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A stabilized finite element method for the Navier-Stokes/Darcy
coupled problem

Rodolfo Araya, Cristian Carcamo, Abner H. Poza

Abstract

In this work, we propose, analyze, and numerically verify a new stabilized finite element
method for the Navier—Stokes/Darcy coupled problem, which models a fluid flowing through a
free medium into a porous medium. At the interface between both domains, we impose mass
conservation, the balance of normal forces, and the well-known Beavers—Joseph—Saffman con-
ditions [9]. The stabilization terms are defined using Galerkin’s least-squares stabilization for the
Navier—Stokes equation and Masud—Hughes stabilization [30] for the Darcy equation. This new
discrete scheme employs equal-order elements to approximate the velocity and pressure of the
fluid and generalizes the scheme recently analyzed for the linear case in [4]. The well-posedness
of the discrete problem is established via fixed-point theorems under small data conditions, and
we prove optimal error estimates in natural norms. Finally, we present numerical examples to
confirm the expected theoretical convergence orders in cases where a manufactured solution is
available, as well as to demonstrate the effectiveness of our scheme in a physical model with
varying permeability fields.

1 Introduction

In the past decade, the scientific community has shown increasing interest in studying the coupling
phenomena between fluids flowing from a free medium into a porous medium due to its applications in
various fields, such as medicine, geoscience, and industrial processes. For example, this phenomenon
is relevant to blood filtration through arterial walls [7], the design and construction of different types
of filters, and oil extraction processes in the industrial sector (for details, see [2, 122]). In geosciences,
it plays a crucial role in studying groundwater contamination caused by saline water or industrial and
domestic pollutants (see [31] and references therein), among other applications.

In this work, we consider a system based on the Navier—Stokes equations to describe the flow in one
part of the domain, where the fluid moves freely, and the Darcy equations to model the flow in the
porous medium. At the interface between these two media, we impose mass conservation, the bal-
ance of normal forces, and the well-known Beavers—Joseph—Saffman conditions [9], 28].

The purpose of this work is to propose and analyze a new stabilized finite element scheme in sub-
spaces of equal-order approximation, based on the stabilization method proposed by Hughes and
Masud in [30] for the Darcy equations and a Galerkin least-squares-type stabilization introduced by
Franca and Hughes in [23] for the Navier—Stokes equations. This new finite element method extends
the ideas recently proposed in [4] for the Stokes/Darcy coupled equations to the case where the fluid
dynamics in the free part of the domain exhibit nonlinear behavior.

The pioneering works in which this nonlinear coupled problem was analyzed are [26] and [7]. In the
first one, the coupled problem is reformulated, and using a Galerkin approximation, under small data
conditions and fixed-point theorems, the existence and uniqueness of weak solutions were proven.

DOI 10.20347/WIAS.PREPRINT.3183 Berlin 2025



A.H. Poza, C. Carcamo, R. Araya 2

Furthermore, a discontinuous Galerkin method was proposed and analyzed. Almost simultaneously,
in [7], where the problem is presented as a nonlinear interface equation, the existence and unique-
ness of a solution were established in a closed convex set under a smallness condition on the normal
velocity across the interface between both domains. Additionally, three different iterative conforming
finite element schemes were proposed. Continuing with the first reference above, in [18], the authors
proposed a finite element scheme using continuous elements in the free fluid medium and discon-
tinuous elements in the porous medium while considering two different interface conditions for the
equilibrium of normal forces. In [12], a decoupled and linearized two-grid scheme was introduced, with
numerical analysis based on the existence of a nonsingular branch of solutions, similar to the case
of the Navier—Stokes equation (for details, see [3| 16l 25])). Using a mixed formulation of the coupled
problem, where the trace of the porous medium pressure is treated as a Lagrange multiplier, [20]
proposed a conforming finite element method. The well-posedness and convergence of this method
were established based on fixed-point theory, considering the Oseen/Darcy coupled problem as the
linearized model under small data conditions. In [13], an augmented mixed finite element scheme was
proposed and analyzed for the case where the viscosity of the free fluid is a nonlinear function. Using
fixed-point theory and results on monotone operators, the authors proved the existence and unique-
ness of continuous and discrete solutions under small data conditions, obtaining a priori estimates
for the different unknowns of interest in specific choices of discrete subspaces. More recently, in [14],
a hybridizable discontinuous Galerkin scheme for the coupled problem was presented and analyzed.
This method is strongly conservative, and optimal convergence rates were proven, with a velocity error
estimate independent of pressure and viscosity. Some extensions of this brief and incomplete list of
finite element schemes for the Navier—Stokes/Darcy coupled problem to the time-dependent case can
be found in [15, (16} 17].

In this work, we consider an augmented variational formulation of the continuous coupled problem and
propose a new stabilized finite element scheme. This scheme allows us to employ equal-order approx-
imation spaces, denoted by IP’% x Py, for approximating velocities and pressures in the Navier—Stokes
and Darcy domains. The stability analysis is inspired by the techniques proposed in [20], which involve
rewriting the continuous and discrete problems as fixed-point equations, where the defined fixed-point
operator arises from the Oseen/Darcy coupled problem. Convergence results are proven for any poly-
nomial degree k using natural norms, and numerical examples confirm optimal convergence rates for
different degrees of approximation in two and three dimensions. To conclude, the proposed scheme
also demonstrates good performance and effectiveness in an example inspired by a physical model
from the literature (for details, see [14] and [26]).

We conclude this introduction by outlining the structure of the remainder of this paper. In Section[2] we
introduce the model problem, including various boundary conditions at the interface between the free
and porous domains, along with its augmented weak formulation. Additionally, we recall several classic
results from fixed-point theory and other preliminary results. The well-posedness analysis of the con-
tinuous problem is addressed in Sections |3| and [4, where we first define the linearized problem and
establish its properties, followed by the formulation of the fixed-point problem and various technical
results. In Section [5] we present the stabilized finite element method, and its well-posedness analy-
sis is obtained by extending the ideas from the continuous case. Section [6|develops an a priori error
analysis for this new scheme based on equal-order interpolation spaces, ]P’z X [P;.. Finally, in Section
numerical results confirm the theoretical convergence rate and demonstrate the good performance
of our proposed scheme.
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A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 3

2 Model Problem and preliminary results

Let @ C R% d € {2, 3}, be an open, bounded domain with a Lipschitz-continuous boundary
0f). This domain is partitioned into two disjoint open subdomains 2xs and €2p, both with Lipschitz-
continuous boundaries, such that = Qg U Qp. Here, Qg and 2 represent the domains in the
free and porous media, respectively. The interface between these two media is given by I" :zﬁNS N
Qp, as shownin Figure The remaining parts of the boundaries are I' yg := 0Qns\['and I'p := 0Qp\T',
where ' is divided into I'p" and I}, with T2" N T = () and TR # 0.

Ins Qns Ins
r
Fgou O Fﬁeu
g

Figure 1: Representation of a possible computational domain §2.

The Navier—Stokes/Darcy coupled problem consists of finding the velocities w := (uxs, wp) and the
pressures p:= (pns, pp) such that they satisfy the system of equations

—V - o(uns,pns) + (Vuns)uns = fas in g,
V- Uuns = 0 in QNS;
uys = 0 onlyg,
(P) { vup+kVpp =0 in Qp, (2.1)
V-up =gp inflp,
PD 0 onDPr,
\ up-np =0 on ['Rev,

where o (ungs, pns) :=2v €(uns) — pns Lis the stress rate tensor, I the identity matrix, € (uys) :=

3 (Vupns + Vulyg) the deformation rate tensor, v > 0 the viscosity of the fluid, £ > 0 the perme-

ability of the porous medium, and 1) the outward unit normal vector on I'¢%. Here, f yg € L2(Qns)?
and gp € L*(Qp).

This problem is completed with mass conservation, equilibrium of normal forces, and the Beavers—
Joseph-Saffman condition on I" (for details, see [9]):

up - np + ung - nys = 0,

—nng - 0 (Ung, PNs) NS = Db, (2.2)
o .
_'n/NS'U(uNSapNS)Ti:Rl_;QuNS'Tia t=1,...,d—1,

where «; are non-dimensional positive constants, and 7; are the tangent vectors on I'. In the sequel,
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we will use the following Hilbert spaces:
HY .= {v € H'(Qns)?: v=0 on FNS}, and H?:=L*(Qp)?,
QM :=L*(Qng), and QP := {q € H'(Qp): ¢=0 on FB“},
H:=H™ x H”, and Q:=Q™ x QP".

A mixed variational formulation of problem (2.1)—(2.2) can be written as: Find (u, pp,pns) € H X
QP x QN5 such that

Auys(w,pp;v,qp) + B(v,qp; pns) = F(v, qp), (2.3)
B(u, pp; qns) =0,

for all (v, qp, qns) € H x QP x QN°, where given wyg € HY, A
QP) — Ris the form defined by

: (H x QP) x (H x

WNS

Awys (U, pp; v, qp) :=2vk (e(uns), €(Uns))q,, + & (Vins)Wns, Uns)g,, +  (Pp; Uns - Tins)r
d—1
+ 572> " ai(uns - Ti,vns - Ti)r + v (wp, vp)ay, + k& (VDp, vp)a, — & (U, Vap)a,

i=1

Qns Qns

1
— K (uns - mns, gp)r + % (vup + K Vpp, —vvp +£Vap)g, ,

forall (u, pp), (v,qp) € H x QP,and B : (H x QP) x Q¥ — R s the form defined by

B(v,qp;pns) == — & (pns, V - UNS)ans»

forall (v,qp) € H x QP and pyg € Q°. Moreover, ' : H x QP — Ris the linear functional
given by B
F('U, qD) = K(fNS? UNS)QNS + F‘:(gD7 qD)QD7

for all (v, q) € H x (. The following results will be needed throughout the paper.

