
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Stable time rondeau crystals in dissipative many-body systems

Zhuocheng Ma1, Jin Yan2, Hongzheng Zhao1, Liang-You Peng1, 3

submitted: April 01, 2025

1 State Key Laboratory of Artificial Microstructure and Mesoscopic Physics
School of Physics, Peking University, 100871 Beijing
China
E-Mail: hzhao@pku.edu.cn

liangyou.peng@pku.edu.cn

2 Weierstrass Institute
Mohrenstraße 39
10117 Berlin
Germany
E-Mail: jin.yan@wias-berlin.de

3 Frontiers Science Center for Nano-Optoelectronics
Peking University, 100871 Beijing
China
Collaborative Innovation Center of Extreme Optics
Shanxi University, 030006 Taiyuan
China

No. 3191

Berlin 2025

2020 Mathematics Subject Classification. 37H99, 37N20.

2010 Physics and Astronomy Classification Scheme. 05.10.Gg, 05.45.Ra, 05.45.-a, 05.45.Xt, 05.70.Fh.

Key words and phrases. Time rondeau crystals, structured random drives, dissipative many-body systems, de-
synchronization phase transition.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Stable time rondeau crystals in dissipative many-body systems
Zhuocheng Ma, Jin Yan, Hongzheng Zhao, Liang-You Peng

Abstract

Driven systems offer the potential to realize a wide range of non-equilibrium phenomena that
are inaccessible in static systems, such as the discrete time crystals. Time rondeau crystals with
a partial temporal order have been proposed as a distinctive prethermal phase of matter in sys-
tems driven by structured random protocols. Yet, heating is inevitable in closed systems and time
rondeau crystals eventually melt. We introduce dissipation to counteract heating and demonstrate
stable time rondeau crystals, which persist indefinitely, in a many-body interacting system. A key
ingredient is synchronization in the non-interacting limit, which allows for stable time rondeau or-
der without generating excessive heating. The presence of many-body interaction competes with
synchronization and a de-synchronization phase transition occurs at a finite interaction strength.
This transition is well captured via a linear stability analysis of the underlying stochastic processes.

Introduction.— Identifying different forms of order and disorder is an everlasting research subject in
science. In thermal equilibrium, the spontaneous symmetry breaking leads to a long-range spatial
order. In periodically driven (Floquet) systems, a discrete time crystalline (DTC) order can be simi-
larly defined [1–3], where the discrete time translational symmetry is broken. By using quasi-periodic
drives, one goes beyond this Floquet lore [4–12], establishing the deterministic, yet non-periodic, qua-
sicrystalline temporal order [13–15].

Interestingly, the organization principle of the natural world is far richer than merely being deterministic.
In fact, order and disorder can naturally coexist in our daily life: the oxygen ions in ice establish the long-
range spatial order, while the location of protons bonding the oxygen ions is highly disordered. Despite
the ubiquity of such partial order in space, one of its temporal cousins - the time rondeau crystal (TRC)
- has not been discovered until very recently [16, 17]. Induced by structured random drives, TRCs
exhibit both stroboscopic long-time order and short-time disorder at all other times, notably enriching
the classification of non-equilibrium temporal orders. It is different from the conventional Floquet DTC,
where the micromotion within a drive cycle exhibits the same temporal order as the stroboscopic
evolution.

Yet, randomness in the driving typically opens additional heating channels [18–21], which even many-
body localization can not prevent [22–25]. Indeed, TRC in a closed system appears to be a transient
meta-stable (prethermal) phenomenon [26–49]: although an increasing driving frequency parametri-
cally prolongs its lifetime, eventual heat death seems inevitable for any fixed frequency [16, 17]. One
fundamental question thus arises: Are there types of TRCs that are absolutely stable to arbitrary per-
turbations of both the initial state and the equations of motion (EOM), s.t. they are infinitely long-lived
in the thermodynamic limit?

One potential way to avoid heating is by introducing dissipation, a strategy applicable to both quantum
and classical systems [50–55]. Dissipation can generate contractive dynamics around target attractors
with desired features, like the DTC order [56–60], and perturbations can be strongly damped. Yet,
applying this idea to stabilize TRC requires addressing two formidable challenges: (i) Stroboscopic
temporal order can be fragile when the drive involves randomness. For instance, as illustrated in
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Figure 1: (a) Basins of fixed points in the dissipative kicked rotor model. Transition rules at stroboscopic
times can be determined by tuning the random kick strength Kr. For instance, after a positive kick
+Kr, the rotor can suddenly jump from point A to A′, which is located in the basin of the fixed point
P+ (blue), realizing P0→P+. (b) Exact transition rules. (c) A dipolar kick induces a time rondeau order
without generating unwanted heating.

Ref. [61], temporal fluctuations akin to a finite-temperature bath can lead to DTC order with a finite
lifetime. (ii) The complex interplay between dissipation and many-body interactions makes it unclear
how to ensure the stability of TRC in the thermodynamic limit.

We provide an affirmative answer by studying systems with multistability, i.e., multiple attractors coexist
s.t. the system evolves to one of them after a sufficiently long waiting time T , a ubiquitous feature
in dissipative systems [62–65]. Perhaps one of the simplest physical examples is the periodically
kicked classical rotor system in the presence of damping [66], exhibiting a tunable number of fixed
points in the phase space. We introduce a random protocol with a minimal “dipolar"correlation that
enables precise transition rules between these fixed points. Therefore, the rotor randomly traverses
multiple pathways between states and returns to the same initial state after a complete dipolar kick,
cf. Fig. 1, thereby establishing the rondeau order without inducing excessive heating. Remarkably,
a simple analysis of the concomitant Markovian chain reveals that synchronization occurs [67–74]:
even for a randomly distributed initial ensemble of non-interacting rotors, the system inevitably exhibits
synchronized motion with stable rondeau order.

The presence of many-body interactions and a finite waiting time T introduces uncertainties in the tran-
sition rules, which compete with perfect synchronization. Our central finding is that the synchronized
phase remains robust against perturbations, with a de-synchronization phase transition occurring at
a finite critical interaction strength in the thermodynamic limit. Finally, to investigate the asymptotic
behavior of spatial fluctuations, we perform a linear stability analysis, which quantitatively captures the
phase boundary obtained by many-body simulations.

Random kicked one-rotor model.— We start from a periodically kicked rotor described by the Hamil-
tonian H(t)=p2/2−K0 cos θ

∑
n δ(t−n). By introducing damping, we obtain the discretized equa-

tions of motion
p(t+ 1) = γp(t)−K0 sin θ(t),
θ(t+ 1) = θ(t) + p(t+ 1)(mod 2π),

(1)

where (p, θ) denote the angular momentum and the angle, γ is the dissipation rate, and K0 is the
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strength of periodic kicks [66]. The long-time behavior of the system depends on specific parame-
ter values, which we fix as γ=0.8, K0=2, such that the system exhibits three stationary states, or
fixed points: (Θ−=arcsin(2π(1 − γ)/K0), P−=−2π), (Θ0=0, P0=0), (Θ+= − arcsin(2π(1 −
γ)/K0), P+=+ 2π).

Their corresponding basins are depicted in Fig. 1(a). After a sufficiently long waiting time T , any initial
condition in a colored region will asymptotically evolve towards the corresponding fixed point.

Supposing initially the system is located at one of the fixed points, we now introduce an additional ran-
dom kick with the Hamiltonian V (t)=−∑

m K(t)θδ(t−mT ) where K(t) takes a binary value ±Kr,
and we dub mT (m takes integer values) as stroboscopic times. Consequently, a sudden change oc-
curs at t = mT , p→p±Kr and θ→θ±Kr mod 2π. For simplicity, we consider T→∞ such that
before the next random kick, the rotor can equilibrate again at one of the three fixed points. Therefore,
V (t) induces precise transitions between different fixed points without generating excessive heating.

