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Hierarchical clustering in mean-field coupled Stuart–Landau
oscillators

Nicolas Thomé, Matthias Wolfrum, Katharina Krischer

Abstract

Clustered solutions in oscillator networks provide an important insight into how a system might
diversify from a synchronous solution into spatiotemporal complex solutions. They can therefore
form a link between fully synchronized and incoherent states. Despite their fundamental role in
coupled oscillator dynamics, our understanding of how these clusters form and differentiate is
still quite limited. Here, we study an ensemble of globally coupled Stuart-Landau oscillators and
focus on the question of how 3-cluster solutions emerge from 2-cluster solutions and how the
different 3-cluster solutions are organized in parameter space. We show that the arrangement
of the clusters is dictated by a co-dimension 2 point, which we coin Type-II cluster singularity.
Furthermore, our study points to a hierarchical structure of higher cluster solutions.

Since the seminal work of A. Turing [1], the self-organized formation of patterns in homogeneous
media has become a prominent topic in nonlinear science. Classical results refer to chemical
reactions in continuous diffusive media. Much less is known about the pattern formation
for oscillatory processes and global interaction via a mean field. In this case, spontaneous
emergence of cluster structures is an important phenomenon. A paradigmatic system for such
processes are globally coupled Stuart-Landau oscillators. As in classical Ginzburg-Landau
theory, the interplay of the shear parameters in the nonlinearity and in the coupling can induce
a multitude of dynamical phenomena, which display a transition from fully synchronous to
completely incoherent behavior. Within this transition one can observe how gradually both the
spatial and the temporal complexity increases.

1 Introduction

The study of oscillator-network systems is crucial for understanding a plethora of natural phenomena,
from collective dynamics in neural networks [2] to the coordinated beating of cardiac cells [3] and the
functioning of power grids [4]. By investigating the intricate dynamics of coupled oscillators, we can
gain insights into the fundamental principles that govern collective behavior in complex systems.

Interacting networks of oscillators exhibit a rich diversity of dynamical behaviors, ranging from syn-
chronous solutions, where all oscillators move in unison, to completely incoherent solutions, where
no discernible synchronization pattern exists [5, 6]. Intriguing intermediate states lie between these
extremes. They are characterized by the self-organized formation of fully synchronized subpopulations,
called clusters, which show increasingly complex interpopulation dynamics and possibly also individual
oscillators that move on their own trajectories and do not belong to any cluster. The hierarchical
structure among these clusters is particularly significant as it organizes the transition from synchrony to
incoherence [7, 8]. An essential step is understanding how a coupled oscillator system bifurcates from
synchronous oscillations into the differentiated dynamics of cluster solutions [9].
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Various networks of oscillators have been investigated which differ in the coupling topology, e.g.,
non-local coupling [10] or randomized network architecture [11], or the type of oscillators, e.g., phase
oscillators [12] or relaxation oscillators [13]. Here, we work with globally, i.e. all-to-all, coupled identical
Stuart-Landau oscillators. The Stuart-Landau (SL) oscillator is the prototypical 2D oscillator, where the
amplitude-phase interaction allows for a particularly rich cluster dynamics. Global coupling provides a
simplified yet robust framework and has been subject of many previous studies on ensembles of SL
oscillators, allowing us to build on a comparatively large body of results [14, 15, 16, 17, 18, 19, 20, 21].

The governing equation of a system of SL oscillators under linear global coupling reads:

∂tWk = Wk − (1 + iC2)
∣∣Wk

∣∣2Wk +K(1 + iC1)

(
1

N

N∑
l=1

Wl −Wk

)
, (1)

where Wk(t) ∈ C is a complex, time-dependent variable representing an oscillator indexed by
k ∈ {1, .., N}. K,C1, C2 ∈ R are free parameters. C2 determines the eigenfrequency of the
identical oscillators, K and C1 define together the complex-valued global coupling strength [14].

Analytical solutions were obtained for situations in which the individual oscillators decouple. This occurs
in two ways: (a) For strong, attractive coupling, all oscillators behave identically such that the coupling
term vanishes and all the oscillators rotate together along the unit circle. (b) If the coupling is not
strong enough, 1

N

∑N
l=1Wl may vanish and all oscillators are frequency-locked and oscillate with an

incoherent phase distribution and an amplitude that is in general different from one. The stability of the
synchronous and the vanishing-mean solution was determined using linear stability analysis [16, 15].
The stability boundary of the synchronous solution is typically called the Benjamin-Feir instability.

In Figure 1, we show the stability regions of the synchronous solution (gray area) and the vanishing
mean solution (green area) in the parameter plane spanned by the two coupling constants K and C1

for C2 = 2, following ref. [16]. The insets in the upper right and the lower left corner depict typical
snapshots of these two solutions in the complex plane, where the dashed circles indicate the unit circle.
The black line in Figure 1 represents the Benjamin-Feir instability, the purple line the stability boundary
of the vanishing mean solution. In the blue region between these two stability boundaries, neither the
synchronous nor the vanishing mean solution is stable, but a "rich variety of collective behaviors"[17]
exists. Various studies have described different synchronization patterns in this parameter range, such
as 2- and 3-cluster configurations, collective chaos, chimera states, or oscillator death [16, 17, 22, 23].
However, much less is known about how these states arise and how they are related.

Best studied are 2-cluster solutions. Ku et al. [20] investigated the transition between different 2-cluster
solutions and showed that they are hysteretic. Using symmetry arguments, Banaji [24] characterized
the instability of the synchronized solution as a highly degenerate symmetry breaking bifurcation in
which 2-cluster states with all different cluster sizes emerge simultaneously on a multitude of coexisting
transcritical or pitchforking branches. Furthermore, the authors showed that the 2-cluster solutions
are born in saddle-node bifurcations. Based on this work, Kemeth et al. [19] demonstrated that 2-
cluster solutions are organized in a co-dimension-2 bifurcation, which the authors dubbed "cluster
singularity". At the cluster singularity, cascades of bifurcations emerge, most notably a cascade of
saddle-node bifurcations creating 2-cluster solutions of all possible cluster sizes, and two cascades
of transverse bifurcations that stabilize and destabilize these states, respectively. Employing a center
manifold reduction combined with a normal-form approach helped to further elucidate the properties
and intricacy of this codimension-2 point [25]. Further away from the cluster singularity in parameter
space, the dynamics of the 2-cluster states are still poorly understood. To explore the transition from
symmetric to less symmetric solutions in 2-cluster formations, the bifurcation pathways and dynamics
must be analyzed in greater depth, particularly in the context of emergent structures and turbulence. In
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Hierarchical clustering in mean-field coupled Stuart–Landau oscillators 3

Figure 1: Bifurcation diagram of a system of globally coupled Stuart-Landau oscillators with linear global
coupling for C2 = 2. The black line depicts the Benjamin-Feir (BF) instability, at which the synchronous
solution loses stability. The synchronous solution is stable in the gray area. The purple line indicates
the stability boundary of the vanishing-mean solution, which is stable in the green region. The two
insets show snapshots of typical synchronous and vanishing-mean solutions in the complex plane. The
dashed circle indicates the unit circle. In the blue area, a multitude of more complex solutions exist. The
dashed rectangle shows the parameter region that is depicted in Figure 2.

essence, the path from the 2-cluster solutions resulting from cluster singularity to incoherence must be
uncovered. Ref. [18] gives a preliminary look at bifurcation scenarios for N = 4 without putting it into
the context of the cluster singularity.

