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Multi-level neural networks for high-dimensional parametric
obstacle problems

Martin Eigel, Cosmas Heiß, Janina Schütte

Abstract

A new method to solve computationally challenging (random) parametric obstacle problems
is developed and analyzed, where the parameters can influence the related partial differential
equation (PDE) and determine the position and surface structure of the obstacle. As govern-
ing equation, a stationary elliptic diffusion problem is assumed. The high-dimensional solution
of the obstacle problem is approximated by a specifically constructed convolutional neural net-
work (CNN). This novel algorithm is inspired by a finite element constrained multigrid algorithm
to represent the parameter to solution map. This has two benefits: First, it allows for efficient
practical computations since multi-level data is used as an explicit output of the NN thanks to an
appropriate data preprocessing. This improves the efficacy of the training process and subse-
quently leads to small errors in the natural energy norm. Second, the comparison of the CNN to
a multigrid algorithm provides means to carry out a complete a priori convergence and complex-
ity analysis of the proposed NN architecture. Numerical experiments illustrate a state-of-the-art
performance for this challenging problem.

1 Introduction

Free boundary problems arise in different research and engineering areas. They constitute solutions
of a PDE with a priori unknown boundaries. Well-known examples include classes of obstacle prob-
lems and variational inequalities. The solution of a classical obstacle problem describes the position
of an elastic membrane as a function u, which is fixed on the boundary of the domain D, always lies
above some known obstacle φ and is under the influence of some forcing f , see [31]. The interface
where the membrane touches the obstacle is a priori unknown. On the part of the domain where the
membrane hangs freely, the position function fulfills a stationary diffusion equation. Fixing u on the
boundary, the problem considered here has the form

u(x,y) ≥ φ(x,y) for all x ∈ D
−∇ · (κ(x,y)∇u(x,y)) = f(x,y) for all x such that u(x,y) > φ(x,y)

−∇ · (κ(x,y)∇u(x,y)) ≥ f(x,y) for all x ∈ D
, (1)

depending on some coefficient κ and some countably infinite dimensional parameter vector y ∈ Γ ⊆
RN. The dependence on κ has for instance also been considered in [16, 25]. Obstacle problems are
found in a variety of applications, namely the Stefan problem describing the process of ice melting in
water, can be rewritten in form of the obstacle problem [12]. Furthermore, the obstacle problem finds
applications in financial mathematics [5, 6, 27] and the minimizer of interaction energies can be written
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in terms of the solution of an obstacle problem [8], which are encountered e.g. in in physics in particle
behavior [22, 23] or in biology in collective behavior of animals [3, 11, 15]. For more information on
practical uses of the obstacle problem, we refer to [17, 18, 31] and references therein.

With the gaining popularity of scientific machine learning (SciML), neural networks have been applied
to solve obstacle problems in different ways, where the equations can be incorporated into a loss
function. The obstacle condition can either be encoded in the neural network architecture, as e.g.
in the first approach in [38] or in [2], or it can be enforced by penelization, as e.g. in the second
approach in [38] or in [9]. In [1], the variational formulation of the obstacle problem is rewritten in a
min-max formulation that is then used for training.

In the work presented here the coefficient and the obstacle depend on some high-dimensional stochas-
tic parameter vector. In this setting the obstacle problem has to be solved for a large number of real-
izations of the vector. Classical mathematical solvers, as for example presented in [20] apply to a large
class of coefficients. We exploit and inherent distribution of the parameters to develop more efficient
tuned surrogate models mapping realizations of κ and φ to solutions of the obstacle problem.

A surrogate model mapping φ to the solution has been derived in [33]. The proximal neural network
architecture with activation functions enforcing the obstacle condition was analyzed in the more gen-
eral setting of variational inequalities. The convergence achieved in [33, Theorem 4.2] based on a
fixed κ and φ is comparable to the convergence achieved in the present work for variable κ and φ as
the analysis is based on an iterative scheme to approximate the solution in both cases. The architec-
ture is implemented for the obstacle problem with variable obstacles [33, Example 4.4, Section 6.3],
where φ can be mapped to the solution of the problem. The architecture in our work is analyzed and
implemented for a variable obstacle and an additional variable coefficient and forcing.

Here, a multi-level decomposition of the solutions is utilized to implement individual networks approx-
imating a coarse solution and fine grid corrections. As in this decomposition corrections on fine grids
are only of small values, only a low accuracy is needed on fine grids with many parameters. This can
be made use of by implementing comparably small NN architectures on high levels in terms of either
the number of trainable parameters or number of samples on fine grids. Stochastic properties of the
parametric obstacle problem are computed and analyzed based on multi-level decompositions of fi-
nite element spaces in [25] for fixed obstacles and in [4] for stochastic obstacles, based on adaptive
finite element methods in [26].

The considered architecture inspired by the CNN constructed in [21] for parametric partial differential
equations is analyzed in terms of expressivity specifically for the obstacle problem, i.e. with respect to
the needed number of trainable parameters to achieve a required accuracy. We prove that CNNs can
approximate a projected Richardson iteration leading to bounds on the number of parameters only
depending logarithmically on the required accuracy. Furthermore, we prove that a multigrid algorithm
based on the projected Richardson iteration and a monotone restriction operator can be approximated
by the applied architecture. This shows that the surrogate model is at least as expressive as the
multigrid solver.

The CNN architecture is tested for different parameter dimensions and for constant and variable ob-
stacles and elasticities.

Main contributions:

■ A CNN architecture mapping the coefficient, obstacle, and force to the solution of the obstacle
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problem is presented.

■ The architecture is analyzed in terms of expressivity. To the best of the authors knowledge,
the achieved theoretical convergence results have so far only been derived for obstacle-to-
solution maps for other architectures. The main result is presented in Theorem 5.3. Assuming
that the coefficient is uniformly bounded from below and above there exists a constant C > 0
such that for any ε > 0 there exists a CNN Ψ with the number of parameters bounded by
#Ψ ≤ C log (ε−1) such that and for all y ∈ Γ parameterizing the coefficient, force and
obstacle it holds

∥Ψ(κ, f ,φ)− u(·,y)∥H1 ≤ C (∥f∥∗ + ∥φ∥H1) ε,

where u is the collection of finite element coefficients of the solution of a discretized parametric
obstacle problem and κ, f ,φ are the discretized coefficient, force, and obstacle.

■ The combination of the provably well suited architecture and a multi-level decomposition of
solutions as an output of the CNN leads to state-of-the-art numerical results.

2 Preliminaries

Throughout this work let D ⊆ Rd be a domain with a smooth boundary and Γ ⊆ RN be a countably
infinite dimensional parameter space. Furthermore, let φ : D × Γ → R be a smooth obstacle such
that φ(x,y) ≤ 0 for all x ∈ ∂D,y ∈ Γ. Let κ : D × Γ → R be a coefficient, which is uniformly
bounded from above and below, i.e. there exist a constants c,C > 0 such that for all y ∈ Γ and
x ∈ D it holds c ≤ κ(x,y) ≤ C. This implies uniform ellipticity of the differential operator. Let
f : D × Γ→ R be the forcing such that f(·,y) ∈ L2(D) for each y ∈ Γ.

For v ∈ H1
0 (D), we make use of the norms

∥v∥2L2(D) :=

∫
D

v2 dx,

∥v∥2H1(D) := ∥v∥
2
L2(D) + ∥∇v∥

2
L2(D) ,

∥v∥2Ay
:=

∫
D

κ(·,y) ⟨∇v,∇v⟩ dx.