Clearly, such a transition strongly depends on the specific value of Kr. For example, if we choose
Kr ∈ (4.93, 5.06) 1 and consider a rotor starting from the fixed point (Θ0, P0), point A in Fig. 1(a).
After a positive kick +Kr, the rotor suddenly jumps from point A to A′, which is located in the basin of
the fixed point P+, the blue region in Fig. 1(a). Therefore, between two neighboring stroboscopic times,
the transition P0 → P+ is realized. On the other hand, if the initial point starts from point B, (Θ+, P+),
it jumps to B′ after +Kr, which also sits in the basin of P+. Hence, stroboscopically, the rotor actually
remains unchanged. Consequently, the following transition rules are achieved: P−→P0→P+→P+,
cf. blue lines in Fig. 1 (b). In other words, the system absorbs the input momentum from the drive,
unless the rotor already has a maximum momentum, in which case the excess momentum is damped.
A similar effect occurs for a negative kick −Kr: P+→P0→P−→P−.

We employ this set of transition rules to realize the time rondeau order. The key is to introduce a dipolar
structure to the random kick, i.e., at two consecutive stroboscopic times we randomly select one of the
two kick sequences, (+Kr,−Kr) or (−Kr,+Kr). To see its dynamical consequences, we consider
a simple yet insightful scenario where a single rotor starts from the initial condition p(0)=0, θ(0)=0.
As illustrated in Fig. 1 (c), after this dipolar kick the rotor always returns to its origin, establishing a
long-time order, while the rotor can traverse multiple pathways, either P0→P+→P0 or P0→P−→P0,
demonstrating a short-time disorder. A typical trajectory is plotted in Fig. 2 in red.

Remarkably, regardless of the initial condition of the system, the rondeau order always appears at
long times. This can be revealed by considering an ensemble of uncoupled rotors, starting from
an arbitrary distribution of three fixed points, W (0). Its stroboscopic evolution can be obtained by
W (2mT+2T )=AW (2mT ) with a stochastic matrix of the Markovian chain [75]

A=

1/2
1/2 1 1/2

1/2

 (2)

where the matrix elements Ai,j denote the probability of updating the momentum from the i-th to
j-th fixed points after one dipolar kick. Note, this dynamical system has a unique feature that if the
momentum at time 2mT deviates from P0, the system always has the probability of 1/2 to correct it
back to P0 after one dipolar kick. Hence, the system exponentially converges to the stationary solution
within four stroboscopic periods on average where the entire ensemble synchronizes and occupies P0

at stroboscopic times [73]. As shown in Fig. 2, the blue trajectory quickly converges to the red one if
their random kick sequences are the same, despite different initial conditions. Therefore, the transition

1We discuss different parameter regimes and the stability of the transition rule in the Appendix.
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Figure 2: Red and blue trajectories of a single rotor quickly synchronize, exhibiting the time rondeau
order where the long-time order at t=2mT coexists with the short-time disorder. The gray line depicts
the average momentum in a many-rotor system, which follows the single-rotor trajectory. We use
J=0.25, Kr=5.5 for the numerical simulation. The initial θi is randomly sampled within [0, 2π] and
pi is sampled around P+ according to a Gaussian distribution of a standard deviation 0.1.

rule (Fig. 1) provides exceptional stability for the rondeau order, which is robust against any initial state
imperfections.

Many-body system with a finite waiting time.— The analysis above is exact only for uncoupled systems
in the limit T→∞. Many-body interactions and a finite T inevitably introduce perturbations to the
exact transition rule, potentially destabilizing the rondeau order. Yet, we will show that the TRC is
indeed robust, and a de-synchronization phase transition occurs at a critical interaction strength in the
thermodynamic limit.

To show this, we consider a many-rotor chain of size L with nearest-neighbor interactions,

HI=−J
∑
i

[cos(θi − θi+1)+ cos(θi−θi−1)]
∑
n

δ(t−n)

with J>0, resulting in

pi(t+ 1) = γpi(t)−K0 sin θi(t)±Krδt,mT + J [sin(θi(t)− θi+1(t)) + sin(θi(t)− θi−1(t))],

θi(t+ 1) = θi(t) + pi(t+ 1)(mod 2π),
(3)

where i denotes the site number, ± depends on the driving sequence being applied. In the following
discussion, we fix T=10, which is far from the T→∞ limit even for the non-interacting limit, cf. details
in the Appendix.

We first consider weak interaction strength and a spatially inhomogeneous initial state, where θi is
randomly sampled within [0, 2π] and pi is sampled around a fixed point according to a Gaussian dis-
tribution. As shown in Fig. 2, at early times (t/T∈[4, 11]) the mean angular momentum p̄=

∑
i pi/L

(grey) exhibits a notable deviation from the exact single-rotor trajectory p∗ at stroboscopic times (blue),
while p̄ starts to follow p∗ at longer times. We define Op̄(m) = [p̄(mT )− p∗(m)]2, which quantifies
their deviation as the TRC order parameter. As shown in Fig. 3(d), indeed, Op̄ decays to zero (green
and black), confirming the appearance of TRC in the presence of many-body interactions.

At long times, all rotors synchronize and become spatially ordered just as in the non-interacting case,
where the system develops a homogeneous distribution of angular momentum, cf. Fig. 3 (a). This can
be confirmed via the spatial variance σ2

p=
∑L

i=1(pi−p̄)2/L. As shown in Fig. 3 (c), after a short tran-
sient regime, the ensemble-averaged value ⟨σ2

p⟩ eventually drops to zero (black and green). Such a
decay occurs exponentially fast in time, and the corresponding time scale τ converges to a finite value
as long as L is sufficiently large, as detailed in Sec. SM 1 in the Supplementary Material (SM) [76],
confirming that such a synchronized TRC remains stable in the thermodynamic limit.
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Figure 3: (a) Spatial-temporal distribution of momentum in the synchronized phase for weak J=0.25.
(b) Defects persist for stronger interaction J=0.35. Both (a) and (b) use the same random kick se-
quence. (c) and (d) Momentum variance and time rondeau order parameter for different J . Ensemble
averages over different initial states and random drive realizations are performed. The system demon-
strates synchronized TRC for a weak interaction (black and green) while a larger interaction induces
de-synchronization (red). The initial momentum is sampled from a Gaussian distribution with a stan-
dard deviation 6 and zero average. We use parameters Kr = 5.5, L = 256 and a periodic boundary
condition for numerical simulations.

Crucially, we note that for larger J this time scale also increases, cf. Fig. 3(c). This happens because a
stronger interaction can maintain and even enhance the spatial inhomogeneity, via generating defects
on top of the synchronized background, Fig. 3(b). Hence, in general, it takes a longer time for dissipa-
tion to stabilize the system. Perfect synchronization breaks down for large J and a finite-size system
may exhibit intermittent synchronization [77], where the full synchronization and non-synchronized
dynamics alternate irregularly in time, cf. Sec. SM 1 for details [76]. Yet, when L→∞, intermittent
synchronization is unstable and the de-synchronization phase transition occurs at a critical value Jc. A
finite density of defects survives indefinitely in the de-synchronization phase with non-vanishing spa-
tial fluctuations, while the rondeau order diminishes with non-zero Op̄ at long times, see red curves in
Fig. 3 (c) and (d).

