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Discrete-to-continuum limit for
nonlinear reaction-diffusion systems via
EDP convergence for gradient systems

Georg Heinze, Alexander Mielke, Artur Stephan

Abstract

We investigate the convergence of spatial discretizations for reaction-diffusion systems with mass-action law satisfying
a detailed balance condition. Considering systems on the d-dimensional torus, we construct appropriate space-discrete
processes and show convergence not only on the level of solutions, but also on the level of the gradient systems governing
the evolutions. As an important step, we prove chain rule inequalities for the reaction-diffusion systems as well as their
discretizations, featuring a non-convex dissipation functional. The convergence is then obtained with variational methods
by building on the recently introduced notion of gradient systems in continuity equation format.

1 Introduction

The aim of this work is to show convergence of spatial discretizations of a class of reaction-diffusion systems satisfying
mass-action law. Considering finitely many species Xi with i ∈ I = {1, . . . , i∗} undergoing finitely many reactions
chemical reactions labeled by r ∈ R := {1, . . . , r∗} and diffusing in a medium, the reaction-diffusion systems we are
considering can in general be written as

∂tρi = div(δiρi∇(log ρi+Vi)) +
∑
r∈R

(
kfw
r

∏
ı̄∈I

ρ
αr

ı̄
ı̄ − kbw

r

∏
ı̄∈I

ρ
βr
ı̄
ı̄

)
(βri − αri ), ρi(0) := ρ0i . (1.1)

where ρi = ρi(t, x) describes the concentration of species Xi. The parameters characterizing the diffusion are the
diffusion coefficients δi > 0 and additional continuous drift potentials Vi. The chemical reactions are prescribed by
forward and backward reaction rates kfw

r , k
bw
r > 0, r ∈ R, and stoichiometric coefficients αri , β

r
i ∈ [0,∞) that describe

the change of particles of different type, say Xi, by the chemical reactions

∀ r ∈ R : αr1X1 + · · ·+ αri∗Xi∗ ⇌ βr1X1 + · · ·+ βri∗Xi∗ .

For simplicity, we consider the system on the d-dimensional torus Td, though an extension to bounded domains with
homogeneous Neumann boundary conditions should not pose a significant difficulty.

The well-posedness, the long-time behavior, and approximations of systems of the form (1.1) have been studied with
different methods for a long time. We refer to [Ali79, Rot06, Mor89, DF∗07] and references therein for the study of classical
solutions, i.e., solutions that are globally uniformly bounded in L∞([0,∞) × Td;RI). In this context, two often used
strategies are to obtain bounds for the full reaction-diffusion system by exploiting global a priori bounds for a lower order
functional such as mass conservation or entropy bounds (cf. [Ali79, Mor89]) or by studying the space-independent reaction
ODE system, which is applicable when all the species ρi, i ∈ I diffuse with the same speed δ = δi.

However, to the surprise of many, in [PiS00] it was shown that in the case where species diffuse with different diffusion
constants δi, there may exist no classical solutions to the reaction-diffusion system even when the involved reactions
behave nicely. This furthered the interest in weaker notions of solutions, like renormalized solutions studied e.g. in [Fis15,
Fis17].

In recent years, entropy methods became an important tool for the study of reaction-diffusion systems [DeF06, DF∗07,
DeF15, MHM15, DFT17]. Here, the idea is to use the non-increasing relative Boltzmann entropy (also called free energy)
as an a priori bound to control solutions and study their long-time behavior. Moreover, entropy methods are a useful tool
for deriving convergence results for the spatial discretization of linear reaction-diffusion systems, see e.g. [HPS24]; and it
is the purpose of this work to generalize these results to nonlinear reaction kinetics.

We stress that our works main focus is not on the regularity of the spatial discretization nor of the model (like data or
coefficients), but instead the variational nature of our approach, which is based on the theory of generalized gradient flows
(see e.g. [Mie23] for an introduction).

DOI 10.20347/WIAS.PREPRINT.3194 Berlin 2025



G. Heinze, A. Mielke, A. Stephan 2

To be more precise, we are interested in reaction-diffusion systems, where not only the free energy is decaying, but where
the system is a gradient flow of the free energy. Starting with the pioneering work of Otto [JKO98, Ott01], it is known
that many diffusion-type problems can be understood as gradient flows driven by a suitable free energy. Later, this was
extended to reaction-diffusion systems satisfying detailed balance in [Mie11, LiM13, LMS16] for quadratic dissipations
and in [MP∗17] for cosh-type dissipations, which we also use here. The fundamental assumption here, is that the system
satisfies the detailed balance (or reversibility) condition. This means that there exist reference concentrations ω = (ωi)i∈I
such that ωi := exp(−Vi) and such that for all r ∈ R it holds

kfw
r

∏
ı̄∈I

ω
αr

ı̄
ı̄ = kbw

r

∏
ı̄∈I

ω
βr
ı̄
ı̄ =: κr

∏
ı̄∈I

ω
αr
ı̄ +βr

ı̄
2

ı̄ .

We observe that the detailed balance assumption ensures that the reaction-diffusion system (1.1) can now be written in
the symmetric form

∂tρi = δi div
(
ρi∇ log

( ρi
ωi

))
+
∑
r∈R

κrω
αr+βr

2

(( ρ
ω

)αr

−
( ρ
ω

)βr)
(βri − αri ), (1.2)

where we introduced the notation
ρα

r

:=
∏
i∈I

ρ
αr

i
i ,

which will be used throughout. We further note that (1.2) contains the tilt-invariant form of the reactions derived in [MiS20],
where the dual dissipation potential, defined below, will not depend on ω.

What is more important to us, the system (1.2) has a gradient structure and can now be investigated with variational
methods. More precisely, we will introduce continuous and discrete gradient systems in continuity equation format (cf.
[PeS23]), link them to (1.2) and appropriate jump processes, respectively, and obtain a convergence result for these
gradient systems in the spirit of Γ-convergence for gradient flows, see [SaS04], more precisely EDP-convergence in the
sense of [MiS20, Ste21, MMP21, Mie23]. Upon rigorously linking these gradient systems to their corresponding equations,
the finite approximation of solutions will then be a direct consequence.

Next, we discuss our finite approximation of the system (1.2). For simplicity, we discretize the torus using uniform grids
ZdN , N ∈ N, noting that our model can be generalized to other domains and discretizations by following ideas of, e.g.,
[HrT23]. Furthermore, we assume for simplicity that the diffusion coefficients δi as well as the reaction coefficients κr are
spatially independent, although our analysis would not be harmed when considering sufficiently smooth coefficients that
are uniformly bounded above and away from zero.

For fixed N ∈ N, the discretized evolution equation is a coupled ODE of the concentration ci,k of each species i ∈ I

in each discrete position k ∈ ZdN . Denoting by E :=
{
e = (e1, . . . , ed)

⊤ ∈ {0, 1}d,
∑d
l=1 el = 1

}
the set of

d-dimensional unit vectors, the evolution is given by

ċi,k =
∑
e∈E

[
N2di,k,e

( ci,k+e
wNi,k+e

− ci,k
wNi,k

)
+N2di,k,−e

( ci,k−e
wNi,k−e

− ci,k
wNi,k

)]
+
∑
r∈R

κrω
αr+βr

2

(( ck
wNk

)αr

−
( ck
wNk

)βr)
(βri − αri ),

(1.3)

for the discrete reference concentrations wNi,k :=
∫
QN

k
ωidx, where QNk := {x ∈ Td : xl ∈ [kl/N, (kl+1)/N), l =

1, . . . , d} are d-dimensional cubes of side length 1/N . This system is related to the reaction-diffusion master equation
(RDME) treated in [MSW23], where also the diffusion is replaced by jumps between nearest neighbors on the lattice.
The intensity of the jumps is characterized by rates di,k,e := δi

√
wi,k+ewi,k, which are scaled by N2. In our case, the

reactions are modeled pointwise nonlinearities analogously to the space-continuous system, whereas in the RDME the
reactions are modeled as linear jump processes on the number of particles. Our systems are complemented with suitable
initial data satisfying a suitable well-preparedness condition specified later.

This work contains three main analytical results, which we summarize here. We refer to Section 4 for more details. The
first main result, Theorem 4.3, is the rigorous link of each prelimit system (1.3) to a corresponding gradient structure via
a so-called energy-dissipation principle (EDP). Here, the main step is proving a chain rule, which is obtained by exploiting
the discrete nature of the underlying base space.

The second main result, Theorem 4.8, is the energy dissipation principle for the limit system (1.2). Since this model is
defined over a continuous base space, multiple regularity issues have to be overcome in order to control in particular
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EDP convergence for nonlinear RDS 3

the nonlinear reaction terms, which generate non-convexities in the variational formulation. Introducing the length |γ|1 =∑
i∈I γi of stoichiometric vectors γ ∈ [0,∞)I , our main assumptions are the following:

∀ r ∈ R : |αr|1, |βr|1 ≤ pcrit := 1+2/d and
1

2
|αr+βr|1 < pcrit. (1.4)

Note that the same critical growth exponent pcrit appears already in [Mor89, Thm. 2.3] (one has to choose a = 1 there
due to our L1 bound obtained from the relative enntropy) for showing global existence of smooth solutions.

The growth power pcrit can be achieved not only for solutions, but for all curves satisfying natural a priori bounds on the
energy and dissipation by exploiting the regularity the diffusion provides. If the conditions (1.4) are not met, our analysis
can still be carried out if the system admits natural L∞-bounds, see Remark 4.10. Such bounds are known to be satisfied
by solutions to several classes of reaction-diffusion systems, namely if there exists a so-called bounding box, see [Smo94]
and our Remark 4.10.

The final main result, Theorem 4.7, is the convergence of gradient systems. For this, we require the slightly weaker
assumption than (1.4) that 1

2 |α
r+βr|1 ≤ pcrit for all r ∈ R. The convergence proof consists of two parts, a compactness

result and a lower limit. To establish the compactness, we construct a suitable family of embeddings into a unified space
that crucially keep the gradient structure in tact.

With these three main results, the convergence of solutions of (1.3) to solutions of (1.2) follows in Corollary 4.9.

A major difficulty in the analysis of the space-continuous reaction-diffusion system comes from the reaction-induced non-
linearities and the resulting non-convexity of the dissipation. Here, we can use the some of the surprising properties of
the cosh gradient structure based on the function C∗(ζ) = 4 cosh(ζ/2) − 4, that is relevant for linear and nonlinear
reactions, see [MP∗17, LM∗17, PeS23, MPS21, PR∗22]. These surprising properties are encoded in nontrivial estimates
for the Legendre dual C and its perspective function C : (s, w) 7→ wC(s/w), see (3.4). In particular, we can exploit the
magical estimate

∀ q > 1 ∀ s ∈ R ∀w > 0 : C(s) ≤ q

q−1
C
(
s
∣∣w)+ 4wq

q−1
(1.5)

(see 3.4d and Proposition A.1 for the proof). Note that such an estimate does not hold for dissipation potentials ψ of
power-law type: for ψ(s) = |s|p with p > 1 we obtain Ψ(s|w) = |s|p/wp−1 such that the right-hand side in (1.5) only
bounds the weaker power law |s|r with r = pq/(p+q−1) ≨ p.

As usual, the chain rule is proved by a smoothing argument. In contrast to linear reaction systems like for Markov processes
and Fokker-Planck type equations (cf. e.g., [Ste21, PeS23, PR∗22]), it is not possible to rely solely on convexity arguments.
Instead, our convergence proof combines the magical estimate with the Hardy-Littlewood maximal function from harmonic
analysis and the easy but non-trivial estimate ∂wC(s|w)| ≤ 2|s/w| (see (3.4b)) to obtain an integrable majorant on the
reactive flux. We believe that this flexible approach could also be used for handling non-convexities in other cases where
the cosh gradient structure is relevant.

For the discrete approximation the challenge lies in deriving weak-L1 compactness for the reactive fluxes. Here, we require
pcrit-uniform integrability of the embedded concentrations. To achieve this, we exploit the flexibility of the embedding
method by introducing a second family of more regular embeddings. For this family higher integrability can be obtained,
while we rely on the first family of embeddings to obtain the liminf inequality.

The paper is structured as follows: In Section 2, we present the abstract strategy of the paper. Section 3 introduces first
the gradient structures for the discrete and the continuous reaction-diffusion systems. Then, we connect both models with
an embedding such that we can state the main results of the paper in Section 4. There, we also list and discuss in detail
the assumptions on our reaction coefficients. The proof of our convergence result is carried out in Section 5. Here, we first
derive the compactness, before showing the claimed liminf-estimate. Finally, Section 6 contains the detailed proofs of the
chain rules inequality first for discrete and then for the continuous reaction-diffusion systems.

2 Abstract strategy

To improve clarity, before challenging the reader with the notation of our concrete problem, we first present on a formal and
abstract level the strategy of our work.
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G. Heinze, A. Mielke, A. Stephan 4

2.1 Gradient systems with explicit abstract gradient mappings

We begin by introducing a quintuple (X,Y,G, E ,R∗), called a gradient system. This notion is a small modification of
gradient systems in continuity equation format introduced in [PeS23].

The elements of the gradient system are two pairs of base spaces X = (Xdom, Xtar), Y = (Y dom, Y tar), where
Xdom, Y dom are Borel subsets of a Euclidean space, and Xtar, Y tar are Euclidean spaces. Test functions over these
spaces are linked by an abstract linear gradient map G : C∞

c (Xdom, Xtar) → C∞
c (Y dom, Y tar), with dual G∗ :

(C∞
c (Y dom, Y tar))∗ → C∞

c ((Xdom, Xtar))∗, which is sometimes called process-space to tangent map. Here, for
Z ∈ {X,Y } the dual pairing is defined as usual by

∀ϕ ∈ C∞
c (Zdom, Ztar) ∀µ ∈ (C∞

c (Zdom, Ztar))∗ : ⟨ϕ, µ⟩Z := ⟨ϕ, µ⟩ :=
∫
Zdom

ϕ · dµ,

with · denoting the canonical inner product in the Euclidean space Ztar.

The fourth element of the quintuple is a lower semicontinuous (lsc) energy functional E : M+(X
dom, Xtar) → R∪{∞},

where M+(X
dom, Xtar) denotes the set of Xtar-valued, component-wise non-negative Radon measures. The final

element is a dual dissipation potential R∗ : M+(X
dom, Xtar)×C(Y dom, Y tar) → [0,∞], which, by definition, is lsc

and non-negative with R∗(ρ, 0) = 0, and satisfies for all ρ ∈ M+(X
dom, Xtar) that ξ 7→ R∗(ρ, ξ) is convex.

Fixing an arbitrary time horizon T > 0 and an initial datum ρ0 ∈ M+(X
dom, Xtar), the gradient system (X,Y,G, E ,R)

induces on [0, T ] an evolution equation, the gradient flow equation

∂tρ = G∗∂ξR∗(ρ,−GDE(ρ)), (2.1a)

ρ(0) = ρ0, (2.1b)

where DE denotes the variational derivative of E and ∂ξR∗ denotes the convex subdifferential of R∗(ρ, ·).

By specifying R∗ and E , the gradient system contains more information than the gradient-flow equation. Indeed, it is
well-known that the same gradient-flow equation can be derived from different gradient systems, each corresponding to a
different physical setting, see [Mie23].

Before further discussing the link between gradient flow and gradient system, we comment on the relation of the presented
notion of gradient flow with other notions.

Remark 2.1 (Link to other notions of gradient flow). The presented notion is heavily influenced by the gradient systems in
continuity equation format introduced in [PeS23], the only difference being the split of X and Y in a domain and a target
space, which allows us to directly incorporate well-known objects like the classical gradient ∇ : C1(Td) → C(Td;Rd)
into our framework. Furthermore, we observe that by setting G = id, Y = X , X = M+(X) and R∗(ρ, φ) :=
R∗(ρ,Gφ) for all ρ, φ, we recover the well-established notion of a gradient system (X , E ,R∗) as introduced in [Mie23].
Choosing R∗ as a quadratic functional, we can also recover metric gradient systems and metric gradient flows in the spirit
of [AGS08].

To establish the link between the gradient system (X,Y,G, E ,R∗) and the gradient flow equation (2.1), we split the
latter into two parts: First, we introduce the continuity equation, which links a weak-∗ measurable curve ρ : [0, T ] →
M+(X

dom, Xtar) with a weak-∗ measurable curve of fluxes j : [0, T ] → M(Y dom, Y tar) by the relation (understood
in the sense of distributions on [0, T ]×Xdom)

∂tρ = G∗j. (2.2)

The set of curves (ρ, j) satisfying (2.2) is denoted by CE.