For v2 ∈ L2(D) ↪→ H−1, we associate v2 with its associated function in H−1 to define the dual
norm by

∥v2∥H−1 := sup
v∈H1

∥v∥H1=1

∫
D

v2(x)v(x) dx. (2)

Generating training samples for our approach relies on numerical methods for solving problem (1).
As our method is heavily inspired by multigrid solvers, we now introduce the finite element based
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methodology usually applied to this type of problem. Here solutions are approximated in finite dimen-
sional subspaces of H1

0 (D). It leads to an algebraic equation to identify the coefficients of a linear
combination of basis functions determined by a mesh. In this work, classical P1 finite element spaces
are considered. We skip well-known results about standard FEM and refer to [36, 14, 7] for a detailed
overview.

In our setting, let T be a uniform triangulation of the domain D with nodes N . For the number of
nodes in the triangulation N := |N | and each node i = 1, . . . , N let λi be the nodal hat function,
which is linear on every triangle, equal to 1 at node i and 0 at every other node. The set of all such hat
functions is then referred to a s the P1 FE basis. Let h > 0 be the minimal side length over all triangles
in T . The considered finite element space is defined by Vh := span{λi : i = 1, . . . N}. Functions
vh ∈ Vh can then be written as linear combination of basis functions in the form vh =

∑N
i=1 viλi

with coefficients v ∈ RN .

Note that the uniform lower and upper bounds on κ imply the existence of constants cH1 , CH1 , CVh
>

0 such that for all vh ∈ Vh it holds that

cH1 ∥vh∥Ay
≤ ∥vh∥H1(D) ≤ CH1 ∥vh∥Ay

, (3)

∥⟨∇vh,∇vh⟩∥L2(D) ≤ CVh
∥vh∥L2(D) . (4)

The second equation is often called reverse Poincaré inequality.

3 Parametric obstacle problem

The considered obstacle problem is described in (1). In our parametric setting, the obstacle, the
coefficient and the forcing depend on some possibly countably infinite dimensional parameter vector
y ∈ Γ ⊆ RN. This assumption is opposed to y only parameterizing the obstacle as for instance
implemented in [33].

Note that the contact set, i.e. the area where the solution is equal to the obstacle, is not known in
advance. An example of a parameter field sample, the solution and the contact set is depicted in
Figure 3.1.

For the finite element approach, the problem is expressed in terms of a variational formulation. Dis-
cretizing the obstacle φ(·,y), the ellipticity κ(·,y) in Vh, testing the forcing f in Vh, and discretizing
the test functions v and the solution u in the set K := {vh ∈ Vh : vh ≥ φ a.e. in D} the following
variational formulation can be derived.

Problem 3.1 (Variational parametric obstacle problem). Find uh ∈ K such that for all vh ∈ K it
holds ∫

D

κ(·,y) ⟨∇uh,∇(vh − uh)⟩ dx ≥
∫
D

f(x)(vh − uh)(x) dx.

With uniform ellipticity as assumed here, it can be shown that a unique solution of (3.1) exists for every
y ∈ Γ, e.g. see [19, Chapter 2.2] for a proof. Note that choosing Vh to be the finite element space
of low order polynomials, e.g. here P1 basis functions, is sufficient. This is a result of the solution of
the nonlinear problem in general not being "very smoothöver the whole domain despite smooth data,

DOI 10.20347/WIAS.PREPRINT.3193 Berlin 2024



Multi-level CNNs for parametric obstacle problems 5

Figure 3.1: An example realization of a field κ, the respective solution to the obstacle problem u and
the corresponding contact set indicating where the solution is equal to the obstacle are shown for a
constant obstacle φ ≡ −0.036. The solution is equal to the obstacle in the purple part in the last
image while it satisfies the PDE on the yellow part of the domain. Since the contact set is unknown in
advance, it is part of the solution for the given parameter field.

e.g. see [10, Chapter 5]. In terms of the finite element coefficients the problem is equivalently written
in the following form, e.g. see [19, Chapter 2.3].

Problem 3.2 (Variational parametric obstacle problem, discretized). Let Ay ∈ RN×N be the dis-
cretized operator and f ∈ RN the tested forcing defined for i, j = 1, . . . , N by

(Ay)i,j =

∫
D

κh(x,y) ⟨∇λi(x),∇λj(x)⟩ dx and fi =

∫
D

f(x)λi(x) dx. (5)

Find u ∈ RN such that for the discretized obstacle φh =
∑N

i=1φiλi it holds
ui ≥ φi for i = 1, . . . , N,

(Ayu)i ≥ fi for i = 1, . . . , N,

(Ayu)i = fi for ui > φi.

(6)

Since φ is not constrained to be zero on the boundary, one has to apply the discretization of the
obstacle with care. The utilization fo P1 elements here circumvents this consideration as the obstacle
condition can equivalently be enforced on inner vertices. Additionally, note that it holds

∥vh∥2Ay
=

N∑
i,j=1

vivj

∫
D

κ(·,y) ⟨∇λi,∇λi⟩ dx = v⊺Ayv =: ∥v∥2Ay
. (7)

4 Multigrid solver

In this work the focus lies on solving the presented discretized obstacle problem (6) with a suitable
NN architecture, which provides practical and theoretical benefits. For the theoretical underpinnings
it is common to analyze NNs with respect to the number of trainable parameters as a measure of
representation complexity. In the next chapters it is shown that our NN architecture is able to approxi-
mate a classical constrained multigrid solver. This means that the network is at least as expressive as
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multigrid solvers with the possibility to find more accurate solutions. The central property we require
for the later analysis is that the algorithm exhibits a structure amenable to an efficient NN approxima-
tion. This then allows the derivation of a quantitative convergence guarantee with complexity bounds.
The solver provably converges and is based on a multigrid algorithm with a projection method as a
smoother on every grid as detailed subsequently.

4.1 Projected Richardson iteration

Numerous algorithms have been developed in the past decades to solve Theorem 3.1 many of which
are iterative approaches, see e.g. [20, 19, 37]. As a preparation for the later CNN construction, a
projection method related to the Richardson iteration is introduced in the following. The particular
version considered here can be found in [37, Section 3] and is called projected Richardson iteration
throughout this work.

The main idea is to iteratively update an approximate solution with a weighted residual and apply a
projection operation to enforce the given obstacle constraint. Suppressing the dependence on y ∈ Γ
in the notation, let ω > 0 be some damping parameter, A ∈ RN×N be defined as in (5), f the tested
right-hand side and φ be the finite element coefficients of the obstacle of the parametric obstacle
problem. Then, the algorithm consists of iterating dampened updates given by

u(0) := φ,

u(k+1) := max
¶
u(k) + ω

Ä
f − Au(k)

ä
,φ
©
,

(8)

where the maximum is to be understood component-wise. To analyze the convergence of the algo-
rithm, the residual e(k) := u(k) − u is considered, where u is the solution of Theorem 3.2. With (6),
the solution satisfies

max {u+ ω(f − Au),φ} = u+max {ω(f − Au),φ− u} = u.

