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Hellinger–Kantorovich gradient flows:
Global exponential decay of entropy functionals

Alexander Mielke, Jia-Jie Zhu

Abstract

We investigate a family of gradient flows of positive and probability measures, focusing on the
Hellinger–Kantorovich (HK) geometry, which unifies transport mechanism of Otto–Wasserstein,
and the birth-death mechanism of Hellinger (or Fisher–Rao). A central contribution is a com-
plete characterization of global exponential decay behaviors of entropy functionals under Otto–
Wasserstein and Hellinger-type gradient flows. In particular, for the more challenging analysis of
HK gradient flows on positive measures—where the typical log-Sobolev arguments fail—we de-
velop a specialized shape-mass decomposition that enables new analysis results. Our approach
also leverages the Polyak–Łojasiewicz-type functional inequalities and a careful extension of clas-
sical dissipation estimates. These findings provide a unified and complete theoretical framework
for gradient flows and underpin applications in computational algorithms for statistical inference,
optimization, and machine learning.

1 Introduction

We adopt a perspective rooted in the series of works from the 1990s that pioneered the study of
Otto-Wasserstein gradient flows, as eloquently articulated by [Ott01]:

The merit of the right gradient flow formulation of a dissipative evolution equation is
that it separates energetics and kinetics: The energetics endow the state space with
a functional, the kinetics endow the state space with a (Riemannian) geometry via the
metric tensor.

In essence, the seminal works such as [Ott01, JKO98] enabled a systematic perspective of studying
the PDE such as the type

∂tµ = − div

(
µ∇δF

δµ
[µ]

)
as gradient flows of the energy functional F , where δF

δµ
[µ] is its first variation. The solution µt can be

viewed as the dynamics and the solution paths of the measure optimization problem min
µ∈P(Rd)

F (µ) in

the Wasserstein space of probability measures with finite second moment, denoted by
(
P(Rd),W2

)
.

This perspective has been instrumental in advancing the theory of computational algorithms for statis-
tical inference and, more recently, machine learning.
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A. Mielke, J.-J. Zhu 2

Statistical sampling and particle approximation For example, suppose a statistician wishes to
generate samples from a distribution π, whose density is in the form π(x) = 1∫

e−V (x) dx
e−V (x), where

V is referred to as the potential energy function. This can be cast in the Bayesian inference framework,
that infers the posterior distribution π of some model parameters. In such applications, one can rely on
the fact that π is the invariant distribution of the system associated with the Langevin stochastic differ-
ential equation dXt = −∇V (Xt)dt+

√
2dZt, where Zt is the standard Brownian motion. Then, by

numerically simulating the SDE, computational algorithms can be designed to generate samples that
approximate those of π. From the PDE perspective, this Langevin SDE describes the same dynamical
system as the deterministic drift-diffusion Fokker-Planck PDE

∂tµ = − div (µ∇ (V + log µ)) (1)

for probability measure µ, which is the gradient-flow equation of the Otto-Wasserstein gradient flow
of the KL divergence as driving energy functional, F (µ) = DKL(µ|π). Then, the rigorous analysis
developed in the applied analysis context can be used to study the computational algorithms.

Variational inference and information geometry In practice, the exact posterior distribution π is
often intractable, and one can resort to approximate variational inference methods [JG∗99, WaJ08,
BKM17]. Different from the Langevin sampler approach, this amounts to finding the approximate pos-
terior probability measure by parameterizing µ with some parameter η ∈ E ⊂ Rn, resulting in the
optimization problem

min
η∈E⊂Rn

DKL(µη|π). (2)

The parameterized distribution µη can be chosen from certain families of distributions, e.g., the fam-
ily of Gaussian or its mixtures. In such cases, an efficient approach is the natural gradient descent
[Ama98, AmN00, KhN18, HB∗13, KhR23] on η that respects the geometry of the parameterized prob-
ability space. In practice, the update rule is a Riemannian gradient descent scheme

ηk+1 ← argmin
η∈E

∇ηF (µηk)(η − ηk) +
1

2τ
(η − ηk)>GFR(ηk)(η − ηk), (3)

where F = DKL(·|π) in the KL variational inference context and ∇ηF (µη) its Euclidean gradient
with respect to η. The matrix GFR(ν) :=

∫
µν(x) · (∇ν log µν (x)) (∇ν log µν (x))> dx is referred

to as the Fisher information matrix, which can be seen as a Riemannian tensor on (the tangent bundle
of) E ⊂ Rn and hence induces the Fisher-Rao distance over some family of distributions. It is closely
related to the Hellinger distance, which is a central topic in this paper: the Fisher-Rao distance can
be viewed as a restriction of the Hellinger geodesic distance to the submanifold of cerntain families of
distributions, e.g., Gaussian; see Remark 2.5 for more details.

Optimization and mirror descent In the optimization literature, there is a class of algorithms that
uses the Bregman divergence as the underlying geometry under the name of mirror descent, e.g.,
[BeT03, NeY83, DH∗16]. If the Bregman divergence is chosen as the KL divergence, this approach is
termed the entropic mirror descent, i.e., an optimization algorithm solving, at the k-th iteration,

νk+1 ← argmin
ν∈∆d

∇νF (νk)(ν − νk) +
1

τ
DKL(ν|νk). (4)
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Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 3

for ∆d := P(Ω) where Ω is a finite discrete set of cardinality d. In essence, they can be used
to solve the optimization problem min

µ∈P(Rd)
F (µ) in practice by (i) either considering the probability

measure on a finite domain [BeT03], or (ii) by considering a particle approximation of the measure
ν̂ =

∑N
i=1wiδxi , where δxi is the Dirac measure at the particle location xi and wi is the weight, see

e.g., [Chi22, DH∗16]. Furthermore, the extension to non-gradient flows, albeit finite-dimensional, has
been studied in the optimization literature, e.g., [WWJ16, KBB15]

The above applications are deeply connected to the gradient flow theory in various geometries, i.e.,
not just the Otto-Wasserstein geometry. Specifically, the Hellinger type gradient flows, which is the
focus of this paper, plays a crucial role and possesses distinct properties when compared with Otto-
Wasserstein. In this paper, we advance the state-of-the-art analysis of gradient flows over positive and
probability measures using tools such as the Polyak-Lojasiewicz functional inequality.

Analysis of Polyak-Lojasiewicz functional inequalities Historically, the celebrated Bakry-Émery
theorem [BaÉ85] provides a powerful strategy for analyzing the convergence of the Otto-Wasserstein
gradient flow under the KL-divergence energy. The Bakry-Émery condition implies a key functional
inequality, the Logarithmic-Sobolev inequality (LSI)∥∥∥∥∇ log

dµ

dπ

∥∥∥∥2

L2(µ)

≥ cLSI ·DKL(µ|π) for some cLSI > 0. (LSI)

The LSI can be viewed as a special case of the (Polyak-)Łojasiewicz inequality specialized to the Otto-
Wasserstein gradient flow of the KL energy DKL(µ|π). It provides a powerful tool for characterizing the
convergence of the dynamics, e.g., governed by the Langevin SDE. From the optimization perspective,
this is equivalent to analyzing the optimization dynamics of the problem

min
µ∈A⊂P

DKL(µ|π) in the space of (P ,W2).

The main goal of this paper is to extend this type of functional inequalities, and consequently the
convergence analysis, to a broader class of gradient flows beyond the now-standard setting of Otto-
Wasserstein flows in (P ,W2) and the KL energy functional DKL. We now briefly elaborate on those
two aspects of our contribution.