Lemma 1. There exists a positive constant Ckorm, Such that

Ckom [|UNs]1.0xs < lle(@ns)llo.ons < llUns 10
forallvyg € HY,
Proof. See [19, Theorem 1.2-2]. O
We will also make use of the trace inequality (see [21, Theorem B.52]),
[vlli2000 < Cullvlloy Vv € H' (Qns)", (2.5)

where C}, is a positive constant, and that the injections of H/2(9Qys)®into L*(0xs)? and H' (Qys)?
into L4(QN5)d, are continuous (see [20, 25]), i.e., there exist positive constants Cis and C, such that

[vlloa00ns <Cisllvlli200yn Yo € HY2(00Ns)?, (2.6)
HvHO7479NS < CQHUHLQNS Vo € Hl(QNS>d' (2.7)

Also, we need to recall the following identity:
((Vu)a, U)QNS = —(’U,, (V’U)a)QNs - ((V ’ CM)’U,, U)QNS + ((CM ’ n)“? ’U)agNS’ (2.8)

which is valid for all uw, o, v € Hl(QNS)d. Additionally, let us recall some classical fixed point results.

DOI 10.20347/WIAS.PREPRINT.3183 Berlin 2025



A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 5

Theorem 2 (Banach). Let (X, d) be a complete metric space and f : X — X be a contractive
operator, i.e. there exists A € (0, 1) such thatd(f(x), f(y)) < Ad(x,y) forany x,y € X. Then, f
has a unique fixed point.

Proof. See [8]. O

Theorem 3 (Schauder). Let W be a closed and convex subset of a Banach space X and let f :
W — W be a continuous function such that f (W) is compact. Then f has at least one fixed point.

Proof. See [34]. O

Theorem 4 (Brouwer). Let W be a compact and convex subset of a finite-dimensional Banach space
V,andlet f : W — W a continuous function. Then f has at least one fixed point.

Proof. See [11]. O

Throughout this paper C' and C}, @ > 0, will denote positive constants independent of the mesh size
h, but who may depend on the physical parameters of the equation.

In Section |4, we will study the existence and unigueness of the solution of variational problem (2.3)-
(2.4), using Schauder’s and Banach'’s fixed point theorems (see theorems [3|and[2) and the arguments
introduced in [20]. To this end, we first study, in the next section, a linearized version of problem (P).

3 The linearized coupled problem

To analyze the well-posedness of (2.3)—(2.4), we consider the mixed formulation of the Oseen-Darcy
coupled problem: Givenw g € H™ , withV-w g = 0inQyg, find (w, pp, pns) € Hx QP x QN
such that

Asz(uapD;v>qD) +B(U>QD;pNS) :F<U7QD)7 (3-9)
B(u,pp; qns) =0, (3.10)

for all (v, qp, qns) € H x QP x Q™.

3.1 Well-posedness of the linearized coupled problem

The following two results allow us to guarantee that the linearized problem is well-posed and that we
have a continuous dependency result.

Lemma 5. There exists a positive constant 3., independent of . and v, such that

B(v, qp; qns) K
sup 172 > Be B lans|lo.oxs

(v.ap)EH XQP K2
{loxslita,, + v lvolia, + % ook, |

for all gns € Q™.
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Proof. The result is a simple consequence of [33| Proposition 5.3.2]. O
Lemma 6. Letwyg € H™ with V - wyg = 0 in Qns satisfying

2
or < QVCKOI‘H
v — 202
CiSOtr

||sz *Nng

Then, there exists a positive constant C'..., independent of v and k, such that

Ii2
AwNS(”?QD;’v7QD) > C(coer {V'KL HUNSHiQNS +v HUDH(QLQD + 7 ‘QD %,QD} ) (3.11)
forall (v,qp) € H x QP.

Proof. Let (v, qp) € H x QP and wys € H™ that satisfies the previous hypothesis. Then, using
the Cauchy-Schwarz and Korn inequalities, and the identity (2.8), we have

Awns(V,qp;v,9p)
52

K
laplt o, + = /(wNS'nNS)|UNS|2
op O g

v
> 2wk [le(vns) 6.0y + 5 1Vnlloa, +

K2 K

3,9,3 + 2 ‘CIDG,QD 3

1%
> 20 Cigorn 10517 05 + 5 llvo]

/(sz-nNs)lstF . (3.12)
I

Now, from Holder’s inequality, (2.6), and (2.5), it follows that

k(2
/ (ws - Tos) Vs 5
T

< 1
-2

|lwns - nnsllor |'UNSH%/2,6‘QNS

K
2

kC?C?
< tTrIS lwns - es|o,rl|vns]|T - (3.13)

Thus, from (3.12) and (3.13), we have

2 K/CETCIQS 2
Asz('”»QD?'UaQD) > | 2vk Ciom — 9 |wns - "NS||0,P ||’UNS||1,QNS
14 2 I€2 2
+ 5 lvplloa, + o lapliq, (3.14)

K
>Cooer {vrellons| oy + ¥ l0nliEa, + = lanlia, |-
where Coer := min {CZ,,,, 3 } , which completes the proof. O

In the sequel, we will use the following norm defined on the product space H x (),

2 1/2
[, ) = {wuwwsuigm+m||msuagm+u|er||3,QD+7|rDriQD} . @)

forall (w,r) € H x Q.

Theorem 7. Assume the hypothesis of Lemmal6 Then, problem (3.9)—3.10) has a unique solution
(u,pp,pns) € H x QP x Q™9 and there exists a positive constant Cy. such that

(D)l < Cae {1 Fxsllons + lgmllosss |- (3.16)

Proof. The proof follows directly from Lemmas 5] [6] and the Babuska—Brezzi theory. O
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A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 7

4 The nonlinear continuous problem

As mentioned previously, the purpose of this section is to prove an existence and uniqueness result for
the solution of problem (2.3)—(2.4). To achieve this, as is common, we will express (u,p) € H X @
as the solution of a fixed-point problem (for similar approaches, see, for example, [5, 20]).

Specifically, we introduce the operator 7' : H x () — H x @, defined for all (w,r) € H X @,
with V - wpyg = 0in Qpg, as
T(w,r) = (u,p),

where (u, p) € H x @ is the unique solution of the linear problem

Awns (W, Pp; v, qp) + B(v,qp; Pns) = F (v, qp), (4.17)
B(w, pp; qns) = 0, (4.18

for all (v,q) € H x Q. In this way, problem (2.3)—(2.4) can be rewritten as follows: Find (u,p) €
H x (@ such that

T(u,p) = (u,p). (4.19)

In the sequel, we will establish several technical results necessary for applying fixed-point existence
and uniqueness theorems. To this end, we assume that the data satisfy

2032\ /r C%
ChCh

Cac {1 F wslloans + llgnllocpnt < = (4.20)

Lemma 8. Let X be the closed and convex subset of H x () defined by
X = {(’UaQ) € HxQ: V-oyg =0 in Qs and ||(v,q)|| < Cac {11 nslloons + llgnllo,0p } }

Then, T(X) C X.

Proof. Given (w,r) € X, by (2.5) and (4.20), we obtain

Ct 2v CIQ( T
lwns - nasllor < Cu [wisllioy < \/—VLHCdC {I1f nsllogons + llgpllogsn}t < TC%H
(4.21)

Thus, the hypothesis of Lemma@ holds. Next, by Theorem 7}, there exists a unique solution (u,p) €
H x () satisfying

(2, 9)1| < Cae {1 nsllons + lgploes
Therefore,

17w, )| = ()| < Cae {IF nslloans + lgnllos

This completes the proof. O

Lemma 9. There is a positive constant C'; such that

1T (w, q) = T(w, g)l| < CL|T(w, Q)|[[wns = Wnslloaoys  V(w,q), (w,q) € X.
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Proof. Let (w,q), (w,q) € X, and define (u,p):=T(w,q) and (u,p):=T(w, ). From the
definition of the operator 7, it is clear that

Aw s (U, D30, 4p) — Awys (@, Pp; v, qp) + B(v,qp;pns — Pns) =0 V(v,qp) € H x QP
(4.22)

B(u—1,pp — ppiqns) =0 Vgng € Q™.
(4.23)

Setting (v, ¢p) = (u — @, pp — pp) in (#22) and using [@#.23), we conclude that
Awys (W, pp;w — @, pp — Pp) — A s (W, Pp;u — @, pp — pp) = 0.
Rewriting the above, it follows that

2vk ||e(uns — ’&NS)H%@NS + & ((Vuns)wys — (Viys)Was, Uns — UNS)Qps
d—1 5 KVQ

+ /{1/2 ZOéi||(UNS - &NS) . TZ‘H(Q)I + §||’U,D — ﬂ’D”(Q),QD + 5|pD — ﬁDﬁ,QD =0.
i=1

Thus, we deduce that

Awys (W — @, pp — pp;u — @, pp — Pp)

=2uk |le(uns — Bns) |5 o + 5 (V(Uns — Gas)Whs, Uns — Tns) oy
d—1 , ,

+ 572 ol (uns — dns) - TS+ §HUD —up

=1

R -
8,QD + 5|pD - pD’iQD
=k ((Vays) (Wns — Whs), Ung — UNS)Qys- (4.24)

Since w yg satisfies the hypothesis of Lemmal[6] applying (2.7), (3.11), and (4.24), along with Holder’s
and Young's inequalities (the latter with v > (), we obtain that there exists a positive constant C such
that

2
. N K ) .
vk [uns—ans||; g, v ||uD—uD||(2),QD+7|pD_pD|%,QD < Oy ||ans

2 ~ 2
1,Qns ||'wNS—wNS||o,4,QNS-

(4.25)
In fact, using these arguments, we obtain

-2 ~ 12 K - 12
vk |uns — ns||T gy TV 1up — wpllgq, + ~ lpp — Polia,

1 N N - -
<5 Awys (W — @, pp — Pp;u — W, pp — Pp)
coer
K - ~ ~
= C ((VUNS)(’UJNS - sz), UnNs — uNS)QNs
coer
K ~ ~ ~
< [ens1,0ys llwns — Waso,4.0ys |wns — Basloa0xs
coer
Cok |\ - - _
< [ens1.0ys llwns — Wasloa0ys luns — Basl1oys
coer
2,.2

. N ~ N
<3 qu 5 lns]|T ol wns — Whsllfa0ns + 5 luns — wnsl|T o

coer

DOI 10.20347/WIAS.PREPRINT.3183 Berlin 2025



A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 9

where we take 7 = vk to obtain (4.25).
On the other hand, from (4.22), by applying the trace inequality (2.5) and Hélder’s inequality, together

with (2.7), (#.27), and (@.25), we obtain

B(v,qp;pns — Pns)

<C {Wv e (@ns — uns) llo,ons|€(0NS) lo,0ns + 572 [[Tns — wns 10w VNS 108

0,00 + K |Pp — Polias lvbplloqs
2

- - K™
+ & ||wp —uplloqpylaplia, + K llens — uns|lionslaplia, + 7 |bp — poliaplapliap

+ & [Pp — poliap |vnsllions + ¥ [Up — uplloas lvp

+ K uns — uns|1 s [wnslloa.ans [VNs]loa.ans + K [0Ns|10ys [wNs — Waslo4.0ns ||UNS||0,4,QNS}

2
3 . K N
<Cs {WJ luns — @ns | gy + ¥ llup — @plfq, + ~ lpp — Bolia,

1/2
~ 2 2 ~ 2 ~ 2
+ vk [luns — s} o llwnslliaays + 18]y o llwns — wNSHOA,QNS}

1/2
2 2 K2 2
< vEl[onsliog + v volloe, + - lanlie,

1/2
<C, i = 2 2 "‘5_2 2
<Cy |[ansliansllwns — whslloaons § VE lvasllion + v Ilvolloa, + » lapliq, :

(4.26)
Finally, from the definition of the norm || (-, -)|| (cf. 3-15)), and using (#.25), (#26), and Lemmalg] the
proof follows. [

The following results allow us to ensure the existence and uniqueness of a fixed point (u, p) € X for
the operator 7.