Our work aims to fill this gap by investigating how 2-cluster solutions specify into distinguishable
subclusters when symmetry breaks down [26]; how once indistinguishable clusters diverge into different
formations and evolve into 3-cluster solutions, as a first step towards turbulent states.

2 Preliminaries

In this section we recall basic concepts and techniques for systems with symmetry and describe the
theoretical background for our treatment of the cluster dynamics of system (1).

Symmetries, invariant subspaces, and reduced systems System (1) has two types of symmetries.
First, since all the oscillators are identical, it is invariant under permutations of the indices. This implies
that for any solution swapping of two oscillators will produce again a solution. In other words, system (1)
is equivariant under the symmetry group SN of all permutations of the indices k = 1 . . . N . Second,
the system is equivariant under phase shifts, such that when W⃗ (t) is a solution of (1), then for all
χ ∈ S1 = R/2πZ also W⃗ (t) exp(iχ) is a solution of Eqs. (1) [27].

The cluster solutions are a consequence of the permutation symmetry of the system. This can be seen
as follows. Whenever two oscillators have an identical initial condition, i.e., Wk(0) = Wj(0) for some
1 ≤ k < j ≤ N , then the whole trajectory has this property and Wk(t) = Wj(t) for all t ∈ R. In this
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way, the permutation symmetry leads to a hierarchy of invariant subspaces

W1 = · · · = WN1 ,WN1+1 = · · · = WN1+N2 ,WN1+N2+1 = · · · ,

called cluster subspaces, where N1 . . . Nn are the cluster sizes with
∑

j Nj = N , and n is the number
of clusters. A solution in such a cluster subspace is called an n-cluster solution and an oscillator in a
trivial cluster with Nj = 1 is called a solitary oscillator [28, 29, 30]. Obviously, the situation with n = 1
corresponds to full synchrony.

The dynamics within such a cluster subspace is given by

∂tŴj = Ŵj − (1 + iC2)
∣∣Ŵj

∣∣2Ŵj +K(1 + iC1)(Z − Ŵj), (2)

where each cluster variable Ŵj, j = 1 . . . n is equal to all variables in the j-th cluster and the mean
field is given by

Z =
1

N

n∑
j=1

NjŴj. (3)

The rotational symmetry is a continuous symmetry and can be removed by introducing a corotating
frame. Indeed, passing to polar coordinates Ŵj = Rjeiϕj we can use phase differences ϕ1 − ϕj ,
j = 2 . . . n as new variables. In this way we obtain a reduced system of n real amplitudes and n− 1
phase differences that does not have a phase shift symmetry any more. Note that in this system periodic
solutions of the form W⃗ (t) = W⃗0e

iΩt, which due to phase shift invariance appear generically in the
original system (1), turn into equilibria. Similarly, there are quasiperiodic solutions of the original system
(1) that turn into periodic solutions (limit cycles) of the reduced system.

Transversal and longitudinal instabilities, cluster splitting, and continuum limit A fundamental
observation of cluster dynamics in systems of coupled identical oscillators is, that sizes and number of
the observed clusters depends on the choice of the parameters. The reduced cluster system we intro-
duced above can only be used to find n-cluster solutions with predefined fixed cluster sizes N1 . . . Nn.
This limitation can be overcome, by considering the cluster sizes as additional free parameters. For large
systems it is natural to consider the relative cluster sizes Nj/N as real parameters in the interval [0, 1].
This will allow us to use them together with the other system parameters in a numerical bifurcation
analysis. Note that in this way the overall system size N has disappeared from the system, but along
the resulting branches of solutions with varying cluster size only rational points can be realized in a
finite system of corresponding commensurable size. In this context also a vanishing relative cluster
size makes sense. It corresponds to a solitary oscillator, which in the limit of large N has a vanishing
contribution to the mean field [28].

Note that for n > 1 such a system also includes n− 1-cluster solutions that appear after merging two
clusters of size Nj and Nℓ into a single one of size Nj +Nℓ. In this way, the reduced cluster system
has again invariant subspaces that are characterized by equal amplitudes and phase differences for
the corresponding merged clusters. Thus, a bifurcation analysis of a given reduced cluster system
may reveal not only bifurcations where the cluster structure remains unchanged, but also bifurcations
where such a merging occurs. All bifurcations within a given reduced cluster system are often called
longitudinal, since the corresponding critical subspaces of the bifurcation are longitudinal to the given
cluster subspace.

Describing instead a bifurcation that induces a further splitting of a given cluster structure is much
more complicated, because the resulting cluster structure is not known a priori. Indeed, there can
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Hierarchical clustering in mean-field coupled Stuart–Landau oscillators 5

be bifurcations, where in a cluster splitting multiple branches of n + 1-cluster solutions bifurcate
simultaneously. Also bifurcations where a cluster decays immediately into more than two subclusters
or even into solitary oscillators have been observed [31]. Whenever from a branch of solutions in
an n-cluster subspace a secondary branch bifurcates that is not contained in this subspace, such a
bifurcation is referred to as a transversal bifurcation, since its critical subspace is transversal to the
given cluster subspace.

A good method to detect also transversal instabilities in a bifurcation analysis of a reduced cluster
system, without going back to the full system, is to include a single additional oscillator as a so called
test oscillator that is driven by the mean field (3) without contributing to it. To probe the transversal
stability of cluster j we use the corresponding reduced cluster system with the additional equation

∂tVj = Vj − (1 + iC2)
∣∣Vj

∣∣2Vj +K(1 + iC1)(Z − Vj). (4)

The resulting system has an invariant subspace with Vj = Ŵj , where the dynamics coincide with that
in the original cluster subspace. But a linear stability analysis can detect instabilities transversal to this
subspace (see [20, 32]).

In the following sections we will use the approaches described above to give a detailed picture of
the emergence of stable two and three cluster solutions in system (1). For 2-cluster solutions we use
the relative cluster size parameter ρ1 := N1/N ∈ [0, 1]. For the secondary cluster splitting, i.e., the
transition from 2-cluster solutions with sizes N1, N2 to 3-cluster solutions with sizes N ′

1, N
′
2, N

′
3, we

assume that N ′
1 = N1 and N2 = N ′

2 +N ′
3 such that it is convenient to use the splitting ratio

ρ2 := N ′
2/(N

′
2 +N ′

3) ∈ [0, 1].

We will now perform a comprehensive numerical bifurcation analysis of the reduced 2-cluster and
3-cluster systems and investigate the respective transversal stabilities/instabilities by employing corre-
sponding test oscillators.

Numerical methods We perform extensive numerical simulations of the complete oscillator system
to complement our analytical approach. We use Python’s Scipy package to numerically integrate the
system. We use the ’Zvode’ integrator with the ’Adams’ method and a time step dt = 0.01 [33]. After a
transient period of 3000 steps, the system is further integrated for 1000 steps to ensure that we capture
the long-term dynamics. We use the ’Scipy.cluster.hierarchy’ package to study the cluster distribution of
the solution and order the clusters by their maximal amplitude. For numerical bifurcation analysis, we
use the continuation software AUTO-07p [34] and the Julia package NLsolve.jl.

