of Tokyo, Graduate School of Mathematical Sciences, Japan, October 6, 2015.

  • M.H. Farshbaf Shaker, Relating phase field and sharp interface approaches to structural topology optimization, National Institute for Mathematical Sciences, Division of Computational Mathematics, Daejeon, Korea (Republic of), May 13, 2015.

  • M.H. Farshbaf Shaker, Relating phase field and sharp interface approaches to structural topology optimization, Technische Universität Berlin, Institut für Mathematik, February 5, 2015.

  • CH. Heinemann, Well-posedness of strong solutions for a damage model in 2D, Universitá di Brescia, Department DICATAM -- Section of Mathematics, Italy, March 13, 2015.

  • A. Mielke, A mathematical approach to finite-strain viscoplasticity, Intensive Period on Variational Methods for Plasticity and Dislocations, March 16 - 20, 2015, International School of Advanced Studies (SISSA), Trieste, Italy, March 20, 2015.

  • A. Mielke, Abstract approach to energetic solutions for rate-independent solutions, Intensive Period on Variational Methods for Plasticity and Dislocations, March 16 - 20, 2015, International School of Advanced Studies (SISSA), Trieste, Italy, March 18, 2015.

  • A. Mielke, Evolutionary $Gamma$-convergence for generalized gradient systems, Workshop ``Gradient Flows'', June 22 - 23, 2015, Université Pierre et Marie Curie, Laboratoire Jacques-Louis Lions, Paris, France, June 22, 2015.

  • A. Mielke, Evolutionary relaxation of a two-phase model, Mini-Workshop ``Scales in Plasticity'', November 8 - 14, 2015, Mathematisches Forschungsinstitut Oberwolfach, November 11, 2015.

  • A. Mielke, Existence results in finite-strain elastoplasticity, Intensive Period on Variational Methods for Plasticity and Dislocations, March 16 - 20, 2015, International School of Advanced Studies (SISSA), Trieste, Italy, March 19, 2015.

  • A. Mielke, Geometric approaches at and for theoretical and applied mechanics, Phil Holmes Retirement Celebration, October 8 - 9, 2015, Princeton University, Mechanical and Aerospace Engineering, New York, USA, October 8, 2015.

  • A. Mielke, Mathematical modeling for finite-strain elastoplasticity, Intensive Period on Variational Methods for Plasticity and Dislocations, March 16 - 20, 2015, International School of Advanced Studies (SISSA), Trieste, Italy, March 16, 2015.

  • A. Mielke, The Chemical Master Equation as entropic gradient flow, Conference ``New Trends in Optimal Transport'', March 2 - 6, 2015, Universität Bonn, Institut für Angewandte Mathematik, March 2, 2015.

  • A. Mielke, The Fokker--Planck and Liouville equations for chemical reactions as large-volume approximations of the Chemical Master Equation, Workshop ``Stochastic Limit Analysis for Reacting Particle Systems'', December 16 - 18, 2015, WIAS Berlin, Berlin, December 18, 2015.

  • A. Mielke, The multiplicative strain decomposition in finite-strain elastoplasticity, Intensive Period on Variational Methods for Plasticity and Dislocations, March 16 - 20, 2015, International School of Advanced Studies (SISSA), Trieste, Italy, March 17, 2015.

  • H. Neidhardt, Trace formulas for non-additive perturbations, Conference ``Spectral Theory and Applications'', May 25 - 29, 2015, AGH University of Science and Technology, Krakow, Poland, May 28, 2015.

  • J. Rehberg, On maximal parabolic regularity, The Fourth Najman Conference on Spectral Problems for Operators and Matrices, September 20 - 25, 2015, University of Zagreb, Department of Mathematics, Opatija, Croatia, September 23, 2015.

  • J. Rehberg, On maximal parabolic regularity and its applications, Oberseminar ``Mathematische Optimierung'', Technische Universität München, Lehrstuhl für Optimalsteuerung, München, May 6, 2015.

  • K. Disser, Asymptotic behaviour of a rigid body with a cavity filled by a viscous liquid, Second Workshop of the GAMM Activity Group on "Analysis of Partial Differential Equations", September 29 - October 1, 2014, Universität Stuttgart, Lehrstuhl für Analysis und Modellierung, October 1, 2014.

  • K. Disser, Asymptotic behaviour of a rigid body with a cavity filled by a viscous liquid, Autumn School and Workshop on Mathematical Fluid Dynamics, October 27 - 30, 2014, Universität Darmstadt, International Research Training Group 1529, Bad Boll, October 28, 2014.

  • K. Disser, Parabolic equations with mixed boundary conditions, degenerate diffusion and diffusion on Lipschitz interfaces, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2014), Session on Applied Operator Theory, March 10 - 14, 2014, Friedrich-Alexander Universität Erlangen-Nürnberg, March 14, 2014.

  • K. Disser, Parabolic equations with mixed boundary conditions, degenerate diffusion and diffusion on Lipschitz interfaces, International Conference ``Vorticity, Rotations and Symmetry (III)---Approaching Limiting Cases of Fluid Flow'', May 5 - 9, 2014, Centre International de Rencontres Mathématiques (CIRM), Luminy, Marseille, France.

  • C. Kreisbeck, Thin-film limits of functionals on A-free vector fields and applications, Workshop on Trends in Non-Linear Analysis 2014, July 31 - August 1, 2014, Instituto Superior Técnico, Departamento de Matemática, Lisbon, Portugal, August 1, 2014.

  • C. Kreisbeck, Thin-film limits of functionals on A-free vector fields and applications, XIX International Symposium on Trends in Applications of Mathematics to Mechanics (STAMM 2014), September 8 - 11, 2014, The International Society for the Interaction of Mechanics and Mathematics (ISIMM), Poitiers, France, September 9, 2014.

  • C. Kreisbeck, Thin-film limits of functionals on A-free vector fields and applications, Oberseminar ``Mathematik in den Naturwissenschaften'', Universität Würzburg, Institut für Mathematik, July 16, 2014.

  • S. Reichelt, Effective equations for reaction-diffusion systems in strongly heterogeneous media, 7th International Workshop on Multi-Rate Processes & Hysteresis, 2nd International Workshop on Hysteresis and Slow-Fast Systems (MURPHYS-HSFS-2014), April 7 - 11, 2014, WIAS Berlin, April 10, 2014.

  • S. Reichelt, Two-scale homogenization of nonlinear reaction-diffusion systems involving different diffusion length scales, scshape Matheon Multiscale Seminar, Technische Universität Berlin, Institut für Mathematik, December 3, 2014.

  • S. Reichelt, Two-scale homogenization of reaction-diffusion systems with small diffusion, 13th GAMM Seminar on Microstructures, January 17 - 18, 2014, Ruhr-Universität Bochum, Lehrstuhl für Mechanik - Materialtheorie, January 18, 2014.