This can be seen by considering that for i = 1, . . . , N on the one hand φi − ui < 0 implies that
(f − Au)i = 0 and therefore the maximum is zero. On the other hand, φi − ui = 0 implies that
(f − Au)i ≤ 0 also leading to a maximum of zero. Using that the mapping x 7→ max{x,φ} is a
contraction, the residual can be bounded as follows.∥∥∥e(k+1)

∥∥∥
A
=
∥∥∥u(k+1) − u

∥∥∥
A

=
∥∥∥max

¶
u(k) + ω

Ä
f − Au(k)

ä
,φ
©
−max {u+ ω(f − Au),φ}

∥∥∥
A

≤
∥∥∥u(k) + ω

Ä
f − Au(k)

ä
− (u+ ω(f − Au))

∥∥∥
A

=
∥∥∥e(k) + ωA(u− u(k))

∥∥∥
A

≤ ∥I − ωA∥A
∥∥∥e(k)∥∥∥

A
.

(9)

Therefore, the rate of convergence of the method is bounded by the energy norm of I − ωA, where
ω > 0 needs to be chosen appropriately to ensure a contraction. For A := Ay defined as in (5), we
choose and bound ω independently of y to ensure convergence of the projected Richardson iteration
for any y ∈ Γ. First, ωy is chosen dependent on y such that the norm is bounded by a constant
smaller than 1 also depending on y.
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Multi-level CNNs for parametric obstacle problems 7

Lemma 4.1 (generalization of [34, Lemma B.2] or [7, Lemma 4.3]). Let y ∈ Γ and κ(·,y) > 0
everywhere. Then for any nonzero w ∈ RN it holds that

∥(I − ωyAy)w∥Ay
≤ (1− ωy) ∥w∥Ay

,

where 0 < ωy ≤ σmax(Ay)
−1.

The proof can be found in Appendix A. Second, ω is chosen independently of y such that the operator
norm is bounded by a constant smaller than 1, which is also independent of y.

Lemma 4.2. Assume that κ is uniformly bounded, i.e. there exists a constant C > 0 such that
κ(x,y) ≤ C for all x ∈ D,y ∈ Γ. Then, for all 0 < ω ≤ 1

CCVh

and y ∈ Γ it holds ∥I − ωAy∥Ay
≤

1− ω.

Proof. First, we note that the maximal eigenvalue of Ay is bounded as can be derived as follows. Let
v ∈ RdimVh be an eigenvector of Ay corresponding to the maximal eigenvalue and vh ∈ Vh be the
corresponding finite element function. Then, for the equivalence constant CVh

of the inverse Poincare
inequality in the finite dimensional space Vh it holds that

σmax(Ay) =
vTAyv

vTv
=

∫
D
κh(·,y) ⟨∇vh,∇vh⟩ dx∫

D
v2h dx

≤ C

∫
D
⟨∇vh,∇vh⟩ dx∫

D
v2h dx

≤ CC2
Vh
.

Choosing 0 < ω ≤ (CC2
Vh
)−1 ≤ σmax(Ay)

−1 for all y ∈ Γ yields the claim with Theorem 4.1.

4.2 Geometric multigrid

Note that the convergence rate 1 − ω in Theorem 4.1 is close to one for small ω, i.e. for large
constants CVh

defined in (4). In case of a uniform triangulation as considered here it can be shown
that CVh

= Ch−1 is a possible choice for some constant C > 0 only depending on the angles of the
triangles, see e.g. [14, Lemma 1.26] or [35]. In the two dimensional setting with a uniform triangulation
as considered here, the nodes are arranged on a uniform grid. Therefore, the minimal side length of
all triangles is given by h = (

√
N − 1)−1 leading to CVh

= C(
√
N − 1). Theorem 4.1 therefore

yields ω ≲ N−1. This relationship implies slow convergence of the projected Richardson iteration
for high fidelity discretizations, which is a reason why it cannot be considered state-of-the-art when
solving discretized PDEs.

Instead, the projected Richardson iteration provides the basis for geometric multigrid methods, which
are able to efficiently solve the problem at hand [20, 24]. An interplay between different meshes can
lead to a speedup in convergence with a number of necessary iterations independent of the grid
fidelity. Such results have been shown for instance for discrete Poisson problems in [14, Theorem
2.14] and [7, Theorem 4.2].

Multigrid methods are based on a set of L ∈ N triangulations T1, . . . , TL, e.g. generated by a
uniform or adaptive mesh refinement starting on the coarsest mesh T1, with nodes N1, . . . ,NL and
Nℓ := |Nℓ| for ℓ = 1, . . . , L such that the corresponding subsequent finite element spaces are
nested

V1 ⊆ . . . ⊆ VL ⊆ H1
0 (D).
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−→R −→P

−→R
max

−→P

Figure 4.1: The first row images show the weighted restriction as defined in [21]. A visualization of
the restriction operator defined in Theorem 4.4 is depicted in the second row images. In both rows
the first image illustrates an obstacle in black and an initial guess for the solution in blue. The second
images show the restricted obstacle together with a coarse grid solution in green. The last images
depicts the prolongated coarse grid solution together with the true obstacle. It can be seen that taking
a maximum, when restricting the obstacle, is critical for the coarse grid solution to still be above or
equal to the true obstacle on the finer grid. The dependence on a level ℓ is suppressed in the notation.

The method then projects approximate solutions to finer spaces or restricts them to coarser spaces,
applying smoothing iterations (the projected Richardson iteration) on coarse and fine grids succes-
sively. The considered prolongation operator used to interpolate functions on coarse grids into spaces
on fine grids in the discretized setting is defined as follows.

Definition 4.3 (Prolongation matrices). Let L ∈ N be the number of grids and for some ℓ ∈
{1, . . . , L} let Vℓ and Vℓ+1 as above. Then, the prolongation matrix Pℓ ∈ RNℓ+1×Nℓ is the ma-
trix representation of the canonical embedding of Vℓ into Vℓ+1 under their respective finite element
basis functions.

The considered restriction operator maps coefficients on a fine grid to coefficients on a coarse grid
such that the obstacle condition is still satisfied. The problem of applying the the restriction used
in [21] to the obstacle problem is shown in Figure 4.1.

Definition 4.4 (Monotone restriction operator). For ℓ = 1, . . . , L − 1 let Vℓ := span{λ(ℓ)i }
Nℓ
i=1

and Vℓ+1 := span{λ(ℓ+1)
i }Nℓ+1

i=1 be two nested P1 finite element spaces as above. Then, define the
monotone restriction operator Rmax

ℓ : RNℓ+1 → RNℓ by

(Rmax
ℓ u)i = max

¶
uj : suppλ

(ℓ+1)
j ⊆ suppλ

(ℓ)
i

©
.

These operators are used in the multigrid V-Cycle with monotone restriction (VCMR) in Algorithm 1.
Starting on the finest grid ℓ = L, the algorithm performs k projected Richardson iterations on the
given grid. Subsequently, the problem is projected to a coarser grid to approximate a correcting term,
where computations are cheaper. To approximate this term, the VCMR is called again with inputs
restricted to the next coarser grid ℓ−1. The obstacle is restricted by the monotone restriction operator
and the residual and the operator are restricted by the transposed prolongation (or weighted restric-
tion) operator. On the coarsest level ℓ = 1, the solution to the input problem is computed directly, e.g.
by applying projected Richardson iterations until the algorithm has converged. The correction terms
are returned to the higher levels and added to the current solution approximations. After the correction
is added, another m smoothing steps are performed. The notation VCMRm

k,k0,ℓ
is used to describe

the application of the VCMRk,ℓ m ∈ N times with k0 smoothing steps on the coarsest grid.
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Multi-level CNNs for parametric obstacle problems 9

Empirically, the described multigrid method provides a significant speedup. While for some problems
the speedup can be quantified theoretically [14, 7], to the best of our knowledge this has not been
shown for the obstacle problem. In contrast to multigrid methods for PDEs the nonlinearity of the
obstacle introduces errors in the coarse grid corrections through the monotone restriction, which can
slow down asymptotic convergence rates as for instance described in [20, Section 5.2]. The reason for
using the projected Richardson iteration on every grid, despite it not being a state-of-the-art method
(see [20, 37]), is its simplicity and the implications for the neural network architecture analyzed in the
following chapters.

