WIAS Preprint No. 2528, (2018)

A physically oriented method for quantitative magnetic resonance imaging



Authors

  • Dong, Guozhi
    ORCID: 0000-0002-9674-6143
  • Hintermüller, Michael
    ORCID: 0000-0001-9471-2479
  • Papafitsoros, Kostas
    ORCID: 0000-0001-9691-4576

2010 Mathematics Subject Classification

  • 65K10 65L09 92C55 49M15 49N45

Keywords

  • Quantitative magnetic resonance imaging, Bloch equations, parameter identification, fingerprinting, dictionary, Newton method, Levenberg-Marquardt method

DOI

10.20347/WIAS.PREPRINT.2528

Abstract

Quantitative magnetic resonance imaging (qMRI) denotes the task of estimating the values of magnetic and tissue parameters, e.g., relaxation times T1, T2, proton density ρ and others. Recently in [Ma et al., Nature, 2013], an approach named Magnetic Resonance Fingerprinting (MRF) was introduced, being capable of simultaneously recovering these parameters by using a two step procedure: (i) a series of magnetization maps are created and then (ii) these are matched to parameters with the help of a pre-computed dictionary (Bloch manifold). In this paper, we initially put MRF and its variants in the perspective of optimization and inverse problems, providing some mathematical insights into these methods. Motivated by the fact that the Bloch manifold is non-convex, and the accuracy of the MRF type algorithms is limited by the discretization size of the dictionary, we propose here a novel physically oriented method for qMRI. In contrast to the conventional two step models, our model is dictionary-free and it is described by a single non-linear equation, governed by an operator for which we prove differentiability and other properties. This non-linear equation is efficiently solved via robust Newton type methods. The effectiveness of our method for noisy and undersampled data is shown both analytically and via numerical examples where also improvement over MRF and its variants is observed.

Appeared in

Download Documents

  • PDF Version of July 31, 2018 (2499 kByte)
  • PDF Version of November 20, 2018 (2678 kByte)