Generalizing the energy functional: from KL to ϕp-divergences The KL-divergence is by no
means the only entropy-type divergence that possesses interesting properties. For example, some
works by [CG∗20, LSW23] also consider the χ2-divergence as the driving energy for machine learning
applications. [Zhu24] shows that many existing machine learning algorithms are performing the for-
ward KL (also referred to as the inclusive KL therein) minimization via kernelized Wasserstein gradient
flows. For this reason, we first generalize the KL-divergence energy in (2) to a commonly used family
of divergence functional, the ϕ-divergence [Csi67]. We now define this divergence on non-negative
measuresM+(Ω)×M+(Ω) as

Dϕ(µ|ν) :=

{∫
ϕ( dµ

dν
)dν if µ� ν (i.e. µ = fν for some f ∈ L1(ν)),

+∞, otherwise.
(5)

where ϕ : [0,+∞)→ [0,+∞] is a convex entropy generator function that satisfies

ϕ(1) = ϕ′(1) = 0, ϕ′′(1) = 1. (6)
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We delve specifically into the concrete instantiations of the Łojasiewicz inequality for the following
power entropy generator functions.

ϕp(s) :=
1

p(p− 1)
(sp − ps+ p− 1) , p ∈ R \ {0, 1}, (7)

which satisfies (6) and ϕ′′p(s) = sp−2. Using the property ϕp(s) = sϕ1−p(1/s), we obtain the
symmetry Dϕp(ρ|π) = Dϕ1−p(π|ρ). Many commonly used divergences can be recovered using the
power entropy, e.g.,

KL: ϕ1(s) := s log s− s+ 1, fwd-KL: ϕ0(s) := s− 1− log s,

χ2 : ϕ2(s) = 1
2
(s− 1)2, rev-χ2 : ϕ−1(s) = 1

2

(
s+ 1

s
− 2
)
.

(8)

We refer to the resulting divergence functional Dϕp as the ϕp-divergence or the p−relative entropy (cf.
[OhT11]). Slightly abusing the terminology due to a scaling factor, we refer to the power-like entropy
generated by ϕ 1

2
as the squared Hellinger distance, i.e.,

1

2
He2(µ, ν) =

∫
ϕ 1

2

(
δµ

δν

)
dν. (9)

We plot the corresponding entropy generator functions in Figure 1. Alternatively, one may use the
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Figure 1: The plot illustrates the power-like entropy generator functions ϕp(s) for s ∈ [0, 1.2] and
different p: purple p = 0 (forward KL), green p = 0.25, blue p = 0.5 (Hellinger), red p = 1 (KL),
orange p = 2 (χ2). The large red dot represents the equilibrium at s = 1 where ϕp(1) = ϕp

′(1) = 0.

Hellinger integrals to define the α-divergence Dα(µ|ν) := 4
1−α2 (1−

∫
µ

1+α
2 ν

1−α
2 ) with α ∈ (−1, 1),

from which one also obtains the KL, forward KL, and the Hellinger as special cases (for α → 1,
α→ −1, and α = 0, respectively).

Generalizing the flow geometry: from Otto-Wasserstein to Hellinger-Kantorovich In addition to
generalizing the energy functional, we extend the analysis of gradient flows beyond the standard Otto-
Wasserstein geometry. Similar to (LSI) in that case, one can examine the validity of such Łojasiewicz
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Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 5

Gradient-flow geometry Geod. convexity of ϕp-divergence

Otto-Wasserstein (Bakry-Émery) p ∈ [1, 2] and (BE) with c > 0 =⇒ geod. c-cvx

Otto-Wasserstein (McCann cond.) p ∈ [d−1
d
,∞) =⇒ geod. cvx

HK [LMS23a] overM+ p ∈ [ d
d+2

, 1
2
] ∪ (1,∞) =⇒ geod. cvx

Table 1: Geodesic convexity of ϕp-divergence

Gradient-flow geometry Specialized Łojasiewicz-type inequality (α, β > 0)

Hellinger
∥∥ δF
δµ

[µ]
∥∥2

L2
µ
≥ c · (F (µ)− Finf)

Spherical Hellinger
∥∥ δF
δµ

[µ]−
∫

δF
δµ

[µ] dµ
∥∥2

L2
µ
≥ c · (F (µ)− Finf)

Hellinger-Kantorovich (WFR) α
∥∥∇ δF

δµ
[µ]
∥∥2

L2
µ

+ β
∥∥ δF
δµ

[µ]
∥∥2

L2
µ
≥ c · (F (µ)− Finf)

Spher. Hellinger-Kantorovich α
∥∥∇ δF

δµ
[µ]
∥∥2

L2
µ
+β
∥∥ δF
δµ

[µ]−
∫
δF
δµ

[µ]dµ
∥∥2

L2
µ
≥ c (F (µ)−Finf)

Table 2: Łojasiewicz inequalities for different gradient flows, where Finf := infµ F (µ).

type functional inequalities when considering general energy functional F in other gradient-flow ge-
ometries; see Table 2. Our main topics of study are gradient flows in the Hellinger-Kantorovich (HK)
geometry, which independently discovered by a few groups of researchers [CP∗18a, CP∗18b, LMS18,
KMV16, GaM17]. It is an infimal convolution (inf-convolution) of the Hellinger and Wasserstein dis-
tances over positive measuresM+. Intuitively, gradient flows in the HK and spherical HK (SHK) ge-
ometry combine the dissipation mechanisms of the Otto-Wasserstein flow, i.e., the transport of mass,
and the Hellinger flow, i.e., the creation-destruction or birth-death of mass. It is often referred to as the
unbalanced transport geometry and possesses a richer structure and more advantageous properties
than either of the pure flows alone, and is the focus of this paper. At the same time, the analysis of the
HK and SHK gradient flows is more involved than the pure Hellinger or the Otto-Wasserstein gradient
flows.

On one hand, the Otto-Wasserstein geometry describes the transport dynamics that can easily handle
the change of support of measures. However, it suffers from slow asymptotic convergence in practical
applications. For example, the behavior of its gradient flow of the KL divergence depends crucially on
the log-Sobolev constant. The reason is that, in the (quadratic) Otto-Wasserstein setting, the trans-
port over large distances (e.g., of outliers in a point cloud) has an over-proportional cost. In contrast,
Hellinger type gradient flows enjoy fast asymptotic convergence because mass can be destroyed and
created at other places instead without any transport. To understand the distinct nature of the two
gradient flows, consider an intuitive example of particle gradient descent method where the measure
is approximated using two particles, i.e., µ = w1δx1 + w2δx2 with w1 + w2 = 1 and wi > 0. The
objective function is an asymmetric double-well potential. The minimization is initialized as solid dots
in the illustration in Figure 2. In this case, it is easy to see that the gradient descent for each individual
particle, induced by the Otto-Wasserstein gradient flow, will get stuck in the local minimum, as illus-
trated as dashed dots. On the other hand, the birth-death process, induced by the (spherical) Hellinger
gradient flow, can easily teleport the mass to the right well, but it does not allow the change of the lo-
cation of the particles. An intuitive idea is to consider the Hellinger-Kantorovich (HK) gradient flows to
combine the strengths of both the Hellinger and Otto-Wasserstein geometries, while overcoming their
weaknesses as illustrated in Figure 2.

DOI 10.20347/WIAS.PREPRINT.3176 Berlin 2025



A. Mielke, J.-J. Zhu 6

Figure 2: The two figures illustrate the conceptual advantage of combining the Otto-Wasserstein and
the Hellinger gradient flows. On the left, the particles are transported by the gradient descent enabled
by the Otto-Wasserstein gradient flow, where masses do not change. On the right, the dashed arrow
represent the “teleportation” of mass enabled by the Hellinger gradient flow, where the positions do
not change. The size of the dots represents the amount of mass of the particles.