Algorithm 1: Multigrid V-Cycle with monotone restriction: VCMRk,ℓ

Input: u, f , Ay,φ
for k pre-smoothing steps do

u← max {u+ ω(f − Ayu),φ} ▷ Perform smoothing steps
end
if ℓ = 1 then

solve Ayu = f for u on coarsest level ▷ E.g. by smoothing until converged
end
else

φ← Rmax
ℓ (φ− u) ▷ Compute monotone restricted obstacle

r← P ⊺
ℓ−1(f − Ayu) ▷ Compute restricted residual

Ay ← P ⊺
ℓ−1AyPℓ−1 ▷ Compute restricted operator

e← VCMRk,ℓ−1(0, r, Ay,φ) ▷ Use V-Cycle with monotone restriction on coarser grid
u← u+ Pℓ−1e ▷ Add coarse correction

end
for k post-smoothing steps do

u← max {u+ ω(f − Ayu),φ} ▷ Perform smoothing steps
end
return: u

5 Convolutional neural network

Convolutional neural networks (CNNs) have been proven to be an efficient tool for approximating
solutions to parametric PDEs, see [21, 32, 34]. For the application of this architecture to the parametric
obstacle problem, some additional steps have to be taken. For the analysis, the following conditions
are assumed for the activation function throughout this paper.

Assumption 5.1 (Activation function). Let τ : R→ R satisfy the following conditions:

1 There exists x0 ∈ R and an open interval I ⊆ R with x0 ∈ I such that τ is three times
differentiable on I and τ ′′(x0) ̸= 0.

2 For any ε > 0 there exist two affine-linear mappings ϱ1, ϱ2 : R→ R such that for all x ∈ R

|(ϱ2 ◦ τ ◦ ϱ1)(x)−max{x, 0}| ≤ ε.
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These conditions are fulfilled by a family of soft ReLU variants such as Softplus, SeLU, or ELU,
see [29]. The first condition is needed in the expressivity analysis to approximate multiplication, while
the second condition is applied to approximate the maximum in the projected Richardson iteration. In
the expressivity theory in [21], only the first condition is necessary since the maximum does not need
to be approximated. The number of trainable parameters of a given CNN Ψ is denoted by M(Ψ).

5.1 Expressivity

Similar to [21, Theorem 6] an approximation of a multigrid V-Cycle can be can be imitated by a CNN.
Here the VCMRm

k,k0,ℓ
is approximated with projected Richardson iteration instead of a plain Richard-

son iteration and newly including the monotone restriction operator. For the expressivity analysis, it
is first shown that the projected Richardson iteration can be approximated by a CNN of size growing
linearly in the number of iterations.

Theorem 5.2 (CNN for the projected Richardson iteration). There exists a constant C > 0 such
that for any ω,M, ε > 0 and m ∈ N there exists a CNN Ψ : R4×n×n → R1×n×n such that for
all discretized coefficients κ ∈ [−M,M ]n×n, initial guesses u ∈ [−M,M ]n×n, obstacles φ ∈
[−M,M ]n×n and tested right-hand sides f ∈ [−M,M ]n×n it holds

(i)
∥∥Ψ(u,κ, f ,φ)− u(m)

∥∥
H1(D)

≤ ε,

(ii) number of parameters bounded by M(Ψ) ≤ Cm.

The proof can be found in Appendix A. As derived in Section 4.1, the projected Richardson iteration
can approximate the true solution up to arbitrary accuracy if the smoothing coefficient ω > 0 is
chosen appropriately. Then, the CNN approximating the Richardson iteration also approximates the
solution of problem Theorem 3.2 as shown in the next corollary.

Corollary 5.3 (CNN for parametric obstacle problem). Assume that c ≤ κ(x,y) ≤ C is uniformly
bounded by some c,C > 0 over all y ∈ Γ, x ∈ D. Let u(·,y,φ) denote the solution of Theorem 3.2
for the parameter vector y ∈ Γ and obstacle φ. For every ε > 0, there exists a CNN Ψ such that

(i) for all y ∈ Γ it holds that

∥Ψ(φ,κy, f ,φ)− u(·,y,φ)∥H1 ≤ ε

Å
C2

H1 ∥f∥H−1 +
CH1

cH1

∥φ∥H1

ã
,

(ii) the number of parameters is bounded by #Ψ ≤ C
†
log (ε−1) log (1− (CCVh

)−1)
−1
£

, where
C > 0 is the independent constant from Theorem 5.2.

The proof can be found in Appendix A. The upper bound for number of parameters is grid-dependent
through the constant CVh

. In [21] the dependence on the size h is circumvented by approximating
a multigrid algorithm based on the Richardson iteration, which inspires a specific CNN architecture.
Here, a fitting multigrid is approximated as well. The approximation of the Richardson iteration in The-
orem 5.2 with the approximation of the prolongation and monotone restriction operator shows that
the whole Algorithm 1 can be approximated by a U-net based CNN similar to the construction in [21].
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The main differences lie in the additional projection in each step of the Richardson iteration and in
the monotone restriction operator. The approximation of the monotone restriction operator is proven
in the appendix in Theorem A.2.

Remark 5.4 (CNN for multigrid algorithm). Let Vh ⊆ H1
0 (D) be the P1 FE space on a uniform square

mesh. Then there exists a constant C > 0 such that for any M, ε > 0 and k,m, ℓ ∈ N there exists
a CNN Ψ : R4×dimVh → RdimVh with

(i)
∥∥Ψ(u0,κ, f ,φ)− VCMRm

k,k0,ℓ
(u0,κ, f ,φ)

∥∥
H1(D)

≤ ε for allu0,κ, f ,φ ∈ [−M,M ]dimVh

(ii) number of weights bounded by M(Ψ) ≤ Cmℓ.

The proof can be found in Appendix A. The analysis works similarly to the analysis carried out in [21].
The main difference lies in the additional application of the maximum of the solution approximation
and the obstacle in every step of the projected Richardson iteration and in the restriction operator. The
architecture of the CNN used in the numerical experiments in this work is inspired by the constructive
proof of Theorem 5.4. A description of the architecture can also be found in [21]. To the best of
our knowledge, a convergence speed-up of the VCMRm

k,k0,ℓ
compared to the projected Richardson

iteration has not been shown theoretically despite a considerable numerical speed up. Therefore,
another approximation of the solution based on this algorithm is not included here.

5.2 Multi-level advantage

Multi-level machine learning algorithms include training neural networks on efficient decompositions
of the data to improve performance. In [28] the generalization error for such a decomposition was ana-
lyzed. With the grids introduced in Section 4.2, lower-level models approximate a coarse grid solution
and higher-level models approximate high fidelity corrections. The implemented network introduced
in [21] is based on this multi-level decomposition. Here, a discretized solution operator uL : Γ→ VL
of the parametric obstacle problem is decomposed into components uℓ : Γ → Vℓ on the individual
spaces V1, . . . , VL by

uL =
L∑

ℓ=1

uℓ − uℓ−1 =
L∑

ℓ=1

vℓ,

where u0 is set to zero and vℓ : Γ → Vℓ are additive corrections on each level. This decomposi-
tion is visualized in Figure 6.1. The individual parts of the solution are approximated separately by
CNNs. First, a normalized solution on a coarse grid is approximated with a CNN Ψ1. Then, individ-
ual networks Ψ2 . . . ,ΨL are trained to approximate normalized corrections with some normalization
constant bℓ > 0 on finer grids with some accuracy εℓ > 0 with∥∥∥∥Ψℓ −

vℓ
bℓ

∥∥∥∥ ≤ εℓ.