Lemma 10. Assume that the data f g € L*(Qns)? and gp € L*(Q2p) satisfy the condition (4-20).
Then, the mixed variational formulation (2.3)—(2.4) has at least one solution (u,p) € H X Q.

Proof. From Lemmasand@ and using the fact that the Sobolev embedding H' (Qvs) — L*(Qys)
is compact, we deduce that 7' : X — X is continuous. On the other hand, let {®,, },en be a
sequence in X, which is clearly a bounded sequence in H x (). Then, there exists a subsequence
{0n, Ywen of {@n fnen and an element ¢ € H x () such that ¢,,, — ¢. We proceed by defining N5
and <p§5 as the first component of ¢,,, and ¢,,, respectively. Due to the uniqueness of the weak limit,
we obtain that Y5 2 ™5 Now, using again the compact embedding H'(Qys) — L*(Qxs), we
conclude that 2 — ©™ in L*(Qns). Thus, by applying Lemma@ we deduce that T'(¢,,, ) —

T'(), which proves that 7'(X') is compact. Applying Schauder’s fixed point theorem (see Theorem
[3), we obtain the existence of a solution (u, p) € H x Q for @:3)-2-4). O

Theorem 11. Assume that the data f yg € L?(Qns)? and gp € L?(2p) satisfy the condition

Ve . (2vCE . 1
|.fnsllo.ens + llgplloon < Cr min CZC3 " C,C [ (4.27)

DOI 10.20347/WIAS.PREPRINT.3183 Berlin 2025
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Then, the mixed variational formulation (2.3)—(2.4) has a unique solution (u, p) € H x () and satisfies
the estimate

(e, P < Cae {11 F nsllosons + llgnlloen}- (4.28)

Proof. The main idea of the proof is to verify the hypotheses of Banach’s fixed-point theorem. Since
X is a Banach space and 7(X) C X, it remains to prove that 7" is a contraction. In fact, as the
inclusion of H'(Qxs)? into L*(Qxs)? is continuous, from Lemma|§]and condition (4.27), we obtain

1T (w,q) = T(w, q)|| < C1||T(w,q)|lwns — wslloa0ns
< chl HT(@? Q)H”wNS - @NSHLQNS

< CacCyCr {IF nsllons + lgpllon } lwns = Bxslh.ans

CacC,C L
< = I asloass +llgplon . 0) = (@, )

which completes the proof. O

5 A stabilized finite element method

From now on, we denote by {ﬁlNS}}DO and {ED}h>O two regular families of triangulations of Qs
and Qp, respectively, composed of simplices that match at the interface I'. For a triangulation 7}LNS
or 7,2, we denote by K the elements of the triangulation and by &les the set of all edges (faces) of
T, N5, with the decomposition
ENY = Eqs UERE U Er,
Dir

where £q . stands for the edges (faces) lying in the interior of 2ng, Ex§ stands for the edges (faces)
on the boundary I'ng, and &r,, stands for the edges (faces) on the boundary I'.

Similarly, we denote by 5,’? the set of all edges (faces) of 7}LD, with the decomposition

EP =&y, UERTUERTUEL,,

where &g, stands for the edges (faces) lying in the interior of Qp, £ and EPT stand for the edges

(faces) on the boundaries Fﬂ}‘f“ and ' respectively. As usual, we denote hy as the diameter of K,

h:= max hg,and hp = |F|for F € &Y U EP. Finally, for each K € T, U T,” and
KeTNSuTP

F e &N UEP, we define N'(K) as the set of nodes of K, A/(F) as the set of nodes of F'.

Additionally, we introduce the following neighborhoods:

N = U K, @R := U K’
NE)NN (K )0 N(E)NN (K )#0
K/GT},],VS K'EThD

We introduce the following finite element subspaces of HY HP, QN%, and QP, respectively:
H}]ZVS = {’U € C(ﬁNs)d : ’U’K c Pk(K)d, VK € ENS} ﬂHNS,
H}) ={veCQp)" : v|x eP(K)", VK €T},
}];/S ZZ{(]EO NS) : q|K€IP’k(K), VKGIELNS},
Qr ={a€C( ) : qlx ePy(K), VK eT}NnQ",
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A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 11

where £ > 1, and IP;, denotes the space of polynomials of total degree less than or equal to k.

We define the global spaces:
H),:=H,"” xH;), Qu=0Q;" xQ}.

Let uy, := (un s, Unp) € Hyp, and pp, == (pn s, Pr.p) € Qn. We consider the following discrete
stabilized scheme: Find (up, pr) € H}j, X @y, such that

Auh,Ns (,u’}wpha vh? Qh) - ‘Fuh’NS (’Uh’ qh)7 (529)

for all (vp, qn) € Hj % Qp, where for a given wy, ns € H}JLVS, the bilinear form A
Qn) x (Hp, x Q) — Ris defined as

Z(HhX

Wh,NS

Awp ns (Why Pr; V1, qn) = 20K (e(unns), €(VNS))q o T K (VUnNs)Wh NS, Vi,Ns)

Qns

K
t3 ((V - wp,ns) Un,Ns; Vn,Ns) gy — K (Pr,nss Vo UnNs)aws + K (qr,nss Vo Un,Ns ) s

Qns

d—1

1/2
+ K E a;(Un,Ns - Ti, VNS - Ti)r + K (Dh,Ds Vh,NS - TNS)T
=1

+v ('U'h,Da Uh,D)QD + K (Vph,D, ’Uh,D)QD — R (’%,D; VC]h,D)QD — K (Uh,Ns ‘N g, %,D)r

1 h3.
+ % (vupp + Kk Vppp, —VURp + fdih,D)QD + k[ K;VS - ( —2vV - e(upns)
S

+(Vup ns)wnns + Vouns, 20V - e(vp ns) + (Vg ns)wh Ns + V%,NS) : (5.30)
K

for all (wn, pr), (V. qn) € Hp X Q.

Similarly, the linear form F,

- H;, x QQ, — Riis given by
th,NS ('Uh, Qh) = '%(fNSa vh,NS)QNs + K,(gD, Qh,D>QD

h2
+rp Z TK (fNS’ 20V - E(vh,NS) + (vvh,NS)wh,NS + VQh,NS)

KeTNs K

(5.31)

for all (vy, qn) € H} X Qp, where [3 is a positive constant. Moreover, it is known that there exists a
positive constant C, independent of A, such that

Cr > hxlIV-eonns) o x < le@nns)bons:  Yonns € HYS. (5.32)
KeT;Ns

In the rest of this work, we define the following mesh-dependent norm over Hj, X (QQy:

h2
l(on, an)ln = < vi lonnsliaw + 5 llansslfow 668 > TK |qn, s x
KeT,Ns (5.33)

/2 1/2
#olonolia, + oo, |

for all (vp, qn) € Hp X Q.

Moreover, we will use the following standard results:
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A.H. Poza, C. Carcamo, R. Araya 12

Lemma 12. There exist positive constants C, Ciyt, and Clye, independent of h, such that

onnsllipr < C R TPV el i (5.34)
lvn.Nsloo ik < Cing h;(1/2|'vh,NS|1,QNSa (5.35)
hi |vn sl e < Ciaw || Vnns o,k (5.36)

for all v, ng € HY®, where) < m < land1 < p,q < co.

Proof. See [21, Lemma 1.138]. O

5.1 Well-posedness of the discrete linearized scheme

The purpose of this section is to prove an existence and uniqueness result for a solution of problem
(5-29). To this end, as we did in the continuous case, we will write (wy,, p,) € H}j, x ()}, as a solution
of a fixed-point problem.

In fact, we introduce the operator 7}, : H;, xQy, — H ,xQy, suchthatforall (wy,, ) € HpxQp,
we define
Th(wn, 1) = (tn, Pr),

where (i, pr,) € H ), X Q) is the unique solution of the linear problem (see Theorem [16] below)
Ay, ns (U Dri Vs Gn) = Fopns (Vs qn) V(0 qn) € Hp X Q. (5.37)

In this way, the discrete problem (5.29) can be written as follows: Find (wp,pr) € Hj X Q) such
that

Th(wn, pr) = (Wn, pa)- (5.38)

As in the continuous case, the following preliminary results will allow us to prove that the discrete
operator 7}, has a unique fixed point.