Secondly, given a pair (ρ, j) ∈ CE, we recover (2.1) if the initial condition (2.1b) holds and j satisfies (in the sense of
measures) the constitutive relation

j = ∂ξR∗(ρ,−GDE(ρ)). (2.3)

One important link between a gradient system and its induced gradient flow is called the energy-dissipation princi-
ple. It is formally established as follows. We introduce the (primal) dissipation potential R : M+(X

dom, Xtar) ×
M(Y dom, Y tar) → [0,∞] as the convex dual of R∗ with respect to the second variable. Together CE, E , R and
R∗ give rise to the dissipation functional

D(ρ, j) :=

{∫ T
0
R(ρ, j)+R∗(ρ,−GDE(ρ)) dt for (ρ, j) ∈ CE

+∞ for (ρ, j) /∈ CE,
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and the energy-dissipation functional

L(ρ, j) := E(ρ(T ))− E(ρ(0)) +D(ρ, j).

We say that the gradient system satisfies the energy-dissipation principle if ρ solving (2.1) (in a suitable weak sense) is
equivalent to (ρ, j) solving CE and L(ρ, j) = 0.

A crucial role in making this principle rigorous is played by the chain rule inequality for the gradient system, which means
that L(ρ, j) ≥ 0 holds for all (ρ, j) ∈ CE. This name is motivated by the following formal calculation:

d

dt
E(ρ) = ⟨DE(ρ), ∂tρ⟩X = −⟨−GDE(ρ), j⟩Y ≥ −R∗(ρ,−GDE(ρ))−R(ρ, j),

where the first equality is the classical chain rule, the second equality holds for (ρ, j) ∈ CE, and the inequality follows
from the duality of R∗ and R (Young-Fenchel estimate). Integrating in time from 0 to T , we obtain L(ρ, j) ≥ 0.

However, if L(ρ, j) ≤ 0 is imposed additionally, then we must have equality in the Young-Fenchel inequality for a.a.
t ∈ [0, T ]:

⟨−GDE(ρ), j⟩Y = R∗(ρ,−GDE(ρ)) +R(ρ, j).

By the Fenchel equivalence, this implies that (2.3) holds a.e. on [0,T]. Plugging this into CE (2.2) shows that (2.1) holds.
The opposite direction from (2.1) to L(ρ, j) = 0 with j from (2.1) is obvious.

Of course, we will make these arguments rigorous for the reaction-diffusion systems under consideration.

2.2 Convergence of gradient systems

Having introduced abstract gradient systems and briefly discussed the energy-dissipation principle, we now want to dis-
cuss, on an abstract level, our strategy for obtaining the convergence of gradient flows.

To this end, consider a family of approximating gradient systems (XN , YN ,GN , EN ,R∗
N )N∈N inducing CEN , DN , and

LN as before. As a first step, one proves that each (XN , YN ,GN , EN ,R∗
N ) satisfies a chain rule inequality and an

energy-dissipation principle. Next, one shows that for each N ∈ N and each initial datum ρ0N with EN (ρ0N ) < ∞ there
exists a solution pair (ρ̃N , ȷ̃N ) ∈ CEN with ρ̃N (0) = ρ0N and LN (ρ̃N , ȷ̃N ) = 0.

Our aim is to connect the approximating gradient systems with a limit gradient system (X,Y,G, E ,R∗) inducing CE, D,
and L. For this, one has to show that (X,Y,G, E ,R∗) also satisfies chain rule inequality and energy-dissipation principle.

To establish the link, a candidate curve that might be a solution for the limit system needs to be obtained by applying
a compactness argument to the family of prelimit solutions (ρ̃N , ȷ̃N )N∈N. However, the different gradient systems are
defined over different base spaces, hence a unified space is needed in which compactness can be realized. To this end,
one constructs an embedding operator ιN : M+(X

dom
N , Xtar

N ) → M+(X
dom, Xtar) and a discretization operator

ι∗N : C∞
c (Xdom, Xtar) → C∞

c (Xdom
N , Xtar

N ) such that for all φ ∈ C∞
c (Xdom, Xtar) it holds

⟨ιNρN , φ⟩X = ⟨ρN , ι∗Nφ⟩XN
.

For the fluxes one constructs ιN,G : M+(Y
dom
N , Y tar

N ) → M+(Y
dom, Y tar) such that for all φ ∈ C∞

c (Xdom, Xtar)
it holds

⟨ιN,GjN ,Gφ⟩Y = ⟨jN ,GN ι∗Nφ⟩YN
.

Since the continuity equation is understood in the sense of distributions, this implies that (ρN , jN ) ∈ CEN if and only if
(ιNρN , ιN,GjN ) ∈ CE.

We can now prove that for each family (ρN , jN )N∈N with (ρN , jN ) ∈ CEN and supN∈N supt∈[0,T ] EN (ρN (t)) <∞
as well as supN∈N DN (ρN , jN ) <∞, there exists (ρ, j) ∈ CE with E(ρ(0)) <∞ and D(ρ, j) <∞ such that (along
a subsequence) (ιNρN , ιN,GjN )⇀∗ (ρ, j). In particular, such a limit (ρ̃, ȷ̃) exists for the family (ρ̃N , ȷ̃N )N∈N.

Next, one shows that for each family (ρN , jN )N∈N satisfying the a priori bounds as before and each limit (ρ, j) of the
embedded family, we have the liminf estimates

lim inf
N→∞

DN (ρN , jN ) ≥ D(ρ, j) and lim inf
N→∞

EN (ρN (t)) ≥ E(ρ(t)) ∀ t ∈ [0, T ]. (2.4)

DOI 10.20347/WIAS.PREPRINT.3194 Berlin 2025



G. Heinze, A. Mielke, A. Stephan 6

Notice that this inequality relates the dissipation functionals of the non-embedded curves with the limiting dissipation
functional of the limiting curve. In particular, (2.4) holds for the previously obtained family of solutions (ρ̃N , ȷ̃N )N∈N and
each of its limits (ρ̃, ȷ̃).

To conclude that the limits are indeed solution, we now assume the well-preparedness of initial data

ιNρ
0
N ⇀∗ ρ0 and lim

N→∞
EN (ρ0N ) = E(ρ0) <∞.

The energy identity combined with (2.4) and the limit chain rule inequality yield

0 = lim inf
N→∞

LN (ρ̃N , ȷ̃N ) ≥ L(ρ̃, ȷ̃) ≥ 0,

from which the energy-dissipation principle of the limit gradient system implies that ρ̃ is solution starting at ρ̃(0) = ρ0 and
that ȷ̃ is given by the kinetic relation (2.3).

3 Gradient system for the reaction-diffusion system

We want to describe the evolution of i∗ chemical species Xi with i ∈ {1, . . . , i∗} =: I undergoing diffusion in a
subdomain Ω ⊂ Rd and interacting according to r∗ chemical reactions:∑

i∈I
αriXi ⇌

∑
i∈I

βriXi, r ∈ {1, . . . , r∗} =: R.

Throughout the paper we assume that the physical domain is given by Ω = Td (the d-dimensional torus), and that we
have finitely many species and reactions, i.e., i∗, r∗ ∈ N. In the following, we will also use the effective stoichiometric
vectors γr =: αr−βr ∈ RI . Moreover, we fix reaction coefficients κr > 0 (describing the reaction speed) for each
reaction and diffusion coefficients δi > 0 for each species.

3.1 Discrete reaction-diffusion gradient systems

We present the gradient structure for the spatially discrete reaction-diffusion system with fixed N ∈ N. Denoting by
ZdN = (Z/NZ)d the set of discrete positions (with periodic boundary conditions), and E :=

{
e = (e1, . . . , ed)

⊤ ∈
{0, 1}d,

∑d
l=1 el = 1

}
the set of discrete directions, we introduce the spaces

XN := (Xdom
N , Xtar

N ) := (I × ZdN ,R),
YN,diff := (Y dom

N,diff , X
tar
N,diff) := (I × ZdN × E,R),

YN,react := (Y dom
N,react, X

tar
N,react) := (R× ZdN ,R),

YN := (Y dom
N , Y tar

N ) := (Y dom
N,diff × Y dom

N,react, Y
tar
N,diff × Y tar

N,react).

We introduce the short notation C(XN ) := C(Xdom
N ;Xtar

N ) and analogously for all other spaces of functions/measures
over these spaces. Furthermore, given a time interval [0, T ] we write C([0, T ]×XN ) := C([0, T ]×Xdom

N ;Xtar
N ) and

analogously for all other spaces of functions or measures over these spaces.

Abusing notation, we denote by ⟨·, ·⟩N the dual products for vectors as well as components, e.g., for (ζ, ξ) ∈ C(YN ) and
(u, v) ∈ M(YN ) we write

⟨(ξ, ζ), (u, v)⟩N = ⟨ξ, u⟩N + ⟨ζ, v⟩N =
∑
i∈I

⟨ξi, ui⟩N +
∑
r∈R

⟨ζr, vr⟩N

=
1

Nd

∑
k∈Zd

N

(∑
i∈I

∑
e∈E

ξi,k,eui,k,e +
∑
r∈R

ζr,kvr,k

)

and similarly for other functions/measures defined over XN or YN .

Again abusing notation, but highlighting that no spatial component is involved, we introduce for the inner products on RI
and RR the notation

γ • ξ =
∑
i∈I

γiξi, f • ψ =
∑
r∈R

frψr.
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Given stoichiometric vectors αr, βr ∈ [0,∞)I and γr = αr−βr for r ∈ R, we define the discrete gradient ∇, the
stoichiometric matrix (or Wegscheider matrix) Γ, and the abstract linear gradient map G by

G : C∞
c (XN ) → C∞

c (YN ), Gφ := (∇φ,Γφ), with

∇ : C∞
c (XN ) → C∞

c (YN,diff), ∇φi,k,e := φi,k+e − φi,k, and

Γ : C∞
c (XN ) → C∞

c (YN,react), Γφr,k :=
∑

i∈I
γri φi,k = γr • φk.

Their dual operators are given by

G∗
: (C∞

c (YN ))∗ → (C∞
c (XN ))∗, G∗

(ξ, ζ) := −div ξ + Γ∗ ζ, with

−div : (C∞
c (YN,diff))

∗ → (C∞
c (XN ))∗, − div ξi,k :=

∑
e∈E

(ξi,k−e,e − ξi,k,e), and

Γ∗ : (C∞
c (YN,react))

∗ → (C∞
c (XN ))∗, Γ∗ ζi,k :=

∑
r∈R

γri ζr,k = γi • ζk.

Elements of the state space M+(XN ) are denoted by c = (ci,k)i∈I,k∈Zd
N

and will be called chemical concentrations.

We consider the relative entropy with respect to a positive reference concentration w ∈ M+(XN )

EN (c) :=
1

Nd

∑
i∈I

∑
k∈Zd

N

λB

(
ci,k
wi,k

)
wi,k, (3.1)

where the Boltzmann function is defined by λB(r) = r log r − r + 1.

The discrete dual dissipation potential R∗
N : M+(XN ) × C(YN ) → [0,∞) consists of two parts, which correspond

to the discrete diffusion (i.e. jumps) and reactions, respectively. It is defined for c ∈ M+(XN ), ξ ∈ C(YN,diff), and
ζ ∈ C(YN,react) by

R∗
N (c, (ξ, ζ)) := R∗

N,diff(c, ξ) +R∗
N,react(c, ζ) with

R∗
N,diff(c, ξ) :=

1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

N2δi
(
ci,kci,k+e

)1/2
C∗(ξi,k,e),

R∗
N,react(c, ζ) :=

1

Nd

∑
r∈R

∑
k∈Zd

N

κr
(
cα

r

k cβ
r

k

)1/2
C∗(ζr,k),

where C∗(r) := 4 cosh(r/2) − 4. In the sequel we will write R∗
N (c, ξ, ζ) instead of R∗

N (c, (ξ, ζ)), and analogously
for similar objects depending on a configuration, a diffusive component, and a reactive component. Note that the diffusive
part of the dissipation contains a factor N2 that will provide the continuous diffusion in the limit N → ∞. Note that EN
depends on w ∈ M+(XN ), whereas R∗

N is independent of w, which is called tilt-invariance in [MiS20].

The previously defined objects form the discrete gradient system (XN , YN ,G, EN , R∗
N ). The corresponding gradient

flow equation is the discrete reaction-diffusion system (1.3).

Throughout we will make use of various properties of the function C∗(r) characterizing R∗
N and its Legendre transform

C. We gather these properties in the following lemma:

Lemma 3.1. The convex function C∗ : R → [0,∞) defined by

C∗(σ) = 4 cosh(σ/2)− 4

and its convex conjugate

C(s) := sup
σ∈R

{σs− C∗(σ)} = 2sArsinh(s/2)− 2
√
s2+4 + 4

have the following properties:

∀ a, b > 0 :
√
ab · C∗(log a− log b) = 2

∣∣√a−√
b
∣∣2,

√
ab · (C∗)′(log a− log b) = a− b;

(3.2a)

∀ s ∈ R : C(s) ≤ sC′(s) ≤ 2C(s) and
|s|
2

log
(
1+|s|

)
≤ C(s) ≤ |s| log

(
1+|s|

)
. (3.2b)
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G. Heinze, A. Mielke, A. Stephan 8

Proof. These results are obtained by elementary calculations, see e.g. [HrT23, Lem. 3.4] for more details.

In addition to C we also need its so-called perspective function C : ×[0,∞) → [0,∞], which is given by

C(s|w) := sup
ζ∈R

{sζ − wC∗(ζ)} =

{
wC(s/w) for w > 0,

χ0(s) for w = 0.
(3.3)

In the sequel we will need the following properties of C. The last result is the magical estimate that will be crucially used in
Proposition 6.3. For a similar estimate for the relative Boltzmann entropy, we refer to [FH∗22, Eqn. (2.7)].

Lemma 3.2 (Properties of the perspective function C).

The mapping R× [0,∞) ∋ (s, w) 7→ C(s|w) is strictly convex. (3.4a)

∀ s ∈ R : w 7→ C(s|w) is non-increasing with

∂wC(s|w) = C(r)−rC′(r)
∣∣
r=s/w

= 4− 2
√
(s/w)2+4 ≤ 0.

}
(3.4b)

∀ s ∈ R ∀w > 0 : (0,∞) ∋ λ 7→ C(λs|λ2w) is increasing. (3.4c)

∀ q > 1 : C(s) ≤ q

q−1
C(s|w) + 4wq

q−1
. (3.4d)

Proof. Property (3.4a) follows from the fact that C(·|w) is the Legrendre-Fenchel transform of (ζ, w) 7→ wC∗(ζ) which
is convex in ζ and concave in w.

The relation in (3.4b) follow by a direct computation using the lower estimate for sC′(s) in (3.2b). Assertion (3.4c) follows
by using the upper bound for sC′(s) in (3.2b). For the proof of the magical estimate (3.4d) we refer to Appendix A.

We call (3.4d) the magical estimate for C and its perspective function C, since such an estimate cannot be expected from
general dissipation functions. For instance, for Φ : s 7→ c1|s|q with q > 1 the infimum ofwΦ(s/w)+ c2wp only provides
an upper bound for s 7→ c3|s|r with r = qp/(p+q−1) ≨ q. The magical estimate (3.4d) will be important for proving the
chain rule, see the proof of Theorem 4.8 in Section 6.2.

As a weaker replacement of (3.4d) we will need the following result that is proved in Appendix B.

Lemma 3.3 (Superliner estimates). Consider an even, differentiable, and superlinear function ϕ : R → [0,∞) such that
sϕ′(s) ≥ ϕ(s) and another non-decreasing superlinear function ψ : [0,∞) → [0,∞). Then, the function Ξϕ,ψ : R →
[0,∞) defined via

Ξϕ,ψ(s) := inf
w>0

{wϕ(s/w) + ψ(w)},

is even, non-decreasing and superlinear.

For c > 0, the dual dissipation potential induces a slope term by the relation SN (c) = R∗
N (c,−GDEN (c)). This

definition can then be extended to all c ∈ M+(XN ) (cf. [LaS24, Remark 3.7]) by exploiting the identity (3.2a) for C∗ and
log. This yields the so-called relaxed slope.

Definition 3.4 (Relaxed slope). The relaxed slope SN : M+(XN ) → [0,∞) is defined by

SN (c) := SN,diff(c) + SN,react(c),

SN,diff(c) :=
1

Nd

∑
k∈Zd

N

∑
i∈I

∑
e∈E

2δiN
2√wi,k+ewi,k

(√
ci,k+e
wi,k+e

−
√
ci,k
wi,k

)2

,

SN,react(c) :=
1

Nd

∑
k∈Zd

N

∑
r∈R

2κr

√
wα

r

k wβ
r

k

((
ck
wk

)αr/2

−
(
ck
wk

)βr/2
)2

.

