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An Eulerian formulation for dissipative materials
using Lie derivatives and GENERIC

Alexander Mielke

Abstract

We recall the systematic formulation of Eulerian mechanics in terms of Lie derivatives along
the vector field of the material points. Using the abstract properties of Lie derivatives we show
that the transport via Lie derivatives generates in a natural way a Poisson structure on the chosen
phase space.

The evolution equations for thermo-viscoelastic-viscoplastic materials in the Eulerian setting
is formulated in the abstract framework of GENERIC (General Equations for Non-Equilibrium
Reversible Irreversible Coupling). The equations may not be new, but the systematic splitting
between reversible Hamiltonian and dissipative effects allows us to see the equations in a new
light that is especially useful for future generalizing of the system, e.g. for adding new effects like
reactive species.

In memory of Wolfgang Dreyer

1 Introduction

Motivated by the related work [MiR25] we reconsider the theory of Lie derivatives for formulation
dissipative continuum-mechanical systems in the Eulerian setting. For this we provide in Section 2 an
introduction to the theory of Lie derivatives, first in the differential geometrical setting involving multi-
linear forms and then for vectors, co-vectors, and operators as they are used in continuum mechanics.
The main point here is to gain an understanding that the usage of such objects may have different
interpretations in differential geometry and hence need a suitable Lie derivative. It is well-known that
there are different Lie derivatives for stress tensors (stress rates) but the issue is already relevant the
distinction of extensive and intensive field variables and for vectors and co-vectors such that as the
momentum.

In Section 3 we first recall the GENERIC framework, where the acronym GENERIC stands for General
Equation for Non-Equilibrium Reversible-Irreversible Coupling and was introduced in [GrÖ97]. How-
ever, this class of models originates in the metriplectic theory developed in [Mor84, Mor86], cf. the
survey [Mor09]. Over the last decade, GENERIC has proved to be a versatile modeling tool for vari-
ous complex coupled models for fluids and solids, see e.g. [LJCV08, Mie11, HüS12, DPZ13, PKG18,
PPK20, BeS19, Las21, PT∗22, ZPT23] and the references therein. We also refer to [Mie15, KM∗19]
for applications in semiconductor and quantum devices. In [MPZ24] it is shown that a dissipative
GENERIC system can be rigorously derived from an infinite-dimensional (non-dissipative) Hamilto-
nian systems.

In Section 3.2 we start to develop continuum mechanics system at finite strain in a systematic way
that is compatible with Lie derivatives and GENERIC. In particular, we consider elastoplastic materials
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A. Mielke 2

based on the multiplicative split F = FeFp where F remains related with the velocity field v through
the kinematic relation

∂tF = −Lve
v F := −v·∇F + (∇v)F ,

which is indeed given by a suitable Lie derivative, see Lemma 3.1.

In addition to the momentum π = ρv (with ρ = ρref/ detF ) and F , we use the plastic dis-
torting Fp ∈ GL(Rd) and a scalar thermodynamical field variable τ for form the state variable
q = (π,F ,Fp, τ). The variable τ can be chosen quite general, e.g. as density of internal energy,
enthalpy, or entropy or as the temperature.

In Section 3.3 we discuss how the total energy E(q) and the total entropy S(q) as main objects in the
GENERIC framework generate thermodynamical driving forces that generate the evolution equations

∂tq = J(q)DE(q) + ∂ζR∗
(
q,DS(q)

)
,

which include the balance laws of mechanics as well as the constitutive relations. Here J is the Poisson
operator, and R∗ is the dual dissipation potential, see Section 3.1. All the material properties for the
dissipative mechanisms are contained in R∗ and the mapping ξ 7→ j := ∂ξR∗(q, ξ) is called the
abstract kinetic relation between the vector ξ of all thermodynamic driving forces and the vector j of
all corresponding fluxes.

The main theoretical result of this paper is Theorem 3.3 that shows that there is a straightforward way
for the construction of a Poisson operator q 7→ J(q) for Eulerian mechanics based on the general
properties for Lie derivatives. It is usually difficult to show that J satisfies the so-called Jacobi identity
(see (3.1)), but exploiting the calculation rules for general Lie derivatives (in particular the commutator
rule (2.3)) they can be established without too much efforts.

In Section 3 we then follow the full program of the GENERIC framework and derive our Eulerian model
for thermo-visco-elastoplasticity using the multiplicative splitF = FeFp. One of the advantages of this
framework is that we are able to derive the reversible Hamiltonian part and the irreversible dissipative
parts independently, namely

∂tq = VHam(q) + Vdiss(q) with VHam(q) := J(q)DE(q) and Vdiss(q) := ∂ζR∗
(
q,DS(q)

)
.

This allows us to study the different physical effects separately, thus providing a better overview on the
physical principles.

Our final system can be written in terms of the variables q = (π,w) where π = ρv is the momentum
and w = (F ,Fp, τ), and it takes the form

∂tπ = −Lmo
v π + div

(
ΣCauchy(w) + Dvisc(w)D(v)

)
, (1.1a)

∂tF = −Lve
v F , (1.1b)

∂tFp = −Lin
v Fp + FpLvi.pl(w), (1.1c)

∂tτ = jSHam(w) + jEdiss(w)− 1
∂τE(w)

div
(
Kheat(q)∇ 1

Θ(w)

)
. (1.1d)

The first equation is the momentum balance including the Cauchy stress tensor and the visco-elastic
term with strain-rate tensor D(v) = 1

2

(
∇v + (∇v)∗

)
. The second equation states that the defor-

mation gradient F is simply transported by a (suitable) Lie derivative, and the third equation contains
the visco-plastic flow rule encoded by Lvi.pl. The last equation is a scalar thermodynamic equation
which reduces (i) to the energy balance if τ is chosen as the density of the internal energy, (ii) to the
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 3

heat equation for the choice τ = θ = temperature, or (iii) to the entropy (im)balance if we choose τ
as entropy density. We refer to Section 4.3 for the explanation of all symbols.

At this stage we want to highlight that the first three equations clearly show the relevance of the Lie
derivative Lv, while in the fourth equation it will only appear, if one chooses τ as an intensive or an
extensive variable. Here we have added the superscripts “mo”, “ve”, “in” for “momentum”, “vector”, and
“internal variable” to the Lie derivative Lv to indicate that the Lie derivatives depend on the tensorial
nature of the variables π, F , and Fp, respectively.

Section 5 concludes the paper by a discussion of the developed theory, in particular on the relevance
of the proper usage of Lie derivatives and the GENERIC framework.

2 Lie derivatives

The theory of Lie derivatives is a well-known tool in differential geometry as well as in Eulerian fluid and
solid mechanics. It is relevant when tensors (functions, vectors, forces, densities, etc.) are defined over
a manifold and there is a vector field v on this manifold, see e.g. [Yan55], [Cha83, Cha. 1], [MaH94,
Sec. 1.6], and [MaR99, Sec. 4.3]. See also [MaH94, footnote 26] for historical remarks concerning the
first applications of Lie derivatives in continuum mechanics.

