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Convergence of cluster coagulation dynamics
Luisa Andreis, Tejas Iyer, Elena Magnanini

Abstract

We study hydrodynamic limits of the cluster coagulation model; a coagulation model intro-
duced by Norris [Comm. Math. Phys., 209(2):407-435 (2000)]. In this process, pairs of particles
x, y in a measure space E, merge to form a single new particle z according to a transition kernel
K(x, y,dz), in such a manner that a quantity, one may regard as the total mass of the system, is
conserved. This model is general enough to incorporate various inhomogeneities in the evolution
of clusters, for example, their shape, or their location in space. We derive sufficient criteria for
trajectories associated with this process to concentrate among solutions of a generalisation of
the Flory equation, and, in some special cases, by means of a uniqueness result for solutions of
this equation, prove a weak law of large numbers. This multi-type Flory equation is associated
with conserved quantities associated with the process, which may encode different information
to conservation of mass (for example, conservation of centre of mass in spatial models). We also
apply criteria for gelation in this process to derive sufficient criteria for this equation to exhibit
gelling solutions. When this occurs, this multi-type Flory equation encodes, via the associated
conserved property, the interaction between the gel and the finite size sol particles.

1 Introduction
Coagulation models are prevalent across numerous disciplines, spanning from physical chemistry
(to describe polymer formation), to astrophysics, where they simulate galaxy formation. A natural
coagulation model involves particles moving in space, with larger particles exhibiting slower move-
ment compared to smaller ones. A classical ‘mean field’ description of this process via Markovian
dynamics is known as the Marcus-Lushnikov model [14, 8, 13]. Here, pairs of particles of masses
x and y merge at a rate K̄(x, y), for an appropriate function K̄(x, y). The normalised, limiting
trajectories of particle concentrations in this model, are generally expected to follow a system
of measure-valued differential equations known as the Smoluchowski (or Flory) equations. This
rescaling, which involves rescaling time with the system size (to ‘slow time down’), and looking
at a fixed volume (the whole space E), is known as taking a hydrodynamic limit.

A popular question in coagulation processes, concerns whether or not one sees the occurrence
of macroscopic or giant particles by some time t > 0. This phenomenon is known as gelation.
Gelation is generally formally defined in terms of whether or not a solution of the Smoluchowski
(or Flory) equation fails to ‘conserve mass’, which means, intuitively, that mass is lost to ‘infinite’
particles. Meanwhile, the term stochastic gelation (see, e.g. [12, 2]), generally refers to the forma-
tion of ‘large particles’ in a bounded amount of time in the Marcus–Lushnikov process. When the
trajectories of the Marcus–Lushnikov process are concentrated on solutions of the Smoluchowski
equation, Jeon showed that these two notions of gelation are equivalent [12, Theorem 5]. How-
ever, in certain regimes, it may be the case, that, once gelation occurs, the ‘gel’ or macroscopic
particles, interact with the microscopic ones or ‘sol’, in such a way that the trajectories of the
Marcus–Lushnikov process only concentrate around solutions of the Smoluchowski equation for a
short time before gelation. In such regimes, a correction term encoding this ‘sol-gel’ interaction is
required in the Smoluchowkski equation, this is known as the Flory equation. A weak law of large
numbers of the Marcus–Lushnikov process to the Flory equation in a particular case was first
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proved by Norris [17], and later, concentration of trajectories around solutions of this equation
were proved in [7, 20].

A limitation of the classical Marcus–Lushnikov model is that the dynamics only include in-
formation of the masses of particles, and not, for example, other inhomogeneities such as their
location in space. In [17], Norris introduced the cluster coagulation model, which allows one to
incorporate these features rather generally, (see also [15] for a variant where clusters move diffu-
sively). In a particular, limited regime of this model, Norris proved a weak law of large numbers
for the dynamics of this model, with exponential rates of convergence [17, Theorem 4.2 & 4.3]. It
should be noted that the cluster coagulation model is general enough to encompass models such
as those studied by Jacquot [10] and later work of Heydecker and Patterson [9]. In [10], Jacquot
proves a weak law of large numbers for the ‘historical trees’ encoding histories of clusters in the
Marcus-Lushnikov process is proved; whilst in [9], Heydecker and Patterson prove a weak law of
large numbers in the special case of ‘bilinear’ kernels. For more examples of cluster coagulation
processes we refer the reader to [2, Section 3.1]. Also note that more recently, from the perspec-
tive of analysis, a strain of research has focused on the study of multi-component generalisations
of the Smoluchowski coagulation equations, where the mass variable is substituted by a variable
in a d-dimensional Euclidean space, and there is an additional source term corresponding to the
system not being in equilibrium (see for example, [6, 5, 21] and reference therein). In general,
without the source term, these equations are particular instances of the Smoluchowski equation
associated with the cluster coagulation model.

In recent work [2], the authors have proved sufficient criteria for stochastic gelation to occur
in the cluster coagulation process. In this paper, we derive criteria for concentration of trajectories
associated with the cluster coagulation model around solutions of a multi-type Flory equation,
generalising the classical Flory equation. We also provide criteria for solutions of this equation to
be unique, hence for sufficient condition for a weak law of large numbers associated with these
trajectories. As a result of the aforementioned device due to Jeon [12, Theorem 5] (reformulated
in [2, Theorem 1.1]) this concentration also leads to sufficient criteria for the associated multi-type
Flory equation to exhibit gelling solutions.

1.1 Overview on our contribution
The main novelty of this paper involves the idea of a conserved quantity appearing in a generali-
sation of the Flory equation; corresponding to an invariant associated with the cluster coagulation
process. From the perspective of applications, this quantity may correspond to the total mass of
the system, or, depending on the setting, for example, the ‘centre of mass’ or ‘momentum’.

1 In Definition 2.1 we define a multi-type Flory equation, expected to encode the limiting
behaviour of the cluster coagulation process, when there are ‘conserved quantities’. Then,
in Theorem 2.3 we provide sufficient criteria for tightness of trajectories associated with
the cluster coagulation process, and criteria for limit points associated with the process to
concentrate on solutions of this equation, proving, in particular, the existence of solutions.

2 In Theorem 2.4 we obtain a uniqueness result for this multi-type Flory equation in the case
when the kernel is ‘eventually conservative’ (see Definition 2.2). Such a uniqueness result
implies a law of large numbers for the paths of the stochastic cluster coagulation process
in Corollary 2.5.

3 In Corollaries 2.6 and 2.7, we state, without proof, conditions for solutions of the multi-type
Flory equation to have gelling solutions. These results rely on previous results concerning
stochastic gelation from the aforementioned companion paper [2].

The notion of conserved quantities allows us to go beyond the setting of [16], and to prove
existence of solutions for the limiting equation under weaker assumptions. The ‘eventually con-
servative’ property is a natural extension of the eventual multiplicativity property introduced
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in [17]. The approach we use, using weak-compactness, and martingale techniques, whilst well-
established, allow for relatively few assumptions on the underlying space. We only assume that
the clusters take values in a σ-compact metric space E. This means that our results encapsulate
existing generalisations of the Marcus-Lushnikov model in the literature, including those of [9, 10].

1.2 Structure
The rest of the paper is structured as follows.

1 In Section 1.3 we introduce the model, terminology and global assumptions in Assump-
tion 1.1.

2 In Section 2.1 we include our main definitions, including the definition of a generalised Flory
equation with a conserved quantity in Definition 2.1. This section also includes our main
result, Theorem 2.3, concerning the hydrodynamic limit of the process.

3 In Section 2.2 we state a uniqueness result (Theorem 2.4) for the solutions of the multi-type
Flory equation in the case of eventually conservative kernels.

4 In Section 2.3 we draw connections with the related paper [2] on gelation for these models
to state results concerning existence of gelling solutions for the multi-type Flory equation.
As these results are an immediate consequence of results appearing in [2], we omit explicit
proofs.

5 Section 3 is dedicated to proofs: the proof of Theorem 2.3 appearing in Section 3.1, and
the proof of Theorem 2.4 appearing in Section 2.2.

1.3 The model, terminology and global assumptions
1.3.1 Definition of the cluster coagulation process

Recall that in the cluster coagulation process [17], one begins with a configuration of clusters in
a measurable space (E,B). Associated with a cluster x ∈ E is a mass function m : E → (0,∞).
Another important quantity associated with the process is a coagulation kernel K : E×E×B →
[0,∞), which satisfies the following:

1 For all A ∈ B (x, y) 7→ K(x, y,A) is measurable,

2 For all x, y ∈ E K(x, y, ·) is a measure on E,

3 symmetric: for all A ∈ B, x, y ∈ E K(x, y,A) = K(y, x,A),

4 finite: for all x, y ∈ E K̄(x, y) := K(x, y, E) <∞

5 preserves mass: for all x, y ∈ E, m(z) = m(x) +m(y) for K(x, y, ·)-a.a. z ∈ E.