Abbreviations A list of abbreviations used in the text is given in the appendix C.

3 A Complete Picture of stable 2-Cluster solutions

With the discovery of the cluster singularity, the question of how simple 2-cluster equilibra are organized
has been solved. To understand how these solutions bifurcate to more complex cluster configurations
and more complex temporal behavior as the coupling strength K is decreased and the completely
incoherent zero-mean state is approached, we study their dynamics in the reduced 2-cluster system.
We demonstrate how the cluster singularity manifests itself in this reduced space and then investigate
the longitudinal instabilities of the 2-cluster solutions.
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Figure 2: Simulations of system (1) with N=10. Panels (a) and (b) show snapshots of cluster solutions
in the complex plane with N1 = 2 and N1 = 8, respectively (Parameters C1 and K from the
corresponding regions in panel (c). Panel (c): Typical size N1 of the high amplitude cluster for stable
2-cluster solutions with varying parameters K and C1 close to the cluster singularity (CS). The black
region indicates the stable synchronous state.

First, we use numerical simulations with 10 oscillators to visualize the fan-like arrangement of stable
2-cluster solutions, which is a fingerprint of the cluster singularity. Therefore, we integrated Eqs. (1)
in the parameter region indicated by the dashed square in Figure 1. For each parameter value, we
used 500 different initial conditions. For every initial condition, we analyzed the cluster distribution.
We determined the average number of oscillators in the high-amplitude cluster for a given parameter
tuple and rounded the average value to an integer. We used a resolution of 0.035 along the K-axis
and 0.008 along the C1-axis. The result is shown in Figure 2. Panels (a) and (b) show two different
snapshots of 2-cluster solutions that both have 2 oscillators in one cluster and 8 oscillators in the other
cluster. To discriminate between the two cases, we label the clusters N1 : N2 and follow the convention
that N1 indicates the number of oscillators in the cluster with the higher maximal amplitude. Hence, (a)
shows a 2 : 8 and (b) an 8 : 2 cluster solution. In Figure 2 (c), we show where the different 2-cluster
solutions are dominant in the parameter plane. In the black region synchronous oscillations prevail. The
numbers in colored regions indicate the cluster size N1 of the most probable 2-cluster state and reveal
their organization in the parameter plane. For values of K below the cluster singularity (CS), there is
a region of stable 2-cluster solutions where with increasing C1 the size of the high amplitude cluster
increases stepwise.
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Hierarchical clustering in mean-field coupled Stuart–Landau oscillators 7

3.1 Organization of 2-cluster solutions at the cluster singularity

The reduced system for 2-cluster solutions reads [35]:

∂tR1 =R1(1−K −R2
1)− C1K(ρ1 − 1)R2 sinϕ12 +Kρ1(R1 −R2 cosϕ12) (5)

+KR2 cosϕ12

∂tR2 =R2 −R3
2 −Kρ1 (C1R1 sinϕ12 −R1 cosϕ12 +R2) (6)

∂tϕ12 =− 1

R1R2

[
C1K

(
ρ1
(
(R2

1 +R2
2) cosϕ12 − 2R1R2

)
+R2(R1 −R2 cosϕ12)

)
(7)

+KR2
2 sinϕ12 − (R1 −R2)(R1 +R2)(C2R1R2 +Kρ1 sinϕ12

)
].

The solutions in Fig. 2(a), (b) are fixed points of Eqs. (5)–(7). The synchronous fixed point, characterized
by R1 = R2 = 1 and ϕ12 = 0 exists for all parameter values. However, it is stable only for K >
−2(1 + C1C2)/(1 + C2

1), i.e. above the Benjamin-Feir (BF) curve [17], as illustrated in Figure 1
for C2 = 2. Additionally, a pair of fixed points (FP), (Ra

1, R
a
2, ϕ

a
12) and (Rb

1, R
b
2, ϕ

b
12) exists for each

distinct value of ρ1 and C2 in a certain region of the parameter plane K − C1 [19]. This pair of FPs
appears and vanishes in saddle-node (SN) bifurcations. This can be seen in Figure 3, where one and
two-parameter bifurcation diagrams for selected ρ1 values are shown, similar to the approach in [25].
Distinct SN-bifurcations for three different values of ρ1, which create pairs of 2-cluster solutions, are
shown in different orange tones in Figure 3(a). Notice the umbrella-like fanning out of the different
SNs: the more unbalanced the two clusters are, the further the SN lies inside the region where the
synchronized solution is stable. This is consistent with the numerical results of Figure 2. The different
SNs touch the BF curve, shown as the black solid line, tangentially at the cluster singularity, depicted
by the red cross. Recall that there is a continuum of SN bifurcations as ρ1 is continuously increased
from 0 to 1.

Studies of the original system (1) showed that at the SN all 2-cluster solutions, except for the most
unbalanced solution with one cluster containing a single, solitary oscillator, are transversely unstable
[19, 25]. Since the transverse stability cannot be seen in the reduced system, we assessed the stability
of the 2-cluster fixed points using a test oscillator as described above. In this way, we could determine
the transcritical bifurcations (TC, green dash-dotted curves) in which 2-cluster fixed points lose their
stability, but only unstable 3-clusters emerge [19, 25]. In Figure 3, parameter regions in which the
2-cluster solutions with relative size ρ1 = 0.8 is stable are shown in green. These regions roughly
overlap with the N1 = 2 and N1 = 8 tongues in Figure 2, but do not match precisely because the
stability regions of the different 2-cluster solutions overlap, while in Figure 2 we plotted the averaged
cluster size obtained from 500 simulations.

In the one-parameter bifurcation diagram Figure 3(b) we plotted a branch of 2-cluster fixed point
solutions with ρ1 = 0.8, showing R2 for varying parameter C1 and fixed K = 1.065 (orange curve).
The black line shows the synchronous solution. Dashed lines indicate unstable solutions, whereas
solid lines indicate stable solutions. The 2-cluster fixed points are born in SN bifurcations (indicated by
orange triangles). Both branches interact with the synchronous solution in the Benjamin-Feir instability
(indicated by the black square), however at different parameter values. Along the branches of 2-cluster
fixed point solutions with ρ1 = 0.8 in Figure 3(b) we find both solutions where N1 refers to the high-
amplitude cluster and to the low-amplitude cluster. They exchange their role exactly at the Benjamin-Feir
instability. The labels ’a’ and ’b’ for the stability regions in the upper panel refer to this property, i.e., the
cluster of size N1 having the higher or lower amplitude, respectively (cf. Fig. 2(a) and (b)).
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Figure 3: Bifurcation diagrams of fixed point solutions of the reduced 2-cluster system (5)–(7) for
C2 = 2 close to the cluster singularity (CS, red cross). (a): Two-parameter bifurcation diagram. Black
line: Benjamin-Feir instability; orange lines: saddle-node bifurcations for different relative cluster sizes
ρ1; green dash-dotted lines: transverse, transcritical bifurcations (TC) stabilizing and destabilizing the
2-cluster solutions for ρ1 = 0.8 (see text). Green areas: regions in which one of the two 2-cluster
fixed points generated in the SN bifurcations is stable for ρ1 = 0.8. Notice that the rightmost TC
bifurcation line does not lie on the right branch of the SN ρ1 = 0.8 but just close to it. (b): One-
parameter bifurcation diagram for K = 1.065. Orange lines: 2-cluster fixed point solutions; black line:
synchronous fixed point solution. Solid lines indicate stable and dashed lines unstable solutions. ▲: SN
bifurcations; ■: TC bifurcations.
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Hierarchical clustering in mean-field coupled Stuart–Landau oscillators 9