2.1 Differential geometric approach

In our case the manifold is the Eulerian space Rd or a subset S thereof, called the body in Eulerian
description. The tangent and cotangent spaces are TxS = Rd and T∗xS = Rd

∗, respectively. A vector
field v on S means that v(x) ∈ TxS for all x ∈ S, and a co-vector field α satisfies α(x) ∈ T∗xS. In
the differential geometric setting, a tensorA of type (i◦, j◦) on S, written asA ∈ Ti◦j◦(S), means that
A(x) is a multi-linear mapping from (TxS)i◦ × (T∗xS)j◦ , i.e. linear in each of the i◦+j◦ arguments.
By the dual pairing

(v,α) 7→ 〈α,v〉S : x 7→ 〈α(x),v(x)〉TxS

we can identify v with a tensor in T0
1(S) and α with a tensor in T1

0(S). The anti-symmetric tensors in
T0
j◦(S) are the differentials forms denoted by the set Λj0(S).

For a general vector field v and a tensor field A, the Lie derivative is defined by taking the deriva-
tive of A along the flow of v. Throughout this section we assume that all objects like v and A are
independent of time. First observe, that v defines a flow map s 7→ Ψ(s, ·) : S → Rd such that the
following ODE is satisfied:

d

ds
Ψ(s, x) = v(Ψ(s, x)) for s ∈ ]−δ, δ[, Ψ(0, x) = x.

The Lie derivative ofA along v is now defined via

LvA =
( d

ds
Ψ(s, ·)∗A

)∣∣∣
s=0

, (2.1)

where the pull-back Φ∗A ofA by Φ is defined via

Φ∗A(x)
[
v1, ..,vi◦ ,α1, ..,αj◦

]
= A(Φ(x))

[
DΦv1, ..,DΦvi◦ ;

(
DΦ
)−∗
α1, ..,

(
DΦ
)−∗
αj◦
]
,

where DΦ is evaluated at x ∈ B, see Appendix A. In particular, Lv is again a tensor of the same
order asA.
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A. Mielke 4

Because we have Ψ(s, x) = x + sv(x) + O(s2) we find DΨ(s, x) = I + s∇v(x) + O(s2) and
conclude

LvA
[
v1, ..,vi◦ ;α1, ..,αj◦

]
=
(
v·∇A

)[
v1, ...,vi◦ ;α1, ...,αj◦

]
+

i◦∑
i=1

A
[
v1, ..., (∇v)vi, ...,vi◦ ;α1, ...,αj◦

]
−

j◦∑
j=1

A
[
v1, ...,vi◦ ;α1, ...,

(
∇v)∗αj, ...,αj◦

]
.

(2.2)

One of the fundamental properties of Lie derivatives is the commutator relation

Lv
(
LwT

)
− Lw

(
LvT

)
= L[[v,w]]T , (2.3)

where the commutator between vector fields is given by

[[v,w]] := (∇w)v − (∇v)w = (v·∇)w − (w·∇)v = Lvw = −Lwv.

It is easily checked that we have the Jacobi identity for vector fields, viz.[[
v1, [[v2,v3]]

]]
+
[[
v2, [[v3,v1]]

]]
+
[[
v3, [[v1,v2]]

]]
= 0 for all v1,v2,v3 ∈ T1(S). (2.4)

The identities (2.3) and (2.4) will be extremely useful for showing that the the operator J to be con-
structed satisfies the Jacobi identity, and hence is a Poisson structure. It is not easy to find explicit
statements of (2.3) in the literature, but it is an easy consequence of its validity for functions, vectors,
and co-vectors (1-forms) and of the well-known derivation rule Lv(T⊗S) = (LvT )⊗S+T⊗(LvS)
for tensor products by doing induction over the rank of the tensors (see e.g. condition “(DO1)” in
[AbM78, Ch. 2]).

Here the tensor product ofA ∈ Ti◦j◦(S) andA ∈ Tn◦
m◦(S) is the tensorA⊗B ∈ Ti◦+n◦

j◦+m◦(S) defined
via

A⊗B[v1, . . . ,vi◦+n◦ ;α1, . . . ,αj◦+m◦ ] := A[v1, . . . ,vi◦ ;α1, . . . ,αj◦ ]

·B[vi◦+1, . . . ,vi◦+n◦ ;αj◦+1, . . . ,αj◦+m◦ ].

Inner products can be defined by tensor products and subsequent contraction of indices. For A ∈
Ti◦j◦(S) and n,m ∈ N with 1 ≤ n ≤ i◦ and 1 ≤ m ≤ j◦ we can contract the nth vector slot with the

m co-vector slot to obtain CnmA ∈ Ti◦−1
j◦−1(S) defined via

CnmA
[
v1, . . . ,vi◦−1;α1, . . . ,αj◦−1

]
:=

d∑
k=1

A
[
v1, ..,vk−1, ek,vk, ..,vi◦−1;α1, ..,αm−1, εk,αm, . . . ,αj◦−1

]
,

where {e1, . . . , ed} is an arbitrary basis in TxS and εk ∈ T∗xS satisfy 〈εk, el〉 = δk,l (the Kronecker
symbol) for k, l ∈ {1, . . . , d}.

2.2 Differential forms

The special inner product with a vector field w is denoted by iw : Ti◦+1
j◦ (S) → Ti◦j◦(S) and is given

by
iwA

[
v1, ..,vi◦ ;α1, ..,αj◦

]
= A

[
w,v1, ..,vi◦ ;α1, ..,αj◦

]
,
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 5

i.e. by simple insertion into the first vector slot. Identifyingw with the tensorB[α] = 〈α,w〉 we have
the relation iwA = C1

1

(
A⊗B

)
. It is not difficult to see that Lie derivatives commute with contraction,

hence we also have the product rule for inner products:

LvC
n
mA = Cn

mLvA Lv
(
iwA) = iw(LvA) + iLvwA.

An important subclass of tensor is given by the differential forms that appear as k-forms for k ∈
{0, . . . , d}. They are given as tensors β ∈ Λm(S) ⊂ T0

k(S), where Λm denotes the subset of
tensors that are anti-symmetric, i.e. interchanging any two arguments changes the result by a factor
(−1). One can define the differential d : Λk(S)→ Λk+1(S) and has iw : Λk+1(S)→ Λk(S). For
differential forms β one has the identities

Lvβ = ivdβ + d(ivβ) and Lv(dβ) = d
(
Lvβ

)
,

where the first one is called “Cartan’s magic formula” (also known as Cartan’s first structural equation)
and the second follows easily from the first when using ddγ = 0 for all differential forms γ.

The wedge product ∧ maps Λk(S)× Λl(S) into Λk+l(S) by β ∧ γ = anti(β⊗γ) and satisfies

Lv(β ∧ γ) =
(
Lvβ

)
∧ γ + β ∧

(
Lvγ

)
.

2.3 Tensors with values in a linear space

The above theory can easily generalized to the case that the tensorsA(x) do not map into R but into
a general linear spaceUx, i.e.

A(x) : (TxS)i◦ × (T∗xS)j◦ → Ux

is still multi-linear in (v1, . . . ,vi◦ ;α1, . . . ,αj◦). We will then speak ofU -valued tensors and remark
thatUx has to be independent of TxS and T∗xS, which means that the vector-field v is not moving the
points inUx.