As a continuous time Markov chain, we associate the following dynamics. Suppose that we
begin with a configuration of clusters. Then,

� to each pair of clusters x, y ∈ E, we associate an exponential random variable with param-
eter K̄(x, y);

� upon the elapsure of the next exponential random variable in the process, corresponding
to the pair x and y, say, the clusters x and y are removed and replaced by a new cluster
z ∈ E, sampled according to the probability measure

K(x, y, ·)
K̄(x, y)

.
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1.3.2 Notation and preliminaries

In this paper, we consider the process as depending on a parameter N ∈ N, which one may
consider as (up to random fluctuations) the total initial mass of the system, and analyse the
process as in the limiting regime as N →∞. We consider the configuration of clusters at time t
as being encoded by a random point measure L(N)

t on E, so that, for any set A ⊆ E, a ∈ (0,∞),
L(N)
t (A ∩m−1([a,∞))) denotes the random number of clusters of mass at least a belonging to

A. We denote byM+(E) the set of finite, positive measures on E (also definingM+(E × E)
in a similar manner). We may then consider the process as a measure-valued Markov process,
whose infinitesimal generator A is defined as follows: for any bounded measurable test function
F :M+(E)→ R, we have

AF (Lt) = 1
2

∫
E×E×E

Lt(dx) (Lt − δx) (dy)K(x, y,dz)
(
F (L(x,y)→z

t )− F (Lt)
)
,

where L(x,y)→z := L + (δz − δx − δy). Note that, as L(N)
t is assumed to be a point measure,

the above integral is always with respect to a positive measure. The measure L(x,y) describes the
configuration of the system after a coagulation involving clusters the two clusters x, y ∈ E and
ending with one cluster z with m(z) = m(x) +m(y), for K(x, y, ·)-a.a. z ∈ E. Note the factor
1
2 in front of the generator, present to ensure that the total rate at with clusters x and y interact
is K̄(x, y) (and not 2K̄(x, y)).

In this paper, we assume E is a σ-compact metric space with metric d. Given another space
F , denote by Cb(E;F ), or resp. Cc(E;F ), the spaces of continuous functions E → F which
are bounded, or resp., have compact support. In general, we write Cb(E) (resp. Cc(E)) as a
shorthand for Cb(E;R) (resp. Cc(E;R)). We equip M+(E) with a metric d that induces the
vague topology onM+(E). 1 For any n ∈ N, we denote by En the space

En :=
{

u ∈M+(E) :
∫
E
m(x) u(dx) ≤ n

}
and E =

⋃
n∈N En.

We generally regard E as the state space of the process, taking values in D([0,∞); E), the
Skorokhod space of right-continuous functions f : [0,∞)→ E with Skorokhod metric dS induced
by d.

Given a measure µ ∈M+(E) and a measurable function f : E → R, we denote by

‖µ‖ :=
∫
E
µ(dx) and 〈f, µ〉 :=

∫
E
f(x)µ(dx).

At the level of the stochastic process, we denote by PN (·) and EN [·] probability distributions
and expectations with regards to the trajectories of the process with generator A and (possibly
random) initial condition L̄(N)

0 .

1.3.3 Normalisation, global assumptions and the multi-type Flory equation

We expect, a priori that limiting equation, called the multi-type Flory equation (extending the
Smoluchowski equation from [17]) encodes the behaviour of the process (L(N)

t/N/N)t≥0, for N
‘large’. The re-scaling of time is required to counter-balance the increase in the number of inter-
actions as the initial mass of clusters grows with N . Thus, in general, we set

L̄(N)
t := L(N)

t/N/N,

1We recall that the vague (respectively weak) topologies onM+(E) are the smallest topologies that make the maps
µ →

∫
E
f(x)µ(dx) continuous for all f ∈ Cc(E) (respectively Cb(E)). Note that, since E is separable and complete,

(M+(E), d) is a separable and complete space.
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and generally (by abuse of notation, since such a limit may not be unique) use (L̄∗t )t≥0 to denote
a weak limit (a limit along a subsequence) of the process.

Additionally, the initial condition of the process must meet certain natural convergence as-
sumptions. Here, we outline the primary assumptions required.

Assumption 1.1. In this paper, we assume throughout that
1 E is a σ-compact metric space,

2 we have L̄(N)
0 =

∑
i∈I

ciδi
N for some finite set I ⊆ E, ci ∈ N, and there exists c′ > 0 such

that
∑
i∈I

ci
N ≤ c

′ almost surely,
3 there exists µ ∈ E such that

L̄(N)
0 → µ (1)

weakly, in probability, and 〈m,µ〉 > 0.

An informal definition of the multi-type Flory equation is as follows (see Definitions 2.1 and 2.2
on the next page for a more formal treatment). Included in this equation, is a function φ, which
one may regard as a conserved quantity of the system. Then, (ut, )t≥0, taking values inM+(E)
is a solution of the multi-type Flory equation with conserved quantity φ, and initial condition u0
if:

ut − u0 =
∫ t

0

[
Q+(us)−Q−(us)

]
ds;

whereQ+(us) andQ−(us) are measures defined such that, for appropriate test functions J ∈ Cc(E;R),∫
E
J(y)Q+(us)(dy) := 1

2

∫
E×E×E

J(z)K(x, y, dz)us(dx)us(dy), (2)

and ∫
E
J(y)Q−(us)(dx) :=

∫
E×E

J(y)K̄(x, y)us(dx)us(dy) +
∫
E
J(y)g∞(y)us(dy); (3)

with g∞ defined such that

g∞(y) :=
∫
E
φ(x, y)u0(dx)−

∫
E
φ(x, y)us(dx).

2 Statements of main results
2.1 Concentration of trajectories on solutions of multi-type Flory
equations
We adapt the definition from [16, 17] of solutions for the generalised Flory equation to this
setting.

Definition 2.1. Given a function φ : E×E → R, we say a map t 7→ ut ∈M+(E), is a solution
of the multi-type Flory equation with conserved quantity φ if the following are satisfied:

1 for all Borel sets A ⊆ E the map t 7→ ut(A) : [0,∞)→ [0,∞] is measurable;
2 for all f ∈ Cc(E), and t ≥ 0, we have 〈f,u0〉 <∞,∫ t

0

∫
E×E

f(y)K̄(x, y)us(dx)us(dy)ds <∞; (4)

and
∫ t

0

∫
E×E

f(y)φ(x, y)u0(dx)us(dy)ds <∞;
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3 for all f ∈ Cc(E) and t ≥ 0, with Q+ and Q− as defined in (2) and (3),

〈f,ut〉 = 〈f,u0〉+
∫ t

0
〈f,Q+(us)−Q−(us)〉ds. (5)

4 For each x ∈ E, t ≥ 0 we have∫
E
φ(x, u)µt(du) ≤

∫
E
φ(x, u)µ0(du). (6)

Note that Item 1 ensures that the equation in Item 2 is well-defined (without terms of the form
∞−∞).

As alluded in the Definition 2.1, an important feature of a multi-type Flory equation is a
conserved quantity φ. This as a function φ : E × E → R such that, for any x, the quantity
〈φ(·, x), L̄(N)

t 〉 is fixed for each t > 0. Perhaps the most natural conserved quantity in a coagu-
lation process is mass, which corresponds to the choice of function φ(x, y) = m(x); as masses
add upon coagulation, this is fixed along trajectories of the process. However, one may imagine,
in models encoding more information about clusters, that there are other quantities conserved,
reflecting, for example, the centre of mass of clusters in space, or the momentum of the system.

Definition 2.2 (Conserved or sub-conserved quantities). A function φ : E × E → R is said to
be conservative or a conserved quantity if for all x, y, q ∈ E, for K(x, y, ·) a.a. z,

φ (z, q) = φ(x, q) + φ(y, q). (7)

It is, similarly, said to be sub-conservative if for all x, y, q ∈ E, for K(x, y, ·) a.a. z,

φ (z, q) ≤ φ(x, q) + φ(y, q).

It is said to be doubly conservative (similarly doubly sub-conservative), if it is conservative in the
second argument in addition to the first, so that in addition for all x, y, q ∈ E, for K(x, y, ·) a.a.
z,

φ (q, z) = φ(q, x) + φ(q, y).

Finally, if a function ξ : E → R is such that φ(x, y) = ξ(x) is conservative (resp. sub-
conservative), we also say ξ is conservative (resp. sub-conservative).

Examples 2.1. Two natural examples of conserved quantities are φ ≡ 0, and φ(x, y) = m(x)`(y)
for some measurable function ` : E → R+. In the prior case, the associated multi-type Flory
equation corresponds to the generalised Smoluchowski equation introduced in [17, Section 2],
whilst the latter case corresponds to the Flory equation (called the ‘modified Smoluchowski
equation’ in [17]).

Examples 2.2. If φ is symmetric and conservative, it is also doubly conservative. Thus, some
examples of doubly conservative functions include φ(x, y) = m(x)m(y). Another example comes
from the bilinear coagulation process, studied in [9], where E = [0,∞)d, A ∈ [0,∞)d×d is a
symmetric matrix with non-negative entries and K(x, y,dz) = (xTAy)δx+y. In this case, for
any matrix M the function φ(x, y) = xTMy is a doubly conservative function. This means that
K̄ = xTAy is itself is a doubly conservative function.

Remark 2.3. Note that, if ξ′ : [0,∞) → [0,∞) is continuous and sub-additive, the function
φ′(x, y) = (ξ′(m(x)))(ξ′(m(y))) is doubly sub-conservative. This is the analogue of ‘sublinear’
function used by Norris in [17].
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Our main assumptions are as follows. The first, Assumption 2.1 ensures that the probability
measures (PN )N∈N on the space D([0,∞); E) induced by the processes (L̄(N)

t )t∈[0,∞) are tight;
and thus, by Prokhorov’s theorem, the collection of random trajectories

{
(L̄(N)

t )t∈[0,∞), N ∈ N
}

contains weakly convergent subsequences.