Then, the weighted sum Ψ :=
∑L

ℓ=1 bℓΨℓ approximates the whole solution by

∥∥Ψ− uL∥∥ =

∥∥∥∥∥
L∑

ℓ=1

bℓ

Å
Ψℓ −

vℓ
bℓ

ã∥∥∥∥∥ ≤ L∑
ℓ=1

bℓ

∥∥∥∥Ψℓ −
vℓ
bℓ

∥∥∥∥ .

DOI 10.20347/WIAS.PREPRINT.3193 Berlin 2024



M. Eigel, C. Heiß, J. Schütte 12

If the normalization constant is chosen as an operator norm of vℓ and setting bℓ := ∥vℓ∥Lp(Γ,L2(D)),
the inequalities [4, Equation 6,10, Equation 7.6] imply that

∥∥Ψ− uL∥∥ =
L∑

ℓ=1

εℓhℓ(∥f∥L2(Γ,L2(D)) + ∥φ∥L2(Γ,H2(D))) ≤ Cf,φ

L∑
ℓ=1

εℓ2
−ℓ

holds, when considering that the multi-level decomposition applied in the given architecture yields
hℓ ≤ C2−ℓ for the maximal side length hℓ of triangles in Tℓ. To achieve an overall accuracy

Cf,φ

L∑
ℓ=1

εℓ2
−ℓ ≤ ε,

the accuracy of each sub-model on each level only has to satisfy

εℓ ≤
ε2ℓ

LCf,φ

. (10)

Since functions in high fidelity spaces have more degrees of freedom, they are in general more difficult
to approximate. The advantage of the decomposition then lies in the fact that the approximation in
higher dimensional spaces is allowed to be exponentially worse. This can be either translated to less
trainable parameters of the CNN or fewer expensive high fidelity solutions for training.

6 Numerical experiments

For the numerical tests, the U-net based architecture described in [21] and supported by the result
in Theorem 5.4 was used. Here, L = 7 nested FE spaces are considered. A first CNN then ap-
proximates the solution of the obstacle problem on the coarse grid FE space V1. Further individual
networks then approximate the corrections of the solution on finer meshes in V2, . . . , V7 as visualized
in Figure 6.1 for the first four spaces.

The following test cases are considered.

1 Deterministic obstacle. To solve Theorem 3.1 for a constant obstacle φ(x,y) = −0.035
and f(x) = 1 for all x ∈ D = [0, 1]2, a sample y ∈ Γ was drawn. As e.g. in [13, 21], the
coefficient field is assumed to have the representation

κ(x,y) := a0(x) +

p∑
m=1

ymam(x),

where am(x) := m−2 sin(⌊m+2
2
⌋πx1) sin(⌈m+2

2
⌉πx2) and y is chosen uniformly in Γ =

[−1, 1]p. A realization of the coefficient, the obstacle and the corresponding solution as well as
the contact domain are visualized in Figure 3.1.

2 Stochastic constant obstacle. The problem above is now implemented with the additional
variation of the obstacle with φ chosen as a constant function with value distributed uniformly
in [−0.045,−0.025]. Since the value of the obstacle is the p-th entry of the y, the sum above
defining κ only goes to p− 1.
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= + + +

Figure 6.1: The solution to the obstacle problem in V4 in the first row on the left-hand side can be
decomposed into corrections in V1, V2, V3, V4 of decreasing values on different grids as seen in the
first row. The sum of the corrections equals the full solution. The FE coefficients of the solution in RN4

and the corrections in RN1 ,RN2 ,RN3 ,RN4 are visualized in images underneath each function.

3 Rough surface obstacle. Similar to [4], problem Theorem 3.1 is solved for a constant coeffi-
cient κ ≡ 1. The domain is chosen as D = [0, 1]2 and the constant forcing is set to f ≡ 25.
The obstacle, which is used to model rough surfaces [30], is given by

φ(x,y) =
∑
q

Bq(H) cos(q · x+ yq),

where the sum is taken over all q with components, which are multiples of π such that 1 ≤
∥q∥2 ≤ 26. The phase shifts yq ∼ U([0, 2π]) and the Hurst exponent H ∼ U([0, 1]) are
mutually independent and the amplitudes are defined as

Bq(H) = π(2πmax(∥q∥2 , 10))
−(H+1)/25.

The parameter vector y is set to the collection of H and yq for all considered q. A realization
of the rough surface and corresponding solution can be found in Figure 6.2.

In each setting the problem was solved on L = 7 levels with function spaces of size (5 × 2ℓ−1 +
1) × (5 × 2ℓ−1 + 1) for ℓ = 1, . . . , L. The networks was trained with 10.000 training samples and
1024 validation samples. The number of parameters of the network on each level were selected as
shown in Table 1. Note that the network architecture is chosen to approximate a coarse grid solution
on the first level and finer grid corrections on higher levels. On finer grids, more FE coefficients need
to be estimated than on coarser grids, but the contributions of the finer corrections to the full solutions
are smaller than later corrective terms, see Section 5.2. Since the exponentially increasing number
of FE coefficients to approximate on each level is countered by the exponential increase of required
accuracy as derived in Eq. (10), approximately the same number of parameters on each level was
chosen for the CNN. Furthermore, note that on lower levels ℓ, the VCMRm

k,k0,ℓ
has fewer recursive

calls than on higher levels. Since one U-net with parameters on every considered level corresponds to
one full call of the VCMRm

k,k0,ℓ
, U-nets for lower levels need less parameters for a full downsampling
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Figure 6.2: The first image depicts a realization of the rough surface model [30]. In the second and
third images, the corresponding solution of the obstacle problem and the resulting contact set are
shown, where the solution is equal to the obstacle. The contact set is colored in purple.

Table 1: Collection of parameters of the used CNN architecture CNN, including the network output
dimensions of the FE solutions of the obstacle problem on different levels. For the complete solution,
all outputs and therefore all parameters on all levels are needed (and summed up). Moreover, the
number of parameters used in the form of concatenated U-nets on each level is displayed.

level 1 2 3 4 5 6 7

# params 1073248 1069984 1032992 1014496 838048 996000 1153952
# U-nets 11 6 4 3 2 2 2

and upsampling scheme. Therefore, on lower levels more U-nets are applied assuming the same
number of trainable parameters as on higher levels.