  • S. Reichelt, Two-scale homogenization of reaction-diffusion systems with small diffusion, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 8: Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equations from Mathematical Science, July 7 - 11, 2014, Madrid, Spain, July 8, 2014.

  • E. Rocca, ``Entropic'' solutions to a thermodynamically consistent PDE system for phase transitions and damage, Symposium on Trends in Application of Mathematics to Mechanics (STAMM), September 8 - 11, 2014, International Society for the Interaction of Mechanics and Mathematics (ISIMM), Poitiers, France, September 9, 2014.

  • S. Heinz, Analysis and numerics of a phase-transformation model, 13th GAMM Seminar on Microstructures, January 17 - 18, 2014, Ruhr-Universität Bochum, Lehrstuhl für Mechanik - Materialtheorie, January 18, 2014.

  • M. Liero, On dissipation distances for reaction-diffusion equations --- The Hellinger--Kantorovich distance, Workshop ``Entropy Methods, PDEs, Functional Inequalities, and Applications'', June 30 - July 4, 2014, Banff International Research Station for Mathematical Innovation and Discovery (BIRS), Canada, July 1, 2014.

  • M. Liero, On dissipation distances for reaction-diffusion equations --- The Hellinger--Kantorovich distance, RIPE60 -- Rate Independent Processes and Evolution Workshop, June 24 - 26, 2014, Prague, Czech Republic, June 24, 2014.

  • S. Neukamm, Optimal quantitative two-scale expansion in stochastic homogenization, 13th GAMM Seminar on Microstructures, January 17 - 18, 2014, Ruhr-Universität Bochum, Lehrstuhl für Mechanik - Materialtheorie, January 18, 2014.

  • D.R.M. Renger, Connecting particle systems to entropy-driven gradient flows, Conference on Nonlinearity, Transport, Physics, and Patterns, October 6 - 10, 2014, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, October 9, 2014.

  • D.R.M. Renger, Connecting particle systems to entropy-driven gradient flows, Oberseminar ``Stochastische und Geometrische Analysis'', Universität Bonn, Institut für Angewandte Mathematik, May 28, 2014.

  • E. Valdinoci, (Non)local interfaces and minimal surfaces, International Conference on ``Nonlinear Phenomena in Biology'', March 5 - 7, 2014, Helmholtz Zentrum München -- Deutsches Forschungszentrum für Gesundheit und Umwelt, March 5, 2014.

  • E. Valdinoci, Concentrating solutions for a nonlocal Schroedinger equation, Nonlinear Partial Differential Equations and Stochastic Methods, June 7 - 11, 2014, University of Jyväskylä, Finland, June 10, 2014.

  • E. Valdinoci, Concentration phenomena for nonlocal equation, Méthodes Géométriques et Variationnelles pour des EDPs Non-linéaires, September 1 - 5, 2014, Université C. Bernard, Lyon 1, Institut C. Jordan, France, September 2, 2014.

  • E. Valdinoci, Concentration solutions for a nonlocal Schroedinger equation, Kinetics, Non Standard Diffusion and the Mathematics of Networks: Emerging Challenges in the Sciences, May 7 - 16, 2014, The University of Texas at Austin, Department of Mathematics, USA, May 14, 2014.

  • E. Valdinoci, Dislocation dynamics and fractional equations, Analysis Seminar, Heriot-Watt University of Edinburgh, London, UK, October 31, 2014.

  • E. Valdinoci, Dislocation dynamics and fractional equations, Analysis Seminar, University of Texas at Austin Mathematics, USA, November 5, 2014.

  • E. Valdinoci, Dislocation dynamics in crystals, Recent Advances in Non-local and Non-linear Analysis: Theory and Applications, June 10 - 14, 2014, FIM -- Institute for Mathematical Research, ETH Zuerich, Switzerland, June 13, 2014.

  • E. Valdinoci, Dislocation dynamics in crystals, Geometry and Analysis Seminar, Columbia University, Department of Mathematics, New York City, USA, April 3, 2014.

  • E. Valdinoci, Dislocation dynamics in crystals, Seminari di Analisi Matematica, Università di Torino, Dipartimento di Matematica ``Giuseppe Peano'', Italy, December 18, 2014.

  • E. Valdinoci, Gradient estimates and symmetry results in anisotropic media, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 76: Viscosity, Nonlinearity and Maximum Principle, July 7 - 11, 2014, Madrid, Spain, July 8, 2014.

  • E. Valdinoci, Nonlinear PDEs, Spring School on Nonlinear PDEs, March 24 - 27, 2014, INdAM Istituto Nazionale d'Alta Matematica, Sapienza -- Università di Roma, Italy.

  • E. Valdinoci, Nonlocal equations and applications, Seminario de Ecuaciones Diferenciales, Universidad de Granada, IEMath-Granada, Spain, November 28, 2014.

  • E. Valdinoci, Nonlocal minimal surfaces, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 96: Geometric Variational Problems with Associated Stability Estimates, July 7 - 11, 2014, Madrid, Spain, July 8, 2014.

  • E. Valdinoci, Nonlocal minimal surfaces and free boundary problems, Geometric Aspects of Semilinear Elliptic and Parabolic Equations: Recent Advances and Future Perspectives, May 25 - 30, 2014, Banff International Research Station for Mathematical Innovation and Discovery, Calgary, Canada, May 27, 2014.

  • E. Valdinoci, Nonlocal problems in analysis and geometry, December 1 - 5, 2014, Universidad Autonoma de Madrid, Departamento de Matemáticas, Spain.

  • E. Valdinoci, Some nonlocal aspects of partial differential equations and free boundary problems, Institutskolloquium, Weierstrass Institut Berlin (WIAS), January 13, 2014.

  • A. Fiebach, A. Glitzky, Uniform estimate of the relative free energy by the dissipation rate for finite volume discretized reaction-diffusion systems, The International Symposium of Finite Volumes for Complex Applications VII (FVCA 7), Berlin, June 15 - 20, 2014.

  • A. Glitzky, Drift-diffusion models for heterostructures in photovoltaics, 8th European Conference on Elliptic and Parabolic Problems, Minisymposium ``Qualitative Properties of Nonlinear Elliptic and Parabolic Equations'', May 26 - 30, 2014, Universität Zürich, Institut für Mathematik, organized in Gaeta, Italy, May 27, 2014.

  • D. Knees, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Analysis & Stochastics Seminar, Technische Universität Dresden, Institut für Analysis, January 16, 2014.

  • M. Thomas, A stress-driven local-solution approach to quasistatic brittle delamination, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Special Session 91: Variational Methods for Evolution Equations, July 7 - 11, 2014, Madrid, Spain, July 7, 2014.