Lemma 13. Assume that wy ns € H flVS satisfies

2vC2
2V Ko (5.39)

n <
Hwh,Ns NSHO,F_ CigsOth7

and that the parameter [3 satisfies

2
B<%min{%,l}.

Then, for sufficiently small h > 0, there exist positive constants Cy and Cs, independent of h, such

that
2 v 2 K2 2
Ay, ns (Ons @n; Vns qn) vk Oy [vn ns|T g + 3 lvaplloq, + % lan,oliq,

h? (5.40)
+CokfB Y TK |gn s T

KeTNS

for all (v, qn) € H}p, X Q.
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A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 13

Proof. Let (vp, qn) € Hp, x Q) and wy, ns € Hflvs that satisfies (5.39). Then, from the definition of
the bilinear form Awh’NS (+, ), using Cauchy-Schwarz inequality and the equality (2.8), we have

'Awh,Ns (Uha qn; Uh, Qh)
2

14 K K
> 20 () s + 5 Nonli, + 5y lannlia, + 5 [ (wnas - mas)on sl

h2
DI { 22V - e(ons) e + (Vo s wnns e + sl
KeTNs

2 ((Von,ns)Wh nss Vanns) i } (5.41)

Hence, using inverse inequality (5.32), Lemma([f]and Young’s inequality, we get

'A'wh,Ns (Ufw Gh; Uh, q}z)
2

1% K K
> 2vk |le(vnns) 5o + B lvnolbq, + % lqn,pl% 0, — 5 ‘/r(wh’NS : "NS)|UNS|2‘

1
5 |Qh,NS|iK}

h2
t KB Z TK { — 42|V - e(vnns) o — (Vonns)

KeTNs
14 /{2 K
> 20 (055N s + 5 N0l + 5 rqh,pﬁ,% =5 | [ ma)
4vkf
e le(vnns) 150 — %6 Z — Ivthll wllwn sl + —Hﬂ > _|QhNS|1K

KeTNs KeTNs
273 v K2 K
>2Ckomvi | 1= - ) lvnnslli g + 5 ||vh,D||(2),QD +3, I(Jh,DlinD — = | [ (wp,ns - nns)|vnns|?
C[ 2 2 T

hx
— kB Y TCian|vh7NS|%,K|wh,NS|%,QNS ffﬁ > —IthshK

KeTNs KeTNs

Finally, under the assumption (5.39) and the estimate (3.13), we obtain

Awhws (’U}U qh’ 'U}“ q}l)
dvkB  KCCR

h
> <2VI€CI2<OHI— CI 5 = |wh,ns - TLNSHOF—Hﬂ mf|wh,NS|iQNS) ||’Uh,NS||§,QN5

+ 5 Fdﬁ > —|QhNS|1K

KeTNs

14
+ 2ol a, +

46

5 Cis |wh,Ns|iQNs) th,NSHiQNS

> VK (CI%orn -

Hﬁ Z — |C]th|1K

KeT,Ns

v 2
+3 lvapllo.0, + o

v K2 h?
> vk C [Jon s op + 3 lon,oll6.0, + . anplia, +CakB Y 7K |an,ns |1 15
KerThNS

assuming h that is sufficiently small. O
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As is well known, the subspaces HhNS and Qfl\’s do not satisfy a discrete inf-sup condition; however,
they satisfy the following weak inf—sup condition.

Lemma 14. There exist positive constants C'3 and Cy, independent of v and h, such that

1/2
(Qh,NS7 V- Uh,NS)Q

sup ¥ > Cy llgnnslloons—Ca B D B lannsl? x ;

onnseHP N @xs)d IOnNs|Lans s
h
(5.42)

for all g, ns € QN7
Proof. See [24, Lemma 3.3] or [4, Lemma 2]. O

The following result will be necessary to prove the well-posedness of the discrete stabilized scheme.
The proof is based on similar arguments to those used in [4, Lemma 3].

Lemma 15. Assume the hypothesis of Lemma[13 Then, for h > 0 sufficiently small, there exists a
positive constant C 4, , independent of h, such that

‘Awh,Ns (uha DPh; Up, Qh)
sup

> Ca, I(wn, pa)llns
(vn,an)EH 1, xQ, Il (vn, gn)lln "

for all (wp, pp) € Hy X Qp.

Proof. Letwys € H7° NHE(Qns)? such that satisfies Lemmal14{and suppose that || s ||1.0ys =
| Pn,ns |0,0xs - Then

Awh,NS (U, pr; —Wns, 0,0,0)
:Awh’NS (uh7 07 _Ia)N37 07 07 0) + Awh,NS (Oaphv _ﬁ]NS7 07 07 0)

i . K ~
= —2vk (e(un,nsg), e(Wns)) ke (Vun,ns)wh,ns: WNs ) v = 5 (V- wh,Ns) un Ns, Wis)q s +

Qns Qns

K (prns, V- Wns)oys + 4068 Y hi (V -&(up,ns), V- E(ﬁ?Ns))

KeTNs K

+2k 3 Z h3; (V-E(uh,Ns),(V@Ns)wh,Ns>

KeTNs K

h? - -
—kf Z TK ((V’uh,Ns)wh,Ns + Vpnns, 20V - e(wys) + (VwNS)wh,NS>

KeTNs K

=L+ 1+ I3+ 1, (5.43)

Using Cauchy—Schwarz inequality, the inverse inequality (5.32) and the compact inclusion (2.7), we
deduce that the first five terms of (5.43) can be estimated from below as follows

2
2p . .
L+1, > —2vk {1 + —Vq |wn,nsll1,0ns + . |wn,ns l|1,0ns | WNs[[1.08s + £ (Pr,Ns, V- WS )y
I

Z - I/K'Ml Huh,NSHLQNSth,NSHO,QNS + K (ph,NS7 V- ﬁ)NS)QNsu (544)
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A stabilized finite element method for the Navier—Stokes/Darcy coupled problem 15

where M is a positive constant that depend on ||wp, ns||1,0,s Which is bounded.
On the other hand, it is straightforward to verify that, by applying Hélder’s inequality and (5.35), the
following holds

B> W [(Vions)whns|If x < B Ciath | @100 | whas 17 oy (5.45)
KeTNs

B Y b (Y ns)wi st < B Ciath [, ns 1.0 1 0hns 17 - (5.46)
KeTNs

Since that 5 < C/2, we conclude by the inverse estimate (5.32) that

B Y |V -e(@ns)|f i < —||€(sz)IIOQNS (5.47)

KeTNs

Then applying Cauchy—Schwarz inequality and (5.45) and (5.47), we can estimate from below /5 as
follows

Is =2k 3 Z h3. (V - e(upNs), (v'leS>wh,NS>

KeTNs K
1/2 1/2
> =268 Y Wi IV - e(unns)lf« B> i [(Vaons)w ns|l6 «
KETNS KefThNS
> — 26BY2 Cingh? || ns||1.00ns |0 85 | 1008 |0 N5 || 1.000s
> — v Myh'? w1 s o8~ lo.ns (5.48)

where M is a positive constant that depend on ||wp, ns ||1.0 -
Employing similar arguments as above, but this time utilizing (5.45)-(5.47), we can estimate I, as
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follows

h? .
Ii = —kpf LA (Vup ns)wh ns + Vpuns, 20V - e(ns) + (Vwns)wp, NS
1%

KEfThNS
1/2
> =26 40 Z hic II( VuhNS)whNSHOK B Z hi IV - e(wns “OK
KETNS KETNS
1/2
K
-7 > B l(Vunns) B Y Wi ll(Vivys) whNSHOK
KeTNs KeTNs
1/2
h?
2202 kp S st 48 S WV eons)Ba -
KeTNs KeTNs
1/2 1/2
172 12
i K Z TK\ph,Nsﬁ,K Z hi 1(Vwns)wh, s[5
KeTNs KeTNs

1/2
> — wBY2 Cinth™? | N5 ||1.0ns W NS |10 [2 lwwnsl1,08s + — Cinth!/? ||wh,NS||1,QN5||mNS||1,$2NS] -

2 Yz 1/2
h . 8 -
2 {Hﬂ > ” |ph7NS%,K} [2||sz||1,QNs t e Cingh'/? IIwh,NSLQNsIIszIImNs]

KeT,Ns
1/2

> — v M3h'"? ||, ns| 10xs [Prsloons — Ma 4 68 Z — |]9h Ns|Tk 18,55 [l0,0s
K€7—}NS
(5.49)

where M5 and M, are positive constants that depend on ||wp, ns||1,0,s- Now, by connecting (5.44),

(5.48), and (5.49) with (5.43) and applying Lemma|[14] we obtain

Awh,NS (uhaph; _ﬁ)NS’7 07 07 O)

> — vk [My + B2 (Mo + M3)] ||un,ns 1,08 [PaNs 0,08 + Cs 5 [PaNs 1R 00—
1/2

(My + Cus 20 Lk B Z — !ph nslig ¢ Ionslloos
KeTNS

> — vk Ms ||[unns || 1.0xs |Pr.vsllo0ns + Cs & l|pnns[§ 0,
1/2

h2
— Mg < kB Y TK\ph,NSﬁ,K 1Pn,ns llo,9s (5.50)
KefThNS

where M5 and M; are positives constants that depend of ||wy, ns||1.0,s, Which is bounded. Now,
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using Young inequality, we have

A’th\]S (uh7ph7 _’&)NS7 07 07 0)

vMsm V2 Ms Mg h3
>k |C3 — — Mo~ | Ipnnslloans — vEs— lunnsion — 5— 468 > = |pnnslt k
2 2K 2v1 279 KT v
€y
2 2 hi 2
> K Cs ||pnas it ans — Covellunnsliow — Cr S 6B > —, lpnslig ¢ (5.51)
KefThNS

with y; and -y chosen small enough.

Defining (vy, gn) := (wp, pr) + 6 ((—wns, 0), (0,0)), and combining, and (5.57), we get
Awp s (Why P Vny @) = Awy, s (Wh, D Why @n) + 0 Awy, s (W, Pr; —Wnis, 0,0,0)

h?
> vr (Cy — 6C5) [unnsllf ons + C50 5 lIpnnsllo o + (Co—6Cr) kB D TK |Phns [
KefThNS
2 K
0.0p T o |Ph,D

v 2
+ 5 |wn,p 1,90

> C' | (wn, pn) I3, (5.52)

C; Cy 1

choosing 0 < & < min{ =, ==, — 4. Finally, it is clear that ||(vn, g)lln < C [l(wn, p)|ln.
06 07 1/1/2

which combined with (5.52) proves the stability estimate. O

Theorem 16. Assume the hypothesis of Lemma|[15 Then, for h > 0 sufficiently small, the problem
(5-37) has a unique solution (uy,py) € H}, x Q. Moreover, there exists a positive constant Cycq,
which depends on the physical parameters but is independent of h, such that

1w o)l < Coca {1f s lons + lgnllosss }-

Proof. The result follows directly from Lemma[i5] O

5.2 Existence and uniqueness of the discrete solution

As in the continuous case, we assume that

208/21/2 2

orn (5.53)
CRC5

Caca {11 Fnsllo.ons + llgplloon

Lemma 17. For h > 0 sufficiently small, let X ;, the closed and convex subset of H x () defined by

Xy = {(Um%) € Hy x Qn: (wn, qn)lln < Caca {I|Fnsllo.ons + ll9plloon }

Then Th(Xh) Q Xh.