For each test case, the mean relativeH1(D) error and mean relative L2(D) error are calculated with
respect to a finite element solution on the same grid as the neural network output and with respect to
a (reference) fine grid solution. For N = 1024 test samples y1, . . . ,yN ∈ Γ, let u1, . . . , uN be the
output of the neural network in VL and let vL : Γ→ VL be the finite element solution operator on the
same grid. Furthermore, let vref : Γ→ H1 be the finite element solution operator on a grid two times
finer than the grid of vL. Then, define the same grid network error and the reference error by

EMR∗ =

√∑N
i=1 ∥ui − vL(yi)∥2∗∑N

i=1 ∥vL(yi)∥2∗
, E ref

MR∗ =

√∑N
i=1 ∥ui − vref(yi)∥2∗∑N

i=1 ∥vref(yi)∥2∗

with ∗ ∈ {H1, L2}.
The training of the CNN was repeated 5 times and the mean results as well as the variances over
the training procedures are recorded in Table 2 and Table 3. Table 2 shows the the errors in the
H1 norm. It can be observed that in all test cases the network error is significantly smaller than the
reference error, in some cases it is even a magnitude smaller. Therefore, the overall (prediction or
approximation) error could only efficiently be reduced by refining the grid. Furthermore, note that the
error does not increase with respect to the parameter dimension p despite the problem becoming
more challenging.

For the L2 error in Table 3, the domination of the FE approximation error is not as pronounced. This
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Table 2: The mean relative H1 error is reported for the error of the network to Galerkin solutions on
the same grid EMRH1 and with respect to the reference Galerkin solutions on a twice uniformly refined
grid E ref

MRH1 .

problem parameter dimension p EMRH1 E ref
MRH1

deterministic obstacle 10 4.76× 10−4 ± 2× 10−4 6.82× 10−3 ± 1× 10−5

50 4.35× 10−4 ± 1× 10−4 6.82× 10−3 ± 8× 10−6

stochastic obstacle 11 1.32× 10−3 ± 4× 10−4 6.92× 10−3 ± 7× 10−5

51 1.91× 10−3 ± 1× 10−3 7.17× 10−3 ± 4× 10−4

rough surface 100 2.13× 10−3 ± 6× 10−4 8.59× 10−3 ± 6× 10−4

220 2.07× 10−3 ± 2× 10−4 9.04× 10−3 ± 3× 10−5

Table 3: The mean relative L2 error is reported for the error of the network to Galerkin solutions on
the same grid EMRL2 and to reference Galerkin solutions on a twice uniformly refined grid E ref

MRL2 .

problem parameter dimension p EMRL2 E ref
MRL2

deterministic obstacle 10 1.85× 10−4 ± 5× 10−5 1.96× 10−4 ± 5× 10−5

50 1.41× 10−4 ± 4× 10−5 1.52× 10−4 ± 4× 10−5

stochastic obstacle 11 6.39× 10−4 ± 2× 10−4 6.43× 10−4 ± 2× 10−4

51 1.01× 10−3 ± 7× 10−4 1.01× 10−3 ± 6× 10−4

rough surface 100 7.00× 10−4 ± 4× 10−4 7.09× 10−4 ± 4× 10−4

220 5.40× 10−4 ± 3× 10−5 5.47± 10−4 ± 3× 10−5
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Figure 6.3: Error plots for the stochastic constant obstacle problem with parameter dimension p = 11
are shown for a trained CNN. Errors of the CNN output compared to a reference solution are plotted
in blue and errors of the finite element solution on the same grid as the CNN output to the reference
solution are plotted in orange. A line indicates the mean of the relative errors over a test set and the
area visualizes its variance. The left plot shows H1 errors and the right plot shows L2 errors.

Figure 6.4: Mean relative H1 (left) and L2 (right) errors for a CNN trained for the stochastic constant
obstacle problem with parameter dimension p = 11 are shown. The errors are plotted over the
outputs of the network on each level in the multi-level decomposition. It can be seen that the multigrid
corrections on fine grids are well approximated.

could be due to the fact that the network is trained with respect to theH1 error. The difference in error
convergence can also be seen in Figure 6.3, where the decay of theH1 andL2 errors for the obstacle
problem with variable obstacle and parameter dimension 11 over the degrees of freedom is visualized.
Both the error of the network and the reference solutions (∥ui − vref(yi)∥∗) and the error of the FE
solution on the same grids as the network output and the reference solution (∥vL(yi)− vref(yi)∥∗)
are considered. While theH1 error achieves the same convergence rate as the true Galerkin solution
on each refined grid, the L2 error suffers from a bias in the last few levels.

The error contribution of the individual levels is illustrated in Figure 6.4. The mean relative H1 and
L2 errors are visualized for the approximation of the correction in each discrete FE space. The ap-
proximated corrections are visualized in Figure 6.1. It can be seen that a high relative accuracy is
achieved for the coefficients of corrections on high fidelity grids despite approximately the same num-
ber of parameters being used for each sub-network. This underlines the effectiveness of the multigrid
decomposition.
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7 Conclusion

A multi-level NN architecture was analyzed in the context of a parametric obstacle problem, a highly
nonlinear and highly challenging extension to the studies in [21]. Here, it could be shown analytically
and numerically that their proposed architecture is well suited to solve the considered parametric ob-
stacle problem. An expressivity result for the architecture applied to the obstacle problem was derived,
stating an upper bound on the number of trainable parameters, which depends only logarithmically on
the required accuracy. The architecture was successfully applied to the parametric obstacle problem
for multiple parameter-setups with different dimensions, with variable coefficient and with constant as
well as variable and rough obstacles.
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A Proofs of expressivity theory

Proof of Theorem 4.1. First, assume some λ : D → R with λ = 0 on ∂D that is continuous and
Lebesgue-almost-everywhere differentiable. If λ is not constant zero this implies that there exists a
point x0 ∈ D and ε > 0 such that λ is differentiable and ∇λ ̸= 0 on an ε neighborhood of x0
denoted b Uε(x0). Then, due to κ(·,y) > 0 everywhere, we obtain that

ay(λ, λ) =

∫
D

κ(·,y) ⟨∇λ,∇λ⟩ dx ≥
∫
Uε(x0)

κ(·,y) ⟨∇λ,∇λ⟩ dx > 0.

Therefore, for any nonzero w ∈ RN we deduce that

w⊺Ayw = ay,k

(
N∑
i=1

wiλi,

N∑
i=1

wiλi

)
> 0

and hence Ay is positive definite. Denote the eigenvalues and eigenvectors of Ay by σi,vi for i =
1, . . . , N with

Ayv
i = σiv

i such that

δi,j =
〈
vi,vj

〉
ℓ2

for all i, j = 1, . . . , N.

Furthermore, for w ∈ RN , let

Jyw := (I − ωyAy)w.

Then, with w =
∑N

i=1 civ
i

Jyw =
N∑
i=1

ci(I − ωyAy)v
i =

N∑
i=1

ci(1− ωyσi)v
i.

Additionally,

|w|2 :=
N∑
i=1

σi(1− σiωy)c
2
i

defines a semi-norm due to 0 < ωy ≤ σmax(Ay)
−1. It then follows that

|w|2 =
N∑

i,j=1

(1− σiωy)σi
〈
vi,vj

〉
ℓ2
cicj =

〈
N∑
i=1

ci(1− σiωy)v
i,

N∑
j=1

cjv
j

〉
Ay

= ⟨Jyw,w⟩Ay
,

∥w∥2Ay
= ⟨Ayw,w⟩ℓ2 =

N∑
i,j=1

σicicj
〈
vi,vj

〉
ℓ2
=

N∑
i=1

c2iσi,

|w|2 =
N∑
i=1

σic
2
i −

N∑
i=1

σiωyc
2
i= (1− ωy)

N∑
i=1

σic
2
i = (1− ωy) ∥w∥2Ay

.
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With the Hölder inequality,

∥Jyw∥2Ay
=

N∑
i=1

σi(ci(1− σiωy))
2 =

N∑
i=1

(σ
1/3
i |ci|2/3)(σ

2/3
i |ci|4/3(1− σiωy)

2)

≤

(
N∑
i=1

(σ
1/3
i |ci|2/3)3

)1/3( N∑
i=1

(σ
2/3
i |ci|4/3(1− σiωy)

2)3/2

)2/3

=

(
N∑
i=1

σi|ci|2
)1/3( N∑

i=1

σi|ci|2(1− σiωy)
3

)2/3

.