  • M. Thomas, Existence & stability results for rate-independent processes in viscoelastic materials, Applied Mathematics Seminar, Università di Pavia, Dipartimento di Matematica, Italy, March 18, 2014.

  • M. Thomas, Existence and stability results for rate-independent processes in viscoelastic materials, Women in Partial Differential Equations & Calculus of Variations Workshop, March 6 - 8, 2014, University of Oxford, Mathematical Institute, UK, March 6, 2014.

  • M. Thomas, GENERIC for solids with dissipative interface processes, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2014), GAMM Juniors' Poster Session, Friedrich-Alexander Universität Erlangen-Nürnberg, March 10 - 14, 2014.

  • M. Thomas, Rate-independent systems with viscosity and inertia: Existence and evolutionary Gamma-convergence, Workshop ``Variational Methods for Evolution'', December 14 - 20, 2014, Mathematisches Forschungsinstitut Oberwolfach, December 18, 2014.

  • M. Thomas, Rate-independent, partial damage in thermo-viscoelastic materials, 7th International Workshop on Multi-Rate Processes & Hysteresis, 2nd International Workshop on Hysteresis and Slow-Fast Systems (MURPHYS-HSFS-2014), April 7 - 11, 2014, WIAS Berlin, April 8, 2014.

  • M. Thomas, Rate-independent, partial damage in thermo-viscoelastic materials with inertia, International Workshop ``Variational Modeling in Solid Mechanics'', September 22 - 24, 2014, University of Udine, Department of Mathematics and Informatics, Italy, September 23, 2014.

  • M. Thomas, Rate-independent, partial damage in thermo-viscoelastic materials with inertia, Oberseminar ``Analysis und Angewandte Mathematik'', Universität Kassel, Institut für Mathematik, December 1, 2014.

  • M. Thomas, Stress-driven local-solution approach to quasistatic brittle delamination, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2014), Session on Applied Analysis, March 10 - 14, 2014, Friedrich-Alexander Universität Erlangen-Nürnberg, March 11, 2014.

  • B. Wagner, Asymptotic analysis of interfacial evolution, BMS-WIAS Summer School ``Applied Analysis for Materials'', August 25 - September 5, 2014, Berlin Mathematical School, Technische Universität Berlin.

  • A. Mielke, S. Reichelt, M. Thomas, Pattern formation in systems with multiple scales, Evaluation of the DFG Collaborative Research Center 910 ``Control of Self-organizing Nonlinear Systems: Theoretical Methods and Concepts of Application'', Berlin, June 30 - July 1, 2014.

  • A. Mielke, Evolutionary Gamma convergence and amplitude equations, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2014), Session on Applied Analysis, March 10 - 14, 2014, Friedrich-Alexander Universität Erlangen-Nürnberg, March 13, 2014.

  • A. Mielke, Generalized gradient structures for reaction-diffusion systems, Applied Mathematics Seminar, Università di Pavia, Dipartimento di Matematica, Italy, June 17, 2014.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion systems, Workshop ``Advances in Nonlinear PDEs: Analysis, Numerics, Stochastics, Applications'', June 2 - 3, 2014, Vienna University of Technology and University of Vienna, Austria, June 2, 2014.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion systems, Seminar ``Analysis of Fluids and Related Topics'', Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, NJ, USA, March 6, 2014.

  • A. Mielke, Homogenization of parabolic gradient systems via evolutionary $Gamma$-convergence, Second Workshop of the GAMM Activity Group on ``Analysis of Partial Differential Equations'', September 29 - October 1, 2014, Universität Stuttgart, Institut für Analysis, Dynamik und Modellierung, September 30, 2014.

  • A. Mielke, How thermodynamics induces geometry structures for reaction-diffusion systems, Gemeinsames Mathematisches Kolloquium der Universitäten Gießen und Marburg, Universität Gießen, Mathematisches Institut, January 15, 2014.

  • A. Mielke, Multiscale modeling and evolutionary Gamma-convergence for gradient flows, BMS-WIAS Summer School ``Applied Analysis for Materials'', August 25 - September 5, 2014, Berlin Mathematical School, Technische Universität Berlin.

  • A. Mielke, On a metric and geometric approach to reaction-diffusion systems as gradient systems, Mathematics Colloquium, Jacobs University Bremen, School of Engineering and Science, December 1, 2014.

  • A. Mielke, On gradient structures and dissipation distances for reaction-diffusion systems, Kolloquium ``Angewandte Mathematik'', Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Mathematik, July 3, 2014.

  • A. Mielke, On gradient structures for reaction-diffusion systems, Joint Analysis Seminar, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Institut für Mathematik, February 4, 2014.

  • A. Mielke, On the microscopic origin of generalized gradient structures for reaction-diffusion systems, XIX International Symposium on Trends in Applications of Mathematics to Mechanics (STAMM 2014), September 8 - 11, 2014, The International Society for the Interaction of Mechanics and Mathematics (ISIMM), Poitiers, France, September 11, 2014.

  • A. Mielke, A reaction-diffusion equation as a Hellinger--Kantorovich gradient flow, ERC Workshop on Optimal Transportation and Applications, October 27 - 31, 2014, Centro di Ricerca Matematica ``Ennio De Giorgi'', Pisa, Italy, October 29, 2014.

  • S. Neukamm, Characterization and approximation of macroscopic properties in elasticity with homogenization, 4th British-German Frontiers of Science Symposium, Potsdam, March 6 - 9, 2014.

  • S. Neukamm, Characterization and approximation of macroscopic properties with homogenization, 4th British-German Frontiers of Science Symposium, March 6 - 9, 2014, Alexander von Humboldt-Stiftung, Potsdam, March 7, 2014.

  • S. Neukamm, Homogenization of nonlinear bending plates, Workshop ``Relaxation, Homogenization, and Dimensional Reduction in Hyperelasticity'', March 25 - 27, 2014, Université Paris-Nord, France, March 26, 2014.

  • S. Neukamm, Homogenization of slender structures in small-strain regimes, 14th Dresden Polymer Discussion, Meißen, May 25 - 28, 2014.

  • J. Rehberg, Maximal parabolic regularity on strange geometries and applications, Joint Meeting 2014 of the German Mathematical Society (DMV) and the Polish Mathematical Society (PTM), September 17 - 20, 2014, Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznan, Poland, September 18, 2014.

  • J. Rehberg, On non-smooth parabolic equations, Workshop ``Maxwell--Stefan meets Navier--Stokes/Modeling and Analysis of Reactive Multi-Component Flows'', March 31 - April 2, 2014, Universität Halle, April 1, 2014.

  • J. Rehberg, Optimal Sobolev regularity for second order divergence operators, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2014), Session on Applied Operator Theory, March 10 - 14, 2014, Friedrich-Alexander Universität Erlangen-Nürnberg, March 13, 2014.