In Fig. 4 (a), we plot the long-time saturation value ⟨σ̄2
p⟩ of the momentum variance and Ōp̄ for different

J and the phase transition occurs around Jc≈0.32 when Kr=5.5 2. The phase transition point shows
no dependence on the initial states, as synchronization occurs at early times, cf. Sec. SM 2 for the
numerical verification [76]. We further scan over a wide range of the random kick strengths Kr and J
and map out the phase diagram in Fig. 4 (b): white and blue regions correspond to the synchronization
(⟨σ̄2

p⟩=0) and de-synchronization phases (⟨σ̄2
p⟩≠0), respectively, and the purple line corresponds to

⟨σ̄2
p⟩=10−5. Black dots correspond to the average of three J values such that the order parameter

Ōp̄ equals 0.2, 1.1 and 2, which match with the purple curve with good accuracy.

Linear Stability Analysis.— The de-synchronization phase transition can be well captured by a linear
stability analysis (red dots in Fig. 4 (b)). The synchronized evolution can be captured by a mean-
field solution (p̄(t), θ̄(t)), i.e., the spatial average of momentum and angle which follow the single-
rotor EOM, Eq. (1). Many-body interactions generate spatial fluctuations, ∆θi(t)=θi(t)−θ̄(t) and

2Long-time saturation values are obtained by averaging order parameters at 8 stroboscopic times, starting from t =
105.
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Figure 4: (a) Dependence of order parameters on J for Kr=5.5. The de-synchronization phase transi-
tion occurs at Jc≈0.32. (b) Phase diagram for different Kr and J . White and blue regions correspond
to the synchronization and de-synchronization phases, respectively. The purple curve corresponds to
⟨σ̄2

p⟩=10−5. A linear stability analysis captures the phase transition (red). T → ∞ assumption pre-
dicts Jc≈0.39 (orange), which overestimates the phase boundary. The black dots denote the phase
boundary obtained by Ōp̄. Initial state distribution is the same as in Fig. 3.

∆pi(t)=pi(t)−p̄(t). We assume ∆θi(t)≪1, ∆pi(t)≪1 and only keep its leading order contribu-
tions to Eq. (3),∆pi(t+1)=γ∆pi(t)−K0 cos θ̄(t)∆θi(t)+J [2∆θi(t)−∆θi+1(t)−∆θi−1(t)],∆θi(t+
1)=∆θi(t)+∆pi(t+1)(mod2π). A Fourier transformation,∆pk(t)=

∑
j ∆pje

−ijk/
√
N and∆θk(t) =∑

j ∆θje
−ijk/

√
N , leads to the decoupled EOMs(

∆pk(t+ 1)
∆θk(t+ 1)

)
= Ak(t)

(
∆pk(t)
∆θk(t)

)
, (4)

for each quasi-momentum k mode with the Jacobian matrix

Ak(θ̄(t)) =

(
γ 2J(1− cos(k))−K0 cos θ̄(t)
γ 1 + 2J(1− cos(k))−K0 cos θ̄(t)

)
. (5)

The dependence on the random kick sequence and Kr are entirely contained in θ̄(t) and Ak varies
in time.

For simplicity, we first consider the limit T→∞, where the transition rules are exact, and (p̄(t), θ̄(t))
only has three possible choices - three fixed points. The stability of this mean-field solution can be
determined by all the eigenvalues λk of Ak for each fixed point: If max|λk|<1 for all k, the trajectory
is stable and fluctuations eventually vanish. Larger J may generate unstable k modes with |λk|>1
and the critical value is determined when max|λk(Jc)|=1. This leads to the orange line in Fig. 4,
however, it notably overestimates Jc. Crucially, the dependence of Jc on the random kick strength Kr

cannot be captured.

A finite T plays a crucial role in determining the TRC stability and the deviation between (p̄(t), θ̄(t))
and the fixed points cannot be neglected. We define Dk as the product of Ak calculated along a
mean-field trajectory θ̄(t) [78] during m dipolar drives Dk =

∏2mT−1
i=0 Ak(θ̄(i)). For a given trajec-

tory, we obtain the eigenvalues λk of Dk and the corresponding largest Lyapunov exponents (LLEs),
limm→∞ log(max |λk|)/m, can be obtained. In Fig. 5, we plot the distribution of LLEs for different
mean-field trajectories. In the synchronization phase (blue) LLEs are negative, while for large J a no-
table fraction of LLEs become positive. We estimate the critical Jc when 5% of LLEs become positive,
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Figure 5: Distribution of largest Lyapunov exponents (LLEs). We consider a de-synchronization phase
transition occurs when 5% of LLEs become positive. Numerically we use Kr=5.5,m=300 and 1000
different mean-field trajectories. Convergence of the distribution is discussed in Sec. SM 3 [76].

and as shown in Fig. 4(b), the result matches well with the phase boundary obtained by the many-body
simulation.

Discussion.— Our work opens a promising new avenue for stabilizing the partial temporal order via
dissipation, demonstrating the existence of TRCs that are absolutely stable against perturbations in
both initial states and many-body interactions. One important ingredient is multistability, such that the
system jumps among different fixed points without generating unwanted heating. A dipolar structure
encodes the rondeau order and synchronization notably strengthens its stability.

Going beyond, dissipative systems can exhibit a versatile structure of stationary states, such as limit
cycles [50] and (quasi-)periodic orbits [54] in addition to the fixed points considered here. We expect
that the partial temporal order can be significantly enriched in these settings. It is worth noting that the
dipolar structure can be straightforwardly extended to higher-order multipoles and the aperiodic Thue-
Morse sequence [18]. We anticipate enhanced stability of the synchronized TRCs for higher multipolar
orders and a systematic study would be worth pursuing.

The presence of many-body interactions sustains spatially inhomogeneous defects. Its competition
with the synchronized dynamics leads to the de-synchronization phase transition. We perform large-
scale and long-time numerical simulations of the classical many-body dynamics. It allows us to map
out the entire phase diagram and explore the robustness of TRCs against perturbations.

While we have demonstrated stable TRCs in classical many-body systems for numerical efficiency,
our construction is readily generalizable to quantum systems, where both multistability [60, 64, 79]
and synchronization have been reported [72, 74, 80]. It remains an interesting question to investigate
the competition between quantum fluctuations and synchronization, which may induce non-equilibrium
quantum phase transitions that are fundamentally different. As detailed in Sec. SM 4 [76], our rotor
system can be experimentally implemented on the superconducting quantum simulation platform [33,
81]. Such a system may serve as a natural testbed to reveal distinct behaviors in the non-equilibrium
temporal order between classical and quantum systems.

Acknowledgments.— This work is supported by the National Natural Science Foundation of China
(Grants No. 12234002, 12474214, 12474486, and 92250303), by the National Key Research and
Development Program of China (Grant No. 2024YFA1612101), and by “The Fundamental Research
Funds for the Central Universities, Peking University” and "High-performance Computing Platform of
Peking University". We thank Johannes Knolle for initiating this work and stimulating discussions. We
also thank Marin Bukov for many useful discussions.

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025



Z. Ma, J. Yan, H. Zhao, L-Y. Peng 8

References

[1] Vedika Khemani et al. “Phase Structure of Driven Quantum Systems”. In: Phys. Rev. Lett.
116 (25 June 2016), p. 250401. DOI: 10.1103/PhysRevLett.116.250401. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.116.250401.

[2] Dominic V. Else, Bela Bauer, and Chetan Nayak. “Floquet Time Crystals”. In: Phys. Rev. Lett.
117 (9 Aug. 2016), p. 090402. DOI: 10.1103/PhysRevLett.117.090402. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.117.090402.

[3] N. Y. Yao et al. “Discrete Time Crystals: Rigidity, Criticality, and Realizations”. In: Phys. Rev.
Lett. 118 (3 Jan. 2017), p. 030401. DOI: 10.1103/PhysRevLett.118.030401. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.118.030401.

[4] Albert Verdeny, Joaquim Puig, and Florian Mintert. “Quasi-periodically driven quantum sys-
tems”. In: Zeitschrift für Naturforschung A 71.10 (2016), pp. 897–907. URL: https://doi.
org/10.1515/zna-2016-0079.