Assumption 2.1 (Conditions for tightness). Assume the following:
1 There exists a doubly sub-conservative φ′ such that K̄ ≤ φ′ pointwise.
2 We have

lim sup
N→∞

EN
[∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ′(x, y)

]
<∞. (8)

3 There exists a doubly sub-conservative function φ′′ : E × E → [0,∞), such that for all
n ∈ N the set

E∗n :=
{

u ∈M+(E × E) :
∫
E

u(dx× dy)φ′′(x, y) ≤ n
}

(9)

is compact, and φ′′ satisfies (8).

Our next assumption, Assumption 2.2 (which contains Assumption 2.1), are criteria under
which limits of sub-sequences of the collection

{
(L̄(N)

t )t∈[0,∞), N ∈ N
}
are concentrated on tra-

jectories that solve the multi-type Flory equation. In particular, Item 2 from Assumption 2.2
intuitively states that the coagulation kernel K̄ is more and more comparable to a conservative
function φ outside larger and larger compact sets.

Assumption 2.2 (Conditions ensuring concentration of trajectories). Assume that the following
hold.

1 Assumption 2.1 is satisfied and the functions K̄ and φ′ are continuous.
2 There exists a continuous, conservative function φ satisfying (8), such that one of the

following hold:
2.1 For an increasing collection of sets (Ck)k∈N ⊆ E, with

⋂
k∈NC

c
k = ∅ we have, for any

compact C ′ ⊆ E

lim sup
k→∞

sup
x∈Cc

k
, y∈C′

∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ <∞. (10)

2.2 There exists a continuous doubly sub-conservative function φ∗ satisfying Equation (8),
such that, for a collection of sets (Ck)k∈N ⊆ E, we have, for any compact C ′ ⊆ E

lim
k→∞

sup
x∈Cc

k
, y∈C′

∣∣∣K̄(x, y)− φ(x, y)
∣∣∣

φ∗(x, y) = 0. (11)

3 The limiting initial condition µ from (1) is such that for any compact set C ′ ⊆ E

lim
N→∞

sup
y∈C′

∣∣∣∣ ∫
E

L̄(N)
0 (dx)φ(x, y)−

∫
E
µ(dx)φ(x, y)

∣∣∣∣ = 0 almost surely. (12)

The main result of this section is the following.

Theorem 2.3. Let
{

(L̄(N)
t )t∈[0,∞), N ∈ N

}
be a sequence of cluster coagulation processes. Then,

the following holds:

DOI 10.20347/WIAS.PREPRINT.3182 Berlin 2025
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1 If Assumption 2.1 is satisfied, the sequence
{

(L̄(N)
t )t∈[0,∞), N ∈ N

}
contains converging

sub-sequences;
2 If Assumption 2.2 is satisfied, the limit L̄∗ of any weakly convergent subsequence is, almost

surely, a solution of the multi-type Flory equation with conserved quantity φ and initial
condition µ (according to Definition 2.1).

Remark 2.4. If we have uniqueness of the solution of the associated Flory equation, then The-
orem 2.3 also implies a weak law of large numbers for the cluster coagulation process, (since
weak convergence to a constant implies convergence in probability). This has been shown by
Norris [17] in the cases that either K̄(x, y) ≤ m(x) + m(y), K̄(x, y) = ξ′(m(x))ξ′(m(y))
where ξ′ : [0,∞) → [0,∞) is continuous, sub-linear and (ξ′)2 is sub-linear, or if the ker-
nel is ‘eventually multiplicative’ (meaning that, for some R > 0, K̄(x, y) = m(x)m(y) on
(m−1([0, R])×m−1([0, R]))c; see [17, Theorem 2.3]). Notably, Norris also shows an exponential
rate of convergence of the coagulation process to the limit, in a the restricted case of ‘polymer
models’ when the limit is unique (see [17, Theorem 4.2 and Theorem 4.3]). We note, however,
that the setting we consider here is more general, and there are a wide range of kernels satisfying
Equation (11) which are not eventually multiplicative. The natural extension of this result is to
consider kernels that are, in some sense, “eventually conservative” (c.f. Theorem 2.4).

Example 2.5. Some particular instances where Theorem 2.3 applies, are listed in the following.
1 We can take φ′ = φ′′ = φ∗ in Theorem 2.3 and Lemma 3.2, with φ′ satisfying (8). In this

case, if there exist a nested sequence of compact sets (Ck)k∈N such that
⋃
k∈NCk = E and

φ′(x, y) > k on (Ck × Ck)c, one readily verifies the compactness in (9), by Prokhorov’s
theorem and Markov’s inequality. Often, these sets (Ck)k∈N can also be used in (10) or (11).
1.1 For example, assuming continuity of K̄ we can take

φ′(x, y) = ξ′(m(x))ξ′(m(y)) (13)

for some continuous, sub-linear, positive function ξ′, with limk→∞ ξ
′(k) = ∞, and,

assumingm−1([0, k]) is compact, choose Ck = m−1([0, k]). This is a common assump-
tion in the setting of hydrodynamic limits converging to the Smoluchowski equation
for example in [17, Equation (2.4)].

1.2 In a similar setting, we can choose φ′(x, y) = m(x) ∧ m(y), in which case (10) is
satisfied with φ ≡ 0. It may the case that∫

E×E
m(x) ∧m(y)µ(dx)µ(dy) <∞,

but 〈m,µ〉 = ∞; and, as far as we are aware, this case is not covered by previous
results appearing in the literature. This offers an alternative to the assumption [17,
Equation (2.4)] in proving convergence to solutions of the Smoluchowski equation. In
a similar vein, we can choose φ′(x, y) = ξ′(m(x)∧m(y)), for a continuous, sub-linear,
positive function ξ′.

1.3 In the setting of the bilinear coagulation process (see Examples 2.2), we can take
φ = φ′ = K̄(x, y) = xTAy. If, for example, the matrix A has non-zero entries, the
sets {x, y ∈ [0,∞)d : xTAy ≤ k} are compact, and so Equation (9) is satisfied.

2 Alternatively, we may choose φ(x, y) = m(x)`(y) for some measurable function ` : E →
R+, φ∗(x, y) = m(x), and φ′(x, y) = ξ′(m(x))ξ′(m(y)), and limN→∞〈m, L̄(N)

0 〉 = 〈m,µ〉
almost surely (which may be used to show (12)). In the setting of the classical Marcus-
Lushnikov process, this example includes a mild strengthening of [7, Theorem 2.3], showing
concentration of trajectories around the classical Flory equation. However, we allow for
random initial conditions (L̄(N)

0 )N∈N, and do not require ξ′(x) ≥ 1.

DOI 10.20347/WIAS.PREPRINT.3182 Berlin 2025



Convergence of cluster coagulation dynamics 9

Example 2.6. In [2, Example 3.3], a number of toy spatial coagulation models are introduced.
Following the notation introduced there, suppose that

lim
n→∞

K̄((p, n), (s, o))
n

= `(s, o) <∞, (14)

where ` is a continuous function that does not depend on the position p of the mass going to
infinity. Then, the function φ := n`(s, o) satisfies the properties in (11) and (7) for any choice
of the location of the newly formed particle, which we indicate by X((p,m), (s, n)). Indeed (14)
implies condition (11), and we can also check that also (7) is satisfied:

φ ((X((p,m), (s, n)),m+ n) , (v, j)) = (m+ n)`(v, j)
= φ((p,m)), (v, j)) + φ((s, n), (v, j)).

Thus, in this context, we can apply Theorem 2.3 to deduce a spatial analogue of the convergence
to the Flory equation in [7, Theorem 2.3].

Remark 2.7. If one considers the initial condition L̄(N)
0 :=

∑N

i=1 δXi
N , where Xi are i.i.d samples

from the limiting measure µ, if we choose φ′ according to (13), by applying the strong law of
large numbers, one can readily verify that Equations (8) is satisfied when 〈ξ′ ◦m,µ〉 < ∞. In
this case, the term δx/N appearing in Equation (8) is crucial for this argument to work, since it
may be the case, for example, that 〈ξ′ ◦m〉 <∞, but 〈(ξ′ ◦m)2〉 =∞.

2.2 Sufficient condition for uniqueness: eventually conservative
kernels
Uniqueness of solutions of a multi-type Flory equation is a rather delicate issue even for the
particular case of the classical Smoluchowski equation (see [16] for an example of kernel which
gives non-unique solutions). In the following theorem we focus on certain kernels K̄(x, y) which
coincide with a conservative function outside a compact set. In analogy with [17, Theorem 2.3]
we call these kernels ‘eventually conservative’ and we prove that this condition is sufficient to
ensure uniqueness of solutions.

Theorem 2.4. Suppose that (µt)t≥0 is a solution to the multi-type Flory equation (according
to Definition 2.1) with conserved quantity φ and initial condition µ0 such that ‖µ0‖ <∞. Also,
assume that, for each k ∈ N sufficiently large, the set

Dk :=
{
x ∈ E :

∫
E
φ(x, y)µ0(dy) ≤ k

}
(15)

is compact, with
⋃
k∈NDk = E; we have K̄(x, y) ≤ c′φ(x, y) for some c′ > 0 and for some R

sufficiently large, φ(x, y) = K̄(x, y) on (DR ×DR)c. Then, the solution (µt)t≥0 is unique.