  • K. Disser, Entropic gradient structures for reversible Markov chains and the passage to Wasserstein Fokker--Planck, Workshop for the Initiation of the GAMM Activity Group ``Analysis of Partial Differential Equations'', Regensburg, October 1 - 2, 2013.

  • K. Disser, On gradient structures for Markov chains and the passage to Wasserstein gradient flows, BMS Intensive Course on Evolution Equations and their Applications, November 27 - 29, 2013, Technische Universität Berlin, Berlin Mathematical School, November 28, 2013.

  • K. Disser, Passage to the limit of the entropic gradient structure of reversible Markov processes to the Wasserstein Fokker--Planck equation, Oberseminar Analysis, Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Halle, November 20, 2013.

  • K. Götze, Free fall of a rigid body in a viscoelastic fluid, Workshop ``Geophysical Fluid Dynamics'', February 18 - 22, 2013, Mathematisches Forschungsinstitut Oberwolfach, February 20, 2013.

  • K. Götze, Maximal regularity for fluid-rigid body interaction problems, Interim Evaluation of the International Research Training Network 1529 ``Mathematical Fluid Dynamics'', Technische Universität Darmstadt, Fachbereich Mathematik, January 11, 2013.

  • K. Götze, Starke Lösungen für die Bewegung von Starrkörpern in Flüssigkeiten, Oberseminar Analysis, Technische Universität Dresden, Institut für Analysis, January 24, 2013.

  • S. Reichelt, Homogenization of degenerated reaction-diffusion equations, Doktorandenforum der Leibniz-Gemeinschaft, Sektion D, Berlin, June 6 - 7, 2013.

  • S. Reichelt, Introduction to homogenization concepts, Freie Universität Berlin, Institut für Mathematik, April 11, 2013.

  • S. Reichelt, Two-scale homogenization of nonlinear reaction-diffusion systems with small diffusion, Workshop on Control of Self-Organizing Nonlinear Systems, August 28 - 30, 2013, SFB 910 ``Control of self-organizing nonlinear systems: Theoretical methods and concepts of application'', Lutherstadt Wittenberg, August 30, 2013.

  • S. Reichelt, Two-scale homogenization in nonlinear reaction-diffusion systems with small diffusion, BMS Intensive Course on Evolution Equations and their Applications, November 27 - 29, 2013, Technische Universität Berlin, Berlin Mathematical School, November 28, 2013.

  • P. Gussmann, Linearized elasticity as $Gamma$-limit of finite elasticity in the case of cracks, 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Section ``Applied Analysis'', March 18 - 22, 2013, University of Novi Sad, Serbia, March 20, 2013.

  • CH. Heinemann, Analysis of degenerating Cahn--Hilliard systems coupled with complete damage processes, 2013 CNA Summer School, Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, USA, May 30 - June 7, 2013.

  • CH. Heinemann, Degenerating Cahn--Hilliard systems coupled with complete damage processes, DIMO2013 -- Diffuse Interface Models, Levico Terme, Italy, September 10 - 13, 2013.

  • CH. Heinemann, Degenerating Cahn--Hilliard systems coupled with mechanical effects and complete damage processes, Equadiff13, MS27 -- Recent Results in Continuum and Fracture Mechanics, August 26 - 30, 2013, Prague, Czech Republic, August 27, 2013.

  • CH. Heinemann, On a PDE system describing damage processes and phase separation, Oberseminar Analysis, Universität Augsburg, July 11, 2013.

  • S. Heinz, On a way to control oscillations for a special evolution equation, Conference ``Nonlinearities'', June 10 - 14, 2013, University of Warsaw, Institute of Mathematics, Male Ciche, Poland, June 11, 2013.

  • M. Liero, On gradient structures for drift-reaction-diffusion systems and Markov chains, Analysis Seminar, University of Bath, Mathematical Sciences, UK, November 21, 2013.

  • M. Liero, Gradient structures and geodesic convexity for reaction-diffusion system, SIAM Conference on Mathematical Aspects of Materials Science (MS13), Minisymposium ``Material Modelling and Gradient Flows'' (MS100), June 9 - 12, 2013, Philadelphia, USA, June 12, 2013.

  • M. Liero, On gradient structures and geodesic convexity for reaction-diffusion systems, Research Seminar, Westfälische Wilhelms-Universität Münster, Institut für Numerische und Angewandte Mathematik, April 17, 2013.

  • S. Neukamm, Optimal decay estimate on the semigroup associated with a random walk among random conductances, Dirichlet Forms and Applications, German-Japanese Meeting on Stochastic Analysis, September 9 - 13, 2013, Universität Leipzig, Mathematisches Institut, September 9, 2013.

  • S. Neukamm, Quantitative results in stochastic homogenization, sc Matheon Multiscale Seminar, Technische Universität Berlin, Institut für Mathematik, June 27, 2013.

  • S. Neukamm, Quantitative results in stochastic homogenization, Oberseminar Analysis, Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, June 13, 2013.

  • H. Abels, J. Daube, Ch. Kraus, D. Kröner, Sharp interface limit for the Navier--Stokes--Korteweg model, DIMO2013 -- Diffuse Interface Models, Levico Terme, Italy, September 10 - 13, 2013.

  • A. Glitzky, Continuous and finite volume discretized reaction-diffusion systems in heterostructures, Asymptotic Behaviour of Systems of PDE Arising in Physics and Biology: Theoretical and Numerical Points of View, November 6 - 8, 2013, Lille 1 University -- Science and Technology, France, November 6, 2013.

  • A. Glitzky, Nonlinear electrothermal feedback in organic semiconductors, Organic Photovoltaics Workshop 2013, December 10 - 11, 2013, University of Oxford, Mathematical Insitute, UK, December 10, 2013.

  • D. Knees, A vanishing viscosity approach to a rate-independent damage model, Seminar ``Wissenschaftliches Rechnen'', Technische Universität Dortmund, Fachbereich Mathematik, January 31, 2013.

  • D. Knees, Crack evolution models based on the Griffith criterion, Workshop on Mathematical Aspects of Continuum Mechanics, October 12 - 14, 2013, The Japan Society for Industrial and Applied Mathematics, Kanazawa, Japan, October 13, 2013.

  • D. Knees, Global spatial regularity for elasticity models with cracks and contact, Journées Singulières Augmentées 2013, August 26 - 30, 2013, Université de Rennes 1, France, August 27, 2013.

  • D. Knees, Global spatial regularity results for crack with contact and application to a fracture evolution model, Oberseminar Nichtlineare Analysis, Universität Köln, Mathematisches Institut, October 28, 2013.

  • D. Knees, Modeling and analysis of crack evolution based on the Griffith criterion, Nonlinear Analysis Seminar, Keio University of Science, Yokohama, Japan, October 9, 2013.