Next, we introduce the primal dissipation potential RN .
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Definition 3.5 (Primal dissipation potential). We define thr primal dissipation potentialRN : M+(XN )×M(YN,diff)×
M(YN,react) → [0,∞) for c ∈ M+(XN ), F ∈ M(YN,diff), and J ∈ M(YN,react) by

RN (c, F, J) := RN,diff(c, F ) +RN,react(c, J),

RN,diff(c, F ) :=
1

Nd

∑
k∈Zd

N

∑
i∈I

∑
e∈E

C
(
FNi,k,e

∣∣∣N2δi(c
N
i,kc

N
i,k+e)

1/2
)
,

RN,react(c, J) :=
1

Nd

∑
k∈Zd

N

∑
r∈R

C
(
JNr,k

∣∣∣κr(cNk )(α
r+βr)/2

)
.

Note that RN is the convex conjugate of R∗
N with respect to the second and third arguments. Indeed, the dualities(

R∗
N,diff

)∗
= RN,diff and

(
R∗
N,react

)∗
= RN,react follow from the duality of C and C∗. The duality of the sums then

follows from the fact that the summands are independent of each other.

Definition 3.6 (Energy-dissipation functional). We introduce the dissipation functional DN : L1(0, T ;M+(XN ) ×
M(YN,diff)×M(YN,react)) → [0,∞] by

DN (c, F, J) :=

∫ T

0

{RN (c(t), F (t), J(t)) + SN (c(t))} dt. (3.5)

Furthermore, we introduce the energy-dissipation functional

LN (c, F, J) := EN (c(T ))− EN (c(0)) +DN (c, F, J).

Definition 3.7 (Continuity equation). The operator G gives rise to the continuity equation

ċ = G∗
(F, J) = −divF + Γ∗J.

We denote CEN the set of triples (c, F, J) ∈ AC([0, T ];M(XN ))×L1(0, T ;M(YN,diff))×L1(0, T ;M(YN,react))
satisfying the above equation.

In this definition the domains of the sets XN , YN,diff , and YN,react are finite sets, such that the topology for the measure
spaces is irrelevant. Only in the continuous case, it will be important to use the the narrow topology, see Definition 3.12.
Moreover, following the proof of [Erb14, Lem. 3.1], we observe that this definition is indeed well-posed forF and J satisfying
L1-bounds in time.

For further reference, we note that (c, F, J) ∈ CEN if and only if for all φ ∈ C(XN ) and all k ∈ ZdN and a.e. t ∈ [0, T ]
it holds

d

dt

[∑
i∈I

φi,kci,k

]
=
∑
i∈I

∑
e∈E

(∇φ)i,k,eFi,k,e +
∑
r∈R

(Γφ)r,kJr,k.

We conclude this section by specifying our notion of solution for (1.3). For the subsequent analysis, it will be crucial to
use already the notion of energy-dissipation balance solutions (in short EDB solutions) that are based on the energy-
dissipation functional LN . Theorem 4.3 will provide a rigorous connection between this notion and the ODE system (1.3)
based on the corresponding chain rule as explained in Section 2.1. Even in this finite-dimensional case, this equivalence
is non-trivial.

Definition 3.8 ( Discrete EDB solutions). We say c ∈ AC([0, T ];M+(XN )) is a discrete EDB solution of (1.3) with
initial datum c0 ∈ M+(XN ), if c(0) = c0 and if there exists (F, J) such that (c, F, J) ∈ CEN and for 0 ≤ s < t ≤ T
we have

L
[s,t]
N (c, F, J) := EN (c(t))− EN (c(s)) +

∫ t

s

(
RN (c, F, J) + SN (c)

)
dr = 0. (3.6)
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3.2 Continuous-space reaction-diffusion gradient system

We present the gradient structure for the reaction-diffusion system for the case of the ‘continuous space’ given by the torus
Td; as a short-hand we will use the name “continuum system”. The base spaces we consider are

X := (Xdom, Xtar) := (Td,RI),
Ydiff := (Y dom

diff , Xtar
diff) := (Td, (Rd)I),

Yreact := (Y dom
react, X

tar
react) := (Td,RR),

Y := (Y dom, Y tar) := (Y dom
diff × Y dom

react, Y
tar
diff × Y tar

react).

We recall the short notations C(X) := C(Xdom;Xtar) and C([0, T ] × X) := C([0, T ] × Xdom;Xtar) as well as
analogous notations for all other spaces of functions/measures over these spaces.

Similar to before, we abuse notation, denoting by ⟨·, ·⟩ the dual products for vectors as well as components, e.g., for
(ζ, ξ) ∈ C(Y ) and (u, v) ∈ M(Y ) we write

⟨(ξ, ζ), (u, v)⟩ = ⟨ξ, u⟩N + ⟨ζ, v⟩ =
∑
i∈I

⟨ξi, ui⟩+
∑
r∈R

⟨ζr, vr⟩

=

∫
Td

(∑
i∈I

d∑
l=1

ξi,l(x)ui,l(x) +
∑
r∈R

ζr(x)vr(x)

)
dx,

and similarly for other functions/measures defined over X or Y .

The notation for sums over I and R is used also in the continuous context:

γ • ξ =
∑
i∈I

γiξi, f • ψ =
∑
r∈R

frψr.

Given stoichiometric vectors αr, βr ∈ [0,∞)I , γr = αr − βr , r ∈ R, we consider the (classical) gradient ∇ and the
stoichiometric matrix Γ as well as the linear gradient map G given by

G : C∞
c (X) → C∞

c (Y ), Gφ := (∇φ,Γφ) with

∇ : C∞
c (X) → C∞

c (Ydiff), ∇φi(x) := (∂xl
φi(x))l=1,...,d,

Γ : C∞
c (X) → C∞

c (Yreact), Γφr(x) :=
∑
i∈I

γri φi(x) = γr • φ(x).

Their duals are given by

G∗ : (C∞
c (Y ))∗ → (C∞

c (X))∗, G∗(ξ, ζ) := − div ξ + Γ∗ζ with

−div : (C∞
c (Ydiff))

∗ → (C∞
c (X))∗, − div ξi(x) := −

d∑
l=1

∂xl
ξi,l(x),

Γ∗ : (C∞
c (Yreact))

∗ → (C∞
c (X))∗, Γ∗ζr(x) :=

∑
i∈I

γri ζi(x),= γr • ζ(x).

Elements of the state space M+(X) are denoted by ρ and will be called (continuous-space) chemical concentrations.
In our situation the measures will always have a densitiy with respect to the Lebesgue measure on Td, which (slightly
abusing notation) will also be denoted by ρ.

We consider the relative entropy with respect to a reference measure ω ∈ M+(X)

E(ρ) =
∑
i∈I

∫
Td

λB

(
ρi
ωi

)
ωi dx, (3.7)

where we recall the Boltzmann function λB(r) = r log r − r + 1.
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The continuous dual dissipation potential R∗ : M+(X) × C(Y ) → [0,∞) is given for ρ ∈ M+(X), ξ ∈ C(Ydiff),
and ζ ∈ C(Yreact) by

R∗(ρ, (ξ, ζ)) := R∗
diff(ρ, ξ) +R∗

react(ρ, ζ),

R∗
diff(ρ, ξ) :=

∑
i∈I

δi
2

∫
Td

|ξi|2ρi dx,

R∗
react(ρ, ζ) :=

∑
r∈R

κr

∫
Td

(
ρα

r

ρβ
r)1/2

C∗(ζr) dx.

As in the discrete setting, from now on we will write R∗(ρ, ξ, ζ) instead of R∗(ρ, (ξ, ζ)) and do the same for similar
objects.

These objects form the continuous gradient system in continuity format (X,Y,G, E ,R∗).

For ρ > 0 smooth, the dual dissipation potential induces a slope term by the relation S(ρ) = R∗(ρ,−GDE(ρ)). This
definition can then be extended to all ρ ∈ M+(X) (cf. [HPS24, (3.24)]) yielding the relaxed slope.

Definition 3.9 (Relaxed slope). The relaxed slope S : M+(X) → [0,∞) is defined by

S(ρ) := Sdiff(ρ) + Sreact(ρ),

Sdiff(ρ) :=
∑
i∈I

2δi

∫
Td

∣∣∣∣∇√ ρi
ωi

∣∣∣∣2ωi dx,
Sreact(ρ) :=

∑
r∈R

2κr

∫
Td

√
ωαrωβr

((
ρ

ω

)αr/2

−
(
ρ

ω

)βr/2
)2

dx.

Next, we introduce the primal dissipation potential R : M+(X) ×M(Y ) → [0,∞), which, as before, is given as the
convex conjugate of R∗ with respect to the second argument.

Definition 3.10 (Primal dissipation potential). The primal dissipation potential R : M+(X)×M(Ydiff)×M(Yreact) →
[0,∞) is defined for ρ ∈ M+(X), f ∈ M(Ydiff), and j ∈ M(Yreact) by

R(ρ, f, j) := Rdiff(ρ, f) +Rreact(c, j),

Rdiff(ρ, f) :=

{∑
i∈I

1
2δi

∫
Td

|fi|2
ρi

dx for fi = fi dx≪ L d,

∞ otherwise,

Rreact(ρ, j) :=

{∑
r∈R

∫
Td C

(
jr
∣∣κr(ραr

ρβ
r

)1/2
)
dx for jr = jrdx≪ L d,

∞ otherwise,

where we again made a slight abuse of notation.

Definition 3.11 (Energy-dissipation functional). We define the dissipation functional D : L1(0, T ;M+(X)×M(Ydiff)×
M(Yreact)) → R by

D(ρ, f, j) :=

∫ T

0

{R(ρ(t), f(t), j(t)) + S(ρ(t))} dt. (3.8)

Furthermore, we introduce the energy-dissipation functional

L(ρ, f, j) := E(ρ(T ))− E(ρ(0)) +D(ρ, f, j).

Definition 3.12 (Continuity equation). The operator G gives rise to the continuity equation

∂tρ = G∗(f, j) = −div f + Γ∗ j.

We denote by CE the set of triples (ρ, f, j) ∈ AC([0, T ];M+(X))× L1(0, T ;M(Ydiff))×
L1(0, T ;M(Yreact)) satisfying for all φ ∈ C1(X)

d

dt

[∫
Td

∑
i∈I

φiρi dx

]
=

∫
Td

∑
i∈I

∑
e∈E

(∇φ)i,efi,e dx+

∫
Td

∑
r∈R

(Γφ)rjr dx.
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It is important here to recall that the absolute continuity in AC([0, T ];M+(X)) has to be understood with respect to
a metric generating the the narrow topology in M+(X). Moreover, L1(0, T ;M(Ydiff)) is meant to contain weakly
measurable functions with t 7→ ∥f(t)∥M(Ydiff ) lies in L1([0, T ]).

Combining the proofs of [AGS08, Lem. 8.1.2] and [Erb14, Lem. 3.1], we observe that this definition is well-posed for f and
j satisfying L1-bounds.

We conclude this section by specifying our notion of solutions for the continuous-space reaction-diffusion gradient system
(1.2).

Definition 3.13 (Continuum EDB solutions for (1.2)). We say ρ ∈ AC([0, T ];M+(X)) is a continuum EDB solution
of (1.2) if supt∈[0,T ] E(ρ(t)) < ∞ and if there exists (f, j) such that (ρ, f, j) ∈ CE, D(ρ, f, j) < ∞, and for
0 ≤ s < t ≤ T we have

L[s,t](ρ, f, j) := E(ρ(t))− E(ρ(s)) +
∫ t

s

(
R(ρ, f, j) + S(ρ)

)
dr = 0.

In the present paper, we will not show that all continuum EDB solutions ρ are weak solutions (in a suitable sense). However,
under the additional assumption of positivity and boundedness for all ρi, Proposition 3.14 provides a result in this direction.
Instead, we focus on the convergence of discrete EDB solutions cN in the sense of Definition 3.8 to continuum EDB
solutions. In fact, we establish the stronger EDP-convergence which also asks convergence of EN to E and DN to D.

The strategy is as explained in Section 2.2. By a limit passage we obtain L[0,T ](ρ, f, j) ≤ 0, see the lower-limit estimates
in Section 5. In Section 6 we establish the chain rule estimate L[s,t](ρ, f, j) ≥ 0 which then implies that ρ is a continuum
EDB solution. In Section 4 we state the precise assumptions and results.

We close this subsection with stating a conditioned Energy-Dissipation Principle. If we have lower and upper bounds of
the densities, then it follows that functions are continuum EDB solutions if and only if they are weak solutions.

Proposition 3.14 (Continuum EDB and weak solutions for (1.2)). Consider concentrations ρ ∈ H1([0, T ]; H−1(Td)) ∩
L2([0, T ]; H1(Td)) and σ ∈ (0, 1) such that ρ satisfies ρi(t, x) ∈ [σ, 1/σ] for all i ∈ I and a.a. (t, x) ∈ [0, T ]× Td.
Then, ρ is a weak solution of (1.2) if and only if (ρ, f, j) ∈ CE with

fi = −δi∇ρi and jr = κrω
(αr+βr)/2

( ραr

ωαr − ρβ
r

ωβr

)
, (3.9)

is a continuum EDB solution in the sense of Definition 3.13.

The proof is given in Section 6.2.

3.3 Embedding

As a crucial step for obtaining the convergence of gradient systems, we highlighted in Section 2.2 the construction of
suitable embeddings connecting the prelimit spaces to the limit space.

Definition 3.15 (Embedding and discretization operators). We introduce for each k ∈ ZdN the cube

QNk := {x ∈ Td : xl ∈ [kl/N, (kl + 1)/N), l = 1, . . . , d}.

Next, we define the embedding operator ιN : M(XN ) → M(X) by

ιN (ci)(x) := ρi(x) :=
∑
k∈Zd

N

ci,k11QN
k
(x).

Dual to it, we introduce the discretization operator ι∗N : C(X) → C(XN ) by setting

ι∗Nξi,k := (ι∗Nξi)k := Nd

∫
QN

k

ξi dx.

For the diffusive fluxes we introduce ιN,diff : M+(YN,diff) → M(Ydiff) defined by

ιN,diffFi(x) := fi(x) = (fi,e1(x), . . . , fi,ed(x))
⊤ (3.10a)
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where for e ∈ E we set

fi,e(x) =
1

N

∑
k∈Zd

N

(∫ 1

0

11QN
k+θe

(x) dθ

)
Fi,k,e. (3.10b)

Finally, for the reactive fluxes we define ιN,react : M+(YN,react) → M(Yreact) by

ιN,reactJr(x) := jr(x) :=
∑
k∈Zd

N

11QN
k
(x)Jr,k. (3.10c)

Using the above embedding operator is is clear that EN (c) = E(ιN (c)) and analogous identities hold for other inte-
gral functionals as well. Moreover, by construction, s 7→ fi,e(x+se) is piecewise affine, whereas s 7→ fi,e(x+sê) is
piecewise constant for ê ̸= e. Moreover, by definition we have for all i ∈ I and all e ∈ E the estimate∫

Td

|fi,e|(x) dx ≤ 1

N

∫ 1

0

∑
k∈Zd

N

∫
Td

11QN
j+eθ

(x) dx dθ|Fi,k,e| ≤
1

Nd

∑
k∈Zd

N

|Fi,k,e|
N

, (3.11)

and for all r ∈ R the estimate ∫
Td

|jr|(x) dx ≤ 1

Nd

∑
k∈Zd

N

|Jr,k|.

Denoting the discrete L1-norms on L1(ZdN ) by ∥G∥L1
N

:= 1
Nd

∑
k∈Zd

N
|Gk|, the estimates can be written equivalently

as

∀ i ∈ I, e ∈ E : ∥fi,e∥L1 ≤ 1

N
∥Fi,e∥L1

N
, ∀ r ∈ R : ∥jr∥1 ≤ ∥Jr∥L1

N
.

To simplify notation, for all N ∈ N and y ∈ Rd we introduce the shift-operator SNy defined by

SNy : L1(Td) → L1(Td), SNy ϕ(x) := ϕ
((
x+

y

N

)
mod 1

)
, (3.12)

where the modulus is applied componentwise.

The following lemma uses the embeddings defined above to connect the discrete and continuous continuity equations
(recall CEN from Definition 3.7).

Lemma 3.16. For each c ∈ M+(XN ), φ ∈ C(X), it holds

⟨ιNc, φ⟩ = ⟨c, ι∗Nφ⟩N .

Furthermore, we have for φ ∈ C(X), (F, J) ∈ M(YN ) that

⟨ιN,diffF,∇φ⟩ = ⟨F,∇ ι∗Nφ⟩N and ⟨ιN,reactJ,Γφ⟩ = ⟨J,Γ ι∗Nφ⟩N .

