L^{p} -extrapolation of the generalized Stokes operator

Patrick Tolksdorf

Johannes Gutenberg-Universität Mainz Institut für Mathematik Staudingerweg 9 55128 Mainz Germany tolksdorf@uni-mainz.de

In this talk, we discuss the Stokes operator with bounded measurable coefficients μ , formally given by

$$Au := -\operatorname{div}(\mu \nabla u) + \nabla \phi, \quad \operatorname{div}(u) = 0 \quad \text{in } \mathbb{R}^d.$$
(1)

As this operator arises as a linearization of non-Newtonian fluids, optimal regularity estimates are of particular importance. Under mild ellipticity assumptions on μ , standard form methods show for example, that A satisfies L²-resolvent estimates of the form

$$\|\lambda(\lambda + A)^{-1}f\|_{L^2} \le C\|f\|_{L^2} \qquad (f \in L^2_{\sigma}(\mathbb{R}^d))$$

for λ in some complex sector $\{z \in \mathbb{C} \setminus \{0\} : |\operatorname{arg}(z)| < \theta\}$, for some $\theta > \pi/2$, and thus -A generates a bounded analytic semigroup e^{-tA} on L^2_{σ} . We describe how an analogue of such a resolvent estimate can be established in L^p by virtue of certain nonlocal Caccioppoli inequalities combined with an extrapolation argument of Shen. Such estimates build the foundation for many important functional analytic properties of these operators like maximal L^q -regularity and the boundedness of its H[∞]-calculus.

More precisely, we establish resolvent estimates in L^p for p satisfying

$$\left|\frac{1}{p} - \frac{1}{2}\right| < \frac{1}{d}.\tag{2}$$

This resembles a well-known situation for elliptic systems in divergence form with L^{∞} coefficients. Here, important estimates like Gaussian upper bounds for the semigroup
cease to exist and the L^{*p*}-extrapolation has be concluded by other means. In particular,
for elliptic systems one can establish resolvent bounds for numbers *p* that satisfy (2).
Moreover, if $d \geq 3$, Davies constructed examples which show that corresponding resolvent bounds do not generally hold in L^{*p*} for numbers 1 that satisfy

$$\left|\frac{1}{p} - \frac{1}{2}\right| > \frac{1}{d} \cdot$$

These elliptic results give an indication that the corresponding result for the Stokes operator with L^{∞} -coefficients is optimal.