[5] Sourav Nandy, Arnab Sen, and Diptiman Sen. “Aperiodically Driven Integrable Systems and
Their Emergent Steady States”. In: Phys. Rev. X 7 (3 Aug. 2017), p. 031034. DOI: 10.1103/
PhysRevX.7.031034. URL: https://link.aps.org/doi/10.1103/
PhysRevX.7.031034.

[6] Takashi Mori et al. “Rigorous bounds on the heating rate in Thue-Morse quasiperiodically and
randomly driven quantum many-body systems”. In: Phys. Rev. Lett. 127.5 (2021), p. 050602.
DOI: 10.1103/PhysRevLett.127.050602. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.127.050602.

[7] Xueda Wen et al. “Periodically, quasiperiodically, and randomly driven conformal field theories”.
In: Phys. Rev. Res. 3 (2 Apr. 2021), p. 023044. DOI: 10.1103/PhysRevResearch.3.
023044. URL: https://link.aps.org/doi/10.1103/PhysRevResearch.
3.023044.

[8] David M Long, Philip JD Crowley, and Anushya Chandran. “Many-body localization with quasiperi-
odic driving”. In: Phys. Rev. B 105.14 (2022), p. 144204. DOI: 10.1103/PhysRevB.105.
144204. URL: https://link.aps.org/doi/10.1103/PhysRevB.105.
144204.

[9] Guanghui He et al. “Quasi-floquet prethermalization in a disordered dipolar spin ensemble in
diamond”. In: Phys. Rev. Lett. 131.13 (2023), p. 130401. DOI: 10.1103/PhysRevLett.
131.130401. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
131.130401.

[10] Matteo Gallone and Beatrice Langella. “Prethermalization and conservation laws in quasi-periodically
driven quantum systems”. In: Journal of Statistical Physics 191.8 (2024), p. 100. URL: https:
//link.springer.com/article/10.1007/s10955-024-03313-9.

[11] Souradeep Ghosh, Sourav Bhattacharjee, and Souvik Bandyopadhyay. “Slow relaxation of quasi-
periodically driven integrable quantum many-body systems”. In: arXiv preprint arXiv:2404.06667
(2024). URL: https://arxiv.org/abs/2404.06667.

[12] Harald Schmid et al. “Self-similar phase diagram of the Fibonacci-driven quantum Ising model”.
In: arXiv preprint arXiv:2410.18219 (2024). URL: https://arxiv.org/abs/2410.
18219.

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025

https://doi.org/10.1103/PhysRevLett.116.250401
https://link.aps.org/doi/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.117.090402
https://link.aps.org/doi/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.118.030401
https://link.aps.org/doi/10.1103/PhysRevLett.118.030401
https://doi.org/10.1515/zna-2016-0079
https://doi.org/10.1515/zna-2016-0079
https://doi.org/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevX.7.031034
https://link.aps.org/doi/10.1103/PhysRevX.7.031034
https://link.aps.org/doi/10.1103/PhysRevX.7.031034
https://doi.org/10.1103/PhysRevLett.127.050602
https://link.aps.org/doi/10.1103/PhysRevLett.127.050602
https://link.aps.org/doi/10.1103/PhysRevLett.127.050602
https://doi.org/10.1103/PhysRevResearch.3.023044
https://doi.org/10.1103/PhysRevResearch.3.023044
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023044
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023044
https://doi.org/10.1103/PhysRevB.105.144204
https://doi.org/10.1103/PhysRevB.105.144204
https://link.aps.org/doi/10.1103/PhysRevB.105.144204
https://link.aps.org/doi/10.1103/PhysRevB.105.144204
https://doi.org/10.1103/PhysRevLett.131.130401
https://doi.org/10.1103/PhysRevLett.131.130401
https://link.aps.org/doi/10.1103/PhysRevLett.131.130401
https://link.aps.org/doi/10.1103/PhysRevLett.131.130401
https://link.springer.com/article/10.1007/s10955-024-03313-9
https://link.springer.com/article/10.1007/s10955-024-03313-9
https://arxiv.org/abs/2404.06667
https://arxiv.org/abs/2410.18219
https://arxiv.org/abs/2410.18219


Stable time rondeau crystals in dissipative many-body systems 9

[13] Philipp T. Dumitrescu, Romain Vasseur, and Andrew C. Potter. “Logarithmically Slow Relax-
ation in Quasiperiodically Driven Random Spin Chains”. In: Phys. Rev. Lett. 120 (7 Feb. 2018),
p. 070602. DOI: 10.1103/PhysRevLett.120.070602. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.120.070602.

[14] Hongzheng Zhao, Florian Mintert, and Johannes Knolle. “Floquet time spirals and stable discrete-
time quasicrystals in quasiperiodically driven quantum many-body systems”. In: Phys. Rev. B
100.13 (2019), p. 134302. URL: https://doi.org/10.1103/PhysRevB.100.
134302.

[15] Dominic V. Else, Wen Wei Ho, and Philipp T. Dumitrescu. “Long-Lived Interacting Phases of Mat-
ter Protected by Multiple Time-Translation Symmetries in Quasiperiodically Driven Systems”. In:
Phys. Rev. X 10 (2 May 2020), p. 021032. DOI: 10.1103/PhysRevX.10.021032. URL:
https://link.aps.org/doi/10.1103/PhysRevX.10.021032.

[16] Hongzheng Zhao, Johannes Knolle, and Roderich Moessner. “Temporal disorder in spatiotem-
poral order”. In: Phys. Rev. B 108 (10 Sept. 2023), p. L100203. DOI: 10.1103/PhysRevB.
108.L100203. URL: https://link.aps.org/doi/10.1103/PhysRevB.
108.L100203.

[17] Leo Joon Il Moon et al. “Experimental observation of a time rondeau crystal: Temporal Dis-
order in Spatiotemporal Order”. In: arXiv preprint arXiv:2404.05620 (2024). URL: https:
//arxiv.org/abs/2404.05620.

[18] Hongzheng Zhao et al. “Random Multipolar Driving: Tunably Slow Heating through Spectral En-
gineering”. In: Phys. Rev. Lett. 126 (4 Jan. 2021), p. 040601. DOI: 10.1103/PhysRevLett.
126.040601. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
126.040601.

[19] Xueda Wen et al. “Periodically, quasi-periodically, and randomly driven conformal field theories
(II): Furstenberg’s theorem and exceptions to heating phases”. In: SciPost Physics 13.4 (2022),
p. 082. URL: https://api.semanticscholar.org/CorpusID:237605361.

[20] Jin Yan, Roderich Moessner, and Hongzheng Zhao. “Prethermalization in aperiodically kicked
many-body dynamics”. In: Phys. Rev. B 109 (6 Feb. 2024), p. 064305. DOI: 10.1103/
PhysRevB.109.064305. URL: https://link.aps.org/doi/10.1103/
PhysRevB.109.064305.

[21] Vatsana Tiwari, Devendra Singh Bhakuni, and Auditya Sharma. “Dynamical localization and
slow dynamics in quasiperiodically driven quantum systems”. In: Phys. Rev. B 109 (16 Apr.
2024), p. L161104. DOI: 10.1103/PhysRevB.109.L161104. URL: https://
link.aps.org/doi/10.1103/PhysRevB.109.L161104.

[22] Emanuele Levi et al. “Robustness of Many-Body Localization in the Presence of Dissipation”.
In: Phys. Rev. Lett. 116 (23 June 2016), p. 237203. DOI: 10.1103/PhysRevLett.116.
237203. URL: https://link.aps.org/doi/10.1103/PhysRevLett.116.
237203.