In particular, it holds (c, F, J) ∈ CEN if and only if (ιNc, ιN,diffF, ιN,reactJ) ∈ CE.

Proof. For the first equality, we calculate

⟨ξi, ιNci⟩ =
∫
Td

ξi
∑
k∈Zd

N

ci,k11QN
k
dx =

1

Nd

∑
k∈Zd

N

ι∗Nξi,kci,k = ⟨ι∗N (ξi), ci⟩N .

Furthermore, we have for all test functions φ ∈ C∞
0 (X) that

⟨F,∇ι∗Nφ⟩N =
1

Nd

∑
k∈Zd

N

∑
e∈E

Fk,e • [(ι∗Nφ)k+e − (ι∗Nφ)k] =
∑
k∈Zd

N

∑
e∈E

Fk,e •
∫
QN

k

[SNe φ− φ] dx.

Rewriting for each i ∈ I the integral by

SNe φi(x)− φi(x) =

∫ 1

0

∇φi
(
x+

e

N
θ

)
· e
N

dθ =
1

N

∫ 1

0

SNeθ ∂xe
φi(x) dθ, (3.13)
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and using Fubini for the integrable integrand, we get

⟨F,∇ι∗Nφ⟩N =
∑
k∈Zd

N

∑
e∈E

Fk,e
N

•
∫
QN

k

∫ 1

0

SNeθ ∂xe
φ(x) dθ dx

=
∑
k∈Zd

N

∑
e∈E

Fk,e
N

•
∫
Td

11QN
k
(x)

∫ 1

0

SNeθ ∂xe
φ(x) dθ dx

=
∑
k∈Zd

N

∑
e∈E

Fk,e
N

•
∫
Td

∫ 1

0

11QN
j+eθ

(x)∂xe
φ(x) dθ dx =

∫
Td

∑
e∈E

fe(x) • ∂xe
φ(x) dx = ⟨fN ,∇φ⟩.

For the reactive flux, we simply observe that

⟨J,Γι∗Nφ⟩N =
1

Nd

∑
k∈Zd

N

(ΓTJ) •Nd

∫
QN

k

φdx =
∑
k∈Zd

N

Jk •
∫
QN

k

Γφdx = ⟨j,Γφ⟩.

In particular, for all φ ∈ C∞(Td) we obtain ⟨ċ, ι∗Nφ⟩N = −⟨divF, ι∗Nφ⟩N + ⟨Γ∗ J, ι∗Nφ⟩N if and only if ⟨∂tιNc, φ⟩ =
−⟨div f, φ⟩+ ⟨Γ∗ j, φ⟩.

This finishes the proof of Lemma 3.16.

4 Main results

Before we state our main results, we fix the assumptions on our problem.

Assumption 4.1 (General assumptions). The continuous reference measure has a density ω ∈ C(Td,RI) and there
exists ω∗, ω

∗ such that for all x ∈ Td, i ∈ I it holds

0 < ω∗ ≤ ωi(x) ≤ ω∗ <∞. (3.G1)

The diffusion and reaction coefficients satisfy

∀ r ∈ R : κr > 0 and ∀ i ∈ I : δi ≥ δ∗ > 0. (3.G2)

We emphasize that our analysis carries over without difficulty to diffusion and reaction coefficients that are non-constant
in space, but are continuous and uniformly bounded above and away from zero.

For each N ∈ N we define the discrete reference measure wN = (wNi )i∈I ∈ P(XN ) by

wNi,k := ι∗Nωi = Nd

∫
QN

k

ωi dx.

We immediately observe that the bounds on the continuous reference measure translate uniformly to all discrete reference
measures, i.e., for all N ∈ N, i ∈ I , and k ∈ ZdN it holds

0 < ω∗ ≤ wNi,k ≤ ω∗ <∞. (4.1)

Moreover, we easily obtain the following convergences

ιNw
N → ω strongly in L∞(X), (4.2a)

∀ e ∈ E ∀ i ∈ I : SNe (ιNw
N
i ) → ωi strongly in L∞(Td). (4.2b)

The above natural Assumptions 4.1 as well as their simple consequence are used throughout the paper without always
referring to them.

With this notation and under these general assumptions, we can formulate the energy-dissipation principle for the discrete
system. Here we follow an idea in [PR∗22, Thm. 4.16] and consider the function

B(c, v) =
∑
i∈I

∑
k∈Zd

N

b
( ci,k
wN

i,k

, vi,k
)

with b(a, s) =

{
s log a for a > 0,

0 for a = 0.

The special treatment of the singularity of log ci,k at ci,k leads to nontrivial implications that can only be handled due to
the property that the underlying (discrete) reaction-diffusion system preserves non-negativity or, even more, positivity.
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Lemma 4.2 (Chain rule for the discrete setting). Let c ∈ AC([0, T ]; L1(XN )) be such that

t 7→ B(c(t), ċ(t)) lies in L1(0, T ).

Then, t 7→ EN (c(t)) is absolutely continuous and we have the chain rule formula

d

dt
EN (c(t)) = B(c(t), ċ(t)) for a.a. t ∈ [0, T ]. (4.3)

In particular, every curve (c, F, J) ∈ CE with DN (c, F, J) <∞ satisfies

EN (c(t))− EN (c(s)) =

∫ t

s

B(c(r)), ċ(r)) dr ≥ −
∫ t

s

(
RN (c(r), F (r), J(r)) + SN (c(r))

)
dr.

This result will be a consequence of the more detailed Proposition 6.1. With this chain rule it is then possible to show that
discrete EDB solutions are equivalent to ODE solutions, i.e., in the discrete setting the Energy-Dissipoation Principle holds.

Theorem 4.3 (Discrete EDB and (1.3)). A function c ∈ AC([0, T ];M+(XN )) is a solution to the discrete reaction-
diffusion system (1.3) if and only if the triple (c, F, J) with F and J given by (6.4) is a discrete EDB solution in the sense
of Definition 3.8.

We refer to the end of Section 6.1 for the proof.

We now turn to the continuum system, where we need to restrict the stoichiometric vectors αr and βr , which was not the
case in the discrete setting. At the end of this section we will shortly address the case where we have a priori bounds in
L∞, which is again a case, where arbitrary stoichiometric vectors are allowed.

In our analysis we will use two levels of assumptions: the first is needed for deriving the lower-limit estimates and the
second, which is slightly stronger, will be used to derive the abstract chain rule.

Assumption 4.4 (for lower-limit estimates). The reaction coefficients satisfy

∀ r ∈ R :
1

2

∣∣αr + βr
∣∣
1
≤ pcrit := 1 + 2/d. (4.A1)

Assumption 4.5 (for chain rule inequality). The reaction coefficients satisfy

∀ r ∈ R : |αr|1 ≤ pcrit, |βr|1 ≤ pcrit,
1

2
|αr+βr|1 ≨ pcrit. (4.A2)

Example 4.6. In all space dimensions we have pcrit > 1. Hence, our analysis covers linear exchange reactions

X1 ⇌ X2 where |α|1 = |β|1 =
1

2
|α+β|1 = 1.

In space dimensions d ≤ 2 we have pcrit = 3 or pcrit = 2, which allows to handle binary reactions with j = c1c2 − c3,
i.e.,

X1+X2 ⇌ X3 where |α|1 = 2, |β|1 = 1,
1

2
|α+β|1 = 3/2,

or the semi-conductor reaction with j = cneqcpos − 1, i.e.,

Xneg +Xpos ⇌ ∅ where |α|1 = 2, |β|1 = 0,
1

2
|α+β|1 = 1.

Having fixed the assumptions, we now state the convergence of the discrete gradient systems to the continuum gradient
system.

Theorem 4.7 (Convergence and lower limit of energy-dissipation functionals). Consider (cN , FN , JN ) ∈ CEN such
that the uniform bounds supN∈N ess supt∈[0,T ]EN (cN (t)) < ∞ and supN∈NDN (cN , FN , JN ) < ∞ hold true.
Moreover, assume that the reactions satisfy (4.A1).

Then, there exists (ρ, f, j) ∈ CE with f ∈ L1([0, T ] × Ydiff) and j ∈ L1([0, T ] × Yreact) such that (up to a
subsequence) we have ιNcN → ρ strongly in L1([0, T ] × X), ιN,diffFN ⇀ f weakly in L([0, T ] × Ydiff), and
ιN,reactJ

N ⇀ j weakly in L1([0, T ]× Yreact).
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Moreover, we have the lower limit inequalities

lim inf
N→∞

DN (cN , FN , JN ) ≥ D(ρ, f, j) and lim inf
N→∞

EN (cN (t)) ≥ E(ρ(t)) for all t ∈ [0, T ],

for the functionals defined in (3.1), (3.5), (3.7), and (3.8), respectively.

In particular, for well-prepared initial data, i.e., ιNcN (0) → ρ(0) with EN (cN (0) → E(ρ(0)), it holds

lim inf
N→∞

LN (cN , FN , JN ) ≥ L(ρ, f, j).

To conclude that the limit (ρ, f, j) solves the limit gradient-flow equation, we need in addition a chain rule inequality for
the continuous reaction-diffusion system. (Recall D and L from Definition 3.11.)

Theorem 4.8 (Chain rule inequality for continuum system). Consider a curve (ρ, f, j) ∈ CE with D(ρ, f, j) < ∞ and
ess supt∈[0,T ] E(ρ(t)) <∞. In addition, assume that the reaction coefficients satisfy (4.A2).

Then, for every 0 ≤ s < t ≤ T it holds

E(ρ(t))− E(ρ(s)) +
∫ t

s

R(ρ(τ), f(τ), j(τ)) + S(ρ(τ)) dτ ≥ 0.

Furthermore, it holds L(ρ, f, j) = 0 if and only if ρ is a continuum EDB solution of (1.2) in the sense of Definition 3.13.

The three theorems together imply that solutions of the discrete problems (1.3) on ZdN starting from well-prepared initial
data converge (after choosing a suitable subsequence) to solutions of the continuous reaction-diffusion system (1.2). This
is summarized in our final main result.

Corollary 4.9 (Convergence of solutions). Assume that the reactions satisfy (4.A2). Let ρ0 ∈ L1(X) satisfy E(ρ0) <∞.
Let (cN0 )N∈N with cN0 ∈ L1(XN ) be well-prepared, i.e., let ιNcN0 → ρ0 in L1(X) andEN (cN0 ) → E(ρ0) asN → ∞.

Then, for each N ∈ N there exists a solution cN ∈ L1(0, T ;M+(XN )) of (1.3) on ZdN in the sense of Definition 3.8
with initial datum cN0 .

Furthermore, (up to a subsequence) we have ιNcN → ρ strongly in L1([0, T ]×X), where ρ is a solution of the gradient
flow equation (1.2) on Td in the sense of Definition 3.13 with initial datum ρ0.

The proofs of the main results are given in the next two sections: In Section 5, we show the necessary compactness and
the lower limit of dissipation functionals leading to Theorem 4.7. In Section 6 we show that the chain rules and energy-
dissipation principles for both, the discrete and the continuous, reaction-diffusion systems hold.

Finally, we comment on the restrictions on the stoichiometric vectors. In fact, they are needed for deriving suitable a priori
bounds. If however, these bounds can be obtained by other means, then the conditions can be dropped completely.

Remark 4.10 (L∞ bounds via bounding boxes). It can be easily checked that the proofs given below hold for general
stoichiometric vectors αr and βr , if we know that the discrete solutions cN are bounded uniformly in L∞. Indeed, in this
case the limit solution ρ is also bounded in L∞ and we can set pcrit = ∞ and check that all proofs work similarly.

We highlight this fact since for several classes of reaction-diffusion systems there exist so-called positively invariant regions
in the sense of [Smo94, Cha. 14§B]. In the simplest case such a region is a rectangular set, also called bounding box:

B :=
∏
i∈I

[
0, bi

]
:=
{
c ∈ [0,∞)I

∣∣ 0 ≤ ci ≤ bi for all i ∈ I
}
.

Positive invariance means that solutions starting inside a region (i.e. c(t, x) ∈ B) remain inside the region for all t > 0.
In the case of a box the invariance follows, if for c ∈ ∂B the reaction vector R(c) points inwards, i.e., ci = 0 implies
Ri(c) ≥ 0 and ci = bi implies Ri(c) ≤ 0.

Consider a reaction systems where all reactions are of the type αiXi ⇌ βıXı which is additionally in detailed balance
for w = (wi)i∈I . Then, it can be shown that B =

∏
I [0, wi] is indeed a bounding box. Often there is a family of

detailed-balance equilibria w, which then allow for arbitrary large bounding boxes.
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5 Proof of convergence

The aim of this section is to prove Theorem 4.7, the convergence of the discrete gradient systems to the continuum gradient
system. We split the section in two parts, first focusing on the compactness in Section 5.1, before establishing the lower
limit in Section 5.2.

To show compactness, we rely on the N -uniform L∞-bound for the energies and the N -uniform bound of the dissipation
functionals to obtain suitable a priori estimates for the embedded discrete concentrations ρN = ιNc

N . We introduce a
new and efficient method to show equi-integrability of the fluxes FN and JN in Proposition 5.5. Finally, an argument based
on the Aubin-Lions-Simon lemma allows us to derive strong compactness of ρN in Proposition 5.8. One of the biggest
advantages of our approach is its ability of handling non-convex dependencies on ρN of the dissipation functionals.

The lower limit inequalities are then obtained for each rate and each slope term, independently, relying either on Ioffe’s
liminf theorem or, for the diffusive rate, on a dualization argument.

Throughout this section, we fix a time horizon T > 0 and denote by ΩT := [0, T ]× Td the parabolic cylinder.

5.1 Compactness

We start our considerations from theN -uniform L∞-bound on the energies and theN -uniform bound on the dissipations.
We introduce the explicit constants KA

x that will make it easier to see the influence of the different bounds throughout the
section.

We start with the a priori bounds

KE := sup
N∈N

sup
t∈[0,T ]

EN (cN (t)) <∞, (5.1a)

KD := sup
N∈N

DN (cN , FN , JN ) <∞. (5.1b)

In particular, these imply

KE
L1 := sup

N∈N
sup
t∈[0,T ]

∥cN∥L1
N
<∞, (5.2a)

KR
diff := sup

N∈N

∫ T

0

RN,diff(c
N (t), FN (t)) dt <∞, (5.2b)

KR
react := sup

N∈N

∫ T

0

RN,react(c
N (t), JN (t)) dt <∞, (5.2c)

KS
diff := sup

N∈N

∫ T

0

SN,diff(c
N (t)) dt <∞, (5.2d)

KS
react := sup

N∈N

∫ T

0

SN,react(c
N (t)) dt <∞. (5.2e)

Using the embeddings from Section 3.3, we define the curves

ρN := ιNc
N , fN := ιN,diffF

N , jN := ιN,reactJ
N .

To derive strong relative compactness of (ρN )N∈N in L1([0, T ]×X), we rely on an Aubin-Lions-type result. Since these
piecewise constant functions are not weakly differentiable and we will later rely on Sobolev embeddings to obtain higher
integrability, we introduce a second interpolant ρ̃N via

ρ̃Ni = ωi
(
ι̃NU

N
i

)2
where UNi,k =

( ci,k
wNi,k

)1/2
, (5.3)

where the linear interpolator ι̃N generates continuous and piecewise polynomial functions ũN = ι̃NU
N , the derivatives

of which can be controlled uniformly in N by KS
diff .

Employing an Aubin-Lions-Simons-type argument, we show relative compactness of (ρ̃N )N∈N. We then conclude by
showing that ∥ρ̃N − ρN∥L1([0,T ]×X) → 0 as N → ∞.

We highlight that, we will be able to show that ρN is bounded in an Orlicz space slightly better than Lpcrit([0, T ] × Td)
with pcrit = 1 + 2/d.
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Remark 5.1. Note that our particular choice for the auxiliary embedding ι̃N is the d-linear interpolation, though we stress
that other interpolations are possible as long as Lemma 5.3 is provable. In particular, we believe it is possible to employ a
similar argument for more general geometries when replacing the uniform grids ZdN .

Furthermore, we point out that strong L1 compactness of ρN could also be obtained directly by applying [RoS03, Theorem
4.2] as is done, e.g. in [HrT23, Theorem 4.8]. However, our method additionally allows us to obtain higher integrability as
we demonstrate in Proposition 5.4.

Definition 5.2 (Continuous embedding). Let M := {0, 1}d. For m ∈M we define the functions fNm : Td → [0, 1] via

fNm (x) =

d∏
k=1

{
Nxk for mk = 1

1−Nxk for mk = 0
for x ∈ QN0 and fNm (x) = 0 otherwise.