Proof. The argument follows analogous to the continuous case (c.f. Lemma/8). O
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Lemma 18. Assume that h > 0 is sufficiently small. Then, the following inequality holds:
|”Th(wh, qn) — Tr(wh, Gn)||n

3/2 302
Cint 3 Z — 5 I nsllo.re + =577 1T (@n, @u)lln ol (w0 — @n, g = @),

KeTNs

C’Ah
for all (wp,, qn), (W, Gn) € Xp.

Proof. Let (wp, qn), (Wy, Gr) € X, be arbitrary, and define (wy, pr) := Th(wp, qn) and (@, pr) :=
Ty (W, Gr), which satisfy the following conditions:

Awhyz\]s(uh7ph; ’Uh, Th) = th,NS (vha rh);
F

Ay, s (W, D U, Th) = Fayp s (U, Th),

for all (v, 7,) € Hy X Q.
Since the objective is to apply the discrete inf-sup condition of Lemma[i5] it is easy to see that

A'wh#]\]s (uh - ﬁh?Z)h - ﬁha Vh, Th) - (F'meS - Fﬂ)h’Ns)(vhu Th) + (A'l’bhyNs - Awh7N5)<ﬁh>ﬁh; Vp, Th)'
(5.54)

Thus, both terms on the right-hand side of (5.54) will be bounded below. In fact, from the definition of

Fu,, ns @nd Fag,, o (cf. (6.3)), Holder's inequality and the inverse inequality (5.35), we get that

(th,NS - Fﬂ)h,NS)(IU}” Th)

h2
=k f3 Z TK <st> 20V - 5(’Uh,NS) + (Vvh,NS)’wh,Ns + V?‘mNS)

Ke/ThNS K

h? R
— K[ Z TK <.fNSa 2vV - e(vyns) + (Vopng)Wa,ns + VTh,NS)

KeTNs K
h2, )
=K Z W Fns: (Vg ns) (wh ns — W, Ns)
KeTNs K
<kp Z K ||st||0 & |VnNs |1k [ Wh N — Wi NS || o, &
KeT,fVS
<Citkf Z % | f nsllo.x [vnns |1, [ Wh,Ns — Wi Ns |10
KeTNS
3/2
<Cuer'?B8 ) 3/2 | £ nsllo,x [l (ns ) lln|wn,ns — W ns|1.0xs
KeTNs
3/2
< Cint 3 Z 5 1 wsllosellCons )l (wn — @, an — a@n)lln- (5.55)
KeTNs
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On the other hand, to bound the second term in (5.54), we use the definitions of A4, . and A, v
(cf. (5.30)) to decompose the expression as follows

(Afvh,Ns - Awh,Ns)(ﬁ'ha Dh; Uh, rh)
- ~ K ~ ~
=k ((Vn,ns)(Wh,ns — Wh,Ns), VnNs) g T 5 (V- (wp,ns — Wi, Ns) Uh,Nss Vn,NS) g

v

h? . _ -
+ kB Z Kl —wVv. e(un ns) + Vnns, (Vg ns) (Wh ns — ’wh,Ns))

K

h? . _
+ kB Z TK (Vi ns) (Wh,ns — Wi ns), 20 V - €(vpns) + thJVS)

K

14

h? - - -
+ K Z & (Vuh,Ns)(’wh,Ns - wh,NS)y (V’Uh,NS)’wh,NS>
K

h? N -
+ K[ Z TK (Va ns)wh ns, (VUi Ns) (WhNs — wh,NS))
K

=L+ L+ I3+ 1+ I (5.56)

To estimate the first term, we use Hoélder’s inequality and (2.7), to get

~ ~ R ~ -
I =k ((Vy,ns ) (Wh,Ns — WhNS), VNS ), T 5 (V- (wp,ns — wi,Ns) Uh,Ns; On,NS)

<K |Up Ns|1ans || WhNs — Wi NS 04,045 |VR NS 04,006
/-z\/gl

+ — |Wp, ns — Wi, NS

Qns

1,2 |1 Th, NS [|0.4,0s |08, N5 [| 0.4, (5.57)

Vad\ - i
< HC(? (1 + 7 ||Uh,Ns||1,QNS||wh,NS - 'wh,NS”LQNS||'Uh,NS||1,QNS

2
< a7z W@ Bl (wn — @i, an = @) lall (0ns 7) (5.58)
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Using Cauchy-Schwarz and Hélder’s inequalities together with (5.35), we obtain

h? - - -
Iy =kp E TK < —2v'V - e(pns) + VDuns, (Vopns) (Wh Ns — wh,NS))
KeTNs K

2

h N
<kB Z 7K | =20V - e(tnns) Wi, NS | 0o, 16
KefThNS
1/2
KB h?
< i > VK | =20V - e(@nns) + Vinnsllo x
KeTNs
1/2
X Z Wiclvnns|i il wnns — wa s |2k (5.59)
KE/ThNS
1/2
Cintk h?
< ;nl/z Z VK || —2vV- s(uth)+Vth5||0K
KerrhNS
1/2
X S |@nns — wanslTaws D hrlvnst (5.60)
KefThNS
1/2
Cinf/‘fl/2ﬁ1/2h1/2 h2
72 R Y =20V - e(@nns) + Vsl (561)
KefrhNS
X |Wh,Ns — Wh NS |18 VR NS 18- (5.62)
Now, from triangle inequality, the inverse inequality (5-32) and the definition of the norm || (-, -)]|
clear that
h?
k[ Z K || —2vV - €(uth)+Vths||0K
KeTNs
<8kv B > hi |V - e(@nns)lf i + 26 Z — |thS|1K
KeTNs KeTNs
N 9 h3.
< dkv ||e(@nns) G ap + 268 >
KeT,N®
<4 || (@n, )17 (5.63)
Next, from (5.62) and (5.63), we conclude that
QOinfﬁl/th/Q o ~ ~
I = — 55— @, u) lull (on, r) Inll (wn = @, an = an) o (5.64)
To estimate I3, we use similar arguments thus we have
hi
Is=krp Z — (Vay ng)(wh,ns — wions), 20V - €(vpns) + Van s
KeTNs K
20\ f61/2h1/2 o ~ _
— e 1@ )l (wn, ra)llall(wn = @, gn = Go) - (5.65)

h, itis
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To estimate 14, we again employ similar arguments, leading to:

h? N N -
I, =kp LN (Vanns) (W ns—whns ), (VRN )Wh s
14

KeTNs K
<kp Z —|UhNS|1K||whNS—’wthHooK|UhNS|1K||whNS||ooK
KeTNs
1/2 1/2
Kp 2 |5 2 (1 2
= > hiclannsl gll@nns — wansllZ « > i lwns|? cllwon sl «
KeT;Ns KeTNs
1/2 1/2
C2.k8 |, . . .
S—m; (W Ns — WhoNs|T o Z hi [tn ns |3k W, ns|T 0 s Z hi [vnns|tx
KeTNs KeTNs
C%.Bh,, . . - - -
< ;j}fﬁ Il (&, D)l (0ns @)l (on, o) Il (wn — W, g — @) |- (5.66)

The same reasoning can be applied to the last term, resulting in

h? 5 .
Is =k LA (Vap ns)wh ns, (VUi ns) (Whns — WhNs)
1%

KeTNs K
Bh
< ;lfﬁ I (@r, )l Nl (wns @) all(Ons 70) I ll (w0 — @y g — Gn)lln- (5.67)

Finally, since (wy, ¢,) € X, and assuming that the data condition (5.53) holds, the hypotheses of
Lemma [T5|are satisfied. Combining these with (5.54)—(5.58) and (5.64)—(5.67), we conclude that

Ca, (wn — wn, pn — pn)||n

3/2 202 4C. f/61/2]11/2
_{ Cing 8 Z — 5 I s llo.xe + 75717 1@, u)lln + — 3757 I (@n, 2 ) I
KeTNs

mfﬁ Il (@, D) Il [N (@, @n)lln + ll(wn, gn)lln ] }m(’wh — Wh, qn — Gn)|ln

3/2 302
<4 Cint B Z — 5 I nsllo + —757 W@, u)lln ¢l (wn = wn, g = @), (5.68)

KeT,Ns
under the assumption that £ is sufficiently small. O

Lemma 19. Let X}, be as in Lemma Under the assumption (5.53) and assuming that the stabi-
lization parameter 3 satisfies the condition of Lemma([13, the stabilized finite element scheme (5.29)
has at least one solution (uy,, py) € X .

Proof. From Lemmas[17]and[18] the operator T}, : X, — X, is continuous. Then, by Brouwer’s
fixed-point theorem (cf. Theorem4), it has at least one fixed point. O

Theorem 20. Let X, be as in Lemmal17 Under the assumption (5.53) and assuming that the stabi-
lization parameter (3 satisfies the condition of Lemma suppose also that the data f ng € L? (Q NS)d
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and gp € L*(Q2p) satistfy the following condition:

3/2 2

1 h 3C
a{anfﬂ > y—f;||st||o,K+yg,/2—;/zcdcd(|rst||o,QNS+||gD||o,QD)} <1 (5:69)
h KerrhNS

Then, for h > 0 sufficiently small, the stabilized finite element scheme (5.29) has a unique solution
(un, pn) € X

Proof. From Lemmas[17]and[18} and under the assumption (5.69), the mapping 7, : X, — X} is
a contraction. Therefore, applying Banach'’s fixed-point theorem (cf. Theorem[2), the result follows. O

6 Convergence analysis of the stabilized scheme

In this section, we present an a priori error analysis for the stabilized finite element scheme (5.29). We
consider (u,p) € (H x @) N X as the unique solution of problem (2.3)—(2-4), or equivalently:

Buys(u,p;v,¢) =G(v,q)  VY(v,q) € HxQ, (6.70)

where, given wys € H™ with V - wyg = 0 in Qng, the bilinear form B (H x Q) x (H x

()) — R and the functional G : H x () — R are defined as

WNS

Buoys (W, p; v, q) := Aw s (U, DD v, qp) + B(v, qp; pns) — B(w, pp; qns), (6.71)

for all (u,p), (v,q) € H x @), and

G(v,q):=F(v,qp), (6.72)

for all (v, q) € H x (). Moreover, we assume that problem (6.70) has additional regularity, meaning
that there exists a positive constant Cy. such that

[unsllaons + Ipsloans + lunlloas +polias < Cac {1 xsloars + l9plloas - ©73

Additionally, we recall a local trace theorem, as well as the definition and properties of some interpo-
lation operators that will be used in the sequel.