  • D. Knees, On energy release rates for nonlinearly elastic materials, Workshop on Mathematical Aspects of Continuum Mechanics, October 12 - 14, 2013, The Japan Society for Industrial and Applied Mathematics, Kanazawa, Japan, October 12, 2013.

  • D. Knees, Recent results in nonlinear elasticity and fracture mechanics, Universität der Bundeswehr, Institut für Mathematik und Bauinformatik, München, August 13, 2013.

  • D. Knees, Weak solutions for rate-independent systems illustrated at an example for crack propagation, BMS Intensive Course on Evolution Equations and their Applications, November 27 - 29, 2013, Technische Universität Berlin, Berlin Mathematical School, November 28, 2013.

  • CH. Kraus, Damage and phase separation processes: Modeling and analysis of nonlinear PDE systems, DIMO2013 -- Diffuse Interface Models, September 10 - 13, 2013, Levico Terme, Italy, September 11, 2013.

  • CH. Kraus, Modeling and analysis of a nonlinear PDE system for phase separation and damage, Università di Pavia, Dipartimento di Matematica, Italy, January 22, 2013.

  • CH. Kraus, Sharp interface limit of a diffuse interface model of Navier--Stokes--Allen--Cahn type for mixtures, Workshop ``Hyperbolic Techniques for Phase Dynamics'', June 10 - 14, 2013, Mathematisches Forschungsinstitut Oberwolfach, June 11, 2013.

  • M. Thomas, A stress-driven local solution approach to quasistatic brittle delamination, BMS Intensive Course on Evolution Equations and their Applications, November 27 - 29, 2013, Technische Universität Berlin, Berlin Mathematical School, November 29, 2013.

  • M. Thomas, A stress-driven local solution approach to quasistatic brittle delamination, Seminar on Functional Analysis and Applications, International School of Advanced Studies (SISSA), Trieste, Italy, November 12, 2013.

  • M. Thomas, Existence & fine properties of solutions for rate-independent brittle damage models, Workshop for the Initiation of the GAMM Activity Group ``Analysis of Partial Differential Equations'', Regensburg, October 1 - 2, 2013.

  • M. Thomas, Damage and delamination processes in thermo-viscoelastic materials, 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Young Reserchers' Minisymposium ``Analytical and Engineering Aspects in the Material Modeling of Solids'', March 18 - 22, 2013, University of Novi Sad, Serbia, March 19, 2013.

  • M. Thomas, Existence & fine properties of solutions for rate-independent brittle damage models, 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics, GAMM Juniors Poster Exhibition, Novi Sad, Serbia, March 18 - 22, 2013.

  • M. Thomas, Fine properties of solutions for rate-independent brittle damage models, XXIII Convegno Nazionale di Calcolo delle Variazioni, Levico Terme, Italy, February 3 - 8, 2013.

  • M. Thomas, Local versus energetic solutions in rate-independent brittle delamination, DIMO2013 -- Diffuse Interface Models, September 10 - 13, 2013, Levico Terme, Italy, September 13, 2013.

  • M. Thomas, Rate-independent damage models with spatial BV-regularization -- Existence & fine properties of solutions, Oberseminar zur Analysis, Universität Duisburg-Essen, Fachbereich Mathematik, Essen, January 24, 2013.

  • H. Hanke, Derivation of an effective damage model with evolving micro-structure, Oberseminar zur Analysis, Universität Duisburg-Essen, Fachbereich Mathematik, Essen, January 29, 2013.

  • H. Hanke, Derivation of an effective damage model with non-periodic evolving micro-structure, 12th GAMM Seminar on Microstructures, February 8 - 9, 2013, Humboldt-Universität zu Berlin, Institut für Mathematik, February 9, 2013.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion systems, Workshop ``Material Theory'', December 16 - 20, 2013, Mathematisches Forschungsinstitut Oberwolfach, December 17, 2013.

  • A. Mielke, Analysis, modeling, and simulation of semiconductor devices, Kolloquium Simulation Technology, Universität Stuttgart, SRC Simulation Technology, May 14, 2013.

  • A. Mielke, Deriving the Ginzburg--Landau equation as amplitude equation via evolutionary Gamma convergence, ERC Workshop on Variational Views on Mechanics and Materials, June 24 - 26, 2013, University of Pavia, Department of Mathematics, Italy, June 26, 2013.

  • A. Mielke, Evolutionary Gamma convergence and amplitude equations, sc Matheon Multiscale Seminar, Technische Universität Berlin, Institut für Mathematik, April 8, 2013.

  • A. Mielke, Gradient structures and uniform global decay for reaction-diffusion systems, Mathematisches Kolloquium, Universität Bielefeld, Fakultät für Mathematik, April 25, 2013.

  • A. Mielke, On entropy-driven dissipative quantum mechanical systems, Analysis and Stochastics in Complex Physical Systems, March 20 - 22, 2013, Universität Leipzig, Mathematisches Institut, March 21, 2013.

  • A. Mielke, On the geometry of reaction-diffusion systems: Optimal transport versus reaction, Recent Trends in Differential Equations: Analysis and Discretisation Methods, November 7 - 9, 2013, Technische Universität Berlin, Institut für Mathematik, November 9, 2013.

  • A. Mielke, Rate-independent plasticity as vanishing-viscosity limit for wiggly energy landscape, Workshop on Evolution Problems for Material Defects: Dislocations, Plasticity, and Fracture, September 30 - October 4, 2013, International School of Advanced Studies (SISSA), Trieste, Italy, September 30, 2013.

  • A. Mielke, Using gradient structures for modeling semiconductors, Eindhoven University of Technology, Institute for Complex Molecular Systems, Netherlands, February 21, 2013.

  • J. Rehberg, Sobolev extention and analysis on non-Lipschitz domain, Oberseminar Angewandte Analysis, Universität Darmstadt, Fachbereich Mathematik, May 14, 2013.

  • J. Sprekels, Optimal control of Allen--Cahn equations with singular potentials and dynamic boundary conditions, DIMO2013 -- Diffuse Interface Models, September 10 - 13, 2013, Levico Terme, Italy, September 11, 2013.

  • J. Sprekels, Optimal control of the Allen--Cahn equation with dynamic boundary condition and double obstacle potentials: A ``deep quench'' approach, Applied Mathematics Seminar, Università di Pavia, Dipartimento di Matematica ``F. Casorati'', Italy, September 17, 2013.

  • J. Sprekels, Prandtl--Ishlinskii operators and elastoplasticity, Spring School on ``Rate-independent Evolutions and Hysteresis Modelling'', May 27 - 31, 2013, Politecnico di Milano, Università degli Studi di Milano, Italy.