Figure 4: Bifurcation diagram with C2 = 2 and ρ1 = 0.8 depicting how 2-cluster LC solutions are
created and destroyed in the K − C1 − plane. The black line represents the Benjamin-Feir (BF)
instability and indicates where the synchronous solution loses stability. The SNs and TCs are shown
in gray solid and dash-dotted lines, respectively. The top right inset certifies that the TC lies under
the SN. The green areas show where the 2-cluster fixed points are stable. Filled circles show where
the cluster distribution ’a’ is stable and hollow points where the cluster distribution ’b’ is stable. The
blue lines represent longitudinal Hopf bifurcations (HB) creating LC solutions, whereas the brown lines
indicate homoclinic bifurcations (HC) destroying these LC solutions. The 2-cluster LCs are stable in the
blue areas. The pink lines represent 3 SN bifurcations creating new pairs of fixed point solutions. SNs,
HCs, and HBs meet in a Takens-Bogdanov (TB) point. The bottom inset shows a magnification of the
bifurcation diagram close to the TB of fixed point ’a’. The orange-yellow color graded line ρ1 changes
from 1 to 0 and shows the location of the Takens-Bogdanov points. The parameter region inside the
dashed rectangle will be treated in Figure 5.

3.2 Further bifurcations within the 2-cluster subspace

Having outlined the stability of the stationary 2-cluster solutions close to the cluster singularity, we
discuss now their longitudinal stability for further decreasing K . Previous studies [18, 19, 20] suggest
that they may lose stability through longitudinal Hopf bifurcations (HB), which we analyze in detail below.
By keeping C2 = 2 and ρ1 = 0.8, we can add additional bifurcations to the bifurcation diagram shown
in Figure 3. The top part of Fig. 4 for K > 0.9 is a simplified representation of Figure 3. We concentrate
on the two parameter regions where fixed points ’a’ and ’b’ are transversely stable. As K decreases,
both stable fixed point solutions undergo a supercritical longitudinal Hopf bifurcation, indicated by the
blue lines, giving rise to stable LC ’a’ respectively ’b’ (in the corotating frame). At even lower values
of K , these LCs are destroyed in homoclinic (HC) bifurcations, depicted by the brown lines. The blue
areas indicate where the LCs are longitudinally stable within the reduced 2-cluster system. Next, we
will focus on the HC of LC ’b’. In a HC, a limit cycle collides with a saddle point. On the right side of the
BF bifurcation, LC ’b’ collides with the unstable fixed point ’a’. On the left side of the BF bifurcation, the
saddle that destroys the LC solution is the unstable synchronous solution. The change of the saddle
point involved in the HC bifurcation, a so called Bykov T-point [36, 37], leads to the kink in the HC line

DOI 10.20347/WIAS.PREPRINT.3186 Berlin 2025



N. Thomé, M. Wolfrum, K. Krischer 10

at C1 ≈ −0.7. SN, HB, and HC tangentially meet in a Takens-Bogdanov (TB) point, depicted by the
indigo diamond.

Turning now to LC ’a’, we observe again that the HC and HB meet in a TB point. However, the
bifurcation fine structure around this point is more intricate then fo LC ’b’. The SN associated with the
TB, shown in pink, is not the one that creates the 2-cluster fixed point solutions discussed above, but
one that generates a further pair of unstable fixed points. It forms a closed contour in the K − C1

parameter plane involving three cusp points. For our discussion, these novel fixed points are of no
further importance and will not be explored further. Instead, we look at how the existence region of the
LC ’a’ closes towards large values of C1. As can be seen in the inset of Figure 4, the HC bifurcation
destroying the LC ’a’ first interacts with the pink SN in a Saddle-Node Loop that renders the SN a
SNIPER (Saddle-Node of infinite period). In a second Saddle-Node Loop, the SNIPER turns back into a
simple SN, and a second HC is created. This HC then ends in a TB point, marked by a brown diamond,
where it interacts with the HB and the SN.

A comparison of the bifurcation scenario of LCs ’a’ and ’b’ reveals that their existence regions lie in both
cases between a HB and a HC that emerge from a TB bifurcation. In this sense, we can say that the
TB organizes both the longitudinal instability of the fixed point solution and the existence region of the
LCs. Until now, we merely investigated the two different types of solutions associated with ρ1 = 0.8;
however, for a system of many oscillators, a multiplicity of relative cluster sizes exist. To extend these
observations to different ρ1-values, we continue the codimension-two TB-point in three parameters
C1, K and ρ1. The TB-point is characterized as a fixed point where the Jacobian has a zero eigenvalue
with an algebraic multiplicity two. We implemented this via the Routh-Hurwitz criterion for the Hopf
bifurcations [38]. In Figure 4, the orange to yellow color scale represents the ρ1-values varying along
the TB branch. For ρ1 = 1, the solitary state case, the TB-point can be found analytically because
one radial variable decouples from the system of equations, see Appendix A. The existence of a TB
point for 2-cluster solutions of all possible size ratios ρ1 ensures that all stable 2-cluster fixed point
solutions emerging at the cluster singularity undergo a longitudinal Hopf bifurcation to a stable 2-cluster
LC that is in turn destroyed at lower values of K by a HC. However, so far, the stability of the 2-cluster
LCs is not guaranteed in the full model. We can only be sure that they are stable in the immediate
neighborhood of the Hopf bifurcation. The further fate of the LC solution is examined in the next section,
where we show that they transversally branch into 3-cluster solutions in an intricate way.

4 3-Cluster Solutions

In this section, we increase the dimension of our reduced system and admit 3-cluster solutions. The
corresponding system of five equations for the amplitudes R1, R2, R3 and the phase differences
ϕ12, ϕ13 is given in the Appendix B. We now use this set of equations to investigate both the transverse
stability of the above-discussed 2-cluster LC solutions and the longitudinal stability of the resulting
3-cluster solutions.