Lemma 21. There exists a positive constant C', independent of h, such that

2 -1 2 2
||¢||0,8K <C {hK H¢||0K + hKW’l,K} )

forall K € TN UTP andally € H'(K).

Proof. See [1, Theorem 3.10] or [10} (10.3.8)]. O

We consider the Lagrange interpolation operator HhNS : H’““(QNS)CZ NnHY — HM, and

the Clément interpolation operator Ci° : H*(Q2) — Q°, such that (see [21] for detalils), for all
K € T;™, we have

luns — HhNSuNS|l,K < Chit lunsls.x, (6.74)

Ipns — CR¥pnsllo.x < Chi lpwslls zs, (6.75)
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for all uys € H*(K)? and all pyg € H*(@X°), with0 < [ < land 1 < s < k + 1. Here,
C'is a positive constant independent of . Similarly, we consider the Clément interpolation operator
CP : H*(Qp)? — H7, and the Lagrange interpolation operator [T : H**1(Qp)NQP — QP,
such that for all K € T,”, we have

lup — CRupllox < Chillupllsep, (6.76)
lpp — 0 polix < Ch pplsx, (6.77)

forall up € H*(0R) and all pp € H*(K),with0 <[ < land1 < s < k + 1. Again, C'is a
positive constant independent of h.

Lemma 22. Let (u,p) and (uyp, py) be the solutions of (6.70) and (5.29), respectively. Assume the
regularity hypothesis (6:73) and that (u, p) € [(H"*'(Qns)? N H™) x H*(Qp)?] x [H*(Qys) x
(H"‘“(QD) N QD)] , with (u, p) € X and (up,py) € X . If we additionally assume that

30 Cdc CA
2 {1 f nslloons + lgplloon} < 2h (6.78)
then
Ay s (W = Uns p = PRy OB, ) < —5+ V2 62 lus — wnovsluons 1(0ns @n)llne (6.79)

for all (vy,, qn) € Hjp X Qp,.

Proof. Given u, s € H ", by definition of the bilinear form Au,, ns (cf. (6:30)), and as (u, p) and
(up, pr) satisfies (6.70) and (5.29), respectively, we get
'Auh,Ns (u — Up, P — Ph; Uh, Qh)

= Buns (W, p; v, qn) + £ (Vuns) (wnns — uns), Vans)ons + = (V- (Un,ns — Uns)UNS, Uk NS)

2
< —-2vV- €(UN5)

Qns

h2
_A'u,h Ns(lu’lwph)/vh?qh) + 'L{':/B Z

KeTN9

+(Vuns)un ns + Vons, 2v'V - e(vp ns) + (Vop ns)Un ns + VC]h,NS)

K
= F('Uh; qn,p) + £ ((Vuns) (unns — UNs), Vi,Ns)oys
t3 (V (wn,ns — UNS)UNS, ViNS ), — Aun v (Why Phs Vns Gn)+ (6.80)
h2
KB Y 7K (f — (Vuns)uns + (Vuns)un,ns, 20 V - €(vp,ng) + (Vop,ns)unns + VCNL,NS)
KEIThNS K

=k (Vuns)(unns — Uns), Vnns)ans + = (V- (UnNs — Uns)UNS, U NS)

2

Qns

h2
+K [ Z 7K ((VUNS)(Uh,NS —uns),2vV - e(vpns) + (Vopns)un s + VC]h,NS)

KeT,Ns

K
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By applying similar arguments as in (5.58), it follows that

K

I =k (Vuns) (upns — UNs), UnNS)ons + 5
202

= 12,172 |uns]|1,0ns |wnNs — wns1oxs | (Vs @n)[ln- (6.82)

Now using Hoélder inequality, (2.7), (5.63), (5.35), we get

(V- (un,ns — Uns)UNS, Va,Ns) g

h2
I, =kp LN (Vuns)(unns — uns), 20V - €(vins) + (Vonns)unns + Vanns
1%

KeTNs K

<kp Z K||VUNS”04KHUhNS_UNS||04K”2VV e(vnns) + (Von ns)un Ns + Van nsllo.x

KeT,Ns
Py 1/2
1/2 51/2
K7p
=i Z h%{ HVUNSHgA,KHUh,NS - UNSH3,4,K X
KefThNS
1/2
KB Y i 120V - e(vnns) + (Vonns)un,ns + Vanns o x
KeTNs
1/4 1/4
K1/281/2 ) ) ) A
< 2 Z Wi IVunsloa,x Z Wi lun,Ns — unslloq, i X
KeTNs KeT,Ns
1/2
2k 3 KHQVV e(vans) + Vannsll§ x + 268 KH Vo, ns)wnns |6 i
14
KeTNs KeTNs
1/231/2p,2 212802 1/2
K K 11
17 . 3/ L lunsllz,ons llun,ns — wnsllvons | (@n, an )l (6.83)
Next, from (6.81)-(6.83), we obtain
Auh,NS (U’ — Up, P — Ph; VUh, Qh)
1/2
2 BY2%h 2612 BCE ch
2 1/2 inf
<Cyk {yl/% [wnslons + /2 8+ 3/2
X ||UNS||2,QNS} [wn,ns = uns|lons (Vs )|k (6.84)

302
< a7 lunslluons unns = wnsllioxs [l(wn, @)l

under the assumption that / is sufficiently small, and applying (6.73) and (6.78), the result is obtained.
O

Theorem 23. Let (u,p) and (uy,, p) be the solutions of and (5.29), respectively. Assume the
regularity hypothesis andthat (u,p) € [(H*(Qns)? N H™) x H*(Qp)?] < [H* (Qns) x |
(H*"1(Qp) N QP)] with (u, p) € X and (uy,, pn) € X . Additionally, assume the data condition
(6.78).

Then, there exist positive constants hy and C', independent of h, such that

[(w —wp,p— i)l < CR* (|unsllerrons + IPnsllkons + lupllka, + IPollkr1.0,) VA < ho.
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Proof. We consider the following notations:

NN = uns — I uns, 1P :=pns — Cpopws,
NP :=wup — ChDuD, NP :=pp — HthD,
n" =N, "), 0= (N, nPP),

I NS D P NS D
ey = (upns — I, uns, unp — Cpup), € :=(pnns — Cp,"pns, Ph,o — 11}, D).

Using the definition of A, .. given in (5.30), and Cauchy—Schwarz inequality, we have

A s (1075 015 Gn)

< C{HU“NSHf,QNS + > kR oG s+ Y BRI + P e, + 1177,
FEth FEgr‘h

+ H??”NSHOQNSJrHW?“D+%V77”DHOQD+ Z B2 ’nuNs|1K+ Z hK|77

KeT,N3 KeTP

1/2
+ > B =20V e(*) + (V0™ Jun s +VTIPNS||?LK}

KeT,Ns

2

K

{Vﬁ lvnnsllToy + V< E hellonnsllo e+ vlvnplloa, + ” qn,0l% .0,
FESFh

2

K
+ 503 helanol e+ wllans oy + | —vonn + 5 Vaoll g,
FEgrh

1/2
+ ) bk [2v V- e(vnns) + (wh,Ns)uths+th,Ng||§7K} .

KeTN9

Now, using mesh regularity, (6.74), and Lemma [21] we get

o RS e <O Y b LR IS G kb 05 R i} < OB s o

FGErh K€7—hNS
(6.85)

Similar arguments allow us to obtain the following estimate:

> bR P15 F < C R Ipolli 0y (6.86)
FEth
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Additionally, applying the triangle and Hélder inequalities along with (5.35) and (6.74)—(6.75), we obtain

SR =20V - () + (VR g s + VP2

KEfThNS

{ S o IV -em™ o+ Y b 17 )unnslyx + D h?ﬂﬁ”sﬁx}

KeTNs KeTNs KeTNs

SC{IIU“NsHigNSJr > B R llun sk + Y bk Inp”sliK}

KeTNs KeTNs

_c{unmuaﬂm wlton 3 bRt Y ha{mmﬁ,f{}
KeTNs

KeT,Ns

}. (6.87)

+ X ke PP lo e + Pl e, + P71,

<C h%{ lens lis1.00

Thus, from (6.85)-(6.87) it follows that

¥ s + Y hr' I

FESrh FEth
P 2 s + o + 5 VPP 2+ S RE e+ S R
KeTNs KeTP
+ 3 B 20 V() + (T Y s + VP2
KE/T}LNS
sozz%{uuzvsuzﬂ,gm + pwslZ g + llunlZa, + HpDHiH,QD}. (6.88)

On the other hand, using the inverse and Poincaré inequalities, mesh regularity, Lemma and
proceeding as in (6.83), we obtain

2
K
+ VK Z hFH’Uh,NSHS,F +7|Qh,D|iQD

FeSrh

2
>~ hllgnolle e + & lanwsllEons + 1 =V On0 + £ Vanoly g, +
Feth

Z W 120V - e(vpns) + (Vop,ns)wnns + th,NsHaK
KeTNs

<C {N vn, @)l + Z Wi 120V - e(vp,ns) + (Vo ns)tn,ns + VQh,NSHaK}

KeT,N®

2

C2.h
SC{HI(vh,qh)\Hi+ va H!(%%)H!i}

<C|(vn, g7, (6.89)

under the assumption that £ is sufficiently small.
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Next, connecting (6.88) and (6.89) with (6.85), we conclude that

Ay s (%17 005 Gn)

(6.90)
< O {|lunsllerrans + Ionsllkons + lwnllkes, + 1pollerion} 10, an)lla-

Now, since uy ns € Xy, it follows from Lemmathat the hypotheses of Lemma are satisfied.
Therefore, by the definitions of the norms ||(+,-)|| and ||(-, -)||» (cf. (3-15) and (5.33), respectively),
lemmas[15]and[22] and the estimate (6.90), we have

[ (ersen)ll
1 Auh,NS (6};7 e% Vh, Qh)
< — sup
CA}L (Vh,qn)EH R XQp H’ ('Uha C]h) H|h
1 Auh,NS (77u> 77p§ Uy, Qh) - Au}L,NS (’LL — Up, P — Ph; Uh, Qh)
=— sup
CAh (Vh,qn)EH R XQp ”l(’vin Qh> |||h

1
<O {|lunsllkrrons + Ioaslikans + [wnllkes, + llpollkrion} + 3 [(w —wn,p—pn)l-
(6.91)

Finally, the result follows using triangle inequality, interpolation properties (6.74)—(6.77) and (6.91). O

7 Numerical experiments

In this section, we present three numerical experiments to evaluate the performance of our stabilized
scheme. Since the free medium follows the Navier-Stokes equations, we implement our stabilized
scheme using a Picard iteration method with a tolerance of tol = 107°.