Corollary 2.5. Under the hypotheses of Theorem 2.3 and Theorem 2.4; if (µt)t≥0 denotes the
associated unique solution to the multi-type Flory equation, we have

(L̄(N))t≥0 −→ (µt)t≥0 in probability, in D([0,∞); E).

Remark 2.8. Note that, unlike in the context of Theorem 2.3, the condition that φ(x, y) =
K̄(x, y) on (DR ×DR)c, combined with the symmetry of K̄ implies that φ(x, y) is symmetric.

Remark 2.9. If we take φ(x, y) = m(x)m(y), one readily verifies that K̄(x, y) is eventually
conservative in the sense of Theorem 2.4 if the sets m−1([0, R]) are compact.
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Remark 2.10. Note that, in the setting of the bilinear coagulation process (see Remark 2.2),
the kernel K̄(x, y) = xTAy is a symmetric conservative function, hence the uniqueness result,
and weak law of large numbers from Theorem 2.4 and Corollary 2.5 extends the results of [9].

Remark 2.11. It is possible to also apply these results to more general spaces E; as long as E
is a σ-compact metric space. This means that we can take E to be, for example, an appropriate
(restricted) space of functions and the kernel to be of the form

K(f, g,dh) = δm(f)f+m(g)g
m(f)+m(g)

K̄(f, g).

With any kernel of this form, a symmetric, bilinear form gives rise to a symmetric, conservative
function φ; for example, if E = C([0, 1]; [0, 1]) we see that φ(f, g) =

∫
f(x)g(x)dx is symmetric

and conservative.

2.3 Existence of gelling solutions to the multi-type Flory equation
In the companion paper [2], we focus on gelation for the cluster coagulation model. In particular,
we derive a general, sufficient criteria for stochastic gelation (see [2] for the different definitions of
gelation) of the sequence of cluster coagulation processes

{
(L̄(N)

t )t∈[0,∞), N ∈ N
}
. The following

is an immediate implication of Theorem 2.3 combined with [2, Theorem 1.1 and Theorem 2.3],
hence we omit providing an explicit proof.

Corollary 2.6. Suppose a cluster coagulation process (L̄(N)
t )t≥0 satisfies Assumptions 2.1 & 2.2

from [2] and the conditions of Theorem 2.3, and that m is continuous. Then, there exists a gelling
solution to the multi-type Flory equation (Definition 2.1), with conserved quantity φ and initial
condition µ.

Remark 2.12. Note that it may be the case that Assumptions 2.1 & 2.2 in [2] are satisfied,
but 〈m,µ〉 = ∞. In this case, if the conditions of Theorem 2.3 apply, trajectories of the cluster
coagulation process still concentrate around solutions of a Smoluchowski equation; and thus it is
natural to use the notion of stochastic gelation to define gelling solutions of such equations.

One of the novelties of Corollary 2.6 comes from the criterion for gelation of classical co-
agulation processes under the conditions of [2, Corollary 2.4]. In particular, this confirms that a
large class of homogeneous kernels, with exponent γ > 1 have gelling solutions, a well-known
conjecture from scientific modelling literature [1, 3]. Previously, Wagner showed that the mass
flow process associated with such models is explosive, a property conjectured to hold for all co-
agulation kernels with gelling solutions [3, 22]. Since we believe this is an interesting result on its
own, we state it separately in the following corollary.

Corollary 2.7. Suppose we are in the setting of the classical Marcus-Lushnikov process, that is
E = (0,∞), K(x, y,dz) = K̄(x, y)δx+y, for a continuous symmetric function K̄(x, y), and the
mass function m(x) ≡ x. Let 〈m1m≥1, µ〉 > 0 and the conditions of Theorem 2.3 hold. Suppose
one of the following conditions hold:

1. we have infi∈[1,2] K̄(1, i) > 0 and for all x, y sufficiently large

K̄(cx, cy) = cγK̄(x, y), with γ > 1

or, alternatively,
2. there exists ε > 0 such that, for all x, y sufficiently large

K̄(x, y) ≥ (x ∧ y) log (x ∧ y)3+ε.

Then, there exists a gelling solution to the multi-type Flory equation (Definition 2.1), with con-
served quantity φ and initial condition µ.
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3 Proofs of main results
In Section 3.1 we prove the main result of Theorem 2.3, whilst in Section 2.2 we prove Theo-
rem 2.4. Note that the proof of Theorem 2.4 requires considerably less technicalities, and may
be read independently of Section 3.1.

3.1 Proof of Theorem 2.3
The normalised cluster coagulation process (L̄(N)

t )t≥0 induces a probability measure PN on the
space D([0,∞); E). To prove Item 1 of Theorem 2.3, in Section 3.1.1, we show that under
Assumption 2.1 the family of probability measures (PN )N∈N is tight, which implies by Prokhorov’s
theorem [18, Theorem IV.29, page 82] that (PN )N∈N has a weakly convergent subsequence. We
then show in Section 3.1.2, that under Assumption 2.2 any such subsequence concentrates on
solutions of the multi-type Flory equation.

Throughout this section, it will be beneficial to have associated “conserved” quantities, pre-
served by the dynamics of the process. The following lemma will be useful throughout:

Lemma 3.1. For any cluster coagulation process (L̄(N)
t )t≥0, given any doubly sub-conservative

φ
′ : E × E → R, almost surely for all t ≥ 0 we have, for each y ∈ E∫

E

(
L̄(N)
t (dx)

)
φ′(x, y) ≤

∫
E

(
L̄(N)

0 (dx)
)
φ′(x, y) (16)

and ∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t (dy)− δx

N

)
φ′(x, y) ≤

∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ′(x, y).(17)

Proof. For Equation (16) if τ1 < τ2 denote times of two consecutive coagulation events, with τ2
involving the coagulation of clusters x′ and y′ to a new cluster z, we have∫

E

(
L̄(N)
τ2 (dx)− L̄(N)

τ1 (dx)
)
φ′(x, y) =

(
φ′(z, y)− φ′(x′, y)− φ′(y′, y)

)
.

The right-hand side is 0 for K(x′, y′,dz)−a.a. z, hence almost surely. Now, for Equation (17),
note that integrals of φ′(x, y) with respect to the product measure

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
are nothing but sums of φ′(x, y) across all the distinct pairs of clusters x, y in the process at
time s. Thus, if τ1 < τ2 denote times of two consecutive coagulation events, with τ2 involving
the coagulation of clusters x′ and y′ to a new cluster z, we have∫
E×E

L̄(N)
τ2 (dx)

(
L̄(N)
τ2 (dy)− δx

N

)
φ′(x, y)−

∫
E×E

L̄(N)
τ1 (dx)

(
L̄(N)
τ1 (dy)− δx

N

)
φ′(x, y)

= −φ(x′, y′) + φ(y′, x′)
N2 +

∫
E

(
L̄(N)
τ1 −

δx′

N
−
δy′

N

)
(du)(φ′(z, u)− φ′(x′, u)− φ′(y′, u))

N2

+
∫
E

(
L̄(N)
τ1 −

δx′

N
−
δy′

N

)
(du)(φ′(u, z)− φ′(u, x′)− φ′(u, y′))

N2 ≤ 0,

for K(x′, y′, dz)− a.a. z. Note that the first term in the second line comes from the contribution
to the integral from the pair x′, y′ involved with the coagulation, and the other integrals in the
second and third line, comes from the difference in the contributions to the integrals from pairs
(v, u) where v ∈ {x′, y′, z}, and u is a cluster not involved in the coagulation event. The result
follows by iterating over the jumps in the process.
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3.1.1 Tightness: proof of Item 1 of Theorem 2.3

Item 1 of Theorem 2.3 is a consequence of tightness of the sequence of measures (PN )N∈N,
which we prove in the following lemma.

Lemma 3.2. Assume that Assumption 2.1 is satisfied. Then the sequence of probability measures
(PN )N∈N is a tight family of probability measures on the Skorokhod space D([0,∞); E).

Proof of Item 1 of Theorem 2.3. This is an immediate consequence of Lemma 3.2 and Prokhorov’s
theorem [18, Theorem IV.29, page 82].

In order to prove Lemma 3.2, we apply some well-established tightness criterion, stated in
Appendix A.

Proof of Lemma 3.2. We apply Lemma A.2. For the first compact containment criterion, first
recall that by (9), the set

E∗n :=
{

u ∈M+(E × E) :
∫
E

u(dx× dy)φ′′(x, y) ≤ n
}

is compact. Now, note that, by Lemma 3.1, if we have

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
∈ E∗n

then, for all s ≥ 0, L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
∈ E∗n.

Suppose that we denote by DN the set

DN :=
{

u ∈ E : u =
∑
i∈I

ciδi
N

, ci ∈ N, I ⊆ E
}
,

and ιN : DN →M+(E × E) denotes the map u 7→ u(dx)
(
u(dy)− δx

N

)
; and extend this map

to a map ι :
⋃
N∈NDN → M+(E × E) such that ι ≡ ιN on DN . We now note that for any

n ∈ N the set

Bn :=

u ∈
⋃
N∈N
DN : ι(u) ∈ E∗n


is relatively compact. Indeed, by the compactness of E∗n, any sequence (ι(ui))i∈N has a convergent
subsequence (ι(uik))k∈N. Suppose ν denotes a limit of this subsequence. There, are two cases:
we can either find a further subsequence (which we also denote (ι(uik))k∈N), such that, for some
N ′ ∈ N we have (ι(uik))k∈N = (ιN ′(uik))k∈N, or it is the case that for any N ′ ∈ N there exists
k ∈ N such that ι(uik) = ιj(uik) for some j ≥ N ′. In the latter case, (since the co-efficient of
the δx term tends to 0), we readily verify that

uik ⊗ uik → ν,

hence (uik)k∈N also converges weakly. We may similarly deduce the result in the first case, when

uik(dx)
(

uik(dy)− δx
N ′

)
→ ν(dx× dy).

