

Uncertainty quantification for a model for a magnetostrictive material involving a hysteresis operator

Olaf Klein (WIAS), joined work with Carmine Stefano Clemente¹, Daniele Davino¹, Ciro Visone²

¹ Università del Sannio, Benevento, Italy

² Università di Napoli Federico II, Napoli, Italy

A model for a magnetostrictive material involving a generalized Prandtl-Ishlinskii-operator was derived in [1]. In this presentation some parameters in this model are supposed to have a fixed value while other parameters are supposed to be uncertain.

Using results of measurements, values for the parameters of the first kind are determined and for those parameters with uncertain values *Uncertainty Quantification (UQ)* is used to determine random densities to describe these parameters and their uncertainties. These results are used to perform forward UQ and the results of forward UQ are compared with measured data. This extends some of the results in [2,3].

References

- [1] D. Davino, P. Krejčí, and C. Visone, Fully coupled modeling of magneto-mechanical hysteresis through ‘thermodynamic’ compatibility. *Smart Mater. Struct.*, 22(9), 0950099 (2013).
- [2] O. Klein, D. Davino, and C. Visone, On forward and inverse uncertainty quantification for models involving hysteresis operators. *Math. Model. Nat. Phenom.* 15, 53 (2020).
- [3] O. Klein, On forward and inverse uncertainty quantification for a model for a magneto mechanical device involving a hysteresis operator. *Applications of Mathematics*, 68, 6 (2023).