For the implementation, we use the Python libraries Multiphenics and FEniCS [29]. The sta-

1 1
bilizati tant is defined = —/ifk=1,and 3 = —,ifk = 2.
ilization constant is defined as (3 71 i and (3 281 [

7.1 A smooth solution in two dimensions

For the first test case, we consider an analytical solution to the model problem. The parameters
areset k = 1, v = 1072 or 10~*. The computational domain, as shown in Figure [2| is given in
the free medium domain by Qys:=(—1/2,1/2) x (0,2), and in the porous medium domain by
Qp:=(1/2,3/2) x (0,2). The interface is given by I':= {(1/2,y) € R?: 0 < y < 2} and the
boundaries I" yg := 0Qns\I" and I'p are divided as follows

P = {(3/2,y) eR*: 0 <y <2} U{(z,2) eR*: 1/2 < x < 3/2},
Iyi={(z,0) e R*: 1/2 <z < 3/2}.
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2 s rp"
Q Q
Tns S T P o
B N T
2 2 2

Figure 2: Configuration of the computational domain (2.

On the Beavers—Joseph—-Saffman interface condition we take &v; = 1 and in the domain )5 we
consider the well—known Kovasznay solution (uns, pns) (see [27]), defined by

A 1, 1 _
uns(e9)i= (1= cos2my). g sin2m) ) pas(ep)i= e = L - eV,

1 /1

where the parameter \ := 2\ 12 + 472, and in the porous medium €2 we consider a manu-
14 14

factured analytical solution (up, pp), that satisfies the mass conservation on I', given by

3 . 1,, 1
up(z,y):= (2 — 42 sin(mz) cos(2my), xy2> ., pp(x,y) =2 e cos(2my) + §€>\£ - X(e?’)‘/2 —e M2,

With these expressions, the functions f g and gp are constructed so that (u, p) is the solution of
problem (P). Furthermore, since under this configuration, the equilibrium of normal forces and the
Beavers—Joseph—Saffman condition are not satisfied on I', appropriate source terms must be added
to the proposed stabilized finite element scheme (5.29).

h luns — unnslloons order  |uns —upnslions order  |[pys — panslloons  order  |lup —unpllog, order |pp —ppplio, order
0.1250 2.4157e-01 - 2.7741e+00 - 6.4083e-02 - 5.9228e-01 - 1.3249e-02 -
0.0625 7.2909e-02 1.7283 1.3428e+00 1.0468 1.9017e-02 1.7526 2.0484e-01 1.5318 6.6656e-03 0.9911
0.0312 1.9679e-02 1.8895 6.4224e-01 1.0640 5.4180e-03 1.8115 6.6233e-02 1.6289 3.3349¢e-03 0.9991
0.0156 5.0842e-03 1.9525 3.1096e-01 1.0464 1.4996e-03 1.8532 2.1764e-02 1.6056 1.6666e-03 1.0008
0.0078 1.2880e-03 1.9809 1.5347e-01 1.0188 4.1372e-04 1.8578 7.3480e-03 1.5665 8.3287e-04 1.0007
0.0039 3.2356e-04 1.9931 7.6403e-02 1.0063 1.1743e-04 1.8168 2.5314e-03 1.5374 4.1631e-04 1.0004

Table 1: Mesh sizes, errors and rates of convergence of the solutions for v = 1072 and k = 1.

h luns — unnsllooys  order  |uns —unnslioy  order  [[pnvs — pansllooys  order  [lup — unplloo, order [pp —puplie, order
0.1250 1.7699e-02 - 4.3038e-01 - 2.4339e-03 - 5.7976e-03 - 3.3023e-05 -
0.0625 1.8282e-03 3.2751 1.0256e-01 2.0691 4.1829e-04 2.5407 7.1133e-04 3.0269 3.0119e-06 3.4547
0.0312 2.1800e-04 3.0680 2.5209e-02 2.0245 1.0692e-04 1.9680 9.0043e-05 2.9818 3.8160e-07 2.9806
0.0156 2.6930e-05 3.0170 6.2461e-03 2.0129 2.7165e-05 1.9767 1.1309e-05 2.9931 4.8742e-08 2.9688
0.0078 3.3568e-06 3.0041 1.5568e-03 2.0044 6.7978e-06 1.9986 1.4160e-06 2.9976 6.1583e-09 2.9846
0.0039 4.1927e-07 3.0011 3.8887e-04 2.0012 1.6990e-06 2.0004 1.7737e-07 2.9970 7.7956e-10 2.9818

Table 2: Mesh sizes, errors and rates of convergence of the solutions for v = 1072 and k = 2.

h luys —unnsllooys  order  |uys —unnslioys  order  [[pnvs — pansllogys  order  [lup —wnpllog, order  |pp —puplio, order
0.1250 2.1253¢-01 - 2.7347e+00 - 4.09126-03 - 9.6563e-02 - 12.5301e-03 -
0.0625 7.2909e-02 1.5435 1.34286+00 1.0262 1.9017e-02 2.2167 2.0484e-01 1.0850  6.6656e-03  -9.9954
0.0312 1.9679¢-02 1.8895 6.4224¢-01 1.0640 5.4180e-03 1.8115 6.6233¢-02 16289  3.3349e-03  0.9991
0.0156 5.0842e-03 1.9525 3.1096e-01 1.0464 1.4996e-03 1.8532 2.1764e-02 1.6056  1.6666e-03  1.0008
0.0078 1.2880e-03 1.9809 1.5347e-01 1.0188 4.1372¢-04 1.8578 7.3480e-03 15665  8.3287e-04  1.0007
0.0039 3.2356e-04 1.9931 7.6403e-02 1.0063 1.1743e-04 1.8168 2.5314e-03 15374  4.1631e-04  1.0004

Table 3: Mesh sizes, errors and rates of convergence of the solutions for v = 107%and k = 1.
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h luns — unnsllooys  order  |ung — wnnsliay  order  [[pnvs — ponsllooys  order  [lup —wnplloq, order  [pp —puplia, order
0.1250 2.1654e-02 - 5.5512e-01 - 3.3463e-04 - 7.8163e-03 - 3.6449e-07 -
0.0625 1.8282e-03 3.5661 1.0256e-01 2.4363 4.1829%e-04 -0.3219 7.1133e-04 3.4579 3.0119e-06 -3.0468
0.0312 2.1800e-04 3.0680 2.5209e-02 2.0245 1.0692e-04 1.9680 9.0043e-05 2.9818 3.8160e-07 2.9806
0.0156 2.6930e-05 3.0170 6.2461e-03 2.0129 2.7165e-05 1.9767 1.1309e-05 2.9931 4.8742e-08 2.9688
0.0078 3.3568e-06 3.0041 1.5568e-03 2.0044 6.7978e-06 1.9986 1.4160e-06 2.9976 6.1583e-09 2.9846
0.0039 4.1927e-07 3.0011 3.8887e-04 2.0012 1.6990e-06 2.0004 1.7737e-07 2.9970 7.7956e-10 2.9818

Table 4: Mesh sizes, errors and rates of convergence of the solutions for v = 10~ and k& = 2.

We can observe in Tables the expected rates of convergence for our proposed scheme under
quasi-uniform refinement. It is worth noting that the error norms ||up — wn.pllo.o, and ||[pns —
Phslo,xs exhibit better behavior than predicted by Theorem[23|when polynomial functions of order
k = 1 are employed. We hypothesize that this is due to the smoothness of the solutions in this
example. The isovalues of velocity and pressure in both media, which are not shown in this paper, are
very close to the exact ones.

7.2 A coupled flow with different types of permeability

Inspired by the numerical results presented in [26], in this section we consider a series of experiments
that simulate the interaction of fluid flowing from a free medium to a porous medium where the per-
meability of the latter varies from a constant value, under different boundary conditions, to a highly
oscillatory case (for a similar numerical example, see also [14]).

The computational domain 2 := (0, 10)? is partitioned into s := (0, 10) x (6, 10), 2p := (0, 10) x
(0,6), and the definitions of the different boundaries can be seen in Figure

10 Tnss
Tns. Qng s
6
r
T . e
0 o 10

Figure 3: Configuration of the computational domain (2.

For the first case=, we set k = 1, and v = 1, imposing the following boundary conditions on I"ys:
(10sin (£(y —6)), 0), on I'ngy,
upns(z,y) (Sin (%(y — 6)) , 0) , on I'ng2,
(1, 0), on I'ng 3.

Moreover, on the boundary I'Y*" we impose the impermeability condition wp - .p = 0. On 'R we
prescribe the Dirichlet boundary condition pp(z,y) = 20 — x. To complete the specifications of this
problem, the source terms f g, gp are set to zero and the parameter o in the Beavers—Joseph—
Saffman condition is taken as 1.
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In Figure |4| we present the streamlines and the isovalues of the computed velocity magnitude and
pressure, using an interpolation order £ = 2 on a mesh with 25,600 elements. We observe that the
numerical solution recovers the expected behaviour, closely matching the results established in [26].