Recalling the shift operator SNy from (3.12), we define the continuous embedding operator

ι̃N (UNi )(x) := ũNi (x) :=
∑
k∈Zd

N

∑
m∈M

UNi,k+mfNm (x−k/N) (5.4)

and its dual discretization operator

ι̃∗N (φi)k = Nd

∫
QN

k

∑
m∈M

SN−m φi(x) S
N
−k f

N
m (x) dx.

The duality of ι̃N and ι̃∗N follows by a direct calculation:∫
Td

φiι̃NU
N
i dx =

∑
k∈Zd

N

∑
m∈M

UNi,k+m

∫
QN

k

φi(x) S
N
−k f

N
m (x) dx

=
∑
k∈Zd

N

∑
m∈M

UNi,k

∫
QN

k−m

φi(x) S
N
m−k f

N
m (x) dx =

∑
k∈Zd

N

∑
m∈M

UNi,k

∫
QN

k

SN−m φi(x) S
N
−k f

N
m (x) dx

=
1

Nd

∑
k∈Zd

N

UNi,k N
d

∫
QN

k

∑
m∈M

SN−m φi(x) S
N
−k f

N
m (x) dx =

1

Nd

∑
k∈Zd

N

ι̃∗N (φi)kU
N
i,k.

To understand the usage of the functions fNm better it is useful to define the functions

hN0 (x) =
∑
m∈M

SNm fNm (x) and hNk = SN−k h
N
0 .

Then, all hNk are piecewise polynomial and continuous, and the simple interpolation formula

ũNi = ι̃NU
N
i =

∑
k∈Zd

N

UNi,kh
N
k

holds. The following properties of fNm and hNk will be used in the sequel without further specification:

fNm (x) ∈ [0, 1],

∫
Td

fNm (x) dx =
1

(2N)d
,

∑
m∈M

fNm (x) = 11QN
0
(x), (5.5a)

hNm(x) ∈ [0, 1],

∫
Td

hNk (x) dx =
1

Nd
,

∑
k∈Zd

N

hNk (x) = 1 on Td, (5.5b)

∥∇hNm∥L∞ ≤ N, ∥∇hNm∥L1 ≤ Cd, hNk (x) ≥ 1

2d
SN1

21d
11QN

k
(x), (5.5c)

where we denoted 1d = (1, . . . , 1) ∈ Rd. The next results shows that the concentrations cN enjoy a higher integrability
as the one obtained from the uniform bound KE for EN . For this we use the bound KS

diff in (5.2d) and a suitable
Galiardo-Nirenberg interpolation applied to ũN . We first show that ∇ũN is uniformly bounded in L2([0, T ]× Td), which
is a consequence of the fact that SN,diff(cN ) is in fact a quadratic form in UN .
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Lemma 5.3 (Spatial regularity). Let cN satisfy the a priori estimates (5.2d). Then, we have∫∫
ΩT

|∇ũN |2 dxdt ≤
(4
3

)d−1KS
diff

δ∗ω∗

Proof. We work for fixed N and i and hence drop these indices throughout this proof.

We recall that each hk is nontrivial only on 2d cubes Qk−m. Moreover, fixing l ∈ {1, . . . , d} the derivative ∂xl
hk has

positive values in those 2d−1 cubes with ml = 1 and negative values in those with ml = 0:

∂xl
hk = ∂xl

hk11Vl,k︸ ︷︷ ︸
≥0

−
(
− ∂xl

hk11Vl,k+el

)︸ ︷︷ ︸
≥0

with Vl,k =
⋃

m∈M
ml=1

QNk−m.

Using ∂xl
hk = −∂xl

hk−el on Vl,k we find

∂xl
ũ =

∑
k∈Zd

N

Uk∂xl
hk =

∑
k∈Zd

N

(
Uk−Uk−el

)
∂xl

hk11Vl,k
.

At each x ∈ Td there are at most 2d−1 terms, since each Vl,k consists of 2d−1 small cubes. Hence, we obtain∫
Td

∣∣∂xl
ũ
∣∣2 dx ≤ 2d−1

∫
Td

∑
k∈Zd

N

|Uk−Uk−el |2
∣∣∂xl

hk
∣∣211Vl,k

dx =
(4
3

)d−1 1

Nd

∑
k∈Zd

N

N2
∣∣Uk−Uk−el |2,

where we used
∫
Td |∂xl

hk|211Vl,k
dx = N2(2/3)d−1. This concludes the proof.

To obtain uniform higher integrability of the densities ρN we combine the spatial regularity with the uniform energy bound
(5.1a). The former provides L2 integrability in time in the good space H1(Td) while the latter provides boundedness of
E(ρ̃N ) which is slightly better than ess sup ρ̃N (t) ≤ KE

L1 . We will exploit the following interpolation estimate that follows
by applying a suitable Gagliardo-Nierenberg interpolation, see Appendix C for the proof of a more general version. Setting
α ≥ 2, αd ∈ [4, 4+2d] and q = 2d/(4−(α−2)d) ∈ [1,∞], it holds the bilinear interpolation estimate∫∫

ΩT

uαv dxdt ≤ C∥v∥L∞(0,T ;Lq(Td))∥u∥α−2
L∞(0,T ;L2(Td))

∫ T

0

∥u(t)∥2H1(Td) dt, (5.6)

for a suitable constant C depending on d and α. To estimate ρ̃Ni = ωi(ũ
N )2 we will apply this estimate for u = ũNi and

either v ≡ 1 or v = λB((ũ
N
i )2)β .

Proposition 5.4 (Improved integrability). Let cN satisfy the a priori estimates (5.1a), (5.2a), and (5.2d). Then, with pcrit =
1 + 2/d from Assumption (4.A1) we have

sup
N∈N

∥cN∥Lpcrit ([0,T ]×XN ) ≤ C(1), (5.7a)

where C(1) only depends on d, ω∗, ω∗ and δ∗. Moreover, with ηd = 2/d for d ≥ 3, η2 ∈ (0, 1), and η1 = 1, there exists
C(2) > 0 depending on d, ω∗, ω

∗, δ∗, K
E , KE

L1 such that

sup
N∈N

1

Nd

∑
k∈Zd

N

∑
i∈I

∫ T

0

(cNi,k)
pcrit
(
log(1 + cNi,k)

)ηd dt ≤ C(2). (5.7b)

In particular, analogous N -uniform estimates to (5.7a) and (5.7b) also hold for ρN .

Proof. We consider only one species i and drop its index throughout this proof. In light of (5.5c), it is sufficient to prove the
spatial regularity for ρ̃N . From the definition of ρ̃N = ω(ũN )2 we immediately obtain ∥ũN (t)∥2L2 ≤ KE

L1/ω∗. Applying
(5.6) with u = ũNi , v ≡ 1 and α = 2pcrit (which implies q = ∞), we find∫∫

ΩT

(
ũN
)2pcrit

dx dt ≤ C
∥∥ũN∥∥4/d

L∞(0,T ;L2)

∫ T

0

∥∥ũN∥∥2
H1(X)

dt.
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Using ρ̃N = ω(ũN )2 and Lemma 5.3, we obtain (5.7a).

For the second part we choose u = ũNi and v = λB
(
(ũN )2

)ηd . For d ≥ 3 let α = 2 and q = d/2 to find∫∫
ΩT

u2λB(u
2)2/d dx dt ≤

∫ T

0

∥u∥2L2d/d−2∥λB(u2)∥L1 dt ≤ CK
2/d
E Kdiff .

For d = 1 we choose α = 4 and q = 1 giving∫∫
ΩT

u4λB(u
2) dxdt ≤

∫ T

0

∥u∥4L∞∥λB(u2)∥L1 dt ≤ CK2
EK

S
diff .

For d = 2 we choose η2 ∈ (0, 1) arbitrary and set q = 1/η2 and α = 4−2η2. This leads to the estimate∫∫
ΩT

u4−2η2λB(u
2)η2 dxdt ≤

∫ T

0

∥u∥4−2η2
L(4−2η2)/(1−η2)∥λB(u2)η2∥

1/η2
L1/η2

dt

=

∫ T

0

∥u∥4−2η2
L(4−2η2)/(1−η2)∥λB(u2)∥L1 dt ≤ C(η2)K

2
EKdiff ,

where C(η2) → ∞ for η2 ↗ 1.

Using uq log(e+u)η ≤ Cuq−2η
(
1 + λB(u

2)
)η

and ρ̃N ≤ ω∗(ũN )2, the estimate (5.7b) follows.

The higher integrability derived in (5.7b) will allow us to show that the diffusion fluxes fN = ιN,diffF
N and the reaction

fluxes jN = ιN,reactJ
N are uniformly equi-integrable, and hence one may choose a subsequence converging weakly in

L1(ΩT ). The estimate for fN will rely on the magical estimate (3.4d), whereas the estimate for jN has to be based on
the weaker result of Lemma 3.3.

Proposition 5.5 (Boundedness of fluxes). Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates (5.1). Then,
there exist constants Cdiff

flux > 0 and Creact
flux > 0 and a convex superlinear function Φd : R → [0,∞) depending only on

d, such that for all N ∈ N, e ∈ E, i ∈ I , and r ∈ R s we have

1

Nd

∑
k∈Zd

N

∫ T

0

C

(
FNi,k,e
N

)
dt ≤ Cdiff

flux and
1

Nd

∑
k∈Zd

N

∫ T

0

Φd(J
N
r,k) dt ≤ Creact

flux ,

where Cdiff
flux (Creact

flux ) depends only on the constants C(1) and C(2) from (5.7) and KR
diff (KR

react).

Moreover, there exist curves of fluxes f and j with fi,e ∈ L1(ΩT ) and jr ∈ L1(ΩT ) such that along a (not renamed)
subsequence, we have ∫∫

ΩT

C(fi,e) dxdt ≤ Cdiff
flux and

∫∫
ΩT

Φd(jr) dx dt ≤ Creact
flux ,

fNi,e ⇀ fi,e and jNr ⇀ jr weakly in L1(ΩT ),

where we recall fN = ιN,diffF
N and jN = ιN,reactJ

N defined in (3.10a) and (3.10c), respectively.

Proof. We consider the diffusive flux FNi,e first, where we fix and then omit the indices i, e. We apply the magical estimate
(3.4d) with q = pcrit > 1 to obtain

1

Nd

∑
k∈Zd

N

∫ T

0

C
( 1

N
FNk

)
dt ≤ 1

Nd

∑
k∈Zd

N

∫ T

0

( pcrit
pcrit−1

C
( 1

N
FNk

∣∣∣σNk )+ 4

pcrit−1
(σNk )2

)
dt

≤ Cpcrit
1

Nd

∑
k∈Zd

N

∫ T

0

(
C
(
FNk
∣∣N2σNk

)
+ (σNk )pcrit

)
dt

≤ CpcritK
R
diff + Cpcrit

∥∥σN∥∥pcrit
Lpcrit ([0,T ]×Zd

N )
,

where the estimate from the second to the third line follows from the monotonicity (3.4c) and where we used that σNi,e =

δi(ci,kci,k+e)
1/2 is uniformly bounded in Lpcrit by C(1) in (5.7a).
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The argument for jNr is analogous, however, we have to be aware that we now have to choose σNr = κr(c
N )γ

r

with
γr = 1

2 (α
r+βr). Thus, (5.7a) and assumption (4.A1) only provide a uniform bound for σNr in L1. However, Lemma 3.3

can be employed on the basis of the improved higher regularity. We choose ϕ = C and

ψd(w) = w
(
log(1+w1/pcrit)

)1/d
,

which is increasing and superlinear. Thus, the function Ξd = ΞC,ψd
is still superlinear and increasing, and the same is

true for its convex hull Φd = (Ξd)
∗∗ ≤ Ξd. With this, fixing and omitting the index r, we can estimate

1

Nd

∑
k∈Zd

N

∫ T

0

Φd(J
N ) dt ≤ 1

Nd

∑
k∈Zd

N

∫ T

0

Ξd(J
N
k ) dt ≤ 1

Nd

∑
k∈Zd

N

∫ T

0

(
C(JNk |σNk ) + ψd(σ

N
k )
)
dt

≤ Kreact
flux +

1

Nd

∑
k∈Zd

N

∫ T

0

|cN |pcrit
(
log(1+|cNk |

)1/d
dt ≤ Kreact

flux + C(2)

with C(2) from (5.7b).

For the embedded diffusive fluxes fN = ιN,diffF
n, we recall that (3.10b) involves a partition of unity. Therefore, it follows∫∫

ΩT
C(fN ) dxdt ≤ 1

Nd

∑
k∈Zd

N

∫ T
0
C( 1

N F
N
k ) dt by an application of Jensen’s inequality. Similarly, we have for the

embedded reactive fluxes the estimate
∫∫

ΩT
Φd(j

N ) dxdt ≤ 1
Nd

∑
k∈Zd

N

∫ T
0
Φd(J

N
k ) dt.

With this, the criterion of de la Vallé Poussin shows that the sequences (fN )N and (jN )N both are sequentially compact
in the weak topology of L1(ΩT ). Thus, a subsequence (not relabeled) and limits f and j exist such that fN ⇀ f
and jN ⇀ j. Moreover, the convexity of C and Φd implies the weak lower semi-continuities

∫
ΩT

C(fi,e) dxdt ≤
lim infN→∞

∫
ΩT

C(fNi,e) dxdt ≤ Cdiff
flux and

∫
ΩT

Φd(jr) dxdt ≤ lim infN→∞
∫
ΩT

Φd(jr) dxdt ≤ Creact
flux .

With this, the proof of Proposition 5.5 is complete.

Remark 5.6. The uniform equi-integrability for the diffusive rate
∫∫

C(Fni,e) dxdt ≤ Cdiff
flux was also obtained in [HrT23,

Lem. 4.4] by a slightly different and more generally applicable argument that only uses that σN is uniformly bounded in
L∞(0, T ; L1(Td)).

Having established the spatial regularity of ρ̃N in Lemma 5.3 as well as boundedness of the fluxes in Proposition 5.5, our
next step is to show time regularity for ρ̃N .

Lemma 5.7 (Time regularity). Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates (5.1). Then, we have
the uniform bound supN∈N∥ρ̃N∥BV (0,T ;(W 1,∞(X))∗) <∞.

Proof. We first focus on the more complicated interpolation ι̃N and recall (3.13), which implies for every φ ∈ C1(X)

⟨FN ,∇ι̃∗Nφ⟩ =
1

Nd

∑
k∈Zd

N

∑
e∈E

∑
i∈I

FNi,k,e[(ι̃
∗
Nφ)i,k+e − (ι̃∗Nφ)i,k]

=
∑
k∈Zd

N

∑
e∈E

∑
i∈I

∑
m∈M

FNi,k,e

∫
QN

k

SN−k f
N
m SN−m[SNe φi − φi] dx

=
∑
k∈Zd

N

∑
e∈E

∑
i∈I

∑
m∈M

FNi,k,e
N

∫
QN

k

∫ 1

0

SN−k f
N
m (x) SNeθ−m ∂xe

φi(x) dθ dx

≤ CM∥∇φ∥L∞(X)

∑
i∈I

∑
e∈E

∥∥∥∥FNi,eN
∥∥∥∥
1

.

Similarly, for every φ ∈ C(X) we have

⟨JN ,Γι̃∗Nφ⟩ =
∑
k∈Zd

N

∑
r∈R

JNr,k
∑
i∈I

γr,i
∑
m∈M

∫
QN

k

SN−k f
N
m SN−m φi dx

≤ ∥φ∥L∞(X) max
s∈R

∑
i∈I

|γs,i|
∑
r∈R

∥JNr ∥1.
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With this, we consider any partition (tm)Mm=0, M ∈ N of [0, T ]. Then, the previous bounds, the discrete continuity
equation, and Proposition 5.5 yield, for every φ ∈ C1(X), the estimate

M∑
m=1

⟨ρ̃N (tm)− ρ̃N (tm−1), φ⟩ =
M∑
m=1

⟨cN (tm)− cN (tm−1), ι̃
∗
Nφ⟩N

=

M∑
m=1

∫ tm

tm−1

⟨FN ,∇ι̃∗Nφ⟩+ ⟨JN ,Γι̃∗Nφ⟩dt ≤ C∥φ∥C1(X).

Taking suprema with respect to φ ∈ {φ ∈ C1(X): ∥φ∥W1,∞(X) ≤ 1} and the partition, we obtain the uniform bound
supN∥ρ̃N∥BV(0,T ;(W1,∞)∗) <∞. This finishes the proof of Lemma 5.7.