This yields the result by estimating

∥Jyw∥3Ay
=
Ä
∥Jyw∥2Ay

ä3/2
≤

(
N∑
i=1

σic
2
i

)1/2( N∑
i=1

σic
2
i (1− σiωy)

3

)
= ∥w∥Ay

|Jyw|2

= ∥w∥Ay
(1− ωy) ∥Jyw∥2Ay

and dividing by ∥Jyw∥2Ay
.

Lemma A.1 (Maxima approximation). Let τ : R → R satisfy Theorem 5.1 ε,M > 0 and n ∈ N.
There exist convolutional (1, 1)-kernels K1 ∈ R2×2×1×1 and K2 ∈ R2×1×1×1 and biases B1 ∈
R2, B2 ∈ R such that

∥(ψK2,B2 ◦ τ ◦ ψK1,B1)(u,φ)−max{u,φ}∥L∞([−M,M ]2×n×n) ≤ ε,

where the maximum is defined component-wise.

Proof. Note that max{u,φ} = max{u − φ, 0} + φ and φ = max{φ, 0} + max{−φ, 0}.
Therefore, an approximation of the mappingÅ

u
φ

ã
7→
Å
u−φ
φ

ã
7→

Ñ
max{u−φ, 0}
max{φ, 0}
max{−φ, 0}

é
7→
(
max{u−φ, 0}+φ

)
yields the claim. The addition of channels in the first and last step of the flow can be represented by
kernels of width and height 1 with the appropriate number of input and output channels. According
to Theorem 5.1, there exist affine linear mappings ϱ1, ϱ2 : R → R such that the maximum of the
input and 0 can be approximated on [−2M, 2M ]. Accounting for u− φ ∈ [−2M, 2M ] for u,φ ∈
[−M,M ] implies that applying these maps to the appropriate channels provides an approximation of
the second step. Concatenating these maps shows the claim since the kernels have width and height
1 and can therefore be concatenated to one kernel of width and height 1.
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Proof of Theorem 5.2. Let Th be a uniform triangulation of D, where each node i is in 6 triangles
T 1
i , . . . , T

6
i as depicted in [21, Figure 4] and let Vh be the P1 finite element space over the triangula-

tion. As in [21, Definition 14], letΥ(κh, k, i) :=
∫
Tk
i
κh dx andΥ(κh) := [Υ(κh, k, i)]k∈[6],i∈[dimVh] ∈

R6×dimVh . Moreover, letF : R7×dimVh → RdimVh be defined as in [21, Theorem 16]. withF (u,Υ(κh)) =
Aκu. We consider a CNN approximating the following steps.Ü

u(0)

κ
f
φ

ê
7→

Ü
u(0)

Υ(κ)
f
φ

ê
7→

Ü
u(1) := max

{
u(0) + ω

[
f − F (u(0),Υ(κ))

]
,φ
}

Υ(κ)
f
φ

ê
7→. . . 7→

Ü
u(m)

Υ(κ)
f
φ

ê
7→
(
u(m)

)

According to [21, Lemma 15(i)], there exists a convolutional kernel K1 ∈ R1×6×3×3 such that κ ∗
K1 = Υ(κh). Trivially extending the kernel to unused channels and parallelizing with identity kernels
yields a CNN representation of the first step. According to [21, Theorem 18], for any ε̃, M̃ > 0 there
exists a CNN Ψε̃,M̃ : R7×dimVh → RdimVh of size independent of ε̃, M̃ such that∥∥∥Ψε̃,M̃ − F

∥∥∥
L∞([−M̃,M̃ ]7×dimVh )

≤ ε̃.

Furthermore, Theorem A.1 shows, that the maximum can be approximated by a CNN. Again extend-
ing the CNN to unaltered channels and parallelizing with an identity CNN yields approximations of
every intermediate step. The last step is realized by the convolution with a kernel K2 ∈ R9×1×1×1,
which is 1 in the first and 0 in all other input channels.

According to [21, Lemma 20] and since all steps are continuous operations, their concatenation can
be approximated by the concatenation Ψ̃ of the approximating CNNs Ψε̃,M̃ , where different approxi-

mation accuracies ε̃ and domains M̃ are expected for the different steps. Concatenating a one layer
CNN with kernel K1 and Ψ̃ and another one layer CNN with kernel K2 yields a CNN Ψ. Then, for
each u(0),κ, f ,φ ∈ [−M,M ]n×n it holds that∥∥∥Ψ(u(0),κ, f ,φ)− u(m)

∥∥∥
∞
≤ ε.

Since the space of FE coefficients is a finite dimensional real vector space, the ∥·∥∞-norm is equiv-
alent to the ∥·∥H1-norm. Since the size of the approximating CNNs does not depend on ε̃, M̃ , the
size of the concatenated CNN also does not depend on it and the overall number of parameters only
grows linearly with the number of intermediate steps m.

Proof of Theorem 5.3. Let ω := (CCVh
)−1. Then Theorem 4.2 yields ∥I − ωAy∥Ay

< 1− ω for all

y ∈ Γ. For y ∈ Γ, (9) implies for A := Ay and for e(m) := u(m) − u (where u solves Theorem 3.2)
that for γ := 1− ω, ∥∥∥e(m)

∥∥∥
Ay

≤ γm ∥φ− u∥Ay
. (11)
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Note that the second term can be bounded by the following consideration.

∥φ− u∥2Ay
=

∫
D

κh(·,y) ⟨∇(φh − uh),∇(φh − uh)⟩ dx

= −
∫
D

κh(·,y) ⟨∇uh,∇(φh − uh)⟩ dx+
∫
D

κh(·,y) ⟨∇φh,∇(φh − uh)⟩ dx.

Since uh solves Theorem 3.1, this implies

∥φh − uh∥2Ay
=

∫
D

κ(·,y) ⟨∇(φh − uh),∇(φh − uh)⟩ dx

= −
∫
D

κ(·,y) ⟨∇uh,∇(φh − uh)⟩ dx+
∫
D

κ(·,y) ⟨∇φh,∇(φh − uh)⟩ dx

≤ −
∫
D

f(x)(φh − uh)(x) dx+ ∥φh∥Ay
∥φh − uh∥Ay

≤ ∥f∥H−1 ∥φh − uh∥H1 +
1

cH1

∥φh∥H1 ∥φh − uh∥Ay

≤ CH1 ∥f∥H−1 ∥φh − uh∥Ay
+

1

cH1

∥φh∥H1 ∥φh − uh∥Ay
,

where the fist inequality follows with the definition of the dual norm (2) and the Cauchy-Schwarz
inequality. The second and last inequality follow from (3). With (7) the second term is bounded by

∥φ− u∥Ay
= ∥φh − uh∥Ay

≤ CH1 ∥f∥H−1 +
1

cH1

∥φh∥H1 . (12)

To bound γm, m can be chosen as

m ≥ log (ε/2) log (γ)−1 ,

such that (11) and (12) lead to∥∥∥u(m) − u
∥∥∥
H1
≤ 1

cH1

∥∥∥u(m) − u
∥∥∥
Ay

≤ ε

2cH1

Å
CH1 ∥f∥H−1 +

1

cH1

∥φh∥H1

ã
.