Now, since φ′′ satisfies (8) we know EN
[∫
E×E L̄(N)

0 (dx)
(
L̄(N)

0 (dy)− δx
N

)
φ′′(x, y)

]
< c0, for

some c0 ∈ N. Therefore, by Markov’s inequality, for any c1 ∈ N,

lim inf
N→∞

PN
(
∀t ≥ 0 L̄(N)

t ∈ Bc1

)
= lim inf

N→∞
PN

(〈
φ′′, ι(L̄(N)

0 )
〉
≤ c1

)
≥ 1− c0

c1
.
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Thus, by fixing c1 > c0/ε and choosing the closure of Bc1 ⊆ E as the required compact set, we
have the required compact containment condition (55).

For the second criterion, we define an appropriate family of test functions F, then apply
Lemma A.1. In particular, we choose the family of functions F from E to R such that

F :=
{
J̃ : J̃(u) =

∫
E
J(x)u(dx); J ∈ Cc(E;R)

}
,

where Cc(E;R) denotes the set of continuous functions on E with compact support. By the def-
inition of the weak topology, this family consists of continuous functions and it is straightforward
to see that it is closed under addition. Moreover, since E is σ-compact, a measure µ is uniquely
determined by the values of 〈f, µ〉, where f ∈ Cc(E;R), thus this family separates points. Now,
let J̃ ∈ F be given, with associated function J : E 7→ R, so that

J̃(L̄t) = 〈J, L̄t〉 =
∫
E
J(x)L̄t(dx). (18)

We seek to apply Lemma A.1 to the family of pushforward measures{
J̃∗PN : N ∈ N

}
.

Note that these are measures on the space D([0,∞),R) which a separable, and complete metric
space, hence Lemma A.1 applies. Also note, that as the continuous image of a compact set is
compact, we can take J̃(Ec1) as the compact set for the first condition, and thus we need only
verify the second condition of Lemma A.1.

We note that, for fixed T , and η = η(T ) sufficiently small, we can find an integer K ∈ N
such that η < T/K =: η′ ≤ 2η. Therefore, we can define a partition {ti} of [0, T ] such that
ti+1 − ti = η′ > η, so that

J̃∗(PN )
({
f : w′(f, η, T ) ≥ ε

})
= PN

(
w′((J̃(L̄t))t∈[0,T ], η, T ) ≥ ε

)
≤ PN

(
sup

s,t∈[0,T ],|s−t|≤η′

∣∣∣J̃(L̄s)− J̃(L̄t)
∣∣∣ ≥ ε) ,

where w′ denotes the modulus of continuity defined in (54). We now have the following claim:

Claim 3.2.1. For some constant C = C(T ), we have

lim sup
N→∞

EN

[
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣] < Cη, (19)

To complete the proof of Lemma 3.2 using Claim 3.2.1, observe that by Markov’s inequality,
for all n ≥ N , we have

lim
η→0

lim sup
N→∞

PN

(
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣ ≥ ε) < lim

η→0

Cη

ε
= 0,

implying (56).

Proof of Claim 3.2.1. We first note some relevant facts: since L̄t is a pure jump Markov process,
and J̃ is bounded and measurable, it is well-known that

MN (t) := J̃(L̄t)− J̃(L̄0)−
∫ t

0
AN J̃(L̄s)ds (20)

and its quadratic variation

QN (t) := MN (t)2 −
∫ t

0
(AN J̃2 − 2J̃AN J̃)(L̄s)ds (21)
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are both martingales under PN (see, for example, the proofs of [19, Proposition 7.1.6, and
Proposition 8.3.3]). From Equation (20), the triangle inequality, and sub-additivity of taking
suprema, it follows that

EN

[
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣J̃ [L̄(t)]− J̃ [L̄s]
∣∣∣]

≤ EN

[
sup

s,t∈[0,T ],|s−t|≤η
|MN (t)−MN (s)|

]
+ EN

[
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣∣∫ t

s
AN J̃(L̄θ)dθ

∣∣∣∣
]

≤ 2EN

[
sup

0≤t≤T
|MN (t)|

]
+ EN

[
sup

s,t∈[0,T ],t−s≤η

∣∣∣∣∫ t

s
AN J̃(L̄θ)dθ

∣∣∣∣
]
. (22)

To complete the proof, we bound the two terms on the right side of Equation (22). For the first,
observe that by Doob’s maximal inequality,

EN

[(
sup

0≤t≤T
|M(t)|

)p]
≤
(

p

p− 1

)p
EN [|M(NT )|p] ,

so that, by setting p = 2, and recalling that EN [Q(t)] = 0, we deduce from Equation (21) that

EN

[
sup

0≤t≤T
|MN (t)|

]2

≤ EN

( sup
0≤t≤T

|MN (t)|
)2
 (23)

≤ 4EN
[
MN (T )2

]
= 4EN

[∫ T

0
(AN J̃2 − 2J̃AN J̃)(L̄s)ds

]
.

Now, we recall that the generator AN of the normalised process (L̄(N)
t )t≥0 may be written as

follows: for bounded measurable test functions F , we have

ANF (L̄(N)
t )

= N

2

∫
E×E×E

(L̄(N)
t (dx)

(
L̄(N)
t − δx

N

)
(dy)K(x, y, dz)

×
(
F

(
L̄(N)
t + (δz − δx − δy)

N

)
− F

(
L̄(N)
t

))
.

For simplicity, for the remainder of this section, whenever unambiguous, we drop the super-
script (or subscript) (N) when referring to L̄(N)

t , MN (t) and AN . Abusing notation, for each t
we denote by L̄(x,y)→z

t := L̄t + (δz − δx − δy) /N
Thus,

(AJ̃2 − 2J̃AJ̃)(L̄s)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz)

(
J̃(L̄(x,y)→z

s )2 − J̃(L̄)2
)

−NJ̃(L̄s)
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz)

(
J̃(L̄(x,y)→z

s )− J̃(L̄)
)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz)

(
J̃(L̄s

(x,y)→z)2 − J̃(L̄s)2
)

−N
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz)

(
J̃(L̄s)J̃(L̄(x,y)→z

s )− J̃(L̄s)2
)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz)

(
J̃(L̄(x,y)→z

s )− J̃(L̄s)
)2
, (24)
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where, by definition (18) of J̃ , we have

J̃(L̄(x,y)→z
s )− J̃(L̄s) = (J(z)− J(y)− J(x)) /N. (25)

Combining this with Equations (24) and (23), we get

EN

[
sup

0≤t≤T
|M(t)|

]2

≤ EN
[ 2
N

∫ T

0
ds
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y,dz) (J(z)− J(y)− J(x))2

]
.

Moreover, recalling that J is continuous with compact support, by the extreme value theorem, it
is bounded. Therefore, bounding (J(z)− J(y)− J(x))2 by a constant cJ , and recalling that, by
assumption, K̄ ≤ φ′ pointwise, we have

EN

[
sup

0≤t≤T
|M(t)|

]2

≤ EN

[
2cJ
N

∫ T

0
ds
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
K̄(x, y)

]

≤ 2cJ
N

EN

[∫ T

0
ds
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
φ′(x, y)

]

= 2cJT
N

EN
[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]
. (26)

The last step is possible since we now observe, that, as φ′ is doubly sub-conservative, for each
s ∈ [0,∞) we have∫

E×E
L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ′(x, y) ≤

∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ′(x, y),(27)

almost surely. Thus, by Equations (26) and (27), we have

EN

[
sup

0≤t≤T
|M(t)|

]
≤
√

2cJT
N

EN
[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]
. (28)

In order to bound the second term on the right-side of (22), we apply a similar argument:∣∣∣∣∫ t

s
AJ̃(L̄θ)dθ

∣∣∣∣
=
∣∣∣∣N2

∫ t

s
dθ
∫
E×E×E

L̄t(dx)
(

L̄(N)
t − δx

N

)
(dy)K(x, y,dz)J̃(L̄(x,y)→z

θ )− J̃(L̄θ)
∣∣∣∣

≤ N

2

∫ t

s
dθ
∫
E×E×E

L̄t(dx)
(

L̄t −
δx
N

)
(dy)K(x, y,dz)

∣∣∣J̃(L̄(x,y)→z
θ )− J̃(L̄θ)

∣∣∣
As before, using Equation (25), and the fact that |x| =

√
x2, we may bound the previous by

√
cJ
2

∫ t

s
dθ
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
K̄(x, y)

≤
√
cJ(t− s)

2

∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y),

where the final inequality follows from (27). Thus, we have obtained the upper bound

EN

[
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣∣∫ t

s
AJ̃(L̄θ)dθ

∣∣∣∣
]
≤
√
cJ
2 ηEN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]
.(29)
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Thus, combining Equation (22) with Equations (28) and (29), and passing to the limit asN →∞,

lim sup
N→∞

EN

[
sup

s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣]

≤
√
cJ
2 η lim sup

N→∞
EN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]

the latter bound being finite by (8). Setting

C :=
√
cJ
2 lim sup

N→∞
EN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]

concludes the proof of (19).