2.4 Lie derivatives of vectors, operators, and volume forms

A proper usage of differential geometric concepts in continuum mechanics is not standard, but we
refer to [Seg23] for a careful and detailed approach in this direction. Traditionally, it is more common
to use vector, co-vector and matrices, called tensors there. To distinguish these notions we use the
name “operator” for matrices acting as linear mappings between linear spaces.

Even for scalar-valued functions the Lie derivatives is not simple, because functions in continuum
mechanics occur in different forms. First one has intensive and extensive functions, which have the
differential geometric interpretation as 0-forms (i.e. f ∈ Λ0(S)) and volume or d-form (i.e. ρ ∈
Λd(S)), respectively. In the latter case identify a function ρ with the volume form ρ[v1, . . . ,vd] =
ρ det

(
v1|..|vd

)
, and we obtain

Lvf = v·∇f and Lvρ = div(ρv). (2.5)

In continuum mechanics the typical extensive variables are mass density ρ, internal-energy density e,
entropy density s, or any one-homogeneous function of those. The typical intensive variables are con-
centrations, temperature θ = de/ds, velocity, pressure, or chemical potentials. For general functions,
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A. Mielke 6

not falling into the classes of intensive or extensive functions, the Lie derivative has to be obtained by
representing it via intensive and extensive variables and then applying the chain rule and the appro-
priate Lie derivatives.

A vector fieldw and a co-vector fieldα can be identified with tensorsAw ∈ T0
1(S) andBβ ∈ T1

0(S),
respectively, by

Aw[α] = 〈α,w〉 and Bβ[v] = 〈β,v〉.
Using this, we can derive the form of the Lie derivatives from the tensor Lie derivatives, namely

Lvw = v·∇w − (∇v)w = [[v,w]] and Lvβ = v·∇β + (∇v)∗β. (2.6)

Moreover, in continuum mechanics the momentum vector π = ρIRv (where IR : TxS → T∗xS) is
the Riesz isomorphism) is a co-vector but its correct interpretation is as a (d−1)-form (by the Hodge
star operator mapping Λk(S) into Λd−k(S)), namely

π = ρIRv = ivρ. (2.7a)

This leads to the Lie derivative

Lvπ = div(π⊗v) + (∇v)∗π, (2.7b)

see [MiR25, Prop. 4.2]. A “vector” may also be considered as a tensor with values in the linear Rd

which is not connected to TxS. Such a case is occurs in [BN∗24, Eqn. (2.3)], where the magnetization
vector M (t, x) ∈ R3 has the Lie derivative Lmag

v M = v·∇M + (div v)M = div
(
M⊗v

)
.

The proper tensorial interpretation of “flux fields” is reported in [Seg23, p. 71]: “A flux field, such as the

heat flux field, should be regarded as a 2-form in the three-dimensional body rather than as a vector field. As a

2-form, a heat flux field may be considered independently of the configuration of the body in space.”

We have four types of operators, namely

B : TxS→ TxS, C : TxS→ T∗xS, D : T∗xS→ T∗xS, E : T∗xS→ TxS.

They can be identified with tensorsB ∈ T1
1,C ∈ T2

0,D ∈ T1
1, andE ∈ T0

2 via

B[v,α] = 〈α,Bv〉, C[v1,v2] = 〈Cv1,v2〉, D[v,α] = 〈Dα,v〉, E[α1,α2] = 〈α1,Eα2〉.

Thus, the corresponding Lie derivatives can be calculated by those forB toE and we obtain

LvB = v·∇B + B(∇v)− (∇v)B, LvC = v·∇C + C(∇v) + (∇v)∗C,
LvD = v·∇C− D(∇v)∗ + (∇v)∗D, LvE = v·∇E− E(∇v)∗ − (∇v)E.

(2.8)

Note that only C and E can be symmetric tensors and that in this case the two signs of the second and
third terms are the same and one times we have ∇v and the other time (∇v)∗. See also [MaH94,
Ch. 1 Box 6.1].

As an example consider the Euclidean tensor CEuc ∈ T2
0 with CEuc[v1,v2] = (v1|v2)Euc (the

Euclidean scalar product). The associated operator CEuc = IRiesz : TxR3 → T∗xR3 is the Riesz
isomorphism. The Lie derivative provides twice the classical strain-rate tensor

LvCEuc = 2D(v) withD(v) :=
1

2

(
IRiesz∇v + (∇v)∗IRiesz

)
∈ Linsym

(
R3; (R3)∗

)
. (2.9)

There are various objective stress rates which arise from the fact that there are various stress tensor
which have different tensorial properties. Similar to the construction of the momentum as a (d−1)
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 7

form (2.7) one also has to consider the Cauchy stress tensors ΣCauchy as an extensive version, and
its Lie derivative is the so-called Truesdell stress rate

LvΣCauchy = v·∇ΣCauchy + (div v)ΣCauchy −ΣCauchy(∇v)∗ − (∇v)ΣCauchy.

However, the Kirchhoff stress tensor TKir = detF ΣCauchy = ρref
ρ

ΣCauchy (see Section 3.2 for the
last identity) has “intensive” properties, because it is the quotient of two extensive objects. Thus, TKir

has to be interpreted as element of T0
2 likeE in (2.8), and its Lie derivative is the upper convected or

Oldroyd stress rate
LvTKir = v·∇TKir − TKir(∇v)∗ − (∇v)TKir.

Here, we do not dwell on this subject any further, but refer to [MaH94, Ch. 1 Box 6.1] for this and to
[Fia08] for a way to write the Zaremba-Jaumann derivative as a Lie derivative.

3 GENERIC structures and Eulerian mechanics

The acronym GENERIC stands for

General Equation for Non-Equilibrium Reversible-Irreversible Coupling

and was introduced in [GrÖ97], but the class of models appears metriplectic systems already in
[Mor84, Mor86], cf. the survey [Mor09]. Over the last decade, the GENERIC framework has proved
to be a versatile modeling tool for various complex coupled models for fluids and solids, see e.g.
[LJCV08, Mie11, HüS12, DPZ13, PKG18, BeS19, Las21, PT∗22, ZPT23, MiR25] and the references
therein.

3.1 Setup of GENERIC

We consider states q in a state spaceQ which is either a flat space or a smooth manifold. A GENERIC
system is a quintuple (Q, E ,S, J,K), where the energy E and the entropy S are differentiable func-
tions on Q with differentials DE(q) and DS(q) lie TqQ. The geometric structures are the Poisson
operator J for Hamiltonian dynamics and a (dual) dissipation potentialR∗, where J(q) maps T∗Q to
TQ andR∗(q, ·) : T∗qQ→ [0,∞] is a convex functional withR∗(q, 0) = 0. In many casesR∗(q, ·)
is a quadratic functional given in terms of a symmetric, positive semi-definite operator K(q), namely
R∗(q,#xi) = 1

2
〈ξ,K(q)ξ〉. Such operators K(q) are often called “Onsager operators” because of

Onsager’s fundamental reciprocal relations in [Ons31], earning him the Nobel Prize in Chemistry in
1968.

The evolution equation then takes the form

∂q

∂t
= J(q)DE(q) + ∂ξR∗

(
q,DS(q)

)
,

where ∂ξR∗(q, ·) denotes the convex subdifferential ofR∗(q, ·), which is possibly set-valued (e.g. in
plasticity).