[23] Sarang Gopalakrishnan, K. Ranjibul Islam, and Michael Knap. “Noise-Induced Subdiffusion in
Strongly Localized Quantum Systems”. In: Phys. Rev. Lett. 119 (4 July 2017), p. 046601. DOI:
10.1103/PhysRevLett.119.046601. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.119.046601.

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025

https://doi.org/10.1103/PhysRevLett.120.070602
https://link.aps.org/doi/10.1103/PhysRevLett.120.070602
https://link.aps.org/doi/10.1103/PhysRevLett.120.070602
https://doi.org/10.1103/PhysRevB.100.134302
https://doi.org/10.1103/PhysRevB.100.134302
https://doi.org/10.1103/PhysRevX.10.021032
https://link.aps.org/doi/10.1103/PhysRevX.10.021032
https://doi.org/10.1103/PhysRevB.108.L100203
https://doi.org/10.1103/PhysRevB.108.L100203
https://link.aps.org/doi/10.1103/PhysRevB.108.L100203
https://link.aps.org/doi/10.1103/PhysRevB.108.L100203
https://arxiv.org/abs/2404.05620
https://arxiv.org/abs/2404.05620
https://doi.org/10.1103/PhysRevLett.126.040601
https://doi.org/10.1103/PhysRevLett.126.040601
https://link.aps.org/doi/10.1103/PhysRevLett.126.040601
https://link.aps.org/doi/10.1103/PhysRevLett.126.040601
https://api.semanticscholar.org/CorpusID:237605361
https://doi.org/10.1103/PhysRevB.109.064305
https://doi.org/10.1103/PhysRevB.109.064305
https://link.aps.org/doi/10.1103/PhysRevB.109.064305
https://link.aps.org/doi/10.1103/PhysRevB.109.064305
https://doi.org/10.1103/PhysRevB.109.L161104
https://link.aps.org/doi/10.1103/PhysRevB.109.L161104
https://link.aps.org/doi/10.1103/PhysRevB.109.L161104
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://link.aps.org/doi/10.1103/PhysRevLett.116.237203
https://link.aps.org/doi/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.119.046601
https://link.aps.org/doi/10.1103/PhysRevLett.119.046601
https://link.aps.org/doi/10.1103/PhysRevLett.119.046601


Z. Ma, J. Yan, H. Zhao, L-Y. Peng 10

[24] M.-T. Rieder et al. “Localization Counteracts Decoherence in Noisy Floquet Topological Chains”.
In: Phys. Rev. Lett. 120 (21 May 2018), p. 216801. DOI: 10.1103/PhysRevLett.120.
216801. URL: https://link.aps.org/doi/10.1103/PhysRevLett.120.
216801.

[25] Hongzheng Zhao et al. “Localization persisting under aperiodic driving”. In: Phys. Rev. B 105
(22 June 2022), p. L220202. DOI: 10.1103/PhysRevB.105.L220202. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.105.L220202.

[26] Achilleas Lazarides, Arnab Das, and Roderich Moessner. “Equilibrium states of generic quan-
tum systems subject to periodic driving”. In: Phys. Rev. E 90 (1 July 2014), p. 012110. DOI:
10.1103/PhysRevE.90.012110. URL: https://link.aps.org/doi/10.
1103/PhysRevE.90.012110.

[27] Hyungwon Kim, Tatsuhiko N. Ikeda, and David A. Huse. “Testing whether all eigenstates obey
the eigenstate thermalization hypothesis”. In: Phys. Rev. E 90 (5 Nov. 2014), p. 052105. DOI:
10.1103/PhysRevE.90.052105. URL: https://link.aps.org/doi/10.
1103/PhysRevE.90.052105.

[28] Luca D’Alessio and Marcos Rigol. “Long-Time Behavior of Isolated Periodically Driven Inter-
acting Lattice Systems”. In: Phys. Rev. X 4.4 (Dec. 2014), p. 041048. ISSN: 2160-3308. DOI:
10.1103/PhysRevX.4.041048. (Visited on 12/02/2024).

[29] Marin Bukov et al. “Prethermal Floquet Steady States and Instabilities in the Periodically Driven,
Weakly Interacting Bose-Hubbard Model”. In: Phys. Rev. Lett. 115 (20 Nov. 2015), p. 205301.
DOI: 10.1103/PhysRevLett.115.205301. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.115.205301.

[30] Tomotaka Kuwahara, Takashi Mori, and Keiji Saito. “Floquet–Magnus theory and generic tran-
sient dynamics in periodically driven many-body quantum systems”. In: Annals of Physics 367
(2016), pp. 96–124. URL: https://www.sciencedirect.com/science/article/
abs/pii/S0003491616000142.

[31] Dominic V Else, Bela Bauer, and Chetan Nayak. “Prethermal phases of matter protected by
time-translation symmetry”. In: Phys. Rev. X 7.1 (2017), p. 011026. DOI: 10.1103/PhysRevX.
7.011026. URL: https://link.aps.org/doi/10.1103/PhysRevX.7.
011026.

[32] Takashi Mori. “Floquet prethermalization in periodically driven classical spin systems”. In: Phys.
Rev. B 98.10 (2018), p. 104303. URL: https://doi.org/10.1103/PhysRevB.
98.104303.

[33] Atanu Rajak, Itzhack Dana, and Emanuele G. Dalla Torre. “Characterizations of prethermal
states in periodically driven many-body systems with unbounded chaotic diffusion”. In: Phys.
Rev. B 100 (10 Sept. 2019), p. 100302. DOI: 10.1103/PhysRevB.100.100302. URL:
https://link.aps.org/doi/10.1103/PhysRevB.100.100302.

[34] Owen Howell et al. “Asymptotic prethermalization in periodically driven classical spin chains”.
In: Phys. Rev. Lett. 122.1 (2019), p. 010602. URL: https://doi.org/10.1103/
PhysRevLett.122.010602.

[35] David J Luitz et al. “Prethermalization without temperature”. In: Phys. Rev. X 10.2 (2020),
p. 021046. DOI: 10.1103/PhysRevX.10.021046. URL: https://link.aps.
org/doi/10.1103/PhysRevX.10.021046.

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025

https://doi.org/10.1103/PhysRevLett.120.216801
https://doi.org/10.1103/PhysRevLett.120.216801
https://link.aps.org/doi/10.1103/PhysRevLett.120.216801
https://link.aps.org/doi/10.1103/PhysRevLett.120.216801
https://doi.org/10.1103/PhysRevB.105.L220202
https://link.aps.org/doi/10.1103/PhysRevB.105.L220202
https://link.aps.org/doi/10.1103/PhysRevB.105.L220202
https://doi.org/10.1103/PhysRevE.90.012110
https://link.aps.org/doi/10.1103/PhysRevE.90.012110
https://link.aps.org/doi/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.052105
https://link.aps.org/doi/10.1103/PhysRevE.90.052105
https://link.aps.org/doi/10.1103/PhysRevE.90.052105
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevLett.115.205301
https://link.aps.org/doi/10.1103/PhysRevLett.115.205301
https://link.aps.org/doi/10.1103/PhysRevLett.115.205301
https://www.sciencedirect.com/science/article/abs/pii/S0003491616000142
https://www.sciencedirect.com/science/article/abs/pii/S0003491616000142
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevX.7.011026
https://link.aps.org/doi/10.1103/PhysRevX.7.011026
https://link.aps.org/doi/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevB.98.104303
https://doi.org/10.1103/PhysRevB.98.104303
https://doi.org/10.1103/PhysRevB.100.100302
https://link.aps.org/doi/10.1103/PhysRevB.100.100302
https://doi.org/10.1103/PhysRevLett.122.010602
https://doi.org/10.1103/PhysRevLett.122.010602
https://doi.org/10.1103/PhysRevX.10.021046
https://link.aps.org/doi/10.1103/PhysRevX.10.021046
https://link.aps.org/doi/10.1103/PhysRevX.10.021046


Stable time rondeau crystals in dissipative many-body systems 11

[36] Antonio Rubio-Abadal et al. “Floquet prethermalization in a bose-hubbard system”. In: Phys.
Rev. X 10.2 (2020), p. 021044. DOI: 10.1103/PhysRevX.10.021044. URL: https:
//link.aps.org/doi/10.1103/PhysRevX.10.021044.