4.1 Splitting of 2-Cluster Periodic Solutions

First, we focus on the transverse stability of the small amplitude cluster of the 2-cluster LC-solution ’a’.
For ρ2 = 1, the reduced 3-cluster system describes the case of a solitary oscillator in the third cluster,
which in the case of a 2-cluster solution amounts to the situation of a test oscillator. Figure 5 depicts
the bifurcation scenario for parameter values in the dashed box , (C1 ∈ [−3.2,−2.1]) of Figure
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Figure 5: (a) Bifurcation diagram of Eqs.(5)–(7) with C2 = 2, ρ1 = 0.2 and ρ2 = 1 displaying how
2-cluster LC solutions lose transverse stability. Solid lines indicate bifurcations that involve 2-cluster
solutions, whereas dashed lines show bifurcations in which only 3-cluster solutions are involved. The
blue, brown, and pink lines show the Hopf, homoclinic, and SN bifurcations of 2-cluster solutions, and
the gray diamond symbol shows the location of the TB point. All these bifurcations are also shown in
Figure 4. Red lines give the locations of transverse, transcritical bifurcations of the 2-cluster LC solutions
and the cyan ones, those of transverse period doubling (TPD) bifurcations. The green lines indicate
saddle-node bifurcations of periodic 3-cluster orbits (SNP). (b) Time series of the amplitude variables
Ri of 3-cluster LC solution at K = 0.748, C1 = −2.3, ρ2 = 1 (indicated by a point labeled ’b’ in (a).
(c) Time series of the amplitude variables Ri of 3-cluster LC solution at K = 0.745, C1 = −2.14,
ρ2 = 0.6 (indicated by a point labeled ’c’ in (a). ρ2 = 0.6 has been chosen for visibility reasons. For
both time series, one oscillation period is highlighted by an orange background color. The parameter
region inside the dashed rectangle will be treated in Figure 9.

4. In Figure 5, solid lines indicate bifurcations that involve 2-cluster solutions, whereas bifurcations in
which only 3-cluster solutions participate are shown as dashed lines. The lines denoted by HB, HC,
and SNIPER indicate bifurcations of the 2-cluster LC solutions and correspond to those also shown
in Figure 4. In the entire C1 interval, the 2-cluster LCs that are born in the HB become transversely
unstable before they are destroyed in the HC. The break-up of the 2-cluster LC occurs in one of two
different symmetry breaking bifurcations: in a transcritical bifurcation of periodic orbits (TCP) or in a
transverse period-doubling (TPD) bifurcation. In the former ones, shown as red lines in Figure 5, the
2-cluster LC interacts with an unstable 3-cluster LC, which renders one cluster of the 2-cluster LC
solution unstable with respect to transverse perturbations. The unstable 3-cluster LC participating in the
transcritical bifurcation is born in a saddle-node of periodic orbits bifurcations (SNP), shown in green in
Figure 5.

The cyan lines mark the locations of TPDs of the 2-cluster LC. In these TPDs, the low-amplitude cluster
of the 2-cluster LCs lose their transverse stability, and a stable 3-cluster LC branch that oscillates with
twice the period is born. Time traces of the amplitudes of stable 3-cluster LCs involved in the two
scenarios are shown in Figure 5(b) and (c), respectively. In both cases, the trajectories of clusters ’B’
and ’C’ (blue and green), which resulted from the splitting are still close, while the high-amplitude cluster
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’A’ has kept its integrity and its trajectory is practically unaffected. In (c), the splitting comes together
with a period-doubling where the two clusters ’B’ and ’C’ show an opposite behavior in each cycle, while
again, the high-amplitude cluster ’A’ has hardly changed its dynamics. Below, we refer to the cluster ’A’,
which is not affected by the transverse instability but keeps its integrity, as the observer cluster.

Both the transverse transcritical and the transverse period-doubling bifurcations interact with the
homoclinic bifurcation in a codimension-2 point. There are several of such codimension-2 points along
the curve of homoclinic bifurcations. Note that for C1 ≈> −2.02, there are further TCP and TPD
bifurcation lines that have not been resolved in Figure 5. We assume that this alternation of TPD, TCP,
and codimension-2 points could be organized by some intricate type of symmetry-breaking homoclinic
bifurcation.

In addition, the lines of TCPs touch the SNP lines tangentially, which is reminiscent of the behavior
at the above-discussed cluster singularity, but with 2- and 3-cluster LCs involved instead of 1- and
2-cluster fixed points: disregarding the observer cluster, the transcritical bifurcation in which one cluster
becomes transversely unstable is reminiscent of the BF instability, in which the (1-cluster) synchronous
solution becomes transversely unstable. Moreover, the 3-cluster LC solutions that interact with the
TCP are born in SNPs, which reminds of the 2-cluster fixed point solutions that interact with the BF,
born in SNs. In the following section, we will demonstrate that the point of contact between SNP and
TCP indeed forms a new type of cluster singularity that organizes 3-cluster LC solutions, similar to the
cluster singularity that organizes 2-cluster fixed point solutions.

4.2 Type-II Cluster Singularity

To obtain further insight into the arrangement of 3-cluster solutions in the parameter plane, we calculated
the location of two further SNPs creating 3-cluster solutions for different values of ρ2, i.e., different
relative size of the second and third cluster, keeping ρ1, i.e., relative size of the observer cluster,
constant. They are shown as dashed green curves in Figure 6(a) in a region of the C1 −K plane,
which is a magnification of the region around the largest ’TCP arc’ in Figure 5(a), but without showing
the TPDs for the sake of clarity.

The different SNPs all touch the TCP tangentially and apparently at the same point. Below, we
demonstrate that they indeed interact in a codimension-2 singularity that organizes the formation of
all different 3-cluster limit-cycle solutions for a given relative size ρ1 of the observer cluster. We coin
this novel codimension-2 point a Type-II cluster singularity because of its similarity to the cluster
singularity[18], introduced by Kemeth et al., which organizes the formation of all 2-cluster fixed point
solutions. From now on we will refer to the latter as Type-I cluster singularity.

We further illustrate the similarities between the Type-I and the Type-II cluster singularities with the
one-parameter bifurcation diagram along C1 at a constant value of K = 0.758 depicted in Figure 6 (b).
The maxima of the radius R2 of the 2-cluster solutions are shown in black, those of R3 of the 3-cluster
solutions for different values of ρ2 in different green shades. The 2-cluster solution is stable for low
and high values of C1 (black solid line), but the second cluster is transversely unstable at intermediate
values (dashed black line). Pairs of 3-cluster solutions are born in SNPs (triangular symbols); each
of the two 3-cluster LCs interacts with the transcritical bifurcation of the 2-cluster solution and is
stabilized in a transverse, transcritical bifurcation (diamond symbols) in some C1 interval, except the
3-cluster solitary solution which is born stable. Notice that the SNP and the stabilizing TCP are very
close in parameter space and cannot be distinguished in part (b) of Figure 6. The observer cluster
stays transversely stable for all parameters shown and thus does not split into two parts in any of the
discussed transverse bifurcations. Having this in mind and comparing Figures 6 and 3 the similarity
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Figure 6: (a) Bifurcation diagram of 2-cluster and 3-cluster LCs in the K − C1 parameter plane close
to the Type-II cluster singularity with C2 = 2, ρ1 = 0.2 and different values of ρ2. As in Figure 5,
dashed lines indicate bifurcations of 3-cluster solutions and solid lines those of 2-cluster solutions;
green lines show locations of SNPs for different values of ρ2, red and brown lines show the locations
of transverse transcritical and homoclinic bifurcations of 2-cluster solutions, respectively. The SNPs
and the TCP touch tangentially in a point, that we dub Type-II cluster singularity CS-II. The black
arrow indicates where the 1-parameter bifurcation diagram shown in (b) is located (K = 0.758). (b)
One-parameter bifurcation diagram showing R2 respectively R3 for the 2- and 3-cluster solutions as a
function of C1. Dashed lines show unstable solutions and filled lines show stable solutions; 3-cluster
limit-cycle solutions are shown in green and 2-cluster limit-cycle solutions in black. ▲: SNPs, ■ TCPs
or longitudinal PD bifurcations of 3-cluster solutions. Note that at the lower C1 values SNPs and
3-cluster transcritical bifurcations (not shown as ■) are so close that they seem to fall together.
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Figure 7: (a) Projection of the trivial and transverse Floquet Multiplier µi of the LC solutions along
SNP bifurcations in the K − C1 plane onto the C1 direction for different values of ρ2 with C2 = 2
and ρ1 = 0.2. The Floquet multipliers are obtained using Auto-07p. (b) Phase difference between the
second and third clusters along the SNPs for different values of ρ2.

between the two scenarios is apparent.