Combining the spatial regularity of ũ from Lemma 5.3 and the time regularity of ρ̃ from Lemma 5.7, we are now able to
apply the Aubin-Lions-Simon lemma to obtain strong L1 compactness for ρ̃N . We then show that ρN has the same strong
limit by comparing it to ρ̃N .

Proposition 5.8 (Strong compactness). Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates (5.1).

Then, there exists ρ ∈ Lpcrit([0, T ] × X) such that along a (not renamed) subsequence both ρ̃N → ρ strongly in
L1([0, T ]×X) and ρN → ρ strongly in L1([0, T ]×X).

Furthermore, it holds ρ ∈ AC([0, T ];M+(X) and ρN (t)⇀∗ ρ(t) weakly-∗ in M+(X) for all t ∈ [0, T ].

Proof. Lemma 5.3 implies that ρ̃N ∈ L1([0, T ];Z), where Z := {ωu2 : u ∈ H1(X)}. Since ω ∈ L∞(X), we have
the compact embedding Z ⋐ L1(X). Combining this with Lemma 5.7, we obtain the existence of ρ ∈ L1([0, T ] ×X)
such that ρ̃N → ρ strongly in L1([0, T ]×X) by applying the Aubin-Lions-Simon Lemma, [Sim86, Theorem 5].

For the convergence of ρN , we compare it to ρ̃N and recall that UNk =

√
cNk
wN

k

to derive

∥ρ̃N − ρN∥L1([0,T ]×X) =

∥∥∥∥ω(ι̃N
√
cN

wN

)2

− ιNc
N

∥∥∥∥
L1([0,T ]×X)

≤ ω∗
∥∥∥∥(ι̃N

√
cN

wN

)2

− ιN
cN

wN

∥∥∥∥
L1([0,T ]×X)

+

∥∥∥∥ωιN cN

wN
− ιNc

N

∥∥∥∥
L1([0,T ]×X)

≤ ω∗∥∥(ι̃NUNk )2 − ιN (UNk )2
∥∥
L1([0,T ]×X)

+
KE

L1

ω∗

∥∥ω − ιNw
N
∥∥
L∞([0,T ]×X)

.

The second summand on the right-hand side vanishes asN → ∞ by (4.2a). To control the first summand, we first employ
(5.5) to obtain for all x ∈ Td the auxiliary inequality(∑

k∈Zd
N

(hNk ± 11QN
k
)UNk

)2

=
∑

k,l∈Zd
N

∑
m,n∈M

(SNm−k f
N
m (x)± SN−k f

N
m (x))(SNn−l f

N
n (x)± SN−l f

N
n (x))UNk U

N
l

=
∑

k,l∈Zd
N

∑
m,n∈M

SN−k f
N
m (x) SN−l f

N
n (x)(UNk+m ± UNk )(UNl+n ± UNl )

=
∑
k∈Zd

N

∑
m,n∈M

SN−k f
N
m (x) SN−k f

N
n (x)(UNk+m ± UNk )(UNk+n ± UNk )

≤ 2d
∑
k∈Zd

N

∑
m,n∈M

11QN
k
(x)(UNk+m ± UNk )(UNk+n ± UNk )

≤ 2d
∑
k∈Zd

N

∑
m∈M

11QN
k
(x)|UNk+m ± UNk |2.

We combine this with Hölder’s inequality to find

∥∥(ι̃NUNk )2 − ιN (UNk )2
∥∥
L1([0,T ]×X) =

∥∥∥∥∥
( ∑
k∈Zd

N

hNk U
N
k

)2

−
∑
k∈Zd

N

11QN
k
(UNk )2

∥∥∥∥∥
L1([0,T ]×X)
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=

∥∥∥∥∥
( ∑
k∈Zd

N

hNk U
N
k

)2

−

(∑
k∈Zd

N

11QN
k
UNk

)2∥∥∥∥∥
L1([0,T ]×X)

≤

∥∥∥∥∥ ∑
k∈Zd

N

(hNk + 11QN
k
)UNk

∥∥∥∥∥
1
2

L2([0,T ]×X)

∥∥∥∥∥ ∑
k∈Zd

N

(hNk − 11QN
k
)UNk

∥∥∥∥∥
1
2

L2([0,T ]×X)

≤ 2d

∥∥∥∥∥ ∑
m∈M

(UNk+m + UNk )

∥∥∥∥∥
1
2

L2([0,T ]×XN )

∥∥∥∥∥ ∑
m∈M

(UNk+m − UNk )

∥∥∥∥∥
1
2

L2([0,T ]×XN )

≤ CM

√
KE

L1Ks
diff

ω∗

KS
diff

δ∗ω∗

1

N
,

where in the last step we used that each m ∈ M is a sum of finitely many d-dimensional unit vectors, estimated the first
factor using (5.1a), and extracted the power 1/N from the second factor by estimating with the uniform bound (5.2d) and
Definition 3.4.

Moreover, by Proposition 5.4 the curves ρN are N -uniformly bounded in Lpcrit([0, T ] × X), so is the limit ρ. This
concludes the proof of Proposition 5.8.

The weak-∗ convergence ρN (t) ⇀∗ ρ(t) for all t ∈ [0, T ] follows from the bounds in Proposition 5.5 by arguing
analogously to [HrT23, Lemma 4.5].

To later obtain a lower limit inequality for the dissipation functionals, we must ensure that the limit objects from Proposi-
tion 5.5 and Proposition 5.8 satisfy the continuity equation. This fact is established in the following lemma:

Lemma 5.9 (Closedness of CE). Let (ρ, j, f) be a limit of (ρN , jN , fN )N∈N ⊂ CE in the sense of Propositions 5.8
and 5.5. Then, it holds (ρ, j, f) ∈ CE.

Proof. By definition the set CE is closed with respect to the weak-L1 convergence of the time-integrated embedded
fluxes shown in Proposition 5.5 and the pointwise-in-time weak-∗ convergence of the embedded concentrations shown in
Proposition 5.8.

To prove the lower limit inequality for the slopes, we will employ a convergence result for the differences of the piecewise
constantly embedded concentrations. This is established next.

Proposition 5.10 (Convergence of differences). Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates
(5.1). Let ρ be the limit of (ιNcN )N from Proposition 5.8. Recalling UNi,k = (ci,k/w

N
i,k)

1/2, we introduce uNi = ιNU
N
i ,

u := ((ρi/ωi)
1/2)i, and ∇Nu

N := 1
N

∑
e∈E(S

N
e u

N − uN )e.

Then, it holds u ∈ L2(0, T ; H1(Td)), uN → u strongly in L2([0, T ] × X) and along a (not renamed) subsequence
∇Nu

N ⇀ ∇u weakly in L2([0, T ]×X).

Proof. Throughout this proof we fix an arbitrary species i and omit the corresponding index. We denote ωN = ιNw
N .

The strong L2 convergence uN → u immediately follows by integrating the estimate

|uN − u|2 =

∣∣∣∣
√
ρN

ωN
−
√
ρ

ω

∣∣∣∣2 ≤
∣∣∣ ρN
ωN

− ρ

ω

∣∣∣ ≤ 1

ω∗
|ρN − ρ|+ 1

ω2
∗
|ρ||ωN − ω|,

and using Assumption 4.1.

Next, we consider the differences ∇Nu
N = 1

N

∑
e∈E(S

N
e u

N − uN )e. Since ιN commutes with multiplication, it holds
∥∇Nu

N∥2L2(ΩT ;Rd) ≤ δω∗KS
diff and hence (along a not renamed subsequence) ∇Nu

N ⇀ v weakly in L2(ΩT ;Rd)
for some v ∈ L2(ΩT ;Rd). This v is the weak gradient of u. Indeed, let φ ∈ C∞(ΩT ). Then, for every e ∈ E (and the
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above subsequence) we have∫∫
ΩT

v(t, x) · e φ(t, x) dxdt = lim
N→∞

∫∫
ΩT

(
uN (t, x+ e/N)− uN (t, x)

1/N

)
φ(t, x) dxdt

= lim
N→∞

∫∫
ΩT

uN (t, x)

(
φ(t, x− e/N)− φ(t, x)

1/N

)
dxdt

= −
∫∫

ΩT

u(t, x)∂xe
φ(t, x) dxdt.

In particular, u ∈ L2([0, T ]; H1(Td)) and the proof is concluded.

5.2 Lower limit of dissipation functionals

In the previous section we have obtained candidate curves that may be EDB solutions for (1.2). Following the strategy of
Section 2.2, the next step is to prove rigorous analogs of (2.4). More precisely, we will prove lower limit inequalities for the
rate and slope terms independently. First, we consider the slopes, employing a Ioffe’s liminf theorem.

Proposition 5.11. Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates (5.1). Let ui =
√
ρi/ωi be the

L2-limit of uNi = ιN
√
cNi w

N
i from Proposition 5.10. Then, it holds

lim inf
N→∞

∫ T

0

SN (cN ) dt ≥
∫ T

0

S(ρ) dt

Proof. By Proposition 5.10 we have along a (not renamed) subsequence ∇Nu
N
i ⇀ ∇ui weakly in L2(ΩT ;Rd). Thus,

an application of Ioffe’s liminf theorem, [But89, Thm. 2.3.1], directly yields the lower limit for the diffusive part:

lim inf
N→∞

∫ T

0

SN,diff(c
N ) dt ≥

∑
i∈I

2δi

∫ T

0

∫
Td

|∇ui|2 dωi dt =
∫ T

0

Sdiff(ρ) dt.

For the reactive part, by definition of ιN , we have

SN,react(c
N ) =

∑
r∈R

2κr
1

Nd

∑
k∈Zd

N

(
wNk
)(αr+βr)/2

∣∣∣∣∣
(
cNk
wNk

)αr/2

−
(
cNk
wNk

)βr/2
∣∣∣∣∣
2

=
∑
r∈R

2κr

∫
Td

(
ωN
)(αr+βr)/2

∣∣∣(uN)αr

−
(
uN
)βr ∣∣∣2.

On the other hand, it holds (uN )λ(t, x) → uλ(t, x) and wN (x) → ω(x) for L -a.e. t ∈ [0, T ] and L d-a.e. x ∈ Td,

and every multiindex λ ∈ RI . Thus, Fatou’s Lemma with fN = (ωN )(αr + βr)/2
∣∣(νN)αr

−
(
νN
)βr ∣∣2 yields

lim inf
N→∞

∫ T

0

SN,react(c
N ) dt ≥

∑
r∈R

2κr

∫ T

0

∫
Td

ω(αr+βr)/2
∣∣uαr

− uβ
r ∣∣2 dt = ∫ T

0

Sreact(ρ) dt,

which concludes the proof.

Next, we focus on the rate parts of the dissipation potentials. Here, the main challenge is the diffusive rate, where we want
to obtain the quadratic dissipation from the cosh-type dissipation. The proof is done by dualization following the proof of
[HrT23, Thm. 6.2 (i)]. First, we link the cosh-type and quadratic dual dissipation potentials in the following lemma.

Lemma 5.12. Let (cN )N∈N be any sequence s.t. ιNcN =: ρN ⇀ ρ in L1(X). Moreover, let φ ∈ C1(X) be given.
Then, it holds

lim sup
N→∞

R∗
N,diff(c

N ,∇ι∗Nφ) ≤ R∗
diff(ρ,∇φ).

In particular, we have for ιNcN → ρ in L1([0, T ]×X) and any φ ∈ L1(0, T ; C1(X)) that

lim sup
N→∞

∫ T

0

R∗
N,diff(c

N (t),∇ι∗Nφ(t)) dt ≤
∫ T

0

R∗
diff(ρ(t),∇φ(t)) dt.
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Proof. For φ ∈ C1(X), we have

|ι∗Nφi,k+e − ι∗Nφi,k| ≤ Nd

∫
Td

|φi(x)
(
11QN

k+e
(x)− 11QN

k
(x)
)
|dx

= Nd

∫
QN

k

|φi(x)− φi(x+ e/N)|dx

≤ Nd

∫
QN

k

|∂xe
φi(x)| · |e/N |dx =

1

N
ι∗N (|∂xe

φi|)k.

Using that C∗(r) = C∗(−r) = C∗(|r|) and the monotonicity of [0,∞) ∋ r 7→ C∗(r), we compute

R∗
N,diff(c

N ,∇ι∗Nφ) =
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

N2δi
(
cNi,kc

N
i,k+e

)1/2
C∗(ι∗Nφi,k+e − ι∗Nφi,k)

=
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

N2δi
(
cNi,kc

N
i,k+e

)1/2
C∗(|ι∗Nφi,k+e − ι∗Nφi,k|)

≤ 1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

N2δi
(
cNi,kc

N
i,k+e

)1/2
C∗
( 1

N
ι∗N (|∂xe

φi|)k
)
.

Note that, by the definition of C∗, for all r ∈ [0,∞) and all N ∈ N it holds

N2C∗
( r
N

)
≤ r2

2
cosh

( r
N

)
.

Our aim is to apply this with r = ι∗N (|∂xe
φi|)k, which is why we introduce the scalar

aN := max
k∈Zd

N ,i∈I,e∈Ed

{
cosh

( 1

N
ι∗N (|∂xeφi|)k

)}
∈ [1,∞),

and observe that aN → 1 as N → ∞. Then, we can conclude that

R∗
N,diff(c

N ,∇ι∗Nφ) ≤ aN
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

δi
(
cNi,kc

N
i,k+e

)1/2 1
2
(ι∗N (|∂xe

φi)k|))2

≤ aN
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

δi
cNi,k + cNi,k+e

2

1

2
(ι∗N (|∂xeφi|)k))2

≤ aN
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

δi
cNi,k + cNi,k+e

2

1

2
ι∗N (|∂xeφi|)2k)

= aN
∑
i∈I

∑
e∈E

δi
〈(
cNi + SNe c

N
i

)
/2,

1

2
ι∗N
(
|∂xe

φi|2
)〉
N

= aN
∑
i∈I

δi

〈
ιN
(
cNi + SNe c

N
i

)
/2,
∑
e∈E

1

2
|∂xe

φi|2
〉

= aN
∑
i∈I

δi
〈
ιN
(
cNi + SNe c

N
i

)
/2, |∇φi|2/2

〉
N→∞−→ R∗

diff(ρ,∇φ),

where we have used that for all ψ ∈ C(Td) it holds

⟨ιN SNe c
N
i , ψ⟩ =

∑
k∈Zd

N

∫
QN

k

ci,k+eψ(x) dx =
∑
k∈Zd

N

∫
QN

k

ci,kψ(x− e/N) dx
N→∞−→ ⟨ρi, ψ⟩.

This proves the first claim. The second claim follows by Fatou’s lemma and the pointwise convergence of the integral.

Having linked the cosh-type and quadratic dual dissipation potentials, we are now in the position to obtain the lower limit
for the diffusive rates using duality arguments. For the reactive rate part there is no change in the structure, thus allowing
us to again employ Ioffe’s liminf theorem.
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Proposition 5.13. Assume (4.A1) and let (cN , FN , JN ) satisfy the a priori estimates (5.1). Moreover, let ρ be the limit
from ιNc

N from Proposition 5.8, and let f and j be the limits of ιN,diffFN and ιN,react from Proposition 5.5, respectively.
Then, we have

lim inf
N→∞

∫ T

0

RN (cN , FN , JN ) dt ≥
∫ T

0

R(ρ, f, j) dt.

Proof. First, we consider the reactive part. Observe that we have

RN,react(c, J) = Rreact(ιNc
N , ιNJ

N ).

Hence, the estimate for the reactive parts follows from Ioffe’s liminf theorem, [But89, Thm. 2.3.1], for the convex function

J 7→ C(J |κr(cα
r

cβ
r

)1/2) from the weak-L1 convergence of JN and the strong-L1 convergence of (ρN )
1
2 (α

r+βr) by
(4.A1).

For the diffusive part, we employ the Lemma 5.12. By the duality of C and C∗, we have

⟨FN ,∇ι∗Nφ⟩N =
1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

(∇ι∗Nφi)k,eFNi,k,e

≤ 1

Nd

∑
i∈I

∑
k∈Zd

N

∑
e∈E

[
N2δi

(
cNi,kc

N
i,k+e

)1/2
C∗((∇ι∗Nφi)k,e) + C(FNi,k,e|N2δi

(
cNi,kc

N
i,k+e

)1/2
)
]

= R∗
N,diff(c

N ,∇ι∗Nφ) +RN,diff(c
N , FN ).