3.1.2 Concentration of trajectories: proof of Item 2 of Theorem 2.3

Assume, now, that Assumption 2.2 is satisfied. This implies that Assumption 2.1 is satisfied, so
that, by Item 1 of Theorem 2.3, the sequence of measures (PN )N∈N is tight.

Let P∗ denote an accumulation point of (PN )N∈N, and assume, by passing to a subsequence,
and re-indexing, that PN → P∗ with respect to the weak topology on the space of measures on
D([0,∞); E). Following our previous notation, we denote by L̄(N) and L̄∗ random trajectories
sampled from these distributions. Mostly out of convenience of notation, applying the Skorokhod
representation theorem [18, Theorem IV.13, page 71],2 we assume that (L̄(N))N∈N converges
to L̄∗ pointwise for all ω ∈ Ω with respect to the Skorokhod topology on D([0,∞); E) on
some enlarged probability space (Ω,F ,P(·)). For the rest of the section, we use the notation
E [·] to denote expectations with respect to this enlarged probability space. This allows us draw
conclusions about the limiting trajectory L̄∗, and thus the limiting measure P∗, more easily. We
have the following proposition:

Proposition 3.3. For any t ∈ [0,∞) we have L̄(N)
t → L̄∗t almost surely in the weak topology.

In addition, L̄(N)
t ⊗ L̄(N)

t → L̄∗t ⊗ L̄∗t almost surely in the weak topology, where the symbol ⊗
denotes the product measure on the space (Ω,F ,P(·)).

Proof of Proposition 3.3. The proof is the result of the following observations:

(I) First note that, for any J ∈ Cc(E;R), the operator J̃ : D([0,∞); E) → D([0,∞);R) is
continuous, as the function J̃ : E → R defined by J̃(u) = 〈J, u〉 is continuous (see for
example, [11, Theorem 4.3]). This implies that, if J̃(L̄(N)) denotes the map t 7→ J̃(L̄(N)

t ),
for any J ∈ Cc(E;R), we have J̃(L̄(N))→ J̃(L̄∗) almost surely in D([0,∞);R).

(II) Applying (19), and observing that sups,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣ is monotone decreas-

ing in η, we have

lim
N→∞

E
[

lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣] = 0.

In addition, one may readily verify that, for any T ∈ [0,∞) the functional

x 7→ lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

‖x(t)− x(s)‖ (30)

2Noting that as a tight probability measure on a metric space, P∗ concentrates on a separable set.
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is a continuous functional with respect to the Skorokhod topology. Consequentially, by
bounded convergence,

0 = E
[

lim
N→∞

lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄(N)
t )− J̃(L̄(N)

s )
∣∣∣]

(30)= E
[

lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄∗t )− J̃(L̄∗s)
∣∣∣]

for any J ∈ Cc(E;R), where in the final equality we have used the continuity of (30). There-
fore, the function J̃(L̄∗) : [0,∞) → R such that t 7→ J̃(L̄∗t ) is almost surely continuous
(i.e., J̃(L̄∗) ∈ C([0,∞),R) almost surely).

(III) This continuity implies that for any sequence (tn)n∈N such that tn → t, for any J ∈
Cc(E;R) we have

J̃(L̄∗tn) =
∫
E
J(x)L̄∗tn(dx)→

∫
E
J(x)L̄∗t (dx) almost surely.

But, since, by assumption on the initial condition we have L̄∗0 = µ, where µ denotes
the limiting measure from (1), and the dynamics of the process ensure that ‖L̄(N)

t ‖ is non-
increasing for each N , we readily verify that each for each t ∈ [0,∞) we have L̄∗t (E) ≤ ‖µ‖.
Thus, by approximating any F ∈ Cb(E;R) by compactly supported functions, for any
F ∈ Cb(E;R) we have∫

E
F (x)L̄∗tn(dx)→

∫
E
F (x)L̄∗t (dx) almost surely.

This implies that L̄∗ is, almost surely, a continuous trajectory of measures, i.e., L̄∗ ∈
C([0,∞); E).

(IV) It is well-known that in a Skorokhod space the projection map πt : D([0,∞);E)→ E is a
continuous functional at any trajectory x ∈ D([0,∞);E) for which t is a continuity point.
Since every t ∈ [0,∞) is a continuity point of L̄∗t , this implies that for any t ∈ [0,∞)
we have L̄(N)

t → L̄∗t almost surely in the weak topology, as required. Now, by a similar
approach to the proof of Lemma 3.2, the family of measures

{
L̄(N)
t ⊗ L̄(N)

t , N ∈ N
}
, is

(almost surely) tight, and by assumption uniformly bounded in norm, thus almost surely
relatively compact by [18, Theorem IV.29, page 82]; and any accumulation point must be
L̄∗t ⊗ L̄∗t . Thus, L̄(N)

t ⊗ L̄(N)
t → L̄∗t ⊗ L̄∗t almost surely.

Now we are ready to prove Item 2 of Theorem 2.3. Parts of the proof rely on equations from
the proof of Lemma 3.2, hence we recommend that the reader be acquainted with this proof first.

Proof of Item 2 of Theorem 2.3. In order to simplify some expressions, we make some short-
hands. Recall that for any compactly supported J ∈ Cc(E;R), we denote by J̃ the functional
such that

J̃(L̄(N)
s ) = 〈J, L̄(N)

s 〉 =
∫
E

L̄(N)
s (dx)J(x).

We also define the following functionals:

G+(L̄(N)
s , J) := 1

2

∫
E×E×E

L̄(N)
s (dx)L̄(N)

s (dy)K(x, y, dz)J(z).
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We recall that, by assumption, there exists a continuous function φ : E ×E 7→ R+ that satisfies
Equations (7), (11) and (8). We then define Ĝ by

Ĝ(L̄(N)
s , J) :=

∫
E×E

L̄(N)
s (dx)L̄(N)

s (dy)
[
K̄(x, y)− φ(x, y)

]
J(y).

Finally, we define the functional

H(L̄(N)
s , J) :=

∫
E

L̄(N)
s (dy)

〈
φ(·, y), L̄(N)

0

〉
J(y) =

∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y).(31)

We now have the following claim:

Claim 3.3.1. Almost surely, for any t ∈ [0,∞), J ∈ Cc(E;R) we have

J̃(L̄∗t )− J̃(µ) =
∫ t

0
G+(L̄∗s, J)− Ĝ(L̄∗s, J)−H(L̄∗s, J) ds. (32)

Note that the truth of Equation (32) for any J ∈ Cc(E;R) implies that, almost surely, (L̄∗t )t≥0
satisfies (5) in Definition 2.1. Now, note that, as an application of Proposition 3.3, for any t ≥ 0
we have

L̄(N)
t (dx)

(
L̄(N)
t (dy)− δx

N

)
→ L̄∗t ⊗ L̄∗t (33)

almost surely in the weak topology. Recall that we have K̄ ≤ φ′, where φ′ is doubly sub-
conservative and continuous by the first assumption of Theorem 2.3, and φ (which is also contin-
uous, and φ′ both satisfy (8). Thus, exploiting weak convergence, and Lemma 3.1, we deduce that
(L̄∗t )t≥0 also satisfies Equations (4) and (6), thus is a solution of the multi-type Flory equation
in the sense given by Definition 2.1. Hence the claim completes the proof of the theorem.

It thus suffices to prove the claim.

Proof of Claim 3.3.1. First note that by recalling the martingale from Equation (20), together
with the bound from (28) in the proof of Lemma 3.2, we obtain

lim
N→∞

E
[∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 ) (34)

− 1
2

∫ t

0
ds
∫
E×E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K(x, y,dz)× (J(z)− J(y)− J(x))

∣∣∣]
= 0.

Now, we define

G−N (L̄(N)
s , J) := 1

2

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K̄((x, y)(J(x) + J(y)), (35)

G+
N (L̄(N)

s , J) := 1
2

∫
E×E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K(x, y,dz)J(z),

ĜN (L̄(N)
s , J) :=

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

) [
K̄(x, y)− φ(x, y)

]
J(y).

Wemay thus re-write the inner integral appearing in Equation (34) asG+
N (L̄(N)

s , J)−G−N (L̄(N)
s , J),

so that

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N (L̄(N)

s , J)−G−N (L̄(N)
s , J) ds

∣∣∣∣] = 0. (36)

Now, we seek to exploit the convergence of L̄(N)
s to L̄∗s, but note that as the integrand appear-

ing in Equation (35) is in general unbounded, and G− is, in general, not continuous. However, it
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is possible to show that this functional coincides with a continuous functional on the trajectories
s 7→ L̄(N)

s . Indeed, since φ is conservative, by Lemma 3.1 the quantity
〈
φ(·, y), L̄(N)

s

〉
is fixed, by

adding and subtracting the term corresponding to
∫
E×E L̄(N)

s (dy)L̄(N)
0 (dx)φ(x, y)J(y), we have

G−N (L̄(N)
s , J) = ĜN (L̄(N)

s , J) +H(L̄(N)
s , J)− EN (L̄(N)

s , J),

with
EN (L̄(N)

s , J) := 1
N

∫
E
φ(x, x)J(x)L̄(N)

s (dx).

Thus, re-writing Equation (36), we get

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N (L̄(N)

s , J)− ĜN (L̄(N)
s , J)−H(L̄(N)

s , J) + EN (L̄(N)
s , J) ds

∣∣∣∣]

= 0.