Overview of the main results In making the above intuition precise, this paper advances the theory
for the HK and SHK gradient flows by establishing a few new and precise analysis results. We provide
complete and nontrivial answers to the following open question:

For the commonly used entropy functionals, e.g., (reverse) KL divergence, forward KL,
Hellinger distance, χ2-divergence, reverse χ2, what is the convergence behavior of gra-
dient flows in geometries such as the Hellinger-Kantorovich space of positive measures
(M+,HK), or the spherical Hellinger-Kantorovich space of probability measures (P , SHK)?
Similar to the Bakry-Émery Theorem and (LSI) in the standard setting of (P ,DKL,W2),
can we establish precise conditions for global convergence of the gradient flows in all the
geometries mentioned above?

A few major results are summarized in Table 1. In addition and more concretely, we first establish
analysis results for the Łojasiewicz inequality for the pure Hellinger gradient flows. As an example, we
show that there is no global Łojasiewicz inequality for the Hellinger flow of the KL energy over positive
measuresM+. The global Łojasiewicz inequality is significantly more nontrivial to establish than the
local version since we need to create enough metric slope for the Hellinger gradient flow to escape
the initial birth from zero mass; see the illustration in Figure 5 and Remark 3.9 for technical details.
Our result captures the fundamental nature of the Hellinger gradient flows in contrast to the LSI for
the Otto-Wasserstein. Going deeper, the analysis of the HK and SHK flows of ϕ-divergence is more
involved. We systematically extract explicit conditions for global convergence of gradient flows under
ϕp-divergence energy functional as defined in (5) and (7). Previously, the geodesic convexity of energy
functionals has been under scrutiny in the gradient flow literature; see a summary of the implication
on the ϕp-divergence in Table 1. However, when studying the convergence of gradient flows geodesic
convexity is a sufficient but not necessary condition. For this reason, this paper establishes a few new
functional inequalities that are weaker than geodesic convexity, but still sufficient to guarantee global
exponential decay of the energy functional; see Table 1 for the precise statements and references
to the corresponding theorems for convenience. In particular, the standard LSI, when considered for
positive measuresM+, does not hold globally and must be generalized. This adds to the difficulty of
establishing the global convergence of the HK gradient flows. Nonetheless, using a novel shape-mass
decomposition analysis technique, we were able to establish global convergence to equilibrium along
the HK gradient flow for the KL divergence as driving energy, see Theorem 5.8.

DOI 10.20347/WIAS.PREPRINT.3176 Berlin 2025



Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 7

Gradient-flow geometry Global exp. decay, & fcn. ineq. for ϕp-divergence

Otto-Wasserstein on P • Ω ( Rd bounded Lipschitz, p ≥ 1−1
d

=⇒ Ł with c∗ > 0
• Ω = Rd, p ∈ [1, 2] and (BE) =⇒ Ł with c∗ = 2cBE

Otto-Wasserstein on
M+ (Prop. 5.2, 5.3)

@ c∗ > 0 for Ł; see (LSI-M+)

Hellinger onM+ (Prop. 3.7) p ∈ (−∞, 1
2
] ⇐⇒ Ł with c∗ = 1

1−p

Spherical Hellinger on P
(Thm. 4.1)

p ∈ (−∞, 1
2
] ⇐⇒ Ł with c∗=Mp :=

{
1

1−p for p ≤ 1
3

p(7−12p)
1−p for p ∈ [1

3
, 1

2
]

Hellinger-Kantorovich
onM+ (Thm. 5.8)

• p ∈ (−∞, 1
2
] =⇒ Ł with c∗ = 1

1−p
• p > 1

2
=⇒ there exists no with c∗ > 0

• p = 1 and (LSI) =⇒ No Ł; exp. decay is possible

Spherical
Hellinger-Kantorovich on P

(Thm. 4.4)

In general, decay rate c∗ = max{αcŁ-W , βMp}
(see Thm. 4.4). Specifically:
• p ∈ (−∞, 1

2
] =⇒ Ł with c∗ = 1+2p

1−p
• Ω ( Rd bounded Lipschitz, p ∈ (−∞, 1/2] ∪ [1− 1

d
,∞)

=⇒ Ł with c∗ > 0
• Ω = Rd, p ∈ [1, 2] and (Ł-W) =⇒ Ł with c∗ = 2cŁ-W

Table 3: Summary of results for Łojasiewicz inequalities for ϕp-divergence energy functional F (µ) =∫
ϕp(dµ/dπ)dπ in different dissipation geometries; see (7) for the definition of ϕp. The p = 1 case,

the KL divergence, corresponds to the well-known logarithmic Sobolev inequality (LSI). Remarkably,
using the (S)He or (S)HK geometry, the dimension restriction p > 1−1

d
in the Wasserstein setting can

be circumvented.

Other related works While there are a few works analyzing gradient flows in the unbalanced trans-
port geometry, such analysis, while valuable in its own rights, has not yet been able to capture the
true strength of the (S)HK gradient flows that this paper showcases. In [LSW23], the focus is the
regime under a uniform lower bound of the initial density ratio ( dµ0/ dπ); see [LSW23, Theo-
rem 2.3]. Various type of assumptions on the initial measure also exist in the literature, such as
[DoP23, RJ∗19]. From this paper’s perspective, such characterizations are local and in contrast to
this paper’s global analysis. We also refer to [Chi22] for a different type of analysis where he shows
that the HK gradient flows of certain functionals, under the assumption of a dense initialization con-
dition, converge to states that satisfy a local Łojasiewicz inequality. A few recent works have also
applied the spherical Hellinger-Kantorovich gradient flow with the KL divergence energy functional to
practical statistical inference problems [YWR24, LC∗22]. [GD∗24] considered the sampling problem
using the unbalanced transport gradient flow of the so-called maximum-mean discrepancy functional.
They also exploited a Łojasiewicz type inequality to establish the convergence. Furthermore, this gra-
dient flow is later shown by [Zhu24] to be a kernel approximation to the Hellinger-Kantorovich gradient
flow of the forward KL divergence (i.e., ϕ0-divergence). After the initial preprint version of this paper
first appeared on the author’s website on January 21, 2024 (https://jj-zhu.github.io/
file/ZhuMielke24AppKerEntFR.pdf), the preprint [CC∗24] appeared on arXiv.org
on July 22, 2024. It contains an insightful but different analysis of the convergence of the pure spherical
Hellinger flow (referred to as Fisher-Rao therein); see the discussion in Section 4.
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Organization of the paper In Section 2, we provide background on gradient systems and opti-
mal transport, with a focus on the dynamic formulation and geodesics. Section 3 is dedicated to the
analysis of evolutionary behaviors in the gradient systems using the celebrated Polyak-Łojasiewicz
inequalities. There, we introduce the standard log-Sobolev inequality for the pure Otto-Wasserstein
gradient flow of the KL-divergence energy. Then, we provide novel results on the pure Hellinger gradi-
ent flows. In Section 4, we study the unbalanced transport gradient flows restricted to the probability
measures, i.e., the spherical Hellinger-Kantorovich gradient flows. There, we were able to establish the
global exponential decay of a large class of entropy functionals. In Section 5, we turn to the Hellinger-
Kantorovich gradient flows over the positive measures, where the analysis of functional inequalities
is more involved. Nonetheless, using a novel shape-mass decomposition in Section 5.3, we were
able to establish the exponential decay when the LSI is not applicable. Additional proofs are given in
Section A.