  • K. Götze, Free fall of a rigid body in a viscoelastic fluid, International Summer School on Evolution Equations (EVEQ 2012), Prague, Czech Republic, July 9 - 13, 2012.

  • K. Götze, Free fall of a rigid body in a viscoelastic fluid, International Summer School on Evolution Equations (EVEQ 2012), July 9 - 13, 2012, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.

  • K. Götze, Some results for the motion of a rigid body with a liquid-filled cavity, Seminar on Partial Differential Equations, Czech Academy of Sciences, Mathematical Institute, Prague, Czech Republic, November 6, 2012.

  • CH. Heinemann, Complete damage in linear elastic materials, Variational Models and Methods for Evolution, Levico, Italy, September 10 - 12, 2012.

  • CH. Heinemann, Damage processes coupled with phase separation in elastically stressed alloys, GAMM Jahrestagung 2012 (83rd Annual Meeting), March 26 - 30, 2012, Technische Universität Darmstadt, March 27, 2012.

  • CH. Heinemann, Existence of weak solutions for rate-dependent complete damage processes, Materialmodellierungsseminar, WIAS, Berlin, October 31, 2012.

  • CH. Heinemann, Kopplung von Phasenseparation und Schädigung in elastischen Materialien, Leibniz-Doktoranden-Forum der Sektion D, Berlin, June 7 - 8, 2012.

  • S. Heinz, Quasiconvexity equals rank-one convexity for isotropic sets of 2x2 matrices, 11th GAMM Seminar on Microstructures, January 20 - 21, 2012, Universität Duisburg-Essen, January 20, 2012.

  • S. Heinz, Regularization and relaxation of time-continuous problems in plasticity, 11th GAMM Seminar on Microstructures, Universität Duisburg-Essen, January 20 - 21, 2012.

  • S. Heinz, Rigorous derivation of a dissipation for laminate microstructures, 83th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2012), Session on Material Modelling in Solid Mechanics, March 26 - 30, 2012, Technische Universität Darmstadt, Fachbereich Mathematik, March 27, 2012.

  • M. Liero, Interfaces in reaction-diffusion systems, Seminar ``Dünne Schichten'', Technische Universität Berlin, Institut für Mathematik, February 9, 2012.

  • M. Liero, Variational methods for evolution, ``A sc Matheon Multiscale Workshop'', Technische Universität Berlin, Institut für Mathematik, April 20, 2012.

  • A. Glitzky, An electronic model for solar cells taking into account active interfaces, International Workshop ``Mathematics for Semiconductur Heterostructures: Modeling, Analysis, and Numerics'', September 24 - 28, 2012, WIAS Berlin, September 27, 2012.

  • A. Glitzky, Mathematische Modellierung und Simulation organischer Halbleiterbauelemente, Senatsausschuss Wettbewerb (SAW), Sektion D der Leibniz-Gemeinschaft, Leibniz-Institut für Analytische Wissenschaften (ISAS), Dortmund, September 14, 2012.

  • D. Knees, A vanishing viscosity approach in fracture mechanics, Nonlocal Models and Peridynamics, November 5 - 7, 2012, Technische Universität Berlin, Institut für Mathematik, November 5, 2012.

  • D. Knees, Modeling and mathematical analysis of elasto-plastic phenomena, Winter School on Modeling Complex Physical Systems with Nonlinear (S)PDE (DoM$^2$oS), February 27 - March 2, 2012, Technische Universität Dortmund, Fakultät für Mathematik.

  • D. Knees, On a vanishing viscosity approach in damage mechanics, Kolloquium der AG Modellierung, Numerik, Differentialgleichungen, Technische Universität Berlin, Institut für Mathematik, August 21, 2012.

  • CH. Kraus, A nonlinear PDE system for phase separation and damage, Universität Freiburg, Abteilung Angewandte Mathematik, November 13, 2012.

  • CH. Kraus, Cahn--Larché systems coupled with damage, Università degli Studi di Milano, Dipartimento di Matematica, Italy, November 28, 2012.

  • CH. Kraus, Phase field systems for phase separation and damage processes, 12th International Conference on Free Boundary Problems: Theory and Applications, June 11 - 15, 2012, Frauenchiemsee, June 12, 2012.

  • CH. Kraus, Phasenfeldsysteme für Entmischungs- und Schädigungsprozesse, Mathematisches Kolloquium, Universität Stuttgart, Fachbereich Mathematik, May 15, 2012.

  • CH. Kraus, The Stefan problem with inhomogeneous and anisotropic Gibbs--Thomson law, 6th European Congress of Mathematics, July 2 - 6, 2012, Cracow, Poland, July 5, 2012.

  • M. Thomas, A model for rate-independent, brittle delamination in thermo-visco-elasticity, International Workshop on Evolution Problems in Damage, Plasticity, and Fracture: Mathematical Models and Numerical Analysis, September 19 - 21, 2012, University of Udine, Department of Mathematics, Italy, September 21, 2012.

  • M. Thomas, A model for rate-independent, brittle delamination in thermo-visco-elasticity, INDAM Workshop PDEs for Multiphase Advanced Materials (ADMAT2012), September 17 - 21, 2012, Cortona, Italy, September 17, 2012.

  • M. Thomas, Analytical aspects of rate-independent damage models with spatial BV-regularization, Seminar, SISSA -- International School for Advanced Studies, Functional Analysis and Applications, Trieste, Italy, November 28, 2012.

  • M. Thomas, Delamination in visco-elastic materials with thermal effects, 83th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2012), Session on Applied Analysis, March 26 - 30, 2012, Technische Universität Darmstadt, Fachbereich Mathematik, March 27, 2012.

  • M. Thomas, Delamination in viscoelastic materials with thermal effects, 12th International Conference on Free Boundary Problems: Theory and Applications, June 11 - 15, 2012, Universität Regensburg, Frauenchiemsee, June 11, 2012.

  • M. Thomas, Delamination in viscoelastic materials with thermal effects, Seminar on Applied Mathematics, Università di Brescia, Dipartimento di Matematica, Italy, March 14, 2012.

  • M. Thomas, Mathematical methods in continuum mechanics of solids, COMMAS (Computational Mechanics of Materials and Structures) Summer School, October 8 - 12, 2012, Universität Stuttgart, Institut für Mechanik (Bauwesen).

  • M. Thomas, Modellierung und Analysis von Delaminationsprozessen, Sitzung des Wissenschaftlichen Beirats des WIAS, Berlin, October 5, 2012.

  • M. Thomas, Rate-independent evolution of sets, Variational Models and Methods for Evolution, Levico, Italy, September 10 - 12, 2012.

  • M. Thomas, Thermomechanical modeling via energy and entropy using GENERIC, Workshop ``Mechanics of Materials'', March 19 - 23, 2012, Mathematisches Forschungsinstitut Oberwolfach, March 22, 2012.