Now, in order to complete the proof of Equation (32), we need to argue that we can pass the
limit inside the expectation, and exploit weak convergence to replace the terms corresponding
to L̄(N) with L̄∗.We can pass the limit inside if the term Ĝ(L̄(N)

s , J) was bounded, and then,
need to argue continuity of the operators Ĝ and H. Consequentially, we first approximate the
functional Ĝ by truncations (Ĝ(k))k∈N, such that, with compact sets as defined in Equation (11)

Ĝ(k)(L̄(N)
s , J) :=

∫
Ck

L̄(N)
s (dx)

∫
E

L̄(N)
s (dy)

(
K̄(x, y)− φ(x, y)

)
J(y).

We finish the proof with another claim.
Claim 3.3.2. Almost surely, for s, t ∈ [0,∞), J ∈ Cc(E) we have

lim
k→∞

lim sup
N→∞

E
[∣∣∣∣∫ t

0
ĜN (L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J) ds

∣∣∣∣] = 0, (37)

lim sup
N→∞

(
E
[∣∣∣∣∫ t

0
G+
N (L̄(N)

s , J)−G+(L̄(N)
s , J) ds

∣∣∣∣]+ E
[∣∣∣∣∫ t

0
EN (L̄(N)

s , J) ds
∣∣∣∣]) = 0, (38)

lim
k→∞

E
[∣∣∣∣∫ t

0
Ĝ(L̄∗s, J)− Ĝ(k)(L̄∗s, J) ds

∣∣∣∣] = 0, (39)

and
lim
N→∞

H(L̄(N)
s , J) = H(L̄∗s, J) almost surely. (40)

Indeed, if Equations (37), (38), (39) and (40) are satisfied, by approximating Ĝ by Ĝ(k) (using
the triangle inequality) in the second equality, and using bounded convergence for the third, we
have

0 =

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N (L̄(N)

s , J)− ĜN (L̄(N)
s , J)−HN (L̄(N)

s , J) + EN (L̄(N)
s , J) ds

∣∣∣∣]

(37),(38)= lim
k→∞

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J)−H(L̄(N)

s , J) ds
∣∣∣∣]

= lim
k→∞

E
[

lim
N→∞

∣∣∣∣J̃(L̄(N)
t )− J̃(L̄(N)

0 )−
∫ t

0
G+(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J)−H(L̄(N)

s , J) ds
∣∣∣∣]

(40)= lim
k→∞

E
[∣∣∣∣J̃(L̄∗t )− J̃(µ)−

∫ t

0
G+(L̄∗s, J)− Ĝ(k)(L̄∗s, J)−H(L̄∗s, J) ds

∣∣∣∣]
(39)= E

[∣∣∣∣J̃(L̄∗t )− J̃(µ)−
∫ t

0
G+(L̄∗s, J)− Ĝ(L̄∗s, J)−H(L̄∗s, J) ds

∣∣∣∣] .
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Finally, we finish the proof of Claim 3.3.2.

Proof of Claim 3.3.2. Note that we have

E
[∣∣∣∣∫ t

0
ĜN (L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J) ds

∣∣∣∣] (41)

≤ 1
N

E
[∣∣∣∣∫ t

0

∫
Ck

L̄(N)
s (dx)|K̄(x, x)− φ(x, x)||J(x)| ds

∣∣∣∣]
+ E

[∫ t

0

∫
Cc

k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)|ds

]
,

where we immediately see that

lim sup
N→∞

1
N

E
[∣∣∣∣∫ t

0

∫
Ck

L̄(N)
s (dx)|K̄(x, x)− φ(x, x)||J(x)|ds

∣∣∣∣] = 0, (42)

since K̄, φ and J are continuous, they are bounded on the support of J and thus so is the
expectation. Now, if Equation (10) applies, then the integrand of the second term in (41) is
bounded by some constant c′ > 0, thus by (33) and the Portmanteau theorem, we have

lim sup
N→∞

E
[∫ t

0

∫
Cc

k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)|ds

]

≤ c′E
[∫ t

0
L̄∗s
(
Cck

)
L̄∗s(E)ds

]
;

and applying bounded convergence, using the fact that
⋂
k∈NC

c
k = ∅, we deduce (37). Otherwise,

in the case that Equation (11) applies, we bound the second term in (41) as follows:

E
[∫ t

0

∫
Cc

k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)| ds

]
, (43)

≤ E
[∫ t

0

∫
Cc

k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
‖J‖∞ sup

x∈Cc
k
, y∈Supp(J)

∣∣∣∣∣K̄(x, y)− φ(x, y)
φ∗(x, y)

∣∣∣∣∣ ,
Since φ∗ is doubly sub-conservative, and satisfies Equation (8), we have

lim sup
N→∞

E
[∫ t

0

∫
Cc

k
×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
(44)

≤ lim sup
N→∞

E
[∫ t

0

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
≤ lim sup

N→∞
tE
[∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ∗(x, y)

] (8)
< ∞.

Combining Equation (44), with (41), (42) and (43), we deduce Equation (37).
Equation (38) is proved in an analogous manner to (42), exploiting the compact support of

J . For (39), by the monotone convergence theorem, (33) and Fatou’s lemma we have

E
[∫ t

0

∫
E×E

L̄∗s(dx)L̄∗s(dy)φ∗(x, y) ds
]

= E
[∫ t

0
lim
j→∞

∫
E×E

L̄∗s(dx)L̄∗s(dy) (φ∗(x, y) ∧ j) ds
]

(45)

= E
[∫ t

0
lim
j→∞

lim
N→∞

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
(φ∗(x, y) ∧ j) ds

]
≤ lim sup

N→∞
E
[∫ t

0

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

] (44)
< ∞.
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Applying Equation (45) we deduce Equation (39) in a similar manner to Equation (37). Finally,
recalling the definition of the functional H from Equation (31), we have

lim
N→∞

H(L̄(N)
s , J) = lim

N→∞

∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y).

Thus,

lim sup
N→∞

∣∣∣H(L̄(N)
s , J)−H(L̄∗s, J)

∣∣∣ (46)

= lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄∗s(dy)µ(dx)φ(x, y)J(y)
∣∣∣∣

≤ lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣
+ lim sup

N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)−

∫
E×E

L̄∗s(dy)µ(dx)φ(x, y)J(y)
∣∣∣∣ .

The second term in the upper bound of (46) is 0, since the map y 7→
∫
E µ(dx)φ(x, y)J(y) is

bounded and continuous (because J has compact support and φ is continuous), and L̄(N)
s → L̄∗s.

On the other hand, by applying Equation (12), with the compact set C ′ chosen to be the support
of J , for any ε > 0, there exists N0 such that, for all N ≥ N0 we have

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣
≤ ε

∣∣∣∣∫
E

L̄(N)
s (dy)J(y)

∣∣∣∣ ,
and thus, taking limits superior of both sides, since J is bounded and continuous,

lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣
≤ ε

∣∣∣∣∫
E

L̄∗s(dy)J(y)
∣∣∣∣ .

Sending ε→ 0, we deduce that the first term in the upper bound of (46) is also 0, hence conclude
the proof of (40).

3.2 Uniqueness: proof of Theorem 2.4
Proof of Theorem 2.4. Suppose that (µs)s≥0 and (µ̂s)s≥0 denote two solutions to the Flory
equation, with a given initial condition µ0, with ‖µ0‖ <∞. Suppose that (µs − µ̂s) |DR

denotes
the measure (µs − µ̂s) restricted to DR. By a well-known property of the total variation distance,
we may write

‖(µs − µ̂s) |DR
‖ = sup

f :‖f‖∞=1
〈f1DR

, (µs − µ̂s))〉 .

Note that, by a straightforward approximation argument (approximating a measurable function
pointwise by continuous functions), if (µt)t≥0 is a solution to the multi-type Flory equation as in
Definition 2.1, Equation (5) is satisfied for all bounded measurable functions supported on the
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compact set Dk, for k ∈ N. Thus, for f such that ‖f‖∞ = 1, we have

〈f1DR
, (µs − µ̂s))〉 (47)

= 1
2

∫ s

0

∫
E×E×E

f(z)1DR
(z)K(u, v,dz) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

−
∫ s

0

∫
E×E

f(u)1DR
(u)K̄(u, v) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

−
∫ s

0

∫
E×E

f(u)1DR
(u)φ(u, v) (µr(du)µ0(dv)− µ̂r(du)µ0(dv)) dr

+
∫ s

0

∫
E×E

f(u)1DR
(u)φ(u, v) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr.

We now bound the values of each of the terms in the above display. For the first, since φ
is conservative, recalling the definition of DR in (15), we have 1DR

(z) ≤ 1DR
(u)1DR

(v) for
K(u, v, dz)-a.a. z. Moreover, bounding f(z) above by 1, we obtain

1
2

∫ s

0

∫
E×E×E

f(z)1DR
(z)K(u, v,dz) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

≤ 1
2

∫ s

0

∫
E×E

1DR
(u)1DR

(v)K̄(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)|dr. (48)

We now have the following claim:

Claim 3.3.3. We have∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| (49)

≤ 2R
∫
E

1DR
(v) |µr(dv)− µ̂r(dv)| .