Notation We use the notation P(Ω̄),M+(Ω̄) to denote the space of probability and positive mea-
sures on the closure of a open set Ω ⊂ Rd with Lipschitz boundary. The base space symbol Ω is
often dropped if there is no ambiguity in the context. In this paper, the first variation of a functional F
at µ ∈M+ is defined as a function δF

δµ
[µ]

d

dε
F (µ+ ε · v)|ε=0 =

∫
δF

δµ
[µ](x)dv(x) (10)

for any perturbation in measure v such that µ+ε·v ∈M+. The Fréchet (sub-)differential in a Banach
space (X, ‖ · ‖X) is defined as a set in the dual space

∂F (µ) := {ξ ∈ X∗ | F (ν) ≥ F (µ) + 〈ξ, ν−µ〉X + o (‖µ−ν‖X) for ν → µ} ,

where the small-o notation signifies that the term vanishes more rapidly than the term inside the
parentheses. When ∂F (µ) is a singleton, i.e., ∂F (µ) = {ξ} ⊂ X∗, we simply write DF (µ) :=
ξ ∈ X∗. For simplicity, we carry out the Fenchel-conjugation calculation in the un-weighted L2 space.
Replacing that with duality pairing in the weighted L2

ρ space does not alter the results. Common
acronyms, such as partial differential equation (PDE) and integration by parts (IBP), are used without
further specifications. We often omit the time index t to lessen the notational burden, e.g., the measure
at time t, µ(t, ·), is written as µ. In formal calculation, we often use measures and their density
interchangeably, i.e.,

∫
f · µ means the integral w.r.t. the measure µ. This is based on the standard

rigorous generalization from flows over continuous measures to discrete measures [AGS05].

After publishing the first version of this manuscript, we got notice of very similar work in [KoV19,
KoV20b, KoV20a].

2 Preliminaries

2.1 Gradient-flow systems and geodesics

Intuitively, a gradient flow describes a dynamical system that is driven towards the fastest dissipation of
certain energy, through a geometric structure measuring dissipation. In this work, we restrict ourselves
to the case that the dissipation law is linear and consequently can be given in terms of a (pseudo)
Riemannian metric. Such a system is called a gradient system. For example, the dynamical system

DOI 10.20347/WIAS.PREPRINT.3176 Berlin 2025



Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 9

described by an ODE in Euclidean space, namely u̇(t) = −∇F (u(t)), u(t) ∈ Rd, is a simple
gradient system.

In this paper, we take the perspective of variational modeling and principled mathematical analysis, i.e.,
we study the underlying dynamical systems modeled as gradient systems specified by the underlying
space X , energy functional F , and the dissipation geometry specified by the dissipation potential
functional R. Given a smooth state space X , a dissipation potential is a function on the tangent
bundle TX , i.e.R = R(u, u̇), where, for all u ∈ X , the functionalR(u, ·) is non-negative, convex,
lower semi-continuous, and satisfies R(u, 0) = 0, see [Mie23] for more details and motivation. We
denote by

R∗(u, ξ) = sup
{
〈ξ, v〉 − R(u, v)

∣∣ v ∈ TuX
}

(11)

the (partial) Legendre transform of R and call it the dual dissipation potential. Throughout this work,
we will only consider the case thatR(u, ·) is quadratic, i.e.

R(u, u̇) =
1

2
〈G(u)u̇, u̇〉 or equivalently R∗(u, ξ) =

1

2
〈ξ,K(u)ξ〉.

Definition 2.1 (Gradient system) A triple (X,F,R) is called a generalized gradient system, if X is
a manifold or a subset of a Banach space, F : X → R is a differentiable functional, and R is a
dissipation potential. The associated gradient-flow equation has the primal and dual form

0 = Du̇R(u, u̇) + DF (u) ⇐⇒ u̇ = DξR∗
(
u,−DF (u)

)
. (12)

IfR is quadratic, we simply call (X,F,R) a gradient system and obtain the gradient flow equations

0 = G(u)u̇+ DF (u) ⇐⇒ u̇ = −K(u)DF (u). (13)

G = K−1 is called the Riemannian tensor, and K = G−1 is called the Onsager operator.

Both forms of (12) and (13) have their advantages, but we will often use the form with R∗ and K,
because they have an additive structure in the cases of interest.

Of particular interest to this paper is the gradient flow in the Hellinger space of positive measures
(M+,He), also called the Hellinger-Kakutani space (cf. [Kak48, LMS18, LaM19]), which is the gra-
dient system that generates the following reaction equation as its gradient flow equation in the primal
form of (12),

∂tµ = −µ · δF
δµ

[µ] . (14)

This ODE is a consequence of the Hellinger dissipation geometry detailed in Example 2.4. Alterna-
tively, one can also view the whole right-hand side as the Hellinger metric gradient induced by the
Onsager operator KHe(µ)ξ = µ · ξ.

The Hellinger gradient system is a special case of general gradient flows in metric spaces, which
has gained significant attention in recent machine learning literature due to the study of the Otto-
Wasserstein gradient flow, originated from the seminal works of Otto and colleagues, e.g., [Ott96,
JKO98, Ott01]. Rigorous characterizations of general metric gradient systems have been carried out
in PDE literature, for which we refer to [AGS05] for complete treatments and [San15, Pel14, Mie23]
for a first-principles introduction. To get a concrete intuition, the gradient structure of the following
two classical PDEs will become relevant in later discussions about Hellinger and Otto-Wasserstein
respectively.
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Example 2.2 (Classical PDE: Allen-Cahn and Cahn-Hilliard) Recall the Allen-Cahn PDE

∂tρ = ∆ρ− V ′(ρ), (15)

and the Cahn-Hilliard PDE

∂tρ = ∆ (−∆ρ+ V ′(ρ)) . (16)

They are the gradient flows of the energy functional F (µ) =
∫ (

1
2
|∇ρ|2 + V (ρ)

)
dx in two different

Hilbert space geometries, where V is a potential function, e.g., the double-well potential V (r) =
1
4
(1−r2)2. The Allen-Cahn equation is the Hilbert-space gradient-flow equation of the energy F in

unweighted L2, i.e., KAC = 1, with dissipation potentials

RAC(µ, u̇) =
1

2
‖u̇‖2

L2 and R∗AC(µ, ξ) =
1

2
‖ξ‖2

L2 . (17)

Cahn-Hilliard is the gradient flow ofF in unweightedH−1, i.e.,KAC = −∆, with dissipation potentials

RCH(ρ, u̇) =
1

2
‖u̇‖2

H−1 , and R∗CH(ρ, ξ) =
1

2
‖∇ξ‖2

L2 . (18)

Geodesics and their Hamiltonian formulation. For many considerations of gradient flows, the
geodesic curves play an important role. These curves are obtained as minimizers of the length of
all curves connecting two points:

γµ0→µ1 ∈ argmin
µ

∫ 1

0

〈G(µ(s))µ̇(s), µ̇(s)〉ds
(

= argmin
µ

∫ 1

0

〈ξ(s),K(µ(s))ξ(s)ds

)
(

subject to µ̇(s) = K(µ(s))ξ(s)
)
,

(19)

where s 7→ µ(s) has to be absolutely continuous, satisfy µ(0) = µ0 and µ(1) = µ1.

In the sense of classical mechanics, the dissipation potentialR(µ, µ̇) = 1
2
〈G(µ)µ̇, µ̇〉 plays the role

of a “Lagrangian” L(µ, µ̇) = R(µ, µ̇), and the dual dissipation potential R∗(µ, ξ) = 1
2
〈ξ,K(µ)ξ〉

as a “Hamiltonian” H(µ, ξ) = R∗(µ, ξ). Then, minimizing the integral of L is equivalent to solving
the Hamiltonian system{

µ̇ = ∂ξH(µ, ξ) = ∂ξR∗(µ, ξ) = K(µ)ξ,

ξ̇ = −DµH(µ, ξ) = −DµR∗(µ, ξ),
µ(0) = µ0, µ(1) = µ1. (H)

Here, the conditions for u at s = 0 and s = 1 indicate that finding geodesic curves leads to solving a
two-point boundary value problem.