  • A. Fiebach, A. Glitzky, A. Linke, Voronoi finite-volume methods for reaction-diffusion-systems, 33. Norddeutsches Kolloquium über Angewandte Analysis und Numerische Mathematik (NoKo 2012), Universität Rostock, Institut für Mathematik, May 4 - 5, 2012.

  • H. Hanke, Derivation of an effective damage evolution model, ``A sc Matheon Multiscale Workshop'', Technische Universität Berlin, Institut für Mathematik, April 20, 2012.

  • H. Hanke, Derivation of an effective damage evolution model using two-scale convergence techniques, 83th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2012), Session on Damage Processes and Contact Problems, March 26 - 30, 2012, Technische Universität Darmstadt, Fachbereich Mathematik, March 29, 2012.

  • H. Hanke, Derivation of an effective damage evolution model using two-scale convergence techniques, International Workshop on Evolution Problems in Damage, Plasticity, and Fracture: Mathematical Models and Numerical Analysis, September 19 - 21, 2012, University of Udine, Department of Mathematics, Italy, September 19, 2012.

  • A. Mielke, Entropy gradient flows for Markow chains and reaction-diffusion systems, Berlin-Leipzig-Seminar ``Analysis/Probability Theory'', WIAS Berlin, April 13, 2012.

  • A. Mielke, Finite-strain viscoelasticity as a gradient flow, Analysis and Applications of PDEs: An 80th Birthday Meeting for Robin Knops, December 10 - 11, 2012, International Center for Mathematical Sciences, Edinburgh, UK, December 11, 2012.

  • A. Mielke, Gamma convergence and evolution, International Conference ``Trends in Mathematical Analysis'', March 1 - 3, 2012, Politecnico di Milano, Dipartimento di Matematica ``F. Brioschi'', Italy, March 1, 2012.

  • A. Mielke, Gradienten-Strukturen und geodätische Konvexität für Markov-Ketten und Reaktions-Diffusions-Systeme, Augsburger Kolloquium, Universität Augsburg, Institut für Mathematik, May 8, 2012.

  • A. Mielke, Linearized elastoplasticity is the evolutionary Gamma limit of finite elastoplasticity, 83th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2012), Session on Applied Analysis, March 26 - 30, 2012, Technische Universität Darmstadt, Fachbereich Mathematik, March 27, 2012.

  • A. Mielke, Multidimensional modeling and simulation of optoelectronic devices, Challenge Workshop ``Modeling, Simulation and Optimisation Tools'', September 24 - 26, 2012, Technische Universität Berlin, September 24, 2012.

  • A. Mielke, Multiscale modeling for evolutionary systems via Gamma convergence, NDNS$^+$ Summer School in Applied Analysis, June 18 - 20, 2012, University of Twente, Applied Analysis & Mathematical Physics, Enschede, Netherlands.

  • A. Mielke, On consistent couplings of quantum mechanical and dissipative systems, Jahrestagung der Deutschen Mathematiker-Vereinigung (DMV) 2012, Minisymposium ``Dynamical Systems'', September 17 - 20, 2012, Universität des Saarlandes, Fakultät für Mathematik und Informatik, Saarbrücken, September 19, 2012.

  • A. Mielke, On geodesic convexity for reaction-diffusion systems, Seminar on Applied Mathematics, Università di Pavia, Dipartimento di Matematica, Italy, March 6, 2012.

  • A. Mielke, On gradient structures and geodesic convexity for energy-reaction-diffusion systems and Markov chains, ERC Workshop on Optimal Transportation and Applications, November 5 - 9, 2012, Centro di Ricerca Matematica ``Ennio De Giorgi'', Pisa, Italy, November 8, 2012.

  • A. Mielke, On gradient structures for Markov chains and reaction-diffusion systems, Applied & Computational Analysis (ACA) Seminar, University of Cambridge, Department of Applied Mathematics and Theoretical Physics (DAMTP), UK, June 14, 2012.

  • A. Mielke, Using gradient structures for modeling semiconductors, International Workshop ``Mathematics for Semiconductur Heterostructures: Modeling, Analysis, and Numerics'', September 24 - 28, 2012, WIAS Berlin, September 24, 2012.

  • J. Rehberg, Hölderstetigkeit für Lösungen elliptischer Gleichungen, Seminar der Arbeitsgruppe ``Analysis'', Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, December 12, 2012.

  • J.A. Griepentrog, On nonlocal phase separation processes in multicomponent systems, 10th GAMM Seminar on Microstructures, January 20 - 22, 2011, Technische Universität Darmstadt, Fachbereich Mathematik, January 22, 2011.

  • S. Heinz, A model for the texture evolution in polycrystalline materials, 82th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2011), Session on Solid Mechanics, April 18 - 21, 2011, Technische Universität Graz, Austria, April 19, 2011.

  • A. Petrov, Vibrations with unilateral constraints: An overview of M. Schatzman's contributions - Part II: Deformable bodies, 7th International Congress on Industrial and Applied Mathematics, Minisymposium ``Vibrations with Unilateral Constraints'', July 18 - 22, 2011, Society for Industrial and Applied Mathematics, Vancouver, Canada, July 22, 2011.

  • J.A. Griepentrog, The role of nonsmooth regularity theory in the analysis of phase separation processes, Ehrenkolloquium anlässlich des 60. Geburtstages von PD Dr. habil. Lutz Recke, Humboldt-Universität zu Berlin, Institut für Mathematik, November 21, 2011.

  • S. Heinz, Regularizations and relaxations of time-continuous problems in plasticity, Workshop der Forschergruppe 797 ``Analysis and Computation of Microstructure in Finite Plasticity'', Universität Bonn, Mathematisches Institut, November 14, 2011.

  • U. Stefanelli, Evolution = Minimization?, Friday Colloquium, Berlin Mathematical School, May 27, 2011.

  • K. Götze, Starke Lösungen für die Interaktion von starren Körpern und viskoelastischen Flüssigkeiten, Lectures in Continuum Mechanics, Universität Kassel, Institut für Mathematik, November 7, 2011.

  • A. Glitzky, An electronic model for solar cells including active interfaces, Workshop ``Mathematical Modelling of Organic Photovoltaic Devices'', University of Cambridge, Department of Applied Mathematics and Theoretical Physics, UK, June 9, 2011.

  • CH. Heinemann, Existence results for Cahn-Hilliard equations coupled with elasticity and damage, Workshop on Phase Separation, Damage and Fracture, September 21 - 23, 2011, WIAS, September 23, 2011.

  • D. Knees, A vanishing viscosity approach in damage mechanics, Interfaces and Discontinuities in Solids, Liquids and Crystals (INDI2011), June 20 - 24, 2011, Gargnano (Brescia), Italy, June 22, 2011.