Yet, the existence of the observer cluster also implies an essential difference between the two types of
cluster singularities: While the Type-I cluster singularity is of codimension two in the system parameters
C1, C2, K and provides a unique point in the K − C1 parameter plane, the Type-II cluster singularity
depends also on the relative size ρ1 of the observer cluster. This means it is of codimension two in the
parameters C1, C2, K, ρ1, such that for fixed C2 it appears as a curve in the K −C1− ρ1 parameter
space.

Characterization of the Type-II cluster instability by the transversal Floquet spectrum

So far, we have described the Type-II cluster singularity a point of tangential intersection of different SNP
curves. Now we will describe it as a singular point along each such curve. Recall that a characteristic
property of a cluster singularity is that induces a cluster splitting where the new clusters resulting from
the splitting are stable (cf. Fig. 2). To assess this transversal stability, we have to employ the reduced
3-cluster system with an additional test oscillator, which leads to a 7-dimensional system. With this
system, we repeat the two-parameter continuation of the SNPs in the K − C1 plane (cf. Figure 6) for
different values of ρ2 and monitor the Floquet multipliers. Since we are continuing along SNP solutions,
we expect two Floquet multipliers to be equal to 1. The first arises from the time-shift invariance of the
LC, representing the neutral direction along the solution. The second is associated with the saddle-node
bifurcation[39]. For a generic point on a SNP curve there are, in addition to these two neutrally stable
multipliers, four more stable ones. The last one indicates the transversal stability of the solution. This
multiplier is characterized by the fact that the corresponding Floquet mode is transversal to the 3-cluster
subspace, i.e., it has a component that separates the test oscillator from the cluster to which it is
attached. The Floquet multipliers of the transversal and the neutrally stable directions are plotted in
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Figure 7 versus C1. Note that in this continuation K is adapted to C1 in order to select in the K-C1

plane a specific SNP curve with a fixed value of ρ2. Close to the singular point all transverse Floquet
multipliers are all unstable, except for the limiting case ρ2 = 1. This case corresponds to a solitary
oscillator in one of the new clusters, such that no further splitting instability is possible. All other curves
of multipliers show a quadratic tangency to the criticality at µ = 1. A similar behavior has also been
found by analyzing the center manifold of the Type-I cluster singularity [25].

To give another representation of the degeneracy of the bifurcation point, in Figure 7(b), we have plotted
∆ϕ23 along the SNPs. It can be seen that for all values of ρ2, ∆ϕ23 vanishes at the same point. This
point coincides with the location of the cluster singularity in (a). Hence, at the cluster singularity, the
second and third clusters merge, which underlines that this point corresponds to a 2-cluster LC on
the TCP curve that has an additional instability. The Floquet multiplier analysis thus confirms that the
Type-II cluster singularity is a codimension-2 bifurcation that is characterized by the following properties:

■ All different 3-cluster solutions corresponding to a particular relative size ρ1 of the observer
cluster merge to a specific degenerate 2-cluster solution with relative cluster size ρ1.

■ In the corresponding reduced 3-cluster system with an additional test oscillator, there are 3
Floquet multipliers equal to 1 simultaneously. They correspond to a saddle-node/transcritical
bifurcation that co-occurs with an additional transverse instability. Both of these bifurcations are
associated with a Floquet multiplier 1. The third Floquet multiplier equal to 1 results from the
phase shift symmetry of the underlying periodic solution.

■ The cluster with the relative size ρ1 keeps its integrity since it is neither affected by the saddle-
node bifurcation nor by the transcritical bifurcation. It thus takes on the role of an ’observer’.

■ There is a multitude of Type-II cluster singularities, being on the one hand associated with
different values of ρ1, but also for a particular value of ρ1 more than one Type-II cluster singularity
might exist (cf. Figure 5(a)).

This behavior has analogies with the behavior at the Type-I cluster singularity [19], with the following
differences: (a) for the Type-I cluster singularity the observer cluster does not exist; (b) instead of LC
solutions FPs are involved; (c) there is only one Type-I cluster singularity in the C1 −K plane.

4.3 Overall picture of 2- and 3-cluster solutions

With the results on 2- and 3-cluster solutions discussed above, we can extend the stability diagram
of Figure 1. This is done in Figure 8, where we added several regions with known dynamics. The
green line marks the SN of solitary 2-cluster FP solutions, where stable 2-cluster solutions appear
for the first time. The point where this SN touches the BF bifurcation, shown in black, is the Type-I
cluster singularity. The fan-like organization of the other 2-cluster solution guarantees, on the one
hand, that above this line, there are no other 2-cluster solutions. On the other hand, when changing
C1 for a fixed K-value from a value on the SN to the right of the Type-I cluster singularity to a value
on the left of it, we come along stable 2-cluster solutions of all possible relative sizes. We colored in
light blue the region where stable 2-cluster FP solutions for some relative size exist. Note that this
region has a tremendous multistability of 2-cluster FPs, which is not resolved in this overall picture. In
the gray-hatched regions, the synchronous solution coexists with other solutions. E.g. in the hatched
light-blue regions the synchronous solution coexists with the FP 2-cluster solutions.
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Figure 8: Bifurcation diagram of a globally coupled Stuart-Landau oscillators system under linear
global coupling for C2 = 2. The black line depicts the Benjamin-Feir (BF) instability, indicating that the
synchronous solution loses stability. The synchronous solution is globally stable in the gray area and
coexists with cluster solutions in the gray-striped, colored regions. The purple-colored line indicates the
stability boundary of the vanishing-mean solution. The green line indicates the saddle-node bifurcation
creating the solitary 2-cluster solution. The blue line represents an estimation for the longitudinal HB
giving rise to stable 2-cluster LC solutions in the dark blue region. The orange-colored line indicates a
series of Takens-Bogdanov points that organize the emergence of LC solutions. The color bar indicates
the respective ρ1 value. The red cross indicates the presence of the Type-I cluster singularity. The
green crosses indicate the position of the Type-II cluster singularities ranging from ρ1 ∈ [0.14; 0.29]
and ρ1 ∈ [0.64; 0.99]. The red region indicates the presence of more complex solutions, such as
higher-order cluster solutions and chimera states.
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When decreasing K, all these 2-cluster FP solutions undergo a longitudinal supercritical Hopf bifur-
cation, implying that there is some boundary below which oscillatory 2-cluster solutions exist. We
estimated the location of this boundary by continuing the HBs of several different 2-cluster solutions and
approximated their envelope (shown as a dark blue line). Thus, within the dark blue region, 2-cluster
LCs exist but possibly coexist, particularly close to the border, with 2-cluster FP attractors.