The theory for geodesics becomes particularly interesting in the case that R∗ is affine in the state
µ. Because, then, DµR∗(µ, ξ) no longer depends on µ and the system (H) decouples in the sense
that the equation for ξ no longer depends on µ. This particular case occurs in the Otto-Wasserstein,
Hellinger, and consequently Hellinger-Kantorovich (a.k.a. Wasserstein-Fisher-Rao) space. This struc-
ture allows for the derivation of the following characterizations of the geodesic curves and static for-
mulations of the associated Riemannian distances.

DOI 10.20347/WIAS.PREPRINT.3176 Berlin 2025



Hellinger–Kantorovich gradient flows: Global exponential decay of entropy functionals 11

Example 2.3 (Otto-Wasserstein geodesics in Hamiltonian formulation) In the case of the Otto-
Wasserstein geometry, the dual dissipation potential takes the simple form

R∗Otto(µ, ξ) =
1

2
‖∇ξ‖2

L2
µ

=

∫
1

2
|∇ξ|2dµ.

The Onsager operator is given byKOtto(µ)ξ = − div(µ∇ξ) and the geodesic curves are character-
ized by µ̇ = − div (µ∇ξ) ,

ξ̇ = −1

2
|∇ξ|2.

(Geod-W)

Here, the first equation is the continuity equation which implies that µ is transported along the vector
field (t, x) 7→ ∇ξ(t, x), and the second equation is the Hamilton-Jacobi equation, which is notably
independent of µ. The Hopf-Lax formula then gives the explicit characterization of the solution

ξ(s, x) = inf
y

{
ξ(0, y) +

1

2s
|x−y|2

}
,

yielding the celebrated dual Kantorovich formulation of the Wasserstein distance. See [AGS05] for
details.

The main focus of this paper is to study the Hellinger type gradient flows, generated by the geometry
of the Hellinger distance between two nonnegative measures µ, ν ∈M+,

He2(µ0, µ1) = 4 ·
∫ (√

δµ0

δγ
−

√
δµ1

δγ

)2

dγ (20)

for a reference measure γ such that µ0, µ1 << γ. It is straightforward to show that this definition for-
mally coincides with (9) with the precise scaling factor. A unique feature of the Hellinger distance (20)
is that it allows the two measures to have disjoint supports in contrast to divergences such as KL and
χ2. We recall its dynamic formulation below using the reaction equation; see also [GaM17], [LMS18].

He2(µ0, µ1) = min

{∫ 1

0

‖ξ‖2
L2
µ

dt

∣∣∣∣ µ̇ = −µ · ξ, µ(0) = µ0, µ(1) = µ1

}
. (21)

If we add a correction term to the reaction dynamics, i.e., µ̇ = −µ ·
(
ξ − µ ·

∫
µξ
)
, we obtain the

spherical Hellinger distance [LaM19] over the probability space P , instead of positive measuresM+.

SHe2(µ0, µ1) = min

{∫ 1

0

‖ξ‖2
L2
µ

dt

∣∣∣∣ µ̇ = −µ ·
(
ξ−
∫
ξdµ

)
, µ(0) = µ0, µ(1) = µ1

}
. (22)

The spherical Hellinger distance, also termed the Bhattacharya distance by [Rao45b] after its first
occurrence in [Bha42], can be calculated explicitly, namely

SHe2(µ0, µ1) = 4 arcsin

(
1

4
He(µ0, µ1)

)
see [LaM19], but note the different scaling there. Subsequently, we refer to the above as the pure
Hellinger and pure spherical Hellinger distances, i.e., without the transport aspect of Otto-Wasserstein.
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Example 2.4 (Hellinger geodesics in Hamiltonian formulation) For the Hellinger distance in (21),
the primal and dual dissipation potential takes the form

RHe(µ, u̇) =
1

2

∥∥∥∥δu̇δµ
∥∥∥∥2

L2
µ

=
1

2

∫ ∣∣∣∣du̇dµ

∣∣∣∣2 dµ,

H(µ, ξ) = R∗He(µ, ξ) =
1

2

∥∥ξ∥∥2

L2
µ

=

∫
1

2
ξ2dµ,

(23)

where du̇
dµ

denotes the Radon-Nikodym derivative between measures. The Onsager operator is given
by KHe(µ)ξ = ξµ and the geodesic curves are characterized byµ̇ = −µξ,

ξ̇ = −1

2
|ξ|2.

(Geod-FR)

Remarkably, different from the Hamilton-Jacobi setting of Otto-Wasserstein, this system can be solved
in the explicit form

ξ(s, x) =
ξ(0, x)

1+sξ(0, x)/2
and µ(s, dx) =

(
1+sξ(0, x)/2

)2
µ0(dx),

where we have used the initial condition µ(0) = µ0. Applying the terminal condition µ(1) = µ1, we
arrive at the explicit representation of the Hellinger geodesic

γµ0→µ1(s) =
(
(1−s)√µ0 + s

√
µ1

)2
= (1−s)2µ0 + 2s(1−s)√µ0µ1 + s2µ1. (24)

see [LMS16, Eqn. (2.8)] or [LaM19] for details. Finally, using the explicit solution for ξ(s, x) above, one
can show that the Hellinger geodesic distance indeed admits the formula (20). Formally, one can also
obtain a static dual Kantorovich type formulation

1

2
He2(µ0, µ1) = sup

(2+φ)(2−ψ)=4

{∫
ψdµ1 −

∫
φdµ0

}
.

Remark 2.5 (“Hellinger” versus “Fisher-Rao”) In the literature, the popular naming of “Fisher-Rao”
has been used to describe the infinite-dimensional geometry over probability and positive measures.
However, the name “Hellinger” distance was introduced after a paper of Kakutani in 1948 (based on
his work [Hel09]) and has been used largely since the early 1960s, and even by Rao in 1963. We
refer to [Mie24, Sec. 5] for some historical remarks. Nevertheless, starting from 2016 some authors
such as [BBM16, GaM17, San17] used the name “Fisher-Rao” instead, and it is now very popular in
imaging and machine learning. However, many such uses of the name “Fisher-Rao” are an abuse of
the naming convention because it should be used in the sense of Rao’s original definition in [Rao45a]
as a way to characterize the distance of measures within a given submanifold of measures. Thus,
the Fisher-Rao distance depends on the submanifold and is given by the length of the shortest curve
within the submanifold, where length is measured in the Hellinger metric.

In the present paper, the spherical Hellinger distance SHe can be understood as a type of Fisher-
Rao distance with respect to the submanifold P(Ω) as a submanifold of M+(Ω). Another type of
the Fisher-Rao distance occurs, for instance, if one chooses the submanifold of exponential family
distributions.
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2.2 Unbalanced optimal transport: Hellinger-Kantorovich

As we have seen in the previous subsection, the Otto-Wasserstein geometry gives us the transport
type dynamics, while the Hellinger geometry provides the birth-death, also reaction, mass creation or
destruction, type dynamics. A few groups of researchers, including [CP∗18a, CP∗18b, LMS18, KMV16,
GaM17], proposed the Hellinger-Kantorovich (HK) geometry, which is the combination of the Hellinger
and Wasserstein distances. We refer to their works for the details and provide below a self-contained
introduction to the HK geometry and gradient flow.