The Poisson operator is defined by being skew-symmetric and satisfying the Jacobi identity, i.e.〈
ζ1,DJ(q)[J(q)ζ2]ζ3

〉
+ cycl. perm. ≡ 0 for all ζ1, ζ2, ζ3 ∈ T∗qQ. (3.1)
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A. Mielke 8

The main condition for GENERIC are the so-called non-interaction conditions, namely

(a) J(q)DS(q) ≡ 0 and (b) R∗(q, λDE(q)) ≡ 0 for all λ ∈ R. (3.2)

By convexity, the latter condition implies R∗(q, ζ+λDE(q)) = R∗(q, ζ) for all (q, ζ) ∈ T∗Q and
λ ∈ R, and as a consequence we have

〈
DE(q)), ∂ξR∗(q, ξ)

〉
= 0 for all ξ.

Using the chain rule, a simple consequence of Condition (3.2.b) (and J = −J∗) is the conservation
of energy along solutions, i.e. d

dt
E(q(t)) = 0. Condition (3.2.a) (together with convexity of R∗(q, ·))

implies entropy increase: d
dt
S(q(t)) =

〈
DS(q), ∂ξR∗

(
q,DS(q)

)〉
≥ 0, i.e. the second law of ther-

modynamics is automatically satisfied for GENERIC systems.

However, we emphasize that (3.2) is much stronger that energy conservation and entropy increase.
We refer to [Ött05] and [Mie11, Sec. 2.2] for further properties of GENERIC systems, in particular
concerning additional conservation laws and the maximum entropy principle providing thermal equilib-
rium states when maximizing S(q) subject to the conserved quantities. We also refer to [MG∗00] for a
discussion on the differences between GENERIC and other thermodynamical approaches.

An efficient way of constructing GENERIC systems is using the “special form” of GENERIC systems
as described in [Ött05, Sec. 2.3.2] (following [Edw98]) and [Mie11, Sec. 2.4+4.3]. Having a suitable
“simpler” Poisson structure Jsimple and a “simpler” dual dissipation potential R∗simple, one can define
more complex structures via

J(q) = MS(q)Jsimple(Φ(q))MS(q)∗ and R∗(q, ξ) = R∗simple

(
q,ME(q)

∗ξ
)

(3.3a)

where the following additional conditions have to be met:

MS(q)∗DS(q) = f∗, Jsimple(q)f∗ = 0, MS(q) =
(
DΦ(q)

)−1
, (3.3b)

ME(q)
∗DE(q) = g∗, R∗simple(q, λg∗) = 0 for all λ ∈ R, (3.3c)

where f∗ and g∗ are fixed vectors.

The typical application occurs in continuum systems where q = (w, τ) and τ is a scalar thermody-
namical variable such as temperature θ, internal energy density u, or the entropy density s. Then, we
set Φ(w, τ) = (w, S(w, τ))> and obtain

MS(w, τ) =

(
I 0

∂wS(w, τ) ∂τS(w, τ)

)−1

=

(
I 0

− 〈∂wS(w,τ),�〉
∂τS(w,τ)

1
∂τS(w,τ)

)
.

Here and below the symbol “�” indicates at which position the corresponding argument from matrix
multiplication has to placed. In an example this means(

a∇� e�τV
�∇φ M ∇�

)(
ξ

η

)
=

(
a∇ξ + eητV

ξ∇φ+M ∇η

)
.

With the similar construction for E we obtain

MS(w, τ)∗ =

(
I − �

∂τS(w,τ)
∂wS(w, τ)

0 1
∂τS(w,τ)

)
=

(
I 0
0 1

)
+

(
−∂wS
1−∂τS

)
⊗
(

0
1
∂τS

)
and

ME(w, τ)∗ =

(
I − �

∂τE(w,τ)
∂wE(w, τ)

0 1
∂τE(w,τ)

)
=

(
I 0
0 1

)
+

(
−∂wE
1−∂τE

)
⊗
(

0
1

∂τE

)
.
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 9

Clearly, we have (3.3b) with f∗ = g∗ = (0, 1)>. The remaining relation (3.3c) will follow from the
classical balance equations via∇1 ≡ 0.

Looking at MS the best choice for τ is the entropy density τ = s such that S(w, s) = s, because
this gives MS(w, s)∗ = I. However, this choice is not optimal for ME . In engineering often τ = θ is
chosen, which makes both matrices MS and ME nontrivial.

3.2 Eulerian thermo-elastoplasticity and its kinematics

In Lagrangian mechanics a body is described on a reference domain M ⊂ Rd with material points
x ∈ M. The time-dependent deformation is denoted by x = y(t, x), where x ∈ S is the spatial
coordinate. Denoting the inverse mapping (also called return mapping) by x = Y(t, x) the Eulerian
velocity v and the Eulerian deformation gradient F are given by

v(t, x) =
∂

∂t
y
(
t,Y(t, x)

)
and F (t, x) = ∇xy

(
t,Y(t, x)

)
.

Note that v is a vector field on S ⊂ Rd, whereas F (t, x) is a two-point tensor mapping TY(t,x)M
to TxS. Thus, we have to understand F as a U -valued 1-form on S , where Ux = TY(t,x)M. The
important kinematic relation is that F is directly transported by its Lie derivative. The same happens
to the Eulerian density ρ(t, x) = ρref/ det

(
F (t, x)

)
, where the referential density ρref is assumed to

be constant.

These result are well-known, and we state them to highlight their Lie derivative aspect.

Lemma 3.1 (Kinematic relation) Considering v, F , and ρ as above we have the relations (see (2.5)
and (2.6))

∂tρ = −Lvρ = − div(ρv) and ∂tF = −LvF = −v·∇F + (∇v)F .

In finite-strain elastoplasticity, the deformation tensor F is multiplicatively decomposed by the so-
called Kröner-Lee-Liu form (cf. [Krö60, LeL67])

F (t, x) = Fe(t, x)Fp(t, x), (3.4)

where Fp(t, x) maps TY(t,x)B into itself, so that the Lie derivatives are

LvFe = −v·∇Fe + (∇v)Fe and LvFp = −v·∇Fp.

Inserting these relations into the kinematic relation for ∂tF we obtain an additive kinematic relation
between the elastic and the plastic strain rates in the form

F−1
e

(
∂tFe+LvFe

)
+
(
∂tFp+LvFp

)
F−1

p = 0, (3.5)

which is the counterpart to the often-used split in the Lagrangian setting, see e.g. [Lee69, BeV94,
GuA05].

We will describe our full model for thermo-elastoplasticity by the state vector

q =
(
π,F ,Fp, τ)>,
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A. Mielke 10

where π = ρv is the momentum and τ is a scalar-valued thermodynamical field variable such as the
internal energy, enthalpy, entropy, or temperature. At this stage the structure remains more transpar-
ent, when stay more general, see [Mie11, BeS19].

The class of models considered here can also be described by a smaller set of variables, namely
(π,Fe, τ), see [MiR25], where then (3.5) is rewritten as ∂tFe = −LvFe−FeLp andLp is modeled
accordingly. We hope that the present formulation is clearer, as it treats Fp as an integral part of the
state of the system.