Using φ ∈ C1([0, T ]×X), ιNcN dx = ρN ⇀∗ ρ, and ιNFN ⇀∗ f and Lemma 5.12, we get∫ T

0

⟨f,∇φ⟩ − R∗
diff(ρ,∇φ) dt ≤ lim

N→∞

∫ T

0

⟨FN ,∇ι∗Nφ⟩N dt− lim sup
N→∞

∫ T

0

R∗
N,diff(c

N ,∇ι∗Nφ) dt

≤ lim inf
N→∞

∫ T

0

⟨FN ,∇ι∗Nφ⟩N −R∗
N,diff(c

N ,∇ι∗Nφ) dt

≤ lim inf
N→∞

∫ T

0

RN,diff(c
N , FN ) dt.

The left-hand side is a quadratic functional in ∇φ and hence can be continuously extended to its L2-closure V :=

{∇φ : φ ∈ C1([0, T ]×X)}
L2(0,T ;L2

ρ(X
dom;Y tar

diff )). Taking the supremum in V , we obtain
∫ T
0
Rdiff(ρ, f) dt by duality.

This finishes the proof.

Finally, we are in the position to prove Theorem 4.7.

Proof of Theorem 4.7. The asserted liminf inequality for dissipations follows from Proposition 5.11 and 5.13 together with
the compactness results Proposition 5.5, Proposition 5.8, Lemma 5.9 and Proposition 5.10.

Regarding the liminf inequality for energies, we note that by definition of ιN we have EN (cN ) = E(ρN ). Therefore, as
E is convex, the liminf inequality follows from the pointwise-in-time weak-∗ convergence of ρN (t) ⇀∗ ρ established in
Proposition 5.8.

6 Proof of chain rules

In this section we prove the two chain rules stated above in Lemma 4.2 and Theorem 4.8 as well as the discrete and the
continuum versions of the Energy-Dissipation principles of Theorem 4.3 and Proposition 3.14, respectively.

6.1 Chain rule for discrete reaction-diffusion system

We provide a full proof of the detailed chain rule in the discrete setting. A similar approach is given in [PR∗22] for the case
of linear reactions, i.e., where αr , βr are Euclidean unit vectors.
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Recall from Section 4 the modification B(c, ċ) of the duality product DEN (c) · ċ, given by

B(c, v) =
∑
i∈I

∑
k∈Zd

N

b
( ci,k
wN

i,k

, vi,k
)

with b(a, s) =

{
s log a for a > 0,

0 for a = 0.

The special treatment of the singularity of log ci,k at ci,k leads to nontrivial implications that can only be handled due
to the property that the underlying (discrete) reaction-diffusion system preserves non-negativity or even more positivity.
For the linear scalar diffusion equation u = ∆u in our torus, it is well-known that u(t∗, x∗) = 0 for some t∗ > 0
implies u(t, x) = 0 for all t > 0 and x ∈ Td. A similar statement holds for the discretization on Zd. However, for our
reaction-diffusion system the situation is more complex, since some components are may vanish (identically) while other
are positive. The gradient structure induced by the detailed-balance condition will provides enough control to handle the
arising degeneracies.

Proposition 6.1 (Chain rule for the discrete setting).
a) Consider c ∈ AC([0, T ];XN ) such that

t 7→ B(c(t), ċ(t)) lies in L1([0, T ]).

Then, t 7→ EN (c(t)) is absolutely continuous and we have the chain rule formula

d

dt
EN (c(t)) = B(c(t), ċ(t)) for a.a. t ∈ [0, T ]. (6.1)

b) Consider a fixed vector (c, F, J) such that ci,k = 0 implies
(
G∗

(F, J)
)
i,k

= 0, then

|B(c,G∗
(F, J))| ≤ RN (c, F, J) + SN (c) = RN,diff(c, F )+RN,react(c, J)+SN,diff(c)+SN,react(c). (6.2)

c) We have the equality
B(c,G∗

(F, J)) = RN (c, F, J) + SN (c) (6.3)

if and only if

Fi,k,e = −δiN2
√
wNi,kw

N
i,k+e

( ci,k
wNi,k

− ci,k+e
wNi,k+e

)
and Jr,k = κr(w

N
k )(α

r+βr)/2
( cα

r

k

(wNk )αr −
cβ

r

k

(wNk )βr

)
. (6.4)

In particular, (6.3) is equivalent to (1.3).

Proof. Without loss of generality, we may assume wNi,k = 1. Moreover, we may simplify the notation by only considering

reactions, since for fixed N the jumps of ci from k to k+e are simple exchange reactions with reaction factor δiN2.
(Formally, one can define I ′ = I × ZdN and R′ = R × ZdN ∪ I × E × ZdN .) Thus, in the rest of the proof, we omit the
occurrence of N and k ∈ Zd, writing c(t) ∈ [0,∞)I and G = Γ.

Part a). It suffices to consider only one species ci and omit the index i, since E and B are both independent sums over i.

From c ∈ AC([0, T ]) = W1,1([0, T ]) we have c(t) ∈ [0, L] for some L > 0. For c ≥ 0 and ε ∈ (0, 1) we
define βε(c) = max{log ε, log c} with βε(0) = log ε and Eε(c) =

∫ c
1
βε(s) ds. With β(c) = log c for c > 0 and

β(0) = −∞ we have

∀ c ≥ 0 : |βε(c)| ≤ |β(c)| and 0 ≤ Eε(c) ↗ E(c) as ε↘ 0.

Since Eε is locally Lipschitz the chain rule holds: for 0 ≤ s < t ≤ T we have

Eε(c(t))− Eε(c(s)) =

∫ t

s

bε(c(r), ċ(r)) dr with bε(c, v) = βε(c)v. (6.5)

We claim that |bε(c(r)), ċ(r))| ≤ |b(c(r)), ċ(r))| a.e. in [0, T ], namely on the set where ċ(r) exists. For c(r) > 0
this follows immediately from |βε(c)| ≤ | log(c)|. If c(r) = 0 and ċ(r) exists, then c(t) ≥ 0 for all t ∈ [0, T ] implies
ċ(r) = 0; and hence bε(c(r), ċ(r)) = 0 = b(c(r), ċ(r)).

By assumption r 7→ |b(c(r), ċ(r))| is an integrable majorant for the integrand in (6.5). Moreover, we for a.a. r the
convergence bε(c(r), ċ(r)) → b(c(r), ċ(r)). Hence, we are able to pass to the limit ε → 0 in (6.5), and the chain rule
formula (6.1) follows.
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Part b). Estimate (6.2) follows from the duality of RN and R∗
N in the case ci ≥ δ > 0, since DEN (c) is well defined and

SN (c) = R∗
N (c,−ΓDEN (c)).

For the general case we introduce cε = (ci+ε)i∈I for which (6.2) holds. We can pass to the limit ε ↘ 0 by noting the
convergences on the right-hand side, as RN and SN are continuous in c (for fixed (F, J)), and on the left-hand side as
well. For the latter we use the continuity of c 7→ log c if ci > 0 and (Γ∗J)i = 0 if ci = 0.

Part c). The case ci ≥ δ > 0 is trivial since (6.2) implies

DEN (c) · Γ∗J ≤ RN (c, J) +R∗
N

(
c,−ΓDEN (c)

)
.

By strict convexity of RN (c, ·) we have equality if and only if J = −DξR
∗
N

(
c,−ΓDEN (c)

)
. Using (3.2a) we find the

desired relation in (6.4).

For the general case, fix a vector (c, J). We decompose the sets I and R into vanishing and positive parts:

Iv := { i ∈ I | ci = 0 }, Ip := I \ Iv, Rv := { r ∈ R | ∃ i ∈ Iv : α
r
i+β

r
i > 0 }, Rp := R \Rv.

The equality (6.3) implies that the right-hand side must be finite. As RN (c, J) contains the terms C
(
Jr|κrc(α

r+βr)/2
)

and c(α
r+βr)/2 = 0 for all r ∈ Rv, we conclude Jr = 0 for all r ∈ Rv.

Rearranging the index sets I and R, we can write the c = (cp, cv) and J = (Jp, Jv) with cv = 0 and Jv = 0. Writing
DpE(cp) =

(
(log ci)i∈Ip , (0)i∈Iv

)
, the desired equality (6.3) reduces to

ΓDpEN (cp) · (Jp, 0) = RN,p
(
cp, (Jp, 0)

)
+ SN (cP , 0), (6.6)

where RN,p is defined as RN up to reducing the sum to r ∈ Rp, which implies that cv does not appear any more. Since
S is the sum over all reactions we have

SN (cp, 0) ≥ SN,p(cp) :=
∑
r∈Rp

2κr
(
cα

r/2−cβ
r/2
)2

= R∗
N,p

(
cp,−ΓDpEN (cp)

)
.

Replacing SN by SN,p, the convex duality of RN and R∗
N implies

(Jp, 0) = −DξR
∗
N,p

(
cp,−ΓDpEN (cp)

)
.

Moreover, the equality in (6.6) holds if and only if

SN (cP , 0)− SN,p(cp) =
∑
r∈Rv

2κr
(
cα

r/2−cβ
r/2
)2

= 0.

Thus, we find cα
r

= 0 = cβ
r

for all r ∈ RV (since at least one is 0 by definition and the difference vanishes by the last
relation). Therefore, (6.4) holds true also in the general case.

Proposition 6.1 is exactly what we need to show that EDB solutions in the sense of Definition 3.8 are ODE solutions of the
discrete system (1.3), which will complete the proof of the discrete Energy-Dissipation Principle.

Proof of Theorem 4.3. The direction from (1.3) to a EDB solution is classical, as the map t 7→ c(t) isC1([0, T ];M(XN )).

For the opposite direction, we first observe that LN (c, F, J) = 0 implies DN (c, F, J) < ∞. By (6.2) we see that
t 7→ B(c(t), ċ(t)) lies in L1([0, T ]). Hence, the chain rule (6.1) holds. Thus, we have

0 = LN (c, F, J) =

∫ T

0

(
B(c, ċ) +RN (c, F, J) + SN (c)

)
dt.

Using (c, F, J) ∈ CEN and (6.2), the integrand is non-negative, hence we conclude that the integrand has to vanish
a.e. in [0, T ]. Thus, F and J are given by the formulas in (6.4). Inserting this into the discrete continuity equation ċ +

G∗
(F, J) = 0 gives exactly the desired ODE (1.3).
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6.2 Chain rule for reaction-diffusion system on the torus

Before we prove Theorem 4.8, we first collect and prove two lemmas that we need in the following. First, we have the
following inequality for the perspective function C.

Lemma 6.2. Let σ > 0. Then we have

∀ j ∈ R ∀ a, b ≥ σ : |C(j|a)− C(j|b)| ≤ 2|j|
σ

|a−b|. (6.7)

Proof. We observe that ∂aC (j|a) = m(j/a) with m(r) = C(r) − rC′(r) = 4 − 2
√
4+r2 ≤ 0. Then, using

|m(r)| ≤ 2|r| and C(j|b)− C(j|a) =
∫ b
a
m(j/y) dy, the result follows.

The lemma now helps to bound the difference once we have a bound on ρ and j ∈ LC([0, T ]×Yreact). For this we recall
the Hardy-Littlewood maximal function (see e.g. [Ste93]) which for a given function g : Rd → R is defined by

Mg(x) = sup
B∋x

1

|B|

∫
B

|g(y)|dy,

where B ⊂ Rd are balls including x. It follows that supε>0 |g ∗ kε(x)| ≤ Mg(x) for any measurable g. Regarding
integration, there are classical results, showing that for 1 < p ≤ ∞ it holds Mg ∈ Lp if g ∈ Lp. In the limiting case
p = 1, one has the weaker statement j ∈ L log L (i.e.

∫
ΩT

C(|j|) dxdt <∞) if and only if Mj ∈ L1, see [Ste69].

In the following proposition we will combine Lemma 6.2 with the estimate through the maximal function. For this, we need
the magical estimate (3.4d), where the assumption 1

2 |α
r+βr|1 ≨ pcrit is crucial to obtain ρ(α

r+βr)/2 ∈ Lq(ΩT ) with
q ≩ 1. Unfortunately, a superlinear estimate for |ρ|pcrit as obtained in Proposition 5.4 would not be enough as is shown
by the counterexample in Remark A.2.

The following result can also be seen as a commutator estimate, since it is essential to estimate (ρ∗kε)(α
r+βr)/2 against(

ρ(α
r+βr)/2

)
∗ kε, where kε is a smoothing kernel.

Proposition 6.3 (Commutator estimate). Assume 1
2 |α

r+βr|1 ≨ p. Consider ρ ∈ Lp([0, T ] × Td) and assume ρi ≥
σ > 0 a.e. in ΩT for all i ∈ I and

∫∫
ΩT

C(jr|ρ(α
r+βr)/2) dxdt < ∞. Let kε be a mollifier approximating the identity,

and jεr := jr ∗ kε, ρε := ρ ∗ kε. Then, we have

lim sup
ε→0

∫∫
ΩT

C(jεr |(ρε)(α
r+βr)/2) dxdt ≤

∫∫
ΩT

C(jr|ρ(α
r+βr)/2) dxdt. (6.8)

Proof. We drop the fixed index r for jr, αr , and βr for the remainder of the proof and use the short-hand notations

γ :=
1

2
(α+β), a := ργ , aε := (ρε)γ .

Using |γ|1 ≨ p we have a ∈ Lq(ΩT ) with q = p/|γ|1 > 1. Thus, we can use the magical property (3.4d) of C and find∫∫
ΩT

C(j) dx dt ≤
∫∫

ΩT

( q

q−1
C(j|a) + 4

q−1
aq
)
dxdt <∞.

His implies j ∈ L log L(ΩT ), such that its Hardy-Littlewood maximal function (done in the space-time domain ΩT ) is
integrable, i.e., Mj ∈ L1([0, T ]× Yreact), see [Ste69]. Thus, we find the pointwise estimate

∀ ε > 0 : |jε(t, x)| ≤ Mj(t, x) almost everywhere in ΩT , (6.9)

this means that the family (jε)ε has a L1 majorant.

Using the shorthand x ∧ y = min{x, y} for x, y ∈ R, the monotonicity of a 7→ C(s|a), and the bound (6.7) for the
derivative in Lemma 6.2, we find for any M > 0 that

C(jε|aε) ≤ C(jε|M ∧ aε) ≤ C(jε|M ∧ bε) + gε (6.10)

with gε =
2

σ|γ|1
|jε|

∣∣(M ∧ bε)− (M ∧ aε)
∣∣ and bε,M = (a ∧M) ∗ kε.
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Using bε,M → a ∧M and aε ∧M → a ∧M strongly in Lq(ΩT ) and weakly-∗ in L∞(ΩT ) as ε → 0 together with
(6.9), Lebesgue’s dominated convergence theorem gives Gε =

∫∫
ΩT

|gε|dxdt→ 0.

Using jε = j ∗ kε, bε = a ∗ kε and the joint convexity of (j, a) 7→ C(j|a) allows us to apply Jensen’s inequality. Hence,
integrating the estimate (6.10) over ΩT we find∫∫

ΩT

C(jε|aε) dx dt ≤
∫∫

ΩT

C(jε|aε ∧M) dxdt ≤
∫∫

ΩT

(
C(jε|bε,M ) + gε

)
dxdt

Jensen
≤

∫∫
ΩT

C(j|a ∧M) dxdt+Gε.

Keeping M fixed and taking the upper limit ε→ 0 we find

∀M ≥ 1 : lim sup
ε→0

∫∫
ΩT

C(jε|aε) dxdt ≤
∫∫

ΩT

C(j|a ∧M) dxdt.

To perform the limit M → ∞, we use C(j|a ∧M) ≤ C(j|a ∧ 1) ≤ max
{
C(j|1),C(j|ργ)

}
∈ L1(ΩT ) due to the

assumption and C(j|1) = C(j) ∈ L1(ΩT ). Hence, by dominated convergence the limit M → ∞ provides the desired
estimate (6.8).

Remark 6.4 (Convexity instead of commutator estimate). The above commutator estimate can be avoided if the function
(ρ, s) 7→ C (s|ργ) is jointly convex. Then , the result follows simply by applying Jensen’s inequality for convolutions,
i.e.,

∫∫
C (J∗kε|(ρ∗kε)γ) dx dt ≤

∫∫
C (j|ργ) dx dt. This argument is usually used for linear reactions, see e.g.

[Ste21, PR∗22, HrT23].

Indeed, the joint convexity holds if and only if |γ|1 ≤ 1. Since C(s|g(ρ)) is the Legendre-Fenchel transorm of g(ρ)C∗(ζ),
we have joint convexity if and only if ρ 7→ g(ρ) is concave. For g(ρ) = ργ the second derivative D2g has the explicit form

D2g(ρ) = −ργ diag(1/ρi)I A(γ) diag(1/ρi)I with A(γ) = diag(γ)− γ⊗γ.