The optimal transport problem of Kantorovich must be generalized for the transport between measures
of different mass to become admissible. The construction is as follows: In addition to the initial and
target measures µ0 and µ1, one considers measures π0 and π1 between which classical optimal
transport happens. Then, the mismatch between µ0 and π0 and between µ1 and π1 is penalized
using a divergence functional Ψ, e.g., the KL divergence. This is then called unbalanced transport,
defined using the entropy-transport functional

ETc,Ψ (Π|µ0, µ1) :=

{∫
c(x0, x1)dΠ (x0, x1) + Ψ(π0|µ0) + Ψ(π1|µ1)

∣∣∣∣
π0(dx0) := Π (dx0,Ω) , π1(dx1) := Π (Ω, dx1)

}
,

c is a cost function of transport, e.g., the squared Euclidean distance. In general, functionals defined
using this type of inf-convolution do not generate a (squared) distance onM+(Ω). And even if it is a
distance, it may not be a geodesic distance. It was the main achievement of [LMS16, LMS18] that the
HK distance, defined as a geodesic distance in the sense of the dynamic Benamou-Brenier sense, via

HK2(µ0, µ1) = (25)

min

{∫ 1

0

α‖∇ξ‖2
L2
µ
+β‖ξ‖2

L2
µ

dt

∣∣∣∣ µ̇ = α div(µ · ∇ξ)−βµξ, µ(0) = µ0, µ(1) = µ1

}
,

can be characterized as an unbalanced transport problem as shown below, if c and Ψ are chosen in
a very particular way. Different choices of α, β > 0 allow us to tune the relative strength of the two
geometries, trading off the transport and the birth-death mechanisms.

Theorem 2.6 (Logarithmic-Entropy-Transport definition of HK) [LMS16, Thm. 8] The
Hellinger-Kantorovich distance over positive measuresM+ has the equivalent characterization as the
optimal value of the logarithmic-entropy-transport (LET) problem

HK2 (µ0, µ1) := inf
Π∈M+(Ω×Ω)

ETc,Ψ (Π|µ0, µ1) , (26)

where functional Ψ is the (scaled) KL divergence Ψ(u|v) := 1
β

DKL(u|v) and the transport cost is

c(x0, x1) :=


−2

β
log

(
cos

(√
β

4α
|x0−x1|

))
for |x0−x1| < π

√
α

β
,

+∞ otherwise.

Intuitively, the HK geometry combines the mechanisms of the Otto-Wasserstein geometry, i.e., the
transport of mass, and the Hellinger geometry, i.e., the birth-death of mass. It possesses a richer
structure and more advantageous properties than either of the pure geometries alone.
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The gradient flow in the HK geometry generates the gradient flow equation, which is the following
reaction-diffusion PDE.

Example 2.7 (Reaction-diffusion PDE) The gradient-flow equation of the HK gradient system over
positive measures (M+, F,HK) corresponds to the reaction-diffusion PDE

µ̇ = −α ·KOtto(µ)
δF

δµ
[µ]− β ·KHe(µ)

δF

δµ
[µ] = α div

(
µ∇δF

δµ
[µ]

)
− βµδF

δµ
[µ] . (27)

The HK geometry and gradient flows are defined over the space of positive measuresM+. For many
machine learning applications, it is often more convenient to only work with probability measures.
The restriction of the HK geometry to the space of probability measures P is discussed in [LaM19],
referred to as the spherical Hellinger-Kantorovich (SHK) geometry. In this paper’s context, we establish
the following explicit formula.

Proposition 2.8 (Explicit formula for SHKα,β) For α, β > 0 we have the formula for the spherical
Hellinger-Kantorovich distance,

SHKα,β(µ0, µ1) =
4√
β

arcsin
(√β

4
HKα,β(µ0, µ1)

)
. (28)

Proof. In [LaM19], the passage from HKα,β to SHKα,β is discussed in detail by showing how the
geodesics of (P(Ω), SHK) and (M+(Ω),HK) can be transformed into each other. Under the as-
sumption that β = 4, which is used in the scaling assumption (2.1) and (2.2) therein, it has been
shown that

SHKα,4(µ0, µ1) = arccos

(
1− 1

2
HKα,4(µ0, µ1)2

)
= 2 arcsin

(
1

2
HKα,4(µ0, µ1)

)
,

where the first identity follows from [LaM19, Thm. 2.2] and the second from the trigonometric identity
sinσ =

√
(1− cos(2σ)) /2.

It now remains to apply the simple scaling HK2
α,β = 4

β
HK4α/β,4 and SHK2

α,β = 4
β
SHK4α/β,4, and the

assertion follows.

Similarly, the spherical Hellinger distance SHe = SHK0,1, also known as the Bhattacharya distance, is
related to the Hellinger distance by

SHe(ρ0, ρ1) = 4 arcsin

(
1

4
He(ρ0, ρ1)

)
.

Recall our scaling of He in (9) with He(0, µ) = 2µ(Ω), while some other works use H̃e = HK0,4

giving H̃e(0, µ) = µ(Ω). We also remind the reader of the use of the notation ρ for the probability
measure instead of the positive measure µ.

The associated Onsager operator (inverse of the Riemannian metric tensor GSHe) is given by restrict-
ing that of the Hellinger to the probability measures, namely

KSHe(ρ)η = β ρ
(
η −

∫
ηdρ

)
. (29)
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Using that relation, we obtain the Onsager operator (inverse of the Riemannian metric tensor) for the
spherical Hellinger-Kantorovich (SHK) geometry

KSHK(ρ)η = −α div(ρ∇η) + βρ

(
η −

∫
ρηdx

)
,

and the SHK gradient flow equation

ρ̇ = −KSHK(ρ)
δF

δµ
[µ] = α div

(
ρ∇δF

δµ
[µ]

)
− βρ

(
δF

δµ
[µ]−

∫
ρ
δF

δµ
[µ] dx

)
. (30)

3 Functional inequalities: Otto-Wasserstein and Hellinger

Functional inequalities are the building blocks for the analysis of many computational algorithms, such
as for sampling and optimization over probability measures. The main goal of this section is to develop
an intuition for the Łojasiewicz type inequalities for the Otto-Wasserstein and Hellinger type gradient-
flow geometries.

3.1 Otto-Wasserstein gradient flow over probability measures P

Our starting point is the differential energy dissipation balance relation of gradient flow systems,

d

dt
F (µ(t)) = 〈DF, µ̇〉 = −

(
R(µ, µ̇) +R∗(µ,−DF )

)
=: −I(µ(t)). (31)

where the functionals R and R∗ are the primal and dual dissipation potentials discussed in Sec-
tion 2.1. We refer to the quantity I as the dissipation of energy F . It was also referred to, in some
contexts, as entropy production. The letter I is due to Fisher’s information while the letter R is due
to the Helmholtz-Rayleigh dissipation principle [Ray73]. From this, we introduce the following version
of the Łojasiewicz condition. Note that, in the definition of the functional I , it is understood that µ̇ is
replaced by DξR∗(µ,−DF (µ)) to obtain a functional of µ alone. As we are in the quadratic case,
we always have I(µ) = R∗(µ,−DF (µ)).

Definition 3.1 (Polyak-Łojasiewicz inequality for generalized gradient systems) We say that the
Polyak-Łojasiewicz inequality holds if

R(µ, µ̇) +R∗(µ,−DF ) = I(µ) ≥ c · (F (µ(t))− F∗) with F∗ = inf
µ
F (µ). (Ł)

holds for some constant c > 0.

For conciseness, this paper does not analyze more general Łojasiewicz inequalities, i.e., no higher
order powers on the right-hand side, due to the relevance of (Ł) to computational algorithms in machine
learning and optimization; cf. [KNS20]. We simply refer to it as the Łojasiewicz inequality in the rest
of the paper. We refer to articles such as [OtV00, BlB18] for a wider scope of related inequalities. An
immediate consequence of (Ł) is that the energy of the gradient system converges exponentially via
Grönwall’s lemma, i.e.,

(Ł) =⇒ F (µ(t))− F∗ ≤ e−c·t (F (µ(0))− F∗) .
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Therefore, on the formal level, the intuition of the analysis is to produce the Łojasiewicz type relations
in the succinct form of I ≥ c · (F − F ∗).