By applying Claim 3.3.3, and bounding K̄(x, y) ≤ c′φ(x, y), we may now bound the right-side
of (48):

1
2

∫ s

0

∫
E×E

1DR
(u)1DR

(v)K̄(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)|dr (50)

≤ c′

2

∫ s

0

∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)|dr

≤ c′
∫ s

0
R

∫
E

1DR
(v) |µr(dv)− µ̂r(dv)|dr ≤ c′R

∫ s

0
‖(µr − µ̂r) |DR

‖ dr.

Next, re-writing, and combining the second and fourth terms in (47), recalling that φ(x, y)
coincides with K̄(x, y) on (DR ×DR)c (so in particular DR ×Dc

R) we get∫ s

0

∫
E×E

f(u)1DR
(u)

(
φ(u, v)− K̄(u, v)

)
(µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

=
∫ s

0

∫
E×E

f(u)1DR
(u)1DR

(v)
(
φ(u, v)− K̄(u, v)

)
× (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

≤ (c′ + 1)
∫ s

0

∫
E×E

φ(u, v)1DR
(u)1DR

(v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| dr

(49)
≤ 2R(c′ + 1)

∫ s

0

∫
E

1DR
(v) |µr(dv)− µ̂r(dv)| dr

= 2R(c′ + 1)
∫ s

0
‖(µr − µ̂r) |DR

‖ dr, (51)
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where in the second to last inequality, we use the bound K̄(u, v) ≤ c′φ(u, v). Finally, for the
third term in (47), observing that µ0 is a positive measure, we make a similar computation:

−
∫ s

0

∫
E×E

f(u)1DR
(u)φ(u, v) (µr(du)µ0(dv)− µ̂r(du)µ0(dv)) dr

≤
∫ s

0

∫
E×E

1DR
(u)φ(u, v) |µr(du)µ0(dv)− µ̂r(du)µ0(dv)| dr

=
∫ s

0

∫
E

1DR
(u)

∫
E
φ(u, v)µ0(dv) |µr(du)− µ̂r(du)|dr

≤ R
∫ s

0
‖(µr − µ̂r) |DR

‖ dr (52)

Combining Equations (50), (51) and (52), to bound (47) we deduce that

‖(µs − µ̂s) |DR
‖ = sup

f :‖f‖∞=1
〈f1DR

, (µs − µ̂s))〉 ≤ 3R(c′ + 1)
∫ s

0
‖(µr − µ̂r) |DR

‖ dr.

Claim 3.3.4. Suppose that (µt)t≥0 is a solution to the multi-type Flory equation. Then, if
ξ : E → R+ is a sub-conservative function, for each t ≥ 0∫

E
ξ(x)µt(dx) ≤

∫
E
ξ(x)µ0(dx).

By Claim 3.3.4 applied to the function ξ(x) ≡ 1, we know that for each s ≥ 0, we have

‖(µs − µ̂s) |DR
‖ ≤ 2‖µ0‖.

We can thus apply Gronwall’s lemma to deduce that ‖(µs − µ̂s) |DR
‖ = 0. As

⋃
k∈NDk = E, it

must be the case that ‖µs − µ̂s‖ = 0, showing uniqueness.

We finish with the proofs of Claim 3.3.3 and Claim 3.3.4:

Proof of Claim 3.3.3. We bound∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| (53)

≤
∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µr(dv)− µr(du)µ̂r(dv)|

+
∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µ̂r(dv)− µ̂r(du)µ̂r(dv)| .

For the first term on the right-hand side of (53), we integrate the variable u, applying (6)∫
E×E

1DR
(u)1DR

(v)φ(u, v) |µr(du)µr(dv)− µr(du)µ̂r(dv)| dr

≤
∫
E

1DR
(v)

∫
E
φ(u, v)µr(du) |µr(dv)− µ̂r(dv)|dr

≤
∫
E

1DR
(v)

∫
E
φ(u, v)µ0(du) |µr(dv)− µ̂r(dv)| dr

≤ R
∫
E

1DR
(v) |µr(dv)− µ̂r(dv)|dr;

and applying a similar argument for the second term in (53), we deduce the result.
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Proof of Claim 3.3.4. Suppose first that ξ is bounded. Then, applying (5) to the function ξ1Dk
,

we have

〈ξ1Dk
, µs − µ0〉

= 1
2

∫ s

0

∫
E×E×E

(ξ(z)1Dk
(z)− ξ(u)1Dk

(u)− ξ(v)1Dk
(v))K(u, v,dz)µr(du)µr(dv)dr

+
∫ s

0

∫
E×E

ξ(u)1Dk
(u)φ(u, v) (µr(du)(µr(dv)− µ0(dv))) dr.

By (6), since ξ(u) ≥ 0, and µr is a positive measure, we deduce that the second term on the right-
side above is non-positive. In addition, since φ is conservative, so is the function x 7→ 〈φ(x, ·), µ0〉,
and we deduce that 1DR

(z) ≤ 1DR
(u)1DR

(v) for K(u, v,dz)-a.a. z. Finally, since ξ is sub-
conservative,∫

E×E×E
(ξ(z)1Dk

(z))K(u, v,dz)µr(du)µr(dv)

≤
∫
E×E×E

(ξ(u) + ξ(v)) 1Dk
(u)1Dk

(u)K(u, v, dz)µr(du)µr(dv)

≤
∫
E×E×E

(ξ(u)1Dk
(u) + ξ(v)1Dk

(v))K(u, v,dz)µr(du)µr(dv).

Thus, 〈ξ1Dk
, µs〉 ≤ 〈ξ1Dk

, µ0〉, and we deduce the result from monotone convergence. Finally,
we can extend the result to unbounded ξ, again from monotone convergence (approximating ξ
from below by the sub-conservative functions ξ ∧ j, for j ∈ N).

A General criteria for relative compactness
Recall that for each N , the cluster coagulation process (L̄(N)

t )t∈[0,∞) is defined as taking values
in the space

E =
⋃
n∈N
{u ∈M+(E) : 〈m,u〉 ≤ n}

Recall also that equip E with the Prokhorov metric, which metrises the topology of weak conver-
gence. We may interpret (L̄t)t∈[0,∞) as a trajectory in D([0,∞); E), the space of right-continuous
functions f : [0,∞) → E with left-limits. We equip D([0,∞); E) with the Skorokhod metric d.
Recall that for a separable, complete metric space (E , δ) with q := δ ∧ 1, the Skorokhod metric
on D([0,∞); E) is defined as follows: Let Λ denotes the set of all strictly increasing functions
mapping [0,∞) onto [0,∞), and Λ′ ⊆ Λ the subset of Lipschitz functions. Then, for λ ∈ Λ′,
define

γ(λ) := sup
s>t≥0

∣∣∣∣log λ(s)− λ(t)
s− t

∣∣∣∣ <∞
Then, for f, g ∈ D([0,∞); E), we define

d(f, g) := inf
λ∈Λ

(
γ(λ) ∨

∫ ∞
0

e−tu
(

sup
t≥0

q(f(t ∧ u), g(t ∧ u))
)

du
)
. (54)

It is well-established that D([0,∞);R) is a separable and complete metric space see, for exam-
ple, [4, Theorem 5.6]. In this paper, we use the following, well-known criterion for tightness in
Skorokhod spaces. The first, from [4], has been slightly reformulated for out purposes. First, we
define the following modulus of continuity: for f ∈ D([0,∞);R), η > 0, T ∈ [0,∞), we define

w′(f, η, T ) := inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

|f(s)− f(t)| ;

where {ti} ranges over all partitions of [0, T ], such that 0 = t0 < t1 < · · · < tn = T , with
ti+1 − ti > η and n ≥ 1.
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Lemma A.1 ([4, Corollary 7.4, page 129]). A collection of probability measures {µn}n∈N on the
metric space D([0,∞);R) is tight if and only if the following criteria are satisfied:

1 For all t ∈ [0,∞) ∩Q and ε > 0, there exists a compact set K(t, ε) ⊆ E such that, for all
n ∈ N

lim inf
n→∞

µn ({f : f(t) ∈ K(t, ε)}) ≥ 1− ε, (55)

2 For any T ∈ [0,∞), there exists η > 0 such that, for all n ∈ N

lim
η→0

lim sup
n→∞

µn
({
f : w′(f, η, T ) ≥ ε

})
= 0. (56)

�
In literature surrounding stochastic processes, the first condition is often known as compact

containment. The following well-known tightness criterion due to Jakubowski applies more gener-
ally to D([0,∞);F ), where F is a completely regular Hausdorff spaces with metrisable compacts.
Since we assume E is a metric space, it applies to D([0,∞); E):

Lemma A.2 ([11, Theorem 4.6]). A collection of probability measures {µi}i∈I on D([0,∞); E)
is tight if and only if the following criteria are satisfied:

1 For any t > 0 and ε > 0 there is a compact set K(t, ε) ⊆ E such that, for all i ∈ I,

µi ({f : ∀ s ∈ [0, t] f(s) ∈ K(t, ε)}) ≥ 1− ε.3

2 There exists a family of continuous functions F from E to R such that
(a) The family F separates points, i.e., for any x, y ∈ E there exists f ∈ F such that

f(x) 6= f(y).
(b) The family F is closed under addition, i.e., if f, g ∈ F then f + g ∈ F.
(c) Let, for f ∈ F, f̃ : D([0,∞); E) → D([0,∞);R) denote the map such that f̃(x) =

f ◦x, for x ∈ D([0,∞); E). Then, for each f ∈ F the family of pushforward measures{
f̃∗(µi)

}
i∈I

is a tight family on D([0,∞);R).

�
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