Hence, g is concave if and only if A(γ) is positive semi-definite. However, we have

b ·A(γ)b =
∑
i∈I

γib
2
i −

(∑
i∈I

γibi

)2
≥
∑
i∈I

γib
2
i −

(∑
ı̄∈I

γı̄

)(∑
i∈I

γibi

)
=
(
1−

∑
ı̄∈I

γı̄

)∑
i∈I

γib
2
i .

Hence,
∑
ı̄∈I γı̄ ≤ 1 implies the desired concavity. However, considering the function t → g(tc) = tλcγ gives λ =∑

ı̄∈I γı̄, and concavity implies λ ≤ 1.

Putting the above results together, we can now prove Theorem 4.8.

Proof of Theorem 4.8. The proof is performed in several steps. First, we regularize and shift the density by a positive
constant and show the chain rule for that situation. Then follows the harder part of estimating the limits. For this we rely on
Proposition 6.3.
1. Step (Regularization): We note that from the bound on the energy and dissipation, the curve t 7→ ρ(t) is absolutely
continuous with values in (W1,∞(X))∗ and it has a Lebesgue density ρdx for almost all t ∈ [0, T ]. Furthermore, we
have ρ ∈ Lpcrit([0, T ]×X), f ∈ L1(0, T, Ydiff), j ∈ L1([0, T ]×Yreact) by Proposition 5.8 and Proposition 5.5. Given
σ > 0 and a mollifier (kε)ε>0, we define the component-wise shifted and regularized trajectory

ρε,σ := (ρ+ σ) ∗ kε,

and correspondingly the regularized fluxes fε := f ∗ kε and jε := j ∗ kε. Clearly, (ρε,σ, fε, jε) ∈ CE, where we have
used that for the reactions the stoichiometric matrix Γ∗ commutes with the mollification. Moreover, we have

ρε,σ → ρ in L1([0, T ]×X), jε → j in L1([0, T ]× Ydiff), fε → f in L1([0, T ]× Yreact).

2. Step (Chain rule for regularized curve): Now, we show that for fixed ε, σ > 0 the trajectory t 7→ E(ρε,σ(t)) is
absolutely continuous and satisfies the upper chain rule. For this, we first note that there is a constant Mε > 0 such that
∥ρε,σ∥L∞([0,T ]×Td) ≤ Mε and we have ρε,σ ≥ σ > 0. To show absolute continuity, we fix s, t ∈ [0, T ], and since on
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[σ,Mε + σ] the Boltzmann function [σ,Mε + σ] ∋ r 7→ λB(r) ∈ [0,∞) is Lipschitz continuous, i.e., there is Lσ,ε > 0

such that ∀ r1, r2 ∈ [σ,Mε + σ] : |λ′B(r1)− λ
′

B(r2)| ≤ Lσ,ε|r1 − r2|, we compute

E(ρε,σ(t))− E(ρε,σ(s)) ≤
∑
i∈I

∫
Td

|λB(ρε,σi (t))− λB(ρ
ε,σ
i (s)|dx

≤ Lσ,ε
∑
i∈I

∫
Td

|ρε,σi (t)− ρε,σi (s)|dx = Lσ,ε
∑
i∈I

∫
Td

|ρεi (t)− ρεi (s)|dx.

The mollifier kε is a test function in C∞
c with a (possibly bad) Lipschitz constant Cε, which implies

E(ρε,σ(t))− E(ρε,σ(s)) ≤ CεLσ,ε∥ρ(t)− ρ(s)∥(W 1,∞)∗ .

Hence, t 7→ E(ρε,σ) is absolutely continuous, and we obtain by the differentiability of r 7→ λB(r) on [σ,Mε + σ] that

d

dt
E(ρε,σ(t)) =

∑
i∈I

∫
Td

log(ρε,σi (t)/ωi)∂tρ
ε,σ
i (t) dx = ⟨log(ρε,σ(t)/ω), (−divfε(t) + Γ∗jε(t))⟩

= ⟨∇ log(ρε,σ(t)/ω), fε(t)⟩+ ⟨Γ log(ρε,σ(t)/w), jε(t)⟩,

which by integrating in time leads to

E(ρε,σ(t))− E(ρε,σ(s)) =
∫ t

s

⟨∇ log(ρε,σ(r)/ω), fε(r)⟩+ ⟨Γ log(ρε,σ(r)/w), jε(r)⟩dr.

Here, we have used the chain rule with the nice test function ∇ log(ρε,σ(r)/w). In particular, by Legendre duality we
obtain

E(ρε,σ(t))− E(ρε,σ(s)) = −
∫ t

s

⟨∇ log(ρε,σ(r)/ω),−fε(r)⟩+ ⟨Γ log(ρε,σ(r)/w),−jε(r)⟩dr

≥ −
∫ t

s

Rdiff(ρ
ε,σ, fε) + Sdiff(ρ

ε,σ) +Rreact(ρ
ε,σ, jε) + Sreact(ρ

ε,σ) dr.

Hence, it follows the chain rule inequality for the regularized curve that L[s,t](ρε,σ, fε, jε) ≥ 0.
3. Step (Limit σ → 0 and ε → 0): First, we observe that convergence of the energies is clear due to the convexity.
Hence, it suffices to show that

lim sup
σ→0

lim sup
ε→0

∫ t

s

Rdiff(ρ
ε,σ, fε) dτ ≤

∫ t

s

Rdiff(ρ, f) dτ,

lim sup
σ→0

lim sup
ε→0

∫ t

s

Sdiff(ρ
ε,σ) dτ ≤

∫ t

s

Sdiff(ρ) dτ,

lim sup
σ→0

lim sup
ε→0

∫ t

s

Rreact(ρ
ε,σ, jε) dτ ≤

∫ t

s

Rreact(ρ, j) dτ,

lim sup
σ→0

lim sup
ε→0

∫ t

s

Sreact(ρ
ε,σ) dτ ≤

∫ t

s

Sreact(ρ) dτ.

We will treat all four estimates and also the convergences σ → 0 and ε→ 0 separately. In each term we will consider the
limit ε→ 0 first, sending σ → 0 afterwards.
3a (Diffusive terms): The rate term Rdiff as well as the slope term Sdiff are convex functionals. Hence, the upper limit
bound for ε → 0 follows by Jensen’s inequality (see e.g. [AGS08, Lem. 8.1.10]) together with ∇ρεi ⇀ ∇ρi, jεr ⇀ jr in

L1([0, T ]) and ρεi ⇀ ρi. For the limit σ → 0, we simply observe that ρi + σ ≥ ρi which implies that |fi|2
ρi+σ

≤ |fi|2
ρi

.

Moreover, we have ∇
√
ρi + σ =

√
ρi√
ρi+δ

∇√
ρi ≤ ∇√

ρ. This proves the desired estimate for the diffusive terms, both
the slope and the rate term.
3b (Reactive rate term): The limit ε → 0 was shown in Proposition 6.3, where we now rely on Assumption (4.A2) with
p = pcrit. For the limit σ → 0, we again use the monotonicity of the perspective function, to get the pointwise bound in
the integrand

C

(
jr

∣∣∣√(ρi + σ)
α
(ρ+ σ)

β
i

)
≤ C

(
jr

∣∣∣√ραi ρβi ) .
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3c (Reactive slope term): We use the general fact that a continuous function Φ : RI → R satisfying the growth estimate
|Φ(u)| ≤ C(1+|u|)r defines via u 7→ Φ ◦ u a (strongly) continuous Nemitskii operator from Lrq(Ω) into Lq(Ω) for all
q ≥ 1.

The reactive slope is the sum Sreact =
∑
r∈R Sr with

Sr(ρ) = 2κr

∫∫
ΩT

(
ω(βr−αr)/2ρα

r

− 2ρ(α
r+βr)/2 + ω(αr−βr)/2ρβ

r
)
dx dt =: S1

r (ρ) + S2
r (ρ) + S3

r (ρ).

By Assumption 4.A2 all three terms define strongly continuous mappings from Lpcrit into L1, which implies that Sreact =∑
r∈R Sr is strongly continuous from Lpcrit into [0,∞). Thus, using ρε,σ → ρ in Lpcrit we can pass to the limit ε, σ → 0,

and the result follows.

It remains to prove Proposition 3.14, relating the notions of continuum EDB solutions and weak solutions with each other.

Proof of Proposition 3.14. Under the condition ρi ∈ [σ, 1/σ] it is standard to show that weak solutions are continuum
EDB solutions. Indeed, for i ∈ I , we start from the definition of weak solutions with φ ∈ L2(0, T ; H1(X)) in the form

0 =

∫ T

0

〈
∂tρi, φ

〉
dt+

∫
ΩT

δiρi∇ log
( ρi
ωi

)
· ∇φ+

∑
r∈R

γri κrω
(αr+βr)/2

( ραr

ωαr − ρβ
r

ωβr

)
φdxdt.

Using ρi ∈ [σ, 1/σ] we are allowed to choose the test function φ(t) = log(ρi/ωi) for t ∈ [t1, t2] and 0 otherwise.

Summing over i ∈ I and using the classical chain rule for E (now evaluated only on the interval [σ/ω∗, 1/(ω∗σ)] ⊂
(0,∞) ), we obtain

E(ρ(t1))− E(ρ(t2)) +
∫ t2

t1

∫
Td

GDE(ρ) • (f, j) dxdt = 0

where f = (fi)i and j = (jr)r are given as in (3.9). By the definitions of S and R in the Definitions 3.9 and 3.10 with
S(ρ) = R∗(ρ,−GDE(ρ)) (as ρi ≥ σ), we have the identity GDE(ρ) • (f, j) = R(ρ, f, j) + S(ρ), which implies
that (ρ, f, j) is a continuum EDB solution.

For the opposite direction, we start from a continuum EDB solution (ρ, f, j) such that we have (ρ, f, j) ∈ CE, and
D(ρ, f, j) <∞, which, under the assumption ρi ∈ [σ, 1/σ], imply the regularity

ρ ∈ L2(0, T ; H1(Td)), f ∈ L2(ΩT ), j ∈ L1(ΩT ), ∂tρ ∈ L2(0, T ; H−1(Td)) + L1(ΩT ).

Moreover, the derivative DE(ρ) =
(
log(ρi/ωi)

)
i∈I is well-defined in L2(0, T ; H1(Td)) and satisfies the identity

S(ρ) = R∗(ρ,−GDE(ρ)
)
. Together, this is enough to establish the chain rule

d

dt
E(ρ(t)) = ⟨∂tρ,DE(ρ)⟩ = ⟨GDE(ρ), (f, j)⟩

=

∫
Td

∑
i∈I

∇ log
( ρi
ωi

)
· fi + log

( ρ
ω

)
• Γ∗ j dx.

Inserting this into the relation L(ρ, f, j) = 0 for continuum EDB solutions and using that S(ρ) = R∗(ρ,−GDE(ρ)
)
,

we obtain
⟨GDE(ρ), (f, j)⟩ = R(ρ, f, j) +R∗(ρ,−GDE(ρ)

)
for a.a. t ∈ [0, T ].

Since ρi ≥ σ > 0, we conclude (f, j) = D(ξ,ζ)R∗(ρ,−GDE(ρ)
)

which provides the desired flux relations (3.9) a.e.
in [0, T ] × Td. The fact that ρ is a weak solution follows now from the fact that (ρ, f, j) satisfies the continuity equation
CE in the sense of distributions, i.e., ∂tρ = G∗(f, j).

A Proof of the magical estimate (3.4d)

Throughout, we consider p > 1. With λB(r) = r log r − r + 1 and Up(w) =
1

p(p−1) (w
p − pw + p− 1) we have the

identity

wλB
( c
w

)
=
p−1

p
λB(c)− (p−1)Up(w) +

1

p
wpλB

( c
wp
)
≥ p−1

p
λB(c)− (p−1)Up(w), (A.1)
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see [FH∗22, Eqn. (2.7)] for an earlier occurrence. Our function C is the convex conjugate of C∗, which is the sum of two
exponentials. Hence, C can be written as an infimal convolution, namely

C(s) = min
{
2λB(a1) + 2λB(−a2)

∣∣ a1 + a2 = s
}
. (A.2)

Combining this representation with (A.1) we obtain a lower estimate on C(a|w) = wC(a/w) that corresponds to (A.1).

Proposition A.1 (Magical estimate for C). For all s ∈ R, w > 0, and p > 1 we have

C(s|w) ≥

{
C(s) for w ∈ [0, 1],

p−1
p C(s)− 4(p−1)Up(w) for w ≥ 1.

.

Proof. The estimate for w ∈ [0, 1] follows directly from the monotonicity (3.4b).

For w ≥ 1 we exploit the infimal convolution (A.2) and (A.1) to obtain the following chain of estimates:

C(s|w) (A.2)
= 2 min

a1+a2=s

{
wλB(a1/w) + wλB(−a2/w)}

≥ 2 min
a1+a2=s

{
p−1
p λB(a1)− (p−1)Up(w) +

p−1
p λB(−a2)− (p−1)Up(w)

}
(A.2)
=

p−1

p
C(s)− 4(p−1)Up(w).

This is the desired estimate for w ≥ 1.

The desired magical estimate (3.4d) now follows from Up(w) ≤ wp/(p(p−1)) for w ≥ 1 and Proposition A.1 by
rearranging the estimate.

The main usage of the estimate is in the integrated form namely∫
Ω

C(s) dµ ≤ p

p−1

∫
Ω

C(s|w) dµ+
4

p−1

∫
Ω

wp dµ.

The following example shows that estimating the integral on the left-hand side by the two integrals on the right-hand side
is not possible for the case p = 1, i.e. p > 1 is essential. We give an example with

∫
Ω
C(s|w) dµ+

∫
Ω
λB(w) dµ <∞

but
∫
Ω
C(s) dµ = ∞.

Remark A.2 (Counterexample). We let Ω = ]0, 1/2[, take µ = L1 and choose

s(x) =
1

x
(
log(1/x)

)γ and w(x) =
1

x
(
log(1/x)

)ω with 1 < γ < 2 < ω.

This gives s ∈ L1(Ω),
∫
Ω
λB(w) dx < ∞, and

∫
Ω
C(s) dx = ∞. With s(x)/w(x) =

(
log(1/x)

)ω−γ
and C(r) ≈

r log(1+r) for r ≫ 1 we find
∫
Ω
C(s|w) dx <∞.

B Superlinear functions: Proof of Lemma 3.3

Lemma 3.3 involves the superlinear functions ϕ and ψ and constructs another superlinear function Ξ = Ξϕ,ψ . It is a
generalization of (3.4d) which corresponds to ϕ = C and ψ(w) = cwp with p > 1. Then ψC can be estimated below by
cpC.

It is easy to see that Ξ is even and increasing on [0,∞) as s 7→ wϕ(s/w) is so for each w > 0. As ψ is increasing and
w 7→ wϕ(s/w) is decreasing (as sϕ′(s) ≥ ϕ(s)) we have the lower estimate

Ξ(s) ≥ min{w∗ϕ(s/w∗), ψ(w∗)} for all w∗ > 0,

and it remains to choose w∗ appropriate for each s.

The superlinearity of ψ provides for each M > 1 a wM ≥ 1 such that ψ(wM ) ≥ MwM . For sM = M1/2wM and
using C(s|w) = wC(s/w) we thus obtain

Ξ(sM )

sM
≥ min

{wMϕ(sM/wM )

sM
,
ψ(wM )

sM

}
= min

{ϕ(M1/2)

M1/2
,M1/2

}
→ ∞

for M → ∞, which implies sM → ∞. As Ξ is increasing on [0,∞), the desired superlinearity of Ξ and Lemma 3.3 are
established.
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C Gagliardo-Nirenberg

To prove Proposition 5.4, we will use a variant of the Gagliardo-Nirenberg estimate handling spatial and temporal integra-
bility according to the a priori estimates from the L∞ bound for the energy and the L2 bound for the dissipation. We will
use the classical dimension-dependent Gagliardo-Nirenberg estimate

∥u∥Lq(Td) ≤ Cq,d∥u∥
1−θq
L2(Td)

∥u∥θq
H1(Td)

with θq =
d

2
− d

q
,

where q ∈ [2,∞) and (d−2)q ≤ 2d. With this, we obtain for α > 0 and r ≥ 1 with αr ≥ 2 and (d−2)αr ≤ 2d the
estimate ∫∫

ΩT

uαv dx dt ≤
∫ T

0

∥u(t)∥αLαr(Td)∥v(t)∥Lr′ (Td) dt

≤ Cααr,d∥v∥L∞([0,T ];Lr′ (Td))∥u∥
α(1−θαr)

L∞([0,T ];L2(Td))

∫ T

0

∥u(t)∥αθαr

H1(Td)
dt,

(C.1)

where r′ = r/(r−1) is the dual exponent of r.
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