Concretely, in the Otto-Wasserstein gradient flows and the Fokker-Planck PDEs, energy dissipation
can be easily calculated

I(µ) = − d

dt
F (µ)

(along WGF)
=

∫
µ

∣∣∣∣∇δFδµ [µ]

∣∣∣∣2. (32)

As an already well-known example, we now formally check the inequality (Ł) for the Otto-Wasserstein
gradient system with the KL-divergence, i.e., (P(Rd),DKL(·|π),W2), where DKL is defined in (5),
(7). We calculate the dissipation

−I(µ) =
d

dt
DKL(µ|π) =

〈
log

dµ

dπ
,− div

(
µ∇ log

dµ

dπ

)〉
L2

(IBP)
= −

∥∥∥∥∇ log
dµ

dπ

∥∥∥∥2

L2
µ

.

Specializing the Łojasiewicz inequality (Ł) to this setting, we arrive at the logarithmic Sobolev inequality
(LSI) ∥∥∥∥∇ log

dµ

dπ

∥∥∥∥2

L2(µ)

≥ c ·DKL(µ|π), (LSI)

which needs to hold for some c > 0. By Grönwall’s lemma, the entropy decays exponentially, i.e.,
DKL(µ|π) ≤ e−c·tDKL(µ(0)‖π). (LSI) is a special case of the (Polyak)-Łojasiewicz inequality for the
Otto-Wasserstein geometry and the more general ϕ-divergence energies, namely∥∥∥∥∇ϕ′( dµ

dπ

)∥∥∥∥2

L2
µ

≥ c ·Dϕ(µ|π). (Ł-W)

In particular, we will exhaustively investigate the ϕp-divergence energy functional case. The inequal-
ity (Ł-W) reads

1

(p−1)2

∫
µ

∣∣∣∣∇
((

dµ

dπ

)p−1
)∣∣∣∣2 dx ≥ c ·Dϕp(µ|π) (33)

For p = 1, i.e., the choice of ϕKL (ϕ1-divergence or the 1-relative entropy), recovers the (LSI),
which has already been intensely investigated in the literature. The Bakry-Émery theorem [BaÉ85]
gives a sufficient condition for the logarithmic Sobolev inequality (LSI) to hold along the solution of
the Fokker-Planck equations: the target probability measure π satisfies the Bakry-Émery condition, if
π ∝ exp (−V ) for the potential function V that satisfies

∇2V ≥ cBE · Id, cBE > 0. (BE)

Moreover, following [BaÉ85], [AM∗01] provided an elementary proof of the Bakry-Émery theorem for
general ϕ-divergence energies that satisfies

ϕ(1) = ϕ′(1) = 0, ϕ′′(1) > 0 and (ϕ′′′(s))
2 ≤ 1

2
ϕ′′(s)ϕ(4)(s). (34)

Their results state that if (34) holds, the Otto-Wasserstein gradient flow with the corresponding ϕ-
divergence energy converges exponentially. That is, the following sufficient relation holds

(BE) + (34) =⇒ (Ł-W) : Łojasiewicz for Otto-Wasserstein =⇒ exp. decay. (35)

First, we slightly modify this result for the ϕp-divergence energy functional and the case of domain
Ω = Rd. The proof is straightforward by plugging in the definition of the ϕ-divergence into (34) and
using the relation (35).
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Theorem 3.2 (Functional inequality for pure Otto-Wasserstein: Rd) Suppose the
Bakry-Émery condition (BE) holds for the target measure π. Then, under the ϕp-divergence energy
for p ∈ [1, 2], the Łojasiewicz inequality (Ł-W) holds for the Otto-Wasserstein gradient flow with the
constant 2cBE.

In addition, when the domain is an open and bounded subset of Rd, we no longer need Bakry-Émery
or LSI type conditions when working with sufficiently smooth measures.

Theorem 3.3 (Functional inequality for pure Otto-Wasserstein: bounded domain) Assume that
Ω ⊂ Rd is an open and bounded Lipschitz domain and that π ∈ L∞(Ω) is bounded from below
by a positive constant. Then, for all p ≥ 1 − 2

d
there exists a positive constant c > 0 such that the

Łojasiewicz inequality (33) holds for all sufficiently smooth measure µ ∈ P(Ω).

Proof. For the case π = c0 · dx, the result is established in [MiM18, Sec. 3] as well as the master
thesis of the second author. The general case follows by estimating π from above and from below and
by applying the result to r = dρ

dπ
.

The important question lingering is when and if the Łojasiewicz inequality holds for other gradient flows
and other energy functionals, i.e., a theory mirroring the Bakry-Émery results but going beyond the
standard Otto-Wasserstein geometry. Our starting point is replacing the Otto-Wasserstein geometry
of the gradient flows with the Hellinger geometry.

3.2 Hellinger gradient flow overM+

By a derivation similar to the Otto-Wasserstein setting, we find the energy dissipation for the Hellinger
gradient flow

I(µ) = − d

dt
F (µ(t))

(along HeGF)
=

∫
µ

∣∣∣∣δFδµ [µ]

∣∣∣∣2. (36)

In the settings other than Otto-Wasserstein gradient flow, however, the Łojasiewicz inequality (Ł) can-
not be expected to hold globally for arbitrary geometry in general. We now show that this is precisely
the case for Hellinger. Consider the Hellinger gradient flow with the KL entropy energy functional, i.e.,
F (µ) = DKL(µ|π). Then, the specialized Łojasiewicz inequality asks for the existence of some c > 0
such that ∥∥∥∥log

dµ

dπ

∥∥∥∥2

L2
µ

≥ c ·DKL(µ‖π). (37)

Lemma 3.4 (No global Łojasiewicz condition in Hellinger flows of KL) There
exists no c > 0 such that (37) holds globally for positive measures µ ∈M+, i.e., the gradient system
(M+,DKL(·|π),He) does not satisfy the global Łojasiewicz condition for any positive constant.

For a counter-example, consider µr = rπ in (37). Then we have DKL(µr|π) → µr(Ω) for r → 0+,
but ‖ log r‖L2

µr
‖ = r log2 r·π(Ω)→ 0. See Figure 3 and the caption for an illustration of Lemma 3.4.

Despite this lack of the global Łojasiewicz condition in general, a local condition can be satisfied trivially
around the equilibrium measure µ = π. However, from this paper’s perspective, we are not interested
in the local version for the reason explained next.
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Figure 3: The plot illustrates the lack of global Łojasiewicz inequality as in Lemma 3.4. We plot the
KL-entropy generator function ϕ(s) = s log s − s + 1. The blue dotted curve represents the KL-
entropy generator ϕ(s). The function s| log s|2 is plotted in solid black. The Łojasiewicz inequality
condition is satisfied locally around the equilibrium s = 1 (red dot). However, it can never be satisfied
in a neighborhood around s = 0.

Example 3.5 (Birth escaping zero in the Hellinger geometry) Suppose we wish to minimize the
energy F (µ) = Dϕ(µ|π) starting from the initial measure µ0. It is possible that the measure µ0

does not have the full support as the target measure π; see Figure 4 (left), i.e., supp(µ0) ( supp(π).
In addition, many variational inference methods, e.g., [KhN18, LC∗22] use Gaussian densities to ap-
proximate the target measure. In such cases, the measures share the support as in Figure 4 (right),
i.e., supp(µ0) = supp(π), but the density ratio can be arbitrarily close to zero. For example, Figure 4
(right) depicts a Gaussian mixture distribution as the initial µ0 that has very little mass near x = 2.
This can be quite likely in high dimensions. The most difficult part of the minimization is to escape the
near-zero region with enough metric slope provided by the energy. For example, the reaction dynam-
ics µ̇ = −µ δF

δµ
[µ] implies that a significant growth field is needed to escape when µ is near zero, i.e.,

the birth process. Our theory precisely characterizes this escape threshold via the global Łojasiewicz
condition, e.g., in Corollary 3.8. In contrast, the local convergence behavior near the equilibrium is
much easier to capture; see Figure 3, Figure 5. Therefore, we place the focus of our analysis on the
global Łojasiewicz condition without delving into local equilibrium behavior. Finally, we note that our
analysis is for general positive measures. The submanifolds of parameterized probability distributions,
such as Gaussian densities (i.e. Fisher-Rao geometry), are not considered in this paper.