The orange colored line marks the position of Takens-Bogdanov bifurcations involving 2-cluster fixed
point solutions, parametrized by the relative cluster size ρ1. Thus, for each value of ρ1, there is not only
a HB creating 2-cluster LCs, but also a HC destroying them again. However, the HCs are irrelevant
for stable solutions since all of the 2-cluster LCs become unstable before in a transverse bifurcation
in which 3-cluster LCs are involved. The region in parameter space where stable 3-cluster solutions
appear can be approximated by the positions of the Type-II cluster singularities for different values
of ρ1. As argued above, at the Type-II cluster singularity, three Floquet multipliers simultaneously
become equal to 1. This suggests that, in principle, Type-II cluster singularities could be continued in
the K − C1 − ρ1-parameter space. However, standard continuation software does not provide this
option. Therefore, we determined the position of the type-II cluster singularity for discrete values of
ρ1 instead. They are shown as green crosses in Fig. 8. We see that they split into two branches, one
where the crosses are above the TB line and the other one where they are below that line. Along the
first branch, ρ1 was varied between 0.14 (at approx. C1 = −3.45) and 0.29 (C1 ≈ −1.4), in the
second group between 0.99 and 0.64, suggesting that there are two ρ1 intervals, ρ1 ∈ [0.14; 0.29] and
ρ1 ∈ [0.64; 0.99], for which a continuum of Type-II cluster singularities exists. For ρ1 values outside
these intervals, we have numerical evidence that the cluster singularities do not exist. Hence, roughly,
stable 3-cluster LCs exist close to the envelope of the type-II cluster singularities. Their existence region
is considerably smaller than the one of 2-cluster solutions, and they, in part, coexist with more complex
dynamics, as chaotic 3-cluster solutions that emerge in longitudinal PD cascades or ’higher’ cluster
solutions with more than 3 clusters. For K-values beyond the three cluster region and above the border
to completely incoherent behavior, the dynamics become exceedingly complex and have not been
explored further in this study.

5 Typical Behavior in the Original System

To validate our approach using the reduced manifold, we compared it with data from the original system
(1). We set N = 20 and select a region in the K − C1 parameter plane where where in the reduced
system 2 cluster solutions with ρ1 = 0.2 were stable, which thus corresponds to a 2-cluster solution
with four oscillators in one cluster for N = 20. As previously mentioned, the main difficulty with working
with the full system is the critical coexistence of dynamic solutions. To circumvent this problem, we
use again a statistical approach. For a given set of K − C1 pairs, we integrate the system 100 times
with different random initial conditions and determine the cluster distribution. We furthermore order the
clusters according to their amplitude and can then do a statistical evaluation of the obtained cluster
structures. This approach does not directly describe the attractor with the largest basin of attraction, but
provides a reasonable estimate.

In Figure 9 we show the results of the simulations in a parameter region around the Type-II cluster
singularity (green cross) for ρ1 = 0.2 (see the rectangle indicated in Figure 5). Consider first panel (a)
where the average number of clusters is plotted. At the top and the right border, there is a region where
the 2-cluster solutions prevail. The border of this region towards lower values of K reminds of the hill-
or tongue-like curves of the transcritical and period-doubling bifurcations in Figure 5, and reflects that
the 2-cluster solutions are destabilized through those bifurcations. Below the largest hill-like structure
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Figure 9: For every pixel, corresponding to one pair of (K −C1) parameters, the full dynamical system
of Eqs. (1) has been integrated for 4000-time steps and 100 different initial conditions and N = 20.
The average cluster solution has then been plotted. The average number of clusters is plotted in (a).
The number of oscillators in the cluster with the second highest maximal amplitude has been plotted in
(b). The white region corresponds to an incoherent solution, and the dark purple plots the 16 oscillators
in the 4-16 cluster solution. (c) is a zoomed version of the dashed box in (b) and (d) is identical to (c),
but the number of oscillators in the cluster with the third highest maximum amplitude is plotted.
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at the top left, 3-cluster solutions dominate the dynamics; for lower K values, higher cluster solutions
break up until complete incoherence, depicted by the black region.

More information about the different cluster solutions can be obtained from panel (b), where the
average number of oscillators in the cluster with the second highest amplitude is shown. In the following,
we refer to it in short as the second cluster. The purple color in the 2-cluster region stands for 16
oscillators, which is in accordance with our expectation for ρ1 = 0.2. For N = 20, this corresponds to
a 4-16 cluster. In the hill-like structure where 3-cluster solutions exist, the fanning out of the colors is
reminiscent of the behavior seen in the neighborhood of the Type-I cluster singularity in Figure 2. A
magnification of this fan is displayed in panel (c). In panel (d), the average number of oscillators in the
cluster with the third highest amplitude is shown. We see that in an intermediate stripe of this region,
the number of oscillators in the second cluster indeed decreases from 15 to 1 when decreasing C1,
while the one in the third cluster increases from 1 to 15. This is a manifestation of the Type-II cluster
cluster singularity that is located close to the top of the hill, adding up to 16 for each parameter value
within the fan, while there are always 4 oscillators in the observer cluster. Hence, when increasing C1

from the left border of the 3-cluster region where the 4-15-1 cluster exists, we transverse a series of
solutions with one oscillator less in the second cluster and one more in the third one until we reach the
4-1-15 solution.

Interestingly, Figure 9 (a)–(d) reveal some more structure that we did not observe in the reduced system:
From many 3-cluster region, a new tongue seems to emerge. At this point, we can only speculate
that this might be the manifestation of even another type of cluster singularity, that organizes 4-cluster
solutions.

6 Conclusion and Outlook

In this work, we focused on cluster formation in a system of Stuart-Landau oscillators under linear
mean-field coupling. We built upon the previously introduced cluster singularity using a reduced manifold
approach. We showed that a continuous line of Takens-Bogdanov points in the K−C1−ρ1 parameter
space organizes the emergence of 2-cluster LC solutions. These LC solutions are the prerequisites for
stable 3-cluster LC solutions, while stable 3-cluster FP solutions do not seem to exist. The 3-cluster LC
solutions emerge from a transverse period-doubling bifurcation of the 2-cluster LCs or are organized by
a codimension-2 point, lying on a transcritical bifurcation in which the 2-cluster LC becomes unstable.
We coined this point Type-II cluster singularity. In both cases, the high-amplitude cluster, which we call
the observer cluster, stays intact, and the low-amplitude cluster splits up. A Type-II cluster singularity
may exist for different sizes of the observer cluster and generate all possible 3-cluster LCs that may
arise through the break-up of the low-amplitude cluster. The integrity of the observer cluster therefore
naturally introduces a hierarchical structure to the cluster structure.