0.0e+00 2 4 6 B 1.1e+01 1.0e+01 3.2e+01
|

-

H——

T\\?\\

Figure 4: The coupled flow problem with permeability « = 1. Streamline (left), isovalues of velocity
magnitude (center) and pressure (right). Here = 1 with interpolation order kK = 2 on a mesh with
25,600 elements.

In Figure we consider a permeability of x = 10~ in the porous medium, and we replace the bound-
ary condition on I'yg o with that defined on I'yg ;. With this configuration, the domain Q2p provides
significant resistance to the flow, which explains the behavior of the streamlines in the free medium.

0.0e+00 2 4 6 lG]]e 01 0.0e+00 5 10 25 3.2e+01

_—‘ __ ﬁ

Figure 5: The coupled flow problem with permeability x = 1075, Streamline (left), isovalues of velocity
magnitude (center) and pressure (right). Here = 1 with interpolation order kK = 2 on a mesh with
25,600 elements.

((((((((((((((((@

Finally, we use the same configuration and boundary conditions as in the previous experiment, but now
consider a coarse mesh with 6,400 triangles for ), where the permeability ~ is randomly defined
within the interval [0.0005, 0.1] (see Figure [ on the left). In this situation, the behavior of the fluid
in the porous medium becomes more complex and less predictable. Figure [6] presents the numerical
results obtained using our stabilized scheme on a refined mesh with 102, 400 triangles, generated
from the initial coarse mesh where the permeability was defined. The results are displayed using
different scales for each domain to enhance visualization. The streamlines tend to follow paths of
least resistance, leading to irregular flow patterns. The velocity isovalues highlight regions of high
permeability, where the medium allows rapid fluid flow, whereas in areas of low permeability, the
velocity remains restricted. In contrast, in areas with low permeability, the velocity of the fluid is limited.
Concerning the heterogeneous pressure distribution on the porous medium, in this same figure, the
isovalues show high gradients near the interface between both mediums.
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Figure 6: Random permeability field € [0.0005, 0.1] (left) on a coarse mesh of Q2 with 6,400

triangles. Isovalues of velocity magnitude with streamlines (center) and isovalues of pressure (right)
computed on a mesh with 102,400 elements. Here, v = 1 with interpolation order k = 2.

4 v
o’
= prR,

7.3 An analytical solution in three dimensions

This final test illustrates the performance of our stabilized finite element scheme in the case where
problem (P) is defined in a bounded solid region of R3. For this, we consider the computational
domain ©:=(0,1) x (—1/2,1/2) x (0,1), with the free-flow region given by Qyg:=(0,1) x
(—1/2,0) x (0, 1) and the porous medium region by Q2 := (0, 1) x (0,1/2) x (0, 1). Moreover, as
shown in Figure [7| the interface between both media is defined as I ::QNS N QD, the boundaries
s :=0Qpns\I" and ' are divided as follows

Iyti={(z,y,0) eR*: 0<z<1,0<y<1/2}, I[P :=Tp\I'F"

Figure 7: Configuration of the computational domain §2.

In the Beavers—Joseph—Saffman condition, we take a; = aiy = 1, the viscosity of the fluidis v = 1
or v = 1072, with a permeability of the porous medium x = 1. The data f s and gp are such that
the exact solution is given by

upns(z,y) = (e*siny, —e*siny, €* cosy — €* cos x),
1 1
pns(z,y) = — §€2Z + 1(62 - 1),
up(z,y) = (cos(mz) sin(mz) sin(mwy), sin(rz) cos(mx) sin(ry), —2 sin(rz) sin(nzx) cos(my)),
pp(x,y):= sin(nz) sin(mx) cos(my).

As in the two-dimensional case, this solution satisfies mass conservation but does not satisfy the other
interface conditions on I", so appropriate right-hand sides must be constructed such that (u, p) is the
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solution of the coupled problem. The calculations were performed using interpolation order &£ = 1
and k£ = 2. In Tables we have the errors for the proposed scheme when considering a family
of triangulations with different viscosity values v. The convergence rates for each of the approximate
unknowns behave as expected. Finally, in Figures[8land[9] we can compare some isovalues of velocity
and pressure when considering interpolation order £ = 1 in a mesh with 196,608 tetrahedrons. These
visualizations confirm that our proposed stabilized scheme is effective in approximating the exact
solution.

h lluns — unnsllogys order |uns —upnslions order |lpns — prslloons  order [lup —unpllog, order |pp —paplg, order
0.8660 5.3192e-02 - 6.2219e-01 - 6.5204e-01 - 8.0469e-01 - 1.0529e+00 -
0.4330 1.4257e-02 1.90 3.1540e-01 0.99 2.4651e-01 1.40 3.2748e-01 1.30 6.4546e-01 0.70
0.2165 3.9227e-03 1.86 1.5687e-01 1.00 9.0379e-02 1.45 9.5318e-02 1.78 3.4112e-01 0.93
0.1083 1.0520e-03 1.90 7.7838e-02 1.01 2.9480e-02 1.62 2.8676e-02 1.73 1.7227e-01 0.99
0.0541 2.7258e-04 1.95 3.8746e-02 1.00 9.1414e-03 1.69 9.1784e-03 1.64 8.6256e-02 1.00

Table 5: Mesh sizes, errors and rates of convergence of the solutions for v = 1 and k = 1.

h luns — unnsllooys order |uns —unnslioys order |[pys — pansllooys order  |lup —unpllog, order |pp —ppplie, order
0.8660 2.9085e-03 - 5.2558e-02 - 3.0839e-02 - 2.5161e-01 - 3.9347e-01 -
0.4330 3.8854e-04 2,90 1.3652e-02 1.95 5.7556e-03 2.43 6.3930e-02 1.98 1.1783e-01 1.72
0.2165 5.6971e-05 2.77 3.8494e-03 1.83 1.4205e-03 2.01 1.9272e-02 1.78 3.1735e-02 1.90
0.1083 8.3535e-06 2.77 1.3977e-03 1.47 3.3506e-04 2.08 5.6271e-03 1.78 8.1205e-03 1.97
0.0541 1.2285e-06 2.76 3.4943e-04 1.99 8.2694e-05 2.01 1.5163e-03 1.90 2.0388e-03 2.00

Table 6: Mesh sizes, errors and rates of convergence of the solutions for v = 1 and k = 2.

h lluns — unnslloays order  |uys —unnshays order  [lpns — prnsllooys order  Jlup —unpllog, order [pp —pnplg, order
0.8660 5.6107e-02 - 6.2576e-01 - 4.4445e-01 - 7.9286e-01 - 1.0511e+00 -
0.4330 1.4257e-02 1.9765 3.1540e-01 0.9884 2.4651e-01 0.8504 3.2748e-01 1.2757 6.4546e-01 0.7035
0.2165 3.9227e-03 1.8618 1.5687e-01 1.0076 9.0379e-02 1.4476 9.5318e-02 1.7806 3.4112e-01 0.9200
0.1083 1.0793e-03 1.9765 7.7838e-02 1.0110 2.9480e-02 1.6163 2.8676e-02 1.7329 1.7227e-01 0.9856
0.0541 2.9696e-04 1.9765 3.8746e-02 1.0064 9.1414e-03 1.6892 9.1784e-03 1.6435 8.6256e-02 0.9980

Table 7: Mesh sizes, errors and rates of convergence of the solutions for v = 1072 and k = 1.

h luns — unnsllooys  order  |uns —unnslioy  order  [[pnvs — punsllogys  order  [lup —unpllo, order [pp —puplie, order
0.8660 1.8767e-02 - 2.1266e-01 - 1.2217e-02 - 2.5908¢+01 - 4.0869¢-01 -
0.4330 3.8860e-04 5.5938 1.3652¢-02 3.9614 5.7540e-03 1.0863 6.4538e-02 8.649 1.1898e-01 1.7803
0.2165 5.6964¢-05 2.7702 3.8490e-03 1.8266 1.4203e-03 2.0184 1.9315e-02 1.7404  3.1813e-02 1.903
0.1083 8.3502¢-06 2.7702 1.0852¢-03 1.8265 3.5058¢-04 2.0184 5.6302¢-03 17785  8.1255¢-03  1.9691
0.0541 1.2240e-06 2.7702 3.1392¢-04 1.7895 8.6598¢-05 2.0173 1.5165e-03 1.8924  2.0391e-03  1.9945

Table 8: Mesh sizes, errors and rates of convergence of the solutions for v = 1072 and k = 2.
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Figure 8: Isovalues of the velocity magnitudes |u s | (first) and |up| (third) compared with the approx-
imated solutions |u, ns| (second) and |uy, p| (fourth), respectively, on a mesh with 196,608 tetrahe-
drons. Here, v = 1 and the interpolation order £ = 1.
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Figure 9: Isovalues of the pressures pygs (first) and pp (third) compared with the approximated so-
lutions pj, ns (second) and pp, p (fourth), respectively, on a mesh with 196,608 tetrahedrons. Here,
v = 1 and the interpolation order & = 1.

Conclusions

In this work, we have proposed a new stabilized finite element scheme for the Navier—Stokes/Darcy
coupled problem in Lagrange spaces with equal-order approximation. To achieve this, we define an
augmented variational formulation, inspired by the recently published work [4] on the Stokes/Darcy
coupled problem. Using fixed-point theory, we establish the existence and uniqueness of the solution
to the continuous variational problem within a bounded ball. This new formulation is stabilized, and by
extending these techniques to the discrete case, we also prove the existence and uniqueness of the
proposed scheme’s solution under small data conditions. Furthermore, assuming standard regularity
conditions for the exact solution, we demonstrate the convergence of the discrete scheme. Numerical
validation confirms, in both two and three dimensions, the good approximation properties expected
when the model problem has an analytical solution. Additionally, in the case where the problem is
inspired by a physical setting, our stabilized finite element method yields good results.

For future work, it remains to explore the decoupling of the proposed scheme, as well as to study and
improve the convergence order of the Picard method for the nonlinear scheme by incorporating and
analyzing acceleration strategies [32].
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