3.3 Energy, entropy and driving forces

The total energy is given as a the sum of the kinetic energy and the stored energy in the form

E(π,F ,Fp, τ) =

∫
S

(detF

2ρref

|π|2 + E(F ,Fp, τ)
)

dx. (3.6)

Here we have written E as a general function of F , Fp, and τ , however, often it is assumed that
E depends on F only through Fe = FF−1

p which is a consequence of the Kröner-Lee-Liu de-
composition (3.4). A typical choice would be E(F ,Fp, τ) = W (FF−1

p , τ) + H(Fp, τ), where the
latter term can be used to describe (kinematic) hardening effects. At this stage the structure remains
clearer, if we stay with the general function E(F ,Fp, τ), but later on, we will specify to the case

E(F ,Fp, τ) = Ẽ(FF−1
p ,Fp, τ).

Similarly, the entropy is given in the form

S(F ,Fp, τ) =

∫
S

S(F ,Fp, τ)dx, (3.7)

where no dependence on the momentum π is present because of Galilean invariance. Here S is
assume to be strictly increasing in τ , and the temperature is defined via

θ = Θ(F ,Fp, τ) :=
∂τE(F ,Fp, τ)

∂τS(F ,Fp, τ)
⇐⇒ τ = τ̂(F ,Fp, θ).

Note that E and S are an densities with respect to the spatial domain S ⊂ R3 and that they must
be frame indifferent, i.e. E(QF ,Fp, τ) = E(F ,Fp, τ) and S(QF ,Fp, τ) = S(F ,Fp, τ) for all
Q ∈ SO(Rd), which implies that ∂FE(F ,Fp, τ)F ∗ and ∂FS(F ,Fp, τ)F ∗ are symmetric. Here
F ∗ is the adjoint operator to F : TxM→ TxS with x = y(t, x), i.e. F ∗ : T∗xS→ T∗xM, and we will
also use F−∗ = (F ∗)−1 = (F−1)∗ : T∗xM→ T∗xS.

As GENERIC structures suggest, the main driving forces for the reversible (Hamiltonian) dynamics are
DE(q) and those for the dissipative dynamics are DS(q):

DE(q) =


v

∂FE(..) + ρ|v|2
2
F−∗

∂FpE(..)

∂τE(..)

 and DS(q) =


0

∂FS(..)

∂FpS(..)

∂τS(..)

.
However, in light of the special GENERIC structure introduced at the end of Section 3.1, it will be more
natural to look at the combined generalized driving forces MS(q)DE(q) and ME(q)DS(q).
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 11

Proposition 3.2 With eτ = (0, 0, 0, 1)> we have the relations

MS(q)∗DE(q) =


v

ΣF
e + ρ|v|2

2
F−∗

ΣF
p

Θ

 and ME(q)
∗DS(q) = −1

Θ(q)
ME(q)DS(q) + 1+Θ

Θ eτ ,

(3.8)
where ΣF

e = ∂FE(..)−Θ(..)∂FS(..) and ΣF
p = ∂FpE(..)−Θ(..)∂FpS(..).

Here ΣF
e and ΣF

p are the derivatives of the free energy F (q) = E(q)−Θ(q)S(q) at fixed tempera-
ture with respect to F and Fp, respectively. Inverting the relation θ = Θ(w, τ) into τ = τ̂(w, θ) and
setting Ψ(w, θ) := F

(
w, τ̂(w, θ)

)
, this means

ΣF
e = ∂FΨ(F ,Fp, θ)

∣∣
θ=Θ(F ,Fp,τ)

and ΣF
p = ∂FpΨ(F ,Fp, θ)

∣∣
θ=Θ(F ,Fp,τ)

.

Proof. The transformation matrices in Section 3.1 read

MS(q)∗ = I − 1
∂τS

(
DS(q)−eτ

)
⊗eτ and ME(q)

∗ = I − 1
∂τE

(
DE(q)−eτ

)
⊗eτ . (3.9)

Thus, the generalized driving forces take the form

MS(q)∗DE(q) = DE(q)−ΘDS(q) + Θeτ and ME(q)
∗DS(q) = DS(q)− 1

Θ
DE(q) + 1

Θ eτ ,

which means that the two driving forces, except for the last scalar component, are the same up to
constant −Θ(..). Hence, the second statement in (3.8) is shown.

The first relation in (3.8) follows simply by using (3.9), the formulas for DE and DS , and the definition
of Θ.

The last statement about the free energy is established in [Mie11, Eqn. (2.13)].

In fact, for the dissipative driving forces, it will be more useful to generalize ME(q)∗ to the better
adapted operator NE . We emphasize that the conditions (3.3b) for MS are much more restrictive,
because the third condition asks MS to be the inverse of a derivative. In contrast, the condition (3.3c)
for ME are simpler, e.g. ME ≡ 0 would be allowed (but not really useful). In the following we will use
the operator

NE(q)
∗ =


D(�) 0 0 −�

∂τE
D(v)

0 0 � −�
∂τE

∂FpE

0 0 0 �/∂τE

, i.e. NE(q)
∗


w
ξ
η
κ

 =


D(w)− κ

∂τE
D(v)

η − κ
∂τE

∂FpE

κ
∂τE

. (3.10)

By construction, we have NE(q)∗DE(u) = (0, 0, 1)> and find the adapted driving forces

η =

ηm

ηp

ηt

 = NE(q)
∗DS(q) =


− 1

Θ D(v)

1
Θ

(
∂FpS −Θ∂FpE

)
1/Θ

 =
1

Θ

−D(v)

−ΣF
p

1

 . (3.11)

The major reason for choosing NE(q)∗ is that the arising driving forces are Galilean invariant, in
contrast to ME(q)∗DS(q) which involves v and ρ|v|2. Thus, we will have more flexibility in making
physically reasonable choices for R∗simple. Note also that NE(q)∗ is not quadratic and hence not in-
vertible (in contrast to MS(q)∗). This reflects the fact that the equation of F is purely kinematic and
thus will not include any dissipative effects.
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3.4 The Poisson structure for the Hamiltonian part

The main result of paper states that skew-symmetric operators J build with Lie derivatives automat-
ically satisfy the Jacobi identity and hence qualify as Poisson operators for Eulerian continuum me-
chanics.

Theorem 3.3 (Jacobi identity via Lie derivatives) We consider the case that the state z is given
by z = (π,X) where π is the momentum (considered as a (d−1) form as in (2.7)) and a collec-
tion of variables comprised into a tuple X . We define the state-dependent skew-symmetric operator
J(π,X) via

J(π,X)

(
v

ξ

)
=

(
−L�π B(X)�
−L�X 0

)(
v

ξ

)
=

(
−Lvπ + B(X)ξ

−LvX

)
,

where B(X) is defined by skew-symmetry, namely 〈v,B(X)ξ〉 = 〈ξ,LvX〉.
Then, J satisfies the Jacobi identity (3.1), and hence provides a Poisson structure.

Proof. The proof relies in the rules for Lie derivatives, in particular the commutator rule (2.3), and
the simple observation that the mapping (π,X) 7→ J(π,X) is linear. A special case of our result
was already obtained in [MiR25, Prop. A.1], however the present proof is significantly shorter and still
self-contained.