While we have been able to uncover basic mechanisms of how stable 3-cluster solutions emerge in
globally coupled SL oscillators, many other questions have arisen that we have not addressed here.
An obvious question is why the Type-II cluster singularities exist in two distinct intervals of the relative
cluster size ρ1, or, in other words, what distinguishes those values from the ones where no cluster
singularity is observed (cf. Figure 8). Probably related is the question of why the Type-II CS in one
interval lies above the line of TB points, in the other one below it. In this context, it would be very
helpful if the numerical obstacle we faced when trying to continue the Type-II cluster singularities in the
K −C1 − ρ1 parameter space could be solved. The challenge here lies in continuing the LC solutions.
Another open problem is what causes or organizes the occurrence of alternations between transverse
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period-doubling and transcritical bifurcations through which the 2-cluster LCs are destabilized, and how
many Type-II cluster singularities can exist for a given ρ1 (cf. Figure 5).

Furthermore, our direct numerical simulations provide evidence of the emergence of higher cluster
solutions (n > 3), which emerge in tongues from the different 3-cluster solutions in one ’fan’, see
Fig. 9. It appears, therefore, worthwhile to investigate whether a cascade of cluster singularities exists
that organizes the emergence of all cluster solutions hierarchically. It will, however, be hardly possible
to resolve the cascade numerically since we expect the parameter intervals for which they exist to
scale geometrically with the number of clusters, similar to the scaling of successive period-doubling
bifurcations in the Feigenbaum cascade, and other techniques are needed to approach the problem. A
further obstacle to the investigation of this question is that the 3-cluster LCs are in part destabilized
by longitudinal period doubling or Neimark-Sacker bifurcations. These processes create dynamically
complex solutions that are challenging to track and make the bifurcation analysis even more challenging.

From the symmetry perspective, the existence and unfolding of the two types of cluster singularities, as
well as their hierarchical organization, are a consequence of the equivariance of Eqs. (1) under the
symmetry group SN . This means that similar bifurcation diagrams, particularly cluster singularities,
should exist in any system of globally coupled 2-dimensional oscillators, not just globally coupled
Stuart-Landau oscillators considered here. Furthermore, using the tool of equivariance under the full
permutation group SN , as, e.g., done for polynomial vector fields of at most cubic order in [40, 41, 26,
42, 43], will further help understand the intricate dynamics of globally coupled, identical oscillators.
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A Determining the Takens-Bogdanov Point for the solitary cluster

In a Takens Bogdanov bifurcation, a saddle-node bifurcation, a Hopf bifurcation and an homoclinic
bifurcation all meet in one point. When ρ1 = 1, Eq. (5) decouples from (6) and (7) and reads:

∂tR1 = R1(1−R2
1).
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This equation has two positive fixed points, R1 = 1 and R1 = 0. We discard the second FP and
substitute R1 = 1 into the other two solutions, resulting in:

∂tR2 = −C1K sin(ϕ12)−R2

(
K +R2

2 − 1
)
+K cos(ϕ12) (8)

∂tϕ12 =
C1K(R2 − cos(ϕ12)) + C2R2 (R

2
2 − 1)−K sin(ϕ12)

R2

, (9)

where we can find the FP solutions using the Mathematica command Solve. There are six fixed
point solutions in total, where three are unphysical with negative R2 values; one corresponds to the
synchronous solution, and the last two solutions correspond to the two 2-cluster solutions. One of these
fixed points X1 = (R∗

2, ϕ
∗
12) is given by:

R∗
2 =

√
−A− 4C1K − 2K + 5√

10
(10)

ϕ∗
12 =arctan

(
5 +A− (K + 2C1(5 +A− 4K −KC1))

(−2 + C1)(5 +A+ 2K + 4KC1)

)
(11)

where A =
√

−4(C1 − 2)2K2 − 20(2C1 + 1)K + 25. To calculate the saddle-node curve, we
linearize Eqs. (8) around X1 and set the determinant of the Jacobian to zero, implying

2(A− 10)(2C1 + 1)K + 5(A+ 5)− 4(C1 − 2)2K2 = 0 (12)

The Hopf curve can be obtained similarly by setting the trace of the Jacobian to zero. The resulting
condition for the Hopf bifurcation reads:

A+ (4C1 − 3)K = 0. (13)

The Takens Bogdanov point can hence be obtained by solving the system of equations where both (12)
and (13) are equal to 0. These two lines intersect in the K − C1 plane at the point with coordinates:
CTB

1 → 0.75 and KTB → 2
√
5− 4. This is in accordance with Figure 4.
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B Reduced 3-Cluster Subspace

Applying the transformation to polar coordinates with the phase reduction results in the following system
of equations describing the dynamics in the 3-cluster subspace.

∂tR1 = C1K(ρ1 − 1) ((ρ2 − 1)R3 sinϕ13 − ρ2R2 sinϕ12)−R1(K +R2
1 − 1)

+Kρ1(R1 −R3 cosϕ13) +K(ρ1 − 1)ρ2(R3 cosϕ13 −R2 cosϕ12) +KR3 cosϕ13,

∂tR2 = −C1Kρ1R1 sinϕ12 +K(ρ1 − 1)(ρ2 − 1)R3 sinϕ13(C1 cosϕ12 + sinϕ12)

+K(ρ1 − 1)(ρ2 − 1)R3 cosϕ13(cosϕ12 − C1 sinϕ12) +Kρ1R1 cosϕ12

+Kρ2R2 −Kρ1ρ2R2 −KR2 −R3
2 +R2,

∂tR3 = −Kρ1 (C1R1 sinϕ13 −R1 cosϕ13 +R3)

+K(ρ1 − 1)ρ2 (−C1R2 sin(ϕ12 − ϕ13)−R2 cos(ϕ12 − ϕ13) +R3)−R3
3 +R3,

∂tϕ12 = − 1

R1R2

[
C1Kρ1R

2
1 cosϕ12 − C1Kρ1R1R2 + C1Kρ2R1R2 − C1Kρ1ρ2R1R2

+K(ρ1 − 1)(ρ2 − 1)R3 cosϕ13(C1(R1 cosϕ12 −R2) +R1 sinϕ12)

+K(ρ1 − 1)(ρ2 − 1)R3 sinϕ13(C1R1 sinϕ12 −R1 cosϕ12 +R2)

− C1Kρ2R
2
2 cosϕ12 + C1Kρ1ρ2R

2
2 cosϕ12 + C2R

3
1R2 − C2R1R

3
2 +Kρ1R

2
1 sinϕ12

+Kρ2R
2
2 sinϕ12 −Kρ1ρ2R

2
2 sinϕ12

]
∂tϕ13 =

1

R1R3

[
C1K

(
ρ1(2R1R3 − (R2

1 +R2
3) cosϕ13)− (ρ1 − 1)ρ2(−R1R2 cos(ϕ12 − ϕ13)

+R3(R1 −R3 cosϕ13) +R2R3 cosϕ12))

+R3(R3 cosϕ13 −R1)− (R1 −R3)(R1 +R3)(C2R1R3 +Kρ1 sinϕ13)

+K(ρ1 − 1)ρ2
(
−R1R2 sin(ϕ12 − ϕ13) +R2R3 sinϕ12 +R2

3(− sinϕ13)
)
−KR2

3 sinϕ13

]
.

C List of Abbreviations

SL Stuart-Landau

FP Fixed point

LC Limit cycle

BF Benjamin-Feir

SN Saddle-node

TC Transcritical

HB Hopf bifurcation

TPD Transverse period doubling

SNIPER Saddle-node of infinite period

SNP Saddle-node of periodic orbits

TCP Transcritical bifurcation of periodic
orbits
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