[37] Andrea Pizzi, Andreas Nunnenkamp, and Johannes Knolle. “Classical prethermal phases of
matter”. In: Phys. Rev. Lett. 127.14 (2021), p. 140602. DOI: 10.1103/PhysRevLett.
127.140602. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
127.140602.

[38] Bingtian Ye, Francisco Machado, and Norman Y Yao. “Floquet phases of matter via classical
prethermalization”. In: Phys. Rev. Lett. 127.14 (2021), p. 140603. DOI: 10.1103/PhysRevLett.
127.140603. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
127.140603.

[39] Pai Peng et al. “Floquet prethermalization in dipolar spin chains”. In: Nature Physics 17.4 (2021),
pp. 444–447. URL: https://www.nature.com/articles/s41567- 020-
01120-z.

[40] Christoph Fleckenstein and Marin Bukov. “Thermalization and prethermalization in periodically
kicked quantum spin chains”. In: Phys. Rev. B 103.14 (2021), p. 144307. DOI: 10.1103/
PhysRevB.103.144307. URL: https://link.aps.org/doi/10.1103/
PhysRevB.103.144307.

[41] Tatsuhiko N Ikeda and Anatoli Polkovnikov. “Fermi’s golden rule for heating in strongly driven
Floquet systems”. In: Phys. Rev. B 104.13 (2021), p. 134308. DOI: 10.1103/PhysRevB.
104.134308. URL: https://link.aps.org/doi/10.1103/PhysRevB.
104.134308.

[42] Manuel H. Muñoz-Arias, Karthik Chinni, and Pablo M. Poggi. “Floquet time crystals in driven
spin systems with all-to-all p-body interactions”. In: Phys. Rev. Res. 4 (2 Apr. 2022), p. 023018.
DOI: 10.1103/PhysRevResearch.4.023018. URL: https://link.aps.
org/doi/10.1103/PhysRevResearch.4.023018.

[43] William Beatrez et al. “Critical prethermal discrete time crystal created by two-frequency driv-
ing”. In: Nature Physics 19.3 (2023), pp. 407–413. URL: https://doi.org/10.1038/
s41567-022-01891-7.

[44] Hui-Ke Jin, Johannes Knolle, and Michael Knap. “Fractionalized Prethermalization in a Driven
Quantum Spin Liquid”. In: Phys. Rev. Lett. 130.22 (2023), p. 226701. DOI: 10.1103/PhysRevLett.
130.226701. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
130.226701.

[45] Wen Wei Ho et al. “Quantum and classical Floquet prethermalization”. In: Annals of Physics
454 (2023), p. 169297. URL: https://www.sciencedirect.com/science/
article/pii/S0003491623000829.

[46] Mingxi Yue and Zi Cai. “Prethermal time-crystalline spin ice and monopole confinement in a
driven magnet”. In: Phys. Rev. Lett. 131.5 (2023), p. 056502. DOI: 10.1103/PhysRevLett.
131.056502. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
131.056502.

[47] Yang Hou et al. “Floquet-engineered Emergent Massive Nambu-Goldstone Modes”. In: arXiv
preprint arXiv:2409.01902 (2024). URL: https://doi.org/10.48550/arXiv.
2409.01902.

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025

https://doi.org/10.1103/PhysRevX.10.021044
https://link.aps.org/doi/10.1103/PhysRevX.10.021044
https://link.aps.org/doi/10.1103/PhysRevX.10.021044
https://doi.org/10.1103/PhysRevLett.127.140602
https://doi.org/10.1103/PhysRevLett.127.140602
https://link.aps.org/doi/10.1103/PhysRevLett.127.140602
https://link.aps.org/doi/10.1103/PhysRevLett.127.140602
https://doi.org/10.1103/PhysRevLett.127.140603
https://doi.org/10.1103/PhysRevLett.127.140603
https://link.aps.org/doi/10.1103/PhysRevLett.127.140603
https://link.aps.org/doi/10.1103/PhysRevLett.127.140603
https://www.nature.com/articles/s41567-020-01120-z
https://www.nature.com/articles/s41567-020-01120-z
https://doi.org/10.1103/PhysRevB.103.144307
https://doi.org/10.1103/PhysRevB.103.144307
https://link.aps.org/doi/10.1103/PhysRevB.103.144307
https://link.aps.org/doi/10.1103/PhysRevB.103.144307
https://doi.org/10.1103/PhysRevB.104.134308
https://doi.org/10.1103/PhysRevB.104.134308
https://link.aps.org/doi/10.1103/PhysRevB.104.134308
https://link.aps.org/doi/10.1103/PhysRevB.104.134308
https://doi.org/10.1103/PhysRevResearch.4.023018
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023018
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023018
https://doi.org/10.1038/s41567-022-01891-7
https://doi.org/10.1038/s41567-022-01891-7
https://doi.org/10.1103/PhysRevLett.130.226701
https://doi.org/10.1103/PhysRevLett.130.226701
https://link.aps.org/doi/10.1103/PhysRevLett.130.226701
https://link.aps.org/doi/10.1103/PhysRevLett.130.226701
https://www.sciencedirect.com/science/article/pii/S0003491623000829
https://www.sciencedirect.com/science/article/pii/S0003491623000829
https://doi.org/10.1103/PhysRevLett.131.056502
https://doi.org/10.1103/PhysRevLett.131.056502
https://link.aps.org/doi/10.1103/PhysRevLett.131.056502
https://link.aps.org/doi/10.1103/PhysRevLett.131.056502
https://doi.org/10.48550/arXiv.2409.01902
https://doi.org/10.48550/arXiv.2409.01902


Z. Ma, J. Yan, H. Zhao, L-Y. Peng 12

[48] Zhanpeng Fu et al. “Engineering Hierarchical Symmetries”. In: Phys. Rev. X 14 (4 Dec. 2024),
p. 041070. DOI: 10.1103/PhysRevX.14.041070. URL: https://link.aps.
org/doi/10.1103/PhysRevX.14.041070.

[49] Hao-Yue Qi, Yue Wu, and Wei Zheng. “Topological Origin of Floquet Thermalization in Periodi-
cally Driven Many-body Systems”. In: arXiv preprint arXiv:2404.18052 (2024).

[50] Francesco Piazza and Helmut Ritsch. “Self-Ordered Limit Cycles, Chaos, and Phase Slip-
page with a Superfluid inside an Optical Resonator”. In: Phys. Rev. Lett. 115 (16 Oct. 2015),
p. 163601. DOI: 10.1103/PhysRevLett.115.163601. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.115.163601.
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End Matter

Appendix.— In the absence of many-body interactions, an ensemble of kicked rotors can exhibit vari-
ous types of dynamics that depend on both the waiting time T and the random kick strength Kr. For
T → ∞, as elaborated in the main text, the system exhibits the time rondeau order and synchroniza-
tion protects it against initial state perturbations. Here, we show that this phenomenon indeed persists
for finite T , and we depict the entire phase diagram in Fig. 6.

We numerically obtain two order parameters at long times: Ōp, the deviation from the perfect rondeau
evolution for T → ∞ and the fluctuation of the momentum of the entire rotor ensemble, σ̄2

p . There are
four possible phases as shown in Fig. 6:

■ The synchronized time rondeau, induced by Transition Rule I (Fig. 1(b) in the main text) appears
when both order parameters vanish (white region).