We consider on of the three terms in the Jacobi identity and simplify it using DJ(π,X)[π2,X2] =
J(π2,X2) (because of linearity), where (π2,X2)> = J(π,X)(v2, ξ2)>. We obtain

T1,2,3 :=
〈(
v1
ξ1

)
,DJ(π,X)[π2,X2]

(
v3
ξ3

)〉
= 〈v1,−Lv3π2+B(X2)ξ3〉 − 〈ξ1,Lv3X2〉

= 〈Lv3v1,π2〉+ 〈ξ3,Lv1X2〉 − 〈ξ1,Lv3X2〉

Inserting the definitions of π2 = −Lv2π + B(X)ξ2 and X2 = −Lv2X and using the definition of
B(X) we obtain

T1,2,3 = −〈[[v3,v1]],Lv2π〉+ 〈ξ2,L[[v3,v1]]X〉 − 〈ξ3,Lv1Lv2X〉+ 〈ξ1,Lv3Lv2X〉.

The first term can be rewritten as 〈Lv2 [[v3,v1]],π〉 =
〈[[
v2, [[v3,v1]]

]]
,π
〉
. Hence adding the cor-

responding cyclic permutations, we can exploit the Jacobi identity for vector fields in (2.4) and find that
the contribution of the terms linear in π in C := T1,2,3 + T2,3,1 + T3,1,2 cancel each other.

Similarly, we can look at all terms in C involving ξ1 and find

〈ξ1,Lv3Lv2X〉 − 〈ξ1,Lv2Lv3X〉+ 〈ξ1,L[[v2,v3]]X〉 = 0

by using the commutator rule (2.3). The same holds for the terms involving ξ2 and ξ3, and hence the
Jacobi identity for J is established.

In the sense of the special form of GENERIC we define Jsimple by using the special choice τ = s,
namely the entropy density. The reason is that we know that the Hamiltonian dynamics does not
change the entropy. Hence, we know that the evolution should be the simple transport along the
Eulerian vector field v as a extensive variable. Note also that Fp is an intensive variable that is U -
valued with Fp(t, x) ∈ Ux = GL(TxM)). Denoting the Lie derivatives for π, F , Fp, and s by Lmo

v ,
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 13

Lve
v , Lin

v , and Lex
v , respectively, we set

Jsimple(π,F ,Fp, s) =


−Lmo

� π Bve(F )� Bin(Fp)� Bex(s)�
−Lve

�F 0 0 0
−Lin

�Fp 0 0 0
−Lex

� s 0 0 0


where the operator in the first row are obtained by skew symmetry from the first column:

Bve(F )Ξe = ∇F :Ξe + div
(
ΞeF

∗), Bin(Fp)Ξp = ∇Fp:Ξp, Bex(s)ξ = −s∇ξ.

The full Poisson structure J(π,F ,Fp, τ) is now obtain by using the transformation s = S(F ,Fp, τ)
inducing the transformation operator MS resulting in

J(π,F ,Fp, τ) = MS(π,F ,Fp, τ)Jsimple

(
π,F ,Fp, S(F ,Fp, τ)

)
MS(π,F ,Fp, τ)∗.

From Theorem 3.3 we know that Jsimple is a Poisson structure, hence the transformation shows that J
is again a Poisson structure.

4 The Eulerian form of thermo-visco-elastoplasticity

We now collect the evolutionary equations for thermo-visco-elastoplasticity at finite strain from the
GENERIC form. Abbreviating q = (π,F ,Fp, τ) we have

∂tq = VHam(q) + Vdiss(q)

with VHam(q) = J(q)DE(q) and Vdiss(q) = NE(q)∂ξR∗simple

(
q,NE(q)

∗DS(q)
)
.

One of the advantages of the GENERIC framework is that we can derive the Hamiltonian part and the
dissipative part completely independently, thus separating the two quite different physical phenomena.

4.1 The Hamiltonian part of the model

We now discuss the terms arising from of the Hamiltonian part of the dynamics, namely ∂q
∂t

=
VHam(q) = J(q)DE(q). Using the form of E and the definition of J we obtain

VHam(q) = J(q)DE(q) =


− div

(
ρv⊗v

)
+ div ΣCauchy

−v·∇F + (∇v)F

−v·∇Fp

−v·∇τ − S(..) div v + ∂FS(..)F ∗:D(v)
∂τS(..)

, (4.1)

where the Cauchy stress tensor ΣCauchy is defined via the free-energy density Ψ = E −ΘS:

ΣCauchy = ΣF
e F

∗ + Ψ I with ΣF
e = ∂FE(F ,Fp, τ)−Θ(F ,Fp, τ)∂FS(F ,Fp, τ).

A simplified version of (4.1) was derived in in [HüT08, Sec. 3], where Fp is neglected and tau = θ is
chosen.
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The rest of this subsection will explain the form of the four components of VHam(q) in detail. For this
it is important to keep the adapted reversible driving forces MS(q)∗DE(q) from (3.8) in mind, where
the first component remains v. This vector will be applied to MS(q)Jsimple(Φ(q)) to yield VHam(q) =

I 0 0 0
0 I 0 0
0 0 I 0

−∂vS
∂τS
−∂F S

∂τS
−∂FpS

∂τS
1
∂τS



−Lmo

� π Bve(F ) Bin(Fp) Bex(S)
−Lve

�F 0 0 0
−Lin

�Fp 0 0 0
−Lex

� S 0 0 0




v

ΣF
e +ρ|v|2

2
F−∗

ΣF
p

Θ


Note that the first matrix MS(q) does not change the first three components; hence, the second and
third components of VHam(q) are simply given by −Lvec

v F and −Lint
v Fp.

For the fourth component we can take advantage from plvS ≡ 0; hence it is a linear combination of
the three Lie derivatives, namely

1

∂τS

(
∂FS:Lve

v F + ∂FpS:Lin
v Fp − Lex

v S
)

= −v·∇τ − S(..) div v + ∂FS(..)F ∗:D(v)

∂τS(..)
.

For the last identity, we use that the terms involving v·∇F and v·∇Fp arising from Lve
v F and Lin

v Fp,
respectively, cancel with those arising from Lex

v S = div(S(..)v). The last term in the above relation
equals ∂FS(..):

(
(∇v)F ∗

)
because of the symmetry of ∂FS(..)F ∗.

Thus, it remains to establish the simple representation of the first component of VHam(q) in (4.1). For
this, we first calculate the terms involving v (see also [ZPT23, Eqn. (4.6)]), namely

− Lvπ + Bve(F )ρ|v|
2

2
F−∗ = − div(π⊗v)−(∇v)∗π+

ρ|v|2

2
F−∗:∇F+ div

(ρ|v|2
2

I
)

= − div(ρv⊗v)− ρ∇
( |v|2

2

)
+ ρ|v|2

2 detF
∇ detF +∇

(
ρ |v|

2

2

)
= − div(ρv⊗v),

because ρ = ρref/ detF implies∇ρ = −(ρ/ detF )∇ detF , where ρref is a constant.