  • D. Knees, Numerical convergence analysis for a vanishing viscosity model in fracture mechanics, Workshop ``Perspectives in Continuum Mechanics'' in Honor of Gianfranco Capriz's 85th Birthday, University of Florence, Department of Mathematics, Italy, January 28, 2011.

  • D. Knees, Numerical convergence analysis for a vanishing viscosity model in fracture mechanics, 7th International Congress on Industrial and Applied Mathematics, Session ``Materials Science II'', July 18 - 22, 2011, Society for Industrial and Applied Mathematics, Vancouver, Canada, July 19, 2011.

  • D. Knees, On a vanishing viscosity approach for a model in damage mechanics, 82th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2011), Session on Applied Analysis, April 18 - 21, 2011, Technische Universität Graz, Austria, April 20, 2011.

  • CH. Kraus, Diffuse interface systems for phase separation and damage, Seminar on Partial Differential Equations, Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague, May 3, 2011.

  • CH. Kraus, Phase separation systems coupled with elasticity and damage, ICIAM 2011, July 18 - 22, 2011, Vancouver, Canada, July 18, 2011.

  • A. Mielke, Complex hysteresis operators arising from homogenization and dimension reduction, 8th International Symposium on Hysteresis Modelling and Micromagnetics (HMM2011), Session ``Mathematics of Hysteresis II'', May 9 - 11, 2011, Università degli Studi di Trento, Centro Internazionale per la Ricerca Matematica, Levico Terme, Italy, May 10, 2011.

  • A. Mielke, Multiscale problems in systems driven by functionals, ISAM-TopMath Summer School 2011 on Variational Methods, September 12 - 16, 2011, Technische Universität München, Fakultät für Mathematik.

  • A. Mielke, Remarks on evolutionary multiscale systems driven by functionals, Intellectual Challenges in Multiscale Modeling of Solids, July 4 - 5, 2011, Oxford University, Mathematical Institute, UK, July 4, 2011.

  • J. Sprekels, A nonstandard phase field system of Cahn--Hilliard type for diffusive phase segregation, Seminario Matematico e Fisico di Milano, Università degli Studi di Milano, Dipartimento di Matematica, Italy, September 21, 2011.

  • M. Thomas, Modeling and analysis of rate-independent damage and delamination processes, 19th International Conference on Computer Methods in Mechanics, Minisymposium ``Growth Phenomena and Evolution of Microstructures. Applications in Solids'', May 9 - 12, 2011, Warsaw University of Technology, Poland, May 11, 2011.

  • D. Knees, A vanishing viscosity approach in damage mechanics, Workshop ``Variational Methods for Evolution'', December 5 - 10, 2011, Mathematisches Forschungsinstitut Oberwolfach, December 5, 2011.

  • D. Knees, Analysis und Numerik für quasistatische Rissausbreitung, Lectures in Continuum Mechanics, Universität Kassel, Fachbereich für Mathematik und Naturwissenschaften, December 12, 2011.

  • A. Mielke, Mathematical approaches to thermodynamic modeling, Autumn School on Mathematical Principles for and Advances in Continuum Mechanics, November 7 - 12, 2011, Centro di Ricerca Matematica ``Ennio De Giorgi'', Pisa, Italy.

  • J. Sprekels, Phase field models and hysteresis operators, Trends in Thermodynamics and Materials Theory 2011, December 15 - 17, 2011, Technische Universität Berlin, December 16, 2011.

  • J. Sprekels, Well-posedness, asymptotic behavior and optimal control of a nonstandard phase field model for diffusive phase segregation, Workshop on Optimal Control of Partial Differential Equations, November 28 - December 1, 2011, Wasserschloss Klaffenbach, Chemnitz, November 30, 2011.

  • M. Liero, Rate-independent Kurzweil processes, Workshop ``Rate-independent Systems: Modeling, Analysis, and Computations'', August 30 - September 3, 2010, Banff International Research Station for Mathematical Innovation and Discovery (BIRS), Canada, September 3, 2010.

  • A. Petrov, On a 3D model for shape-memory alloys, Workshop ``Rate-independent Systems: Modeling, Analysis, and Computations'', August 30 - September 3, 2010, Banff International Research Station for Mathematical Innovation and Discovery (BIRS), Canada, September 2, 2010.

  • A. Petrov, Viscoelastodynamic problem with Signorini boundary conditions, 81th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2010), Session on Applied Analysis, March 22 - 26, 2010, Universität Karlsruhe, March 25, 2010.

  • A. Glitzky, Existence of bounded steady state solutions to spin-polarized drift-diffusion systems, Workshop on Drift Diffusion Systems and Related Problems: Analysis, Algorithms and Computations, WIAS, Research Group ``Numerical Mathematics and Scientific Computing'', March 25, 2010.

  • A. Glitzky, Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems, 8th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, Special Session on Reaction Diffusion Systems, May 25 - 28, 2010, Technische Universität Dresden, May 26, 2010.

  • CH. Kraus, An inhomogeneous, anisotropic and elastically modified Gibbs-Thomson law as singular limit of a diffuse interface model, 81st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), March 22 - 26, 2010, Karlsruhe, March 23, 2010.

  • CH. Kraus, Inhomogeneous and anisotropic phase-field quantities in the sharp interface limit, 6th Singular Days 2010, April 29 - May 1, 2010, WIAS, Berlin, April 30, 2010.

  • A. Mielke, Approaches to finite-strain elastoplasticity, SIAM Conference on Mathematical Aspects of Materials Science (MS10), May 23 - 26, 2010, Philadelphia, USA, May 23, 2010.

  • A. Mielke, Geometrische Nichtlinearitäten und Lie-Gruppen in der Elastoplastizität, Mathematisches Kolloquium, Technische Universität Darmstadt, Fachbereich Mathematik, January 27, 2010.

  • A. Mielke, Gradient structures for electro-reaction-diffusion systems with applications in photovoltaics, First Interdisciplinary Workshop of the German-Russian Interdisciplinary Science Center (G-RISC) ``Structure and Dynamics of Matter'', October 18 - 20, 2010, Freie Universität Berlin and Helmholtz-Zentrum Berlin für Materialien und Energie, October 19, 2010.

  • A. Mielke, Gradient structures for reaction-diffusion systems and semiconductor models with interface dynamics, International Conference on Evolution Equations, October 11 - 14, 2010, Technische Universität Darmstadt, Fachbereich Mathematik, Schmitten, October 12, 2010.

  • J. Rehberg, On parabolic equations with non-homogeneous Neumann boundary conditions, International Conference on Evolution Equations, October 11 - 14, 2010, Technische Universität Darmstadt, Fachbereich Mathematik, Schmitten, October 11, 2010.

  • J.