■ The light blue region in Fig. 6(a) corresponds to the random motion that exhibits neither the
rondeau order nor the synchronized behavior.

■ The dark blue regions in Fig. 6(a) correspond to dynamics induced by Transition Rule II, which
will be explained in detail later.
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Figure 6: Phase diagram for the single-rotor system for different waiting time T and random drive
strength Kr. The order parameter Ōp and the variance of momentum σ̄2

p are plotted in (a) and (b),
respectively. We average over 10 stroboscopic times around t = 2 × 104 to obtain their long time
saturation values. “Rule I"corresponds to the synchronized time rondeau order. “Rule IIänd other trivial
phases are discussed in the text. Rule I and II are separated by red lines when T is sufficiently large.
These phase boundaries are obtained by analyzing the basin structure of the periodically kicked rotors
when T → ∞, but it can still capture the phase boundary for a large range of T . When T is further
reduced, e.g. T ≈ 20, Rule I remains remarkably stable but Rule II no longer persists. The initial
conditions of momenta have Gaussian distributions with zero average and standard deviation σp = 6.

■ In the “trivial"region (white in Fig. 6(b)), rotors rapidly synchronize since they relax to the fixed
point P0. Hence, no stroboscopic transition between fixed points can exist, and Ōp remains
finite.

Transition rule I.—For large T , the stroboscopic transition rule can be precisely determined by ana-
lyzing the structure of the basins of fixed points as shown in Fig. 1(a). To realize Transition Rule I, we
numerically find that the strength Kr should be in the region (4.93, 5.06) ∪ (5.87, 6.63) so that a
positive kick can drive points A and B to the blue region (the basin of the fixed point P+) simultane-
ously. We plot the boundaries of Kr as red dashed lines in Fig. 6, which precisely capture the phase
boundary of Rule I when T is sufficiently large.

Transition rule II.— When Kr lies in the parameter region (4.63, 4.93)∪ (5.06, 5.86)∪ (6.63, 6.85),
different stroboscopic dynamics can appear in the limit of T → ∞

+Kr : P+ → P0 P0 → P+ P− → P0

−Kr : P+ → P0 P0 → P− P− → P0,
(6)

which we dub as Rule II. This type of dynamics appears in the dark blue regions in Fig. 6(a). The only
difference from Rule I is P+ → P0 for a positive kick and P− → P0 for a negative kick.

The dynamics after a dipolar kick can also be analyzed via a Markovian process. The corresponding
stochastic matrix reads

A=

1/2 1/2
1

1/2 1/2

 , (7)

and by diagonalizing this matrix, we find that it has two invariant subspaces spanned by e2 and
{e1 + e3, e1 − e3}, where, for example, e1 = (1, 0, 0)T is a unit base vector. These two sub-
spaces correspond to two possible motions. e2 corresponds to Motion I, where the rotor always stays
at the fixed point P0 at time 2mT ,

(+Kr,−Kr) : P0 → P+ → P0,
(−Kr,+Kr) : P0 → P− → P0,

(8)

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025



Z. Ma, J. Yan, H. Zhao, L-Y. Peng 16

which also reproduces the synchronized steady state as in the main text. In contrast, in the subspace
spanned by {e1 + e3, e1 − e3}, Motion II appears

(+Kr,−Kr) : P+ → P0 → P−, P− → P0 → P−,
(−Kr,+Kr) : P+ → P0 → P+, P− → P0 → P+,

(9)

and the rotor jumps randomly between P+ and P− at time 2mT . Therefore, rotors starting from
different initial conditions will not synchronize and exhibit one of these two motions at long times.

Rotors starting from widely distributed initial conditions prefer Motion II in the large T limit. To see this,
we first notice that the momentum difference at stroboscopic times between motion II and motion I
is exact 2π. Also, the order parameter in the dark blue region in Fig. 6(a) is Ōp ≈ 4π2, suggesting
that most rotors exhibit Motion II. Further, Ōp is large enough to distinguish Motion II from the light
blue region, where rotors exhibit a random motion. We can understand this phenomenon again by
analyzing the basin structure shown in Fig. 1(a): Clearly, the area of the white region is larger than
the blue or the red region. Hence, after the first stroboscopic kick, rotors with widely distributed initial
conditions quickly converge to the fixed point P0 within maximum probability and evolve according to
Motion II afterward.

Finite T behavior.— When T is finite, analysis becomes complicated since one cannot construct the
stochastic matrix according to the basin structure. Instead, we perform extensive numerical simula-
tions to map out the phase diagram. We note that Rule I is remarkably stable and survives in a wide
parameter space, while Rule II becomes unstable at a finite T . It remains an interesting open question
to further justify the stability of Rule I, and we leave this to future work. In the current study, we fix
T = 10, which is indeed far from the T → ∞ limit, and focus on the stability of time rondeau crystals
in the presence of many-body interactions.
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Supplementary Material
Stable time rondeau crystals in dissipative many-body systems

1 System size dependence of order parameters and intermittent
synchronization

In the main text, we demonstrate the existence of the synchronization phase in the presence of weak
many-body interactions and a de-synchronization phase for large J . Here, we provide more numerical
evidence to show these two phases are thermodynamically stable.
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Figure 7: (a) Synchronization occurs for weak interaction strength, where the momentum variance
decays to zero exponentially fast in time. Finite-size effects only become visible at late times, e.g.,
t ≈ 80T . Here we use J = 0.2. (b) The time scale τ before synchronization is independent of the
system size. Longer time is needed for a larger interaction strength. (c) For J > Jc, de-synchronization
occurs and the spatial fluctuation does not vanish. Jc is about 0.31. (d) The long-time average ⟨σ̄2

p⟩
(dashed line in (c)) converges for larger system sizes. The increase of J generally induces a larger
spatial fluctuation. The initial momentum is sampled from a Gaussian distribution with a standard
deviation of 6 and zero average. We use Kr = 5.5 for numerical simulation.

As shown in Fig. 7(a), for weak interaction J = 0.2, the ensemble-averaged order parameter ⟨σ2
p⟩

decays to zero, suggesting that the synchronization phase is quickly established. By comparing the
numerical simulation performed for different system sizes (black and blue lines), we conclude that
such a decaying process is largely independent of L, and finite-size effects only appear at longer
times, e.g., t/T > 80. Also, it occurs exponentially fast in time, ⟨σ2

p⟩ ∝ e−t/τ , and the corresponding
synchronization time scale τ can be obtained by performing a linear fit in panel (a), where a log scale
is used. In Fig. 7(b), we can see τ becomes independent of the system sizes for large L.

As we increase the interaction strength, τ also grows and a phase transition to de-synchronization
occurs for large J . We extract the saturation value of the ⟨σ2

p(t)⟩ at sufficiently long times ( dashed
lines in Fig. 7(c)). As shown in Fig. 7(d), we illustrate its dependence on the system size, and clearly
it converges to a non-vanishing value in the thermodynamic limit for J > Jc.

Interestingly, as shown in Fig. 8(a), we notice that for a finite-size system, intermittent synchroniza-
tion can occur near the phase transition point, where full synchronization and the non-synchronized
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Figure 8: (a) Intermittent synchronization when J = 0.32, L = 128. The dashed black line denotes
σ2
p(t) = 10−3. (b) τ denotes the first time where the spatial fluctuation drops below the threshold value

(black dashed line in (a)). It follows a power-law dependence on the system size. We use J = 0.318
for numerical simulation. For each system size, we simulate 112 trajectories to get the average value
of τ and the error bar corresponds to the standard deviation.

dynamics alternate irregularly in time. However, this phenomenon is thermodynamically unstable. To
show this, we use the threshold value 10−3 (dashed black line) and extract the synchronization time
scale τ , after which the system’s spatial fluctuation first drops below this threshold. We consider many
different realizations and plot the mean value of τ versus different system sizes in Fig. 8(b), where the
error bar denotes the standard deviation. We use a log-log scale in Fig. 8(b). Numerical results fit well
with a straight line (red), suggesting a power law dependence of τ on size L. Therefore, we conclude
that for large interaction strength J , intermittent synchronization will not occur in the thermodynamic
limit for L → ∞.