To simplify the the remaining terms in the first component we first use Ψ = E −ΘS to obtain

∇Ψ = ∇E −Θ∇S − S∇Θ

= ∇F :(∂FE−Θ∂FS) +∇Fp:(∂FpE−Θ∂FpS) + (∂τE−Θ∂τS)︸ ︷︷ ︸
=0

∇τ − S∇Θ

= ∇F :ΣF
e +∇Fp:Σ

F
p − S∇Θ,

where we recall ΣF
e,p from Proposition 3.2. Hence, the remain terms are

Bve(F )ΣF
e + Bin(Fp)ΣF

p + Bex(S)Θ

= div(ΣF
e F

∗) +∇F :ΣF
e +∇Fp:Σ

F
p − S∇Θ = div

(
ΣF

e F
∗ + ΨI

)
.

Hence, also the desired form of the first component in (4.1) is established.

4.2 The dissipative part of Eulerian thermo-elastoplasticity

The modeling of the dissipative effects is considerably simpler than that of the reversible Hamiltonian
part, because the their is much more freedom in choosing dissipation potentials than in choosing
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Eulerian formulation for dissipative materials using Lie derivatives and GENERIC 15

Poisson structures. One of the main advantages of GENERIC is indeed the very structured mod-
eling of dissipative processes allowing for general couplings. Using the subdifferential of the dual
dissipation potential will automatically satisfy the so-called Onsager symmetries. In the quadratic
case R∗(q, ξ) = 1

2
〈ξ,A(q)ξ〉 this is seen by the fact that ∂ξR∗(q, ξ) = K(q)ξ with K(q) =

1
2
(A(q)+A(q)

)
= K(q)∗, which is Onsager’s reciprocal relation. Note that K(q) = D2R∗(q, 0) is

the symmetric Hessian ofR∗(q, ·).

Using the special form of GENERIC as described in (3.3) we can construct suitable nonlinear dissipa-
tion potentials R∗ (or linear Onsager operators K) by collecting the building blocks of the dissipative
effects and combining them with a nontrivial operator NE in the form

R∗(q, ζ) = R∗simple(q,NE(q)
∗ζ) or K(q) = NE(q)Ksimple(q)NE(q)

∗.

This strategy is propagated in [Ött05, Sec. 2.3.2] and follows [Edw98].

In our model we can have three dissipative processes:

(A) viscoelastic dissipation induced byD(v) = 1
2

(
∇v+(∇v)>

)
,

(B) plastic dissipation induced by ∂tFp,

(C) heat flow induced by∇(1/θ).

Thus, we can construct a suitable dual dissipation potential in the additive form

R∗simple = R∗A +R∗B +R∗C.

However, we emphasize that this simplistic assumption is by far not necessary. Of course, it is pos-
sible to construct much more general thermodynamically consistent models where there is a strong
interaction of the different dissipation mechanics, but to keep simplicity and clarity we will restrict our
approach to the case of a simple block structure.

The advantage of using an operator NE is three-fold. First, it is used to guarantee the second non-
interaction condition by asking

NE(q)
∗DE(q) = eτ = (0, ..., 0, 1)> and R∗simple

(
q, λeτ )

>) = 0 for all λ ∈ R. (4.2)

Here λ ∈ R stand for the constant (reciprocal of the) temperature 1/θ, which does not generate any
dissipation.

The second advantage is the fundamental observation in [Mie11, Sec. 4.3] that the dissipative (a.k.a.
irreversible) driving forces are now given by the generalized driving forces

η = NE(q)
∗DS(q) ,

which contains important thermodynamical information by identifying the correct combinations of DS
and DE governing dissipative processes and satisfying Galilean invariance.

Finally, the operator NE acting from the left on ∂R∗simple adjusts the dissipative terms in such a way
that energy conservation holds for

∂ξR∗(q,DS(q)) = NE(q) ∂R∗simple

(
q,NE(q)

∗DS(q)
)
.

Moreover, this form involving NE and N∗E guarantees the Onsager symmetries: if R∗simple(q,η) =
1
2
〈η,Ksimple(q)η〉 is quadratic, then R∗ is still quadratic with R∗(q, ξ) = 1

2
〈ξ,K(q)ξ〉, where

K(q) = NE(q)Ksimple(q)NE(q)
∗ = K(q)∗ is again symmetric.
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We recall our special choice for NE(q)∗ from (3.10) and find the adjoint

NE(q) =


− div(�) 0 0

0 0 0
0 I 0

−1
∂τE

D(v):� −1
∂τE

∂FpE:� 1
∂τE

 .

The three 0’s in the second row indicate that dissipative forces cannot change the kinematic relation
of F .

The full dual dissipation potential takes the form

R∗(q, ζ) = R∗simple(q,NE(q)
∗ζ) ,

and now assume thatR∗simple has a block structure

R∗simple(q,η) = R∗vi.el(q,ηm) +R∗vi.pl(q,ηp) +R∗heat(q, ηt).

Yet, we hasten to say that this is a simplification that is not necessary at all; in fact, it is one of the
big advantages of the GENERIC framework that it can easily handle coupling phenomena between
different effects.

Even for the these five blocks we only write the simplest forms and leave the study of more general
dissipation potentials to future work.

R∗vi.el(q,ηm) =

∫
S

Θ

2
ηm:Dvi.el(q)ηm dx, R∗vi.pl(q,ηp) =

∫
S

R∗vi.pl

(
q,ΘF ∗pηp

)
dx, (4.3a)

R∗heat(q, ηt) =

∫
S

1

2
∇ηt·Kheat(q)∇ηt dx. (4.3b)

Here the pre-multiplication of ηp by F ∗p will generate the so-called plastic indifference, see [Mie03,
Sec. 3.1] and below.

With these choices the dissipative (irreversible) part Vdiss(q) = ∂ζR∗
(
q,DS(q)

)
of the evolution

takes the form

Vdiss(q) = NE(q)∂ηR∗simple

(
q,NE(q)

∗DS(q)
)

=


− div

(
∂ηmR∗vi.el(q,ηm)

)
0

∂ηpR∗vi.pl(q,ηp)
1
∂τE

jener


with jener = −∂ηmR∗vi.el(..):D(v)− ∂ηpR∗vi.pl(..):∂FpE(q) + ∂ηtR

∗
heat(q, ηt),

Inserting η = NE(q)
∗DS(q) from (3.11) and the choices (4.3) we arrive at

Vdiss(q) =


div
(
Dvisc(q)D

)
0

FpLvi.pl

1
∂τE

(
D:DviscD + (FpLvi.pl):∂FpE(q)− div

(
Kheat∇ 1

Θ

))
 ,

whereD = D(v) = 1
2

(
IRiesz∇v+(∇v)∗IRiesz

)
(cf. (2.9)) andLvi.pl = Θ(q)∂ξpR

∗
vi.pl

(
q,−F ∗p ΣF

p

)
with ΣF

p = ∂FpE(q)−Θ(q)∂FpS(q).
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4.3 The Eulerian model for thermo-visco-elastoplasticity

We can now assemble the whole continuum model for non-isothermal finite-strain visco-elastoplasticity
as obtained from the GENERIC framework:

q̇ = VHam(q) + Vdiss(q) = J(q)DE(q) + ∂ζR∗
(
q,DS(q)

)
.