According to Theorem 5.2 there exists a CNN Ψ such that the number of parameters grows linearly
with m and ∥∥∥Ψ(φ,κ, f ,φ)− u(m)

∥∥∥
H1
≤ ε

2cH1

Å
CH1 ∥f∥H−1 +

1

cH1

∥φh∥H1

ã
.

This yields the claim with

∥Ψ(φ,κ, f ,φ)− u∥H1 ≤
∥∥∥Ψ(φ,κ, f ,φ)− u(m)

∥∥∥
H1

+
∥∥∥u(m) − u

∥∥∥
H1

≤ ε

cH1

Å
CH1 ∥f∥H−1 +

1

cH1

∥φh∥H1

ã
.
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Theorem A.2 (CNN for monotone restriction operator). For ℓ = 1, . . . , L − 1, let Vℓ ⊆ Vℓ + 1 ⊆
H1

0 ([0, 1]
2) be two nested P1 finite element spaces as in Section 2. Let the activation function τ

satisfy Theorem 5.1 andRmax
ℓ be the monotone restriction operator defined as in Theorem 4.4. There

exists a C > 0 such that for every ε > 0 there exists a CNN Ψ and kernel K ∈ R1×9×3×3 such that

(i) ∥(Ψ ◦ ∗2s
K)(φ)−Rmax

ℓ φ∥L∞([−M,M ]n×n) ≤ ε,

(ii) the number of parameters is bounded by M(Ψ) +M(K) ≤ C .

Proof. Let K ∈ R1×9×3×3 be defined such that for each output channel i = 1, . . . , 9 one kernel
entry is one and all other are zero. Applying this kernel in a two-strided convolution, a FE function
on a fine grid as the input image gets mapped to nine FE functions on the coarse grid, i.e. an output
tensor with nine channels. For each grid point in the coarse grid, these nine channels contain the
values of the grid points in the fine grid surrounding the same grid point. By the definition of the
monotone restriction, the maximum needs to be taken over all channels in each pixel. This can be
achieved by applying Theorem A.1. Denote the maximum of φ1,φ2 by φ1,2. Let Ψ1, . . . ,Ψ4 be
CNNs approximating the stepsÑ

φ1

. . .
φ9

é
7→

Ñ
max{φ1,φ2}
max{φ3,φ4}

. . .

é
=:

Ü
φ1,2

. . .
φ7,8

φ9

ê
7→

Ñ
φ1,2,3,4

φ5,6,7,8

φ9

é
7→
Å
φ1,2,3,4

φ5,6,7,8,9

ã
7→
(
φ1,2,3,4,5,6,7,8,9

)
.

Since the concatenation of functions can be approximated by the concatenation of approximate func-
tions [21, Lemma 20] and the size of the kernels does not depend on the required accuracy, the size
of the concatenated CNN does not depend on the ε. Since each step can be approximated with two
kernels of height and width one and one application of the activation function, the secondly applied
kernel of Ψk and the firstly applied kernel of Ψk+1 can be concatenated to one kernel performing both
convolutions. This leads to a CNN Ψ with 4 applications of the activation functions and 5 kernels of
height and width one. This yields the claim.

Proof of Theorem 5.4. The proof can be carried out similarly to [21, Proof of Theorem 6]. Here, the
obstacle has to be taken into account in every step. For each ℓ = 1, . . . , L and g : Rn×dimVℓ →
Rm×dimVℓ , let the function also considering the obstacle φ be defined by g̃ : R(n+1)×dimVℓ →
R(m+1)×dimVℓ with (w,φ) 7→ (g(w),φ). Adapting the proof to use the extended functions for
fin, f

ℓ
sm, f

ℓ
resi, only a few changes in the smoothing iterations and projections have to be made in the

proof [21, Proof of theorem 6] as detailed in the following.

(ii) Smoothing iteration: For ℓ = 1, . . . , L a function f ℓ
sm is defined as a mapping from the

current discrete solution u, the integrated coefficient Υ and the discretized right-hand side f to
an updated discrete solution. The other inputs are unaltered f ℓ

sm : R8×dimVℓ → R8×dimVℓ ,

f ℓ
sm(u,Υ, f) = [u+ ω(f − Aℓ

yu),Υ, f ].
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In [21, Theorem 18] it is shown that this function can be approximated up to an L∞ error
bounded by some ε > 0 on a compact subset of D, where the number of parameters is inde-
pendent of the the size of the compact set and the accuracy ε. To use the projected Richardson
method for the smoothing iterations, this function has to be adjusted to map another input to
itself. For this, define f̃ ℓ

sm : R9×dimVℓ → R9×dimVℓ with

f̃ ℓ
sm(u,Υ, f ,φ) = [u+ ω(f − Aℓ

yu),Υ, f ,φ].

Next, the maximum of the first and last input has to be taken. Hence, let f ℓ
max : R9×dimVℓ →

R9×dimVℓ be defined by

f ℓ
max(u,Υ, f ,φ) = [max{u,φ},Υ, f ,φ].

Then, Theorem A.1 implies that f ℓ
max can be approximated up to accuracy ε > 0 on a compact

set in the L∞ norm with the number of parameters independent of the accuracy ε and the
size of the compact set. Concatenating the last two functions yields an update of the projected
Richardson iteration (8) of the form

(f ℓ
max ◦ f̃ ℓ

sm)(u,Υ, f ,φ) = [max{u+ ω(f − Aℓ
yu),φ},Υ, f ,φ]

and can be approximated similarly to [21, Lemma 20].

(iii) Restricted residual: The residual can be calculated as in [21, Proof of Theorem 6 (iii)] by
altering the function to include the obstacle f̃ ℓ

resi. The restriction function frest is adjusted to also
restrict the obstacle using the monotone restriction operator for the obstacle input. For each
u, r, f ,φ ∈ RdimVℓ , κ̄ ∈ R6×dimVℓ , define

f̃ ℓ
rest : R10×dimVℓ → R8×dimVℓ × R8×dimVℓ−1 ,

à
u
r
κ̄
f
φ

í
7→


Ü

u
κ̄
f
φ

ê
×

Ü
0

κ̄ ∗K
P T
ℓ−1r

Rmax
ℓ φ

ê ,
where K = [K1, . . . , K6] ∈ R6×6×3×3 is defined as in the proof mentioned above. There, it
is shown that Υ(κh, T ℓ, k) ∗ Kk = Υ(κh, T ℓ−1, k) for each k = 1, . . . , 6 and except for
Rmax

ℓ φ each part can be represented by a convolutional kernel. The monotone restriction can
be represented due to Theorem A.2.

As in [21, Proof of Theorem 6], the operations of one V-Cycle on level ℓ = 2, . . . , L can then be
written as the concatenation of the introduced functions

VCℓ
k0,k

:=
Ä
⃝k

i=1

Ä
f ℓ
max ◦ f̃ ℓ

sm

ää
◦ f̃ ℓ

prol ◦
(
Id,VCℓ−1

k0,k

)
◦ f̃ ℓ

rest ◦ f̃ ℓ
resi ◦
Ä
⃝k

i=1(f
ℓ
max ◦ f̃ ℓ

sm)
ä
,

VC1
k0,k

:=⃝k0
i=1f̃

1
sm.

To represent the whole algorithm, the input and output are adjusted like

VCMRm
k,k0,ℓ

= f̃out ◦
(
⃝m

i=1VC
L
k0,k

)
◦ f̃in.
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