2 Independence of initial conditions

The phase diagram Fig. 4 in the main text does not depend on the specific choices of initial conditions.
In Fig. 9, we plot the order parameters for different J , calculated with different initial conditions. Small
differences are observed in the de-synchronization phase, whereas the phase boundary remains un-
changed.

0

2

4

O
p̄

P̄0 = 0.0, σ0 = 0.1

P̄0 = 6.0, σ0 = 2.0

P̄0 = 0.0, σ0 = 7.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
J

0.0

2.5

5.0

〈σ̄
2 p
〉

(a)

(b)

Figure 9: The order parameters Op̄ and ⟨σ̄2
p⟩ are independent of initial conditions. Here the evolution

of the many-body system begins at a random Gaussian distribution of both momentum and angle
for each site, exhibited in different colors. P̄0 is the average and σ0 is the standard deviation of the
Gaussian distribution for the initial momenta. The standard deviation of the initial angles is σ = 3.
We use Kr = 5.5, T = 10 and L = 100 for numerical simulations and extract order parameters at
t/2T = 104.
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Figure 10: (a)(c) ρ denotes the fraction of positive LLEs. As the number of dipolar kicks m increases,
ρ converges to zero in panel (a), while it remains finite in panel (c), corresponding to the synchroniza-
tion and de-synchronization phases, respectively. (b)(d) The corresponding normalized distribution of
LLEs for different realizations of the mean-field trajectories shows that larger m leads to sharper dis-
tributions. Numerically, we use interaction strength J = 0.28 for panels (a) and (b), and J = 0.35 for
(c) and (d).

3 Convergence of the distribution of the largest Lyapunov expo-
nents

The distribution of the largest Lyapunov exponents(LLE) converges when the number of dipolar kicks,
m, is sufficiently large. To see this, we evolve 1000 single-rotor trajectories during m dipolar drives
with a random Gaussian-distributed initial momentum, σ2

p = 0.01, p̄ = 0, and all the initial angles
fixed at zero. For each mean-field trajectory {θ̄(t)}, we can compute a series of matrix products
Dk=

∏2mT−1
i=0 Ak(θ̄(i)). Then the LLE of each trajectory can be calculated from its maximum eigen-

value. We present the histogram of all the LLEs of the synchronization and de-synchronization phases
in Fig. 10(b) and Fig. 10(d), respectively. We notice that the distribution of LLEs sharpens, and cru-
cially, the fraction of positive LLEs converges for larger m. To quantify this, we define ρ as the fraction
of LLEs that become positive. Clearly, it quickly converges to zero in Fig. 10(a) but remains finite
in (c), corresponding to the synchronization and de-synchronization phase. In the main text, we use
m = 300 that is sufficiently large to capture the phase boundary.

4 Experimental realization

The kicked protocol discussed in the main text can be experimentally realized in superconducting
quantum simulation platforms.

We first consider the systems without dissipation and mutual inductance. As shown in Fig. 11(b),
each rotor can be simulated by a resonator composed of one capacitor and superconducting quan-
tum interference devices (SQUIDs). Each SQUID has two Josephson junctions to form a loop. The
Hamiltonian of the resonator on the jth site is Ĥj = q̂2j/2C + EK cos(2πΦK/Φ0) cos(θ̂j), where
the first and the second term correspond to the capacitor and the SQUID, respectively. In the Hamilto-
nian, q̂j is the charge on the jth capacitor, ΦK is the total magnetic flux of two Josephson junctions,

Φ0 = hc/(2e) is the Cooper-pair flux quantum, and θ̂j is their average phase. As shown in Fig.
11(a), by introducing one SQUID linking the jth resonator with the (j + 1)th resonator, Ĥj,j+1 =

DOI 10.20347/WIAS.PREPRINT.3191 Berlin 2025



Z. Ma, J. Yan, H. Zhao, L-Y. Peng 20

Figure 11: (a) The experimental realization of our random kicked rotor model. Here we just show three
of the rotors in the periodic boundary. (b) The circuit for the jth kicked rotor.

EJ cos(2πΦJ/Φ0) cos(θ̂j − θ̂j+1), one can now simulate the many-body interacting system. The
phase ΦJ and ΦK are tunable time-dependent parameters, which can control the strength of interac-
tion and the on-site potential energy. Therefore, the Hamiltonian of the entire many-body system reads

Ĥ =
∑

j

{
q̂2j
2C

+ EK cos(ϕ(t)) cos(θ̂j) + EJ cos(ϕ(t))[cos(θ̂j − θ̂j+1) + cos(θ̂j − θ̂j−1)]
}
,where

we set two magnetic fluxes the same, ϕ(t) = 2πΦJ(t)/Φ0 = 2πΦK(t)/Φ0. We can apply the driv-
ing pulses shown in Fig. 12, and if T1 ≫ T2, cos(ϕ(t)) can approximately generate dynamical effects
induced by periodic kicks δ(t) as considered in the main text.
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Figure 12: Time-dependent protocol of ϕ(t) and VL(t) = MIc(t)/R in the experimental setting to
mimic the kicked rotor system. ϕ(t) generates periodic kicks and VL(t) generates random dipolar
kicks to induce the time rondeau order.

Then we introduce dissipation and mutual inductance by connecting a branch composed of a resistor
and an instrument transformer, as shown in Fig. 11(a). To simulate our model, we discuss EOMs under
the classical approximation. In this approximation, we change q̂, θ̂ to q, θ and obtain their equation of
motion via the Poisson bracket. We denote the current moving from the (j − 1)th resonator to the jth

resonator as Ij and the jth resonator to the (j + 1)th resonator as Ij+1 shown in Fig. 11(b). These
currents go through SQUIDs following the EOM,

Ij =
2e

ℏ
EJ cos(ϕ) sin(θj − θj−1)

Ij+1 =
2e

ℏ
EJ cos(ϕ) sin(θj+1 − θj)

(10)

We apply Kirchhoff’s law and get ISj
= Ij − Ij+1. Then the current splits into the capacitor with

current q̇j , resistor with (qj/C − MIc)/R, and SQUIDs with −2e
ℏ EJ cos(ϕ) sin(θj). One can also

assume that the self-inductance of resonators is negligible. Then we get the EOM that mimics our
kicked rotor model,

q̇j = −qj/CR+
2e

ℏ
EJ cos(ϕ(t)) sin(θj)+

2e

ℏ
EJ cos(ϕ(t))[sin(θj−θj−1)+sin(θj−θj+1)]+MIc(t)/R,

(11)
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where Ic(t) denotes the control current that induces dipolar kicks. Its driving protocol is depicted in
Fig. 12(b) and we also require T3 ≫ T4 to approximate the delta kick. Note that the realization of the
dipolar kicks can indeed be quite flexible in practice, for instance, the transformer can be replaced by
any other voltage source.

By using the relation between the phase θj and voltage Uj = qj/C , we obtain the other set of EOMs

θ̇j =
2eUj

ℏ
=

2eqj
Cℏ

, (12)

where Uj is the voltage between two sides of SQUIDs and it is equal to the voltage of the capacitor.
In conclusion, this circuit with EOMs Eqs. (11) and (12) can simulate our dipolar kicked many-rotor
system.
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