Combining the results from Sections 4.1 and 4.2, this leads to the following system for (v, q) with
q = (F ,Fp, τ):

∂t(ρv) = − div
(
ρv⊗v) + div

(
ΣCauchy(q) + Dvisc(q)D

)
, (4.4a)

∂tF = −LvF = −(v·∇)F + (∇v)F , (4.4b)

∂tFp = −v·∇Fp + FpLvi.pl(q), (4.4c)

∂tτ = jSHam(q) + jEdiss(q)− 1
∂τE(q)

div
(
Kheat(q)∇ 1

Θ(q)

)
, (4.4d)

where ρ = ρref/ detF and where we have

ΣCauchy(q) =
(
∂FE(q)−Θ(q)∂FS(q)

)
F ∗ +

(
E(q)−Θ(q)S(q)

)
I, (4.5a)

Lvi.pl(q) = Θ(q)∂ξpR
∗
vi.pl

(
q,−F ∗p ΣF

p

)
with ΣF

p = ∂FpE(q)−Θ(q)∂FpS(q), (4.5b)

jSHam(q) = −v·∇τ − 1
∂τS(q)

(
S(q) div v + ∂FS(q)F ∗:D(v)

)
, (4.5c)

jEdiss(q) = 1
∂τE(q)

(
D(v):Dvisc(q)D(v) +

(
FpLvi.pl(q)

)
:∂FpE(q)

)
. (4.5d)

Specifying the choice of τ either to τ = e, the density of the internal energy giving E(F ,Fp, e) = e,
or to τ = s, the density of the entropy giving S(F ,Fp, s) = s, reveals more structure to the terms
jSHam(q) + jEdiss(q). In the first case we can read of the heating contribution through mechanical
processes, and in the second case we see the entropy production through plasticity. We refer to
[MiR25, Sec. 4.6] for a more elaborate discussion.

5 Discussion and outlook

In this paper we have brought together the theory of Lie derivatives and the GENERIC framework to
provide the right modeling tools for Eulerian mechanics of solid materials.

The GENERIC framework takes care that the model is thermodynamically consistent in the sense that
energy is conserved (first law of thermodynamics) and that the entropy is non-decreasing (second law
of thermodynamics). However, the GENERIC framework enforces an additional structural condition on
the reversible/conservative part and on the irreversible/dissipative part of the system. The reversible
part has to be strictly Hamiltonian which is more restrictive than being energy and entropy preserving.
For this it would be sufficient to have the skew-symmetry J(q)∗ = −J(q) and the non-interaction
condition J(q)DS(q) ≡ 0, but GENERIC imposes the Jacobi identity (3.1). The irreversible part is
restricted by enforcing that the kinetic relations for the dissipative processes derive from the (sub)-
differential of a dissipation potential, which automatically enforces Onsager’s symmetry relations.

Thus, GENERIC systems form a subclass of all thermodynamically consistent systems. The additional
structural conditions may be restrictive but appear to be valid for many continuum models. In particular,
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in situations where complex coupled models are to be developed, the framework provides easy ways
for the derivation of good coupling terms between different variables; see e.g. [KM∗19, Sec. 3.4+4.6],
where a reaction-diffusion system for charge carriers is coupled to a quantum mechanical system.
We expect that the GENERIC framework will also be very useful in solid mechanics when in addition
to deformation and temperature also internal variables such as a plastic distortion, phase indicators,
dislocation densities, or magnetization have to be modeled, see e.g. [GK∗16, BN∗24].

This approach was used already very successfully in [Mie11, HüS12, GK∗16] for models based on
the Lagrangian description, where a referential body M is used for describing all the fields. While the
Eulerian perspective working in the spatial domain S ⊂ Rd is commonly used in fluid mechanics, see
e.g. [GrÖ97, Ött05, ZPT23], the combination of GENERIC, Eulerian description, and solid mechanics
was brought together only recently in [MiR25]. One of the reasons for using the Eulerian description
for solids is the growing mathematical interest in geophysical flows in the upper mantle of our planet
Earth, see e.g. [RoT21, Rou23, MRS23]. Depending on the time scale under consideration the solid
rock behaves visco-elastically or visco-plastically, but there are many other variables to be taken into
account, like concentrations of different chemicals, water contents, temperature, or aging variables,
see e.g. [GeY07, HGV18, SB∗21].

The Eulerian description of solids is intrinsically linked to the notion of Lie derivatives, because the
variables are transported with the velocity v of the points in the moving and deforming body. This
observation from [MiR25] served as a motivation to provide a short and self-contained introduction to
Lie derivatives with a focus on the applications in continuum thermodynamics in the present paper. As
an major outcome we found Theorem 3.3, which states that in the Eulerian setting the Jacobi identity
3.1 for Poisson operators J is intimately related to the commutator relation (2.3) for Lie derivatives.
The result is now more general and the proof is shorter and more direct as for [MiR25, Thm. 4.1].

A Pullbacks and push-forwards in differential geometry

A diffeomorphism Φ : M → N defines pull-backs Φ∗ and push-forwards Φ∗ as follows:

0. Functions: (
Φ∗g

)
(m) = g(Φ(m)) and

(
Φ∗f

)
(n) = f(Φ−1(n)).

1. Vector fields:(
Φ∗w

)
(m) =

(
DΦ(Φ(m))

)−1
w(Φ(m)) =

(
DΦ(m)

)−1
w(Φ(m)) ∈ TmM(

Φ∗v
)
(n) = DΦ(Φ−1(n))v(Φ−1(n)) = D(Φ−1)(n)v(Φ−1(n)) ∈ TnN

1∗. one-forms: (
Φ∗β

)
(m) = DΦ(m)∗β(Φ(m)) ∈ T∗mM(

Φ∗α
)
(n) =

(
DΦ(Φ−1(m))

)−∗
α(Φ−1(n)) ∈ TnN

Here for a matrix H we denote by H−∗ the transposed of the inverse, namely H−∗ =
(
H−1

)∗
=

(H∗)−1. Pull-backs and push-forwards are consistent with dual pairings, namely

Φ∗
(
〈β,w〉N

)
(m) =

〈
Φ∗β(m),Φ∗w(m)

〉
TmM

Φ∗
(
〈α,v〉M

)
(n) =

〈
Φ∗α(φ−1(n)),Φ∗v(φ−1(n))

〉
TnN

,

〈Φ∗β,v〉M = 〈β,Φ∗v〉N and 〈α,Φ∗w〉M = 〈Φ∗α,w〉N .
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General tensorsA ∈ Ti◦j◦(M) withA(m) ∈ ML
(
(TmM)i◦ × (TmM)j◦

)
andB ∈ Ti◦j◦(N) withB(n) ∈ ML

(
(TnN)i◦ × (TnN)j◦

)
:

Φ∗B(m)[v1, ..,vi◦ ,α1, ..,αj0 ] = B(n)
[
Φ∗v1, ..,Φ∗vi◦ ,Φ∗α1, ..,Φ∗αj◦

]∣∣∣
n=Φ(m)

,

Φ∗A(n)[w1, ..,wi◦ ,β1, ..,βj0 ] = A(m)
[
Φ∗w1, ..,Φ

∗wi◦ ,Φ
∗β1, ..,Φ

∗βj◦
]∣∣∣
m=Φ−1(n)

.
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[RoT21] T. Roubíček and G. Tomassetti: A convective model for poro-elastodynamics with damage
and fluid flow towards Earth lithosphere modelling.. Contin. Mech. Thermodyn. 33 (2021) 2345–
2361.
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