While the above results show that the Hellinger flow of the KL-entropy cannot satisfy the global
Łojasiewicz, we now show a positive result for the case when the energy functional is the squared

Hellinger distance, F (µ) = 1
2
He2(µ, π) =

∫ (√
dµ
dπ
− 1
)2

dπ. First, note that the first variation of

the squared Hellinger distance is
δ

δµ

(
1

2
He2(µ, π)

)
= f ′(µ) = 2 − 2

√
dπ/dµ. Specializing the
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Figure 4: Illustration of Example 3.5: birth escaping (near) zero with initial densities µ0 (red) and target
densities π (blue, Gaussian).

Łojasiewicz inequality to this setting requires

4 ·
∥∥∥1−

√
dπ

dµ

∥∥∥2

L2
µ

≥ c

2
He2(µ|π). (38)

It can be easily checked by definition that we have the unconditional satisfaction of the global Ło-
jasiewicz inequality in this case:

Lemma 3.6 (Global Łojasiewicz with Hellinger energy) The Łojasiewicz inequality (38) holds for
the Hellinger gradient system (M+, 1

2
He2(·, π),He) globally for c = 2.

Going beyond the Hellinger energy, we are now ready to extract some general principles. The nat-
ural question is whether relations such as Bakry-Émery and (LSI) exist for the Hellinger geometry.
To answer that, we first establish the condition for global Łojasiewicz condition for the class of ϕp-
divergence energy (5). We observe that Dϕp(µ|π) ≥ 0 with equality if and only if µ = π (in the sense
of measures). Moreover, µ 7→ Dϕp(µ|π) is convex, and the Fréchet subdifferential is given by

∂Dϕp(µ|π) = DDϕp(µ|π) = ϕ′p

(
dµ

dπ

)
=

1

p−1

((
dµ

dπ

)p−1

− 1

)
, DDϕ1(µ|π) = log

(
dµ

dπ

)
.

Proposition 3.7 (Global Łojasiewicz for Hellinger gradient flow of relative entropy) Given the
Hellinger gradient system with ϕ-divergence energy, i.e., (M+,Dϕ(·|π),He). If ϕ : (0,∞) →
[0,∞) is a convex entropy generator function satisfying

ϕ(1) = ϕ′(1) = 0, ϕ′′(1) > 0 and ∃ c∗ > 0 such that ∀ s > 0 : s
(
ϕ′(s)

)2 ≥ c∗ϕ(s), (39)

then the Łojasiewicz inequality holds globally, i.e.,∥∥∥∥ϕ′( dµ

dπ

)∥∥∥∥2

L2
µ

≥ c∗Dϕ(µ|π). (Ł-He)

DOI 10.20347/WIAS.PREPRINT.3176 Berlin 2025



A. Mielke, J.-J. Zhu 20

Proof of Proposition 3.7. As previously calculated, the first variation of the ϕ-divergence is given

by
δ

δµ
Dϕ(µ|π) = ϕ′

(
dµ

dπ

)
. Thus, using the Hellinger metric, we obtain the dissipation relation

d
dt

Dϕ(µ|π) = −I(µ) with

I(µ) =
∥∥ϕ′( dµ

dπ

)∥∥2

L2
µ

=

∫
Ω

(
ϕ′
(

dµ
dπ

))2
dµ =

∫
Ω

(
ϕ′
(

dµ
dπ

))2 dµ
dπ

dπ.

Now exploiting the assumption (39) for estimating the integrand, we immediately obtain (Ł-He).

Because of the simple point-wise estimate in the above proof, it is also clear that condition (39) is
necessary and sufficient for the Łojasiewicz estimate (Ł-He).

Corollary 3.8 (Hellinger gradient flows: necessary sufficient condition) The
Łojasiewicz inequality (Ł-He) for the Hellinger gradient system with the power-like entropy ϕp (7)
energy, (M+,Dϕp ,He), holds globally if and only if p ≤ 1

2
. Furthermore, the constant is c∗ =

1/(1−p) in that case.

Therefore, the Hellinger gradient flow under the ϕp-divergence energy functional decays exponentially
globally, i.e.,

Dϕp(µ(t)|π) ≤ e−
t

(1−p) ·Dϕp(µ(0)|π)

if and only if p ≤ 1
2
.

This decay result is also referred to as global exponential convergence in energy. In short, for the
ϕ-divergence energy functional,

(39) ⇐⇒ (Ł-He) =⇒ exp. decay

In particular, Corollary 3.8 shows that the energy functionals, for which the globally Łojasiewicz esti-
mate holds, include the squared Hellinger (p = 1

2
), the forward KL (p = 0), the reverse χ2 (p = −1),

and the fractional-power entropies between those. On the negative side, it states that the Łojasiewicz
estimate does not hold globally for many commonly used entropy functionals such as the KL (p = 1)
and χ2 (p = 2).

Remark 3.9 (Metric slope and entropy power threshold p = 1
2
) The relevance of the threshold p =

1/2 can be seen from two perspectives. First, we observe that µ = 0 is a steady-state solution for
the gradient systems

(
M+,Dϕp(·|π),He

)
for p > 1/2. However, if µ(t) = 0 is a solution, then

it cannot converge exponentially to the equilibrium measure π. The point is that the Hellinger metric
slope, defined as

|∂Dϕp|He(0) := lim sup
µ→0

(
Dϕp(0)−Dϕp(µ)

)
+

He(0, µ)
,

can be calculated explicitly as the following:

Lemma 3.10 The Hellinger metric slope of the ϕp-divergence energy functional at µ = 0 is given by

|∂Dϕp |He(0) =


0 for p > 1/2,

1 for p = 1/2,

∞ for p < 1/2.
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Figure 5: The plot illustrates the left-hand side s(ϕp′(s))2 of the Łojasiewicz inequality (39) for the
Hellinger geometry for s ∈ [0, 1.2] and different p: purple p = 2 (χ2), red p = 1 (KL), green p = 0.5
(Hellinger), orange p = 0.25, blue p = 0 (forward KL), The red dot represents the equilibrium at
s = 1, where φ′(s) = 0. This plot provides insights into the slopes of the power-like entropies in
the Hellinger gradient flow. Indeed, Proposition 3.7 discusses the relation of the corresponding curves
ϕp(s) in Figure 1 with those here. We observe the threshold p = 0.5 (Hellinger; green) where the
behavior near s = 0 jumps. See the main text, especially Remark 3.9, for analysis.

In the case p > 0 where Dϕp(0) < ∞ the curve t 7→ µ(t) = 0 can still be considered a solution
of the gradient-flow equation, however, the exponential decay only applies to the curves of maximal
slopes (see, e.g., [AGS05]) satisfying the dissipation balance

d

dt
Dϕp(µ(t)|π) = −1

2
|µ′|He(t)2 − 1

2
|∂Dϕp |He(µ(t))2.

We refer to [LaM23, Section 2] for a more detailed discussion.

A second way to see the importance of the threshold p ≤ 1
2

involves the results in [OtV00] showing that
geodesic Λ-convexity of a functional implies the Łojasiewicz inequality with cŁ = 2Λ. This is analogous
to the finite-dimensional case in [KNS20]. For the condition of geodesic Λ-convexity for functionals

Dϕ(µ|π) =
∫

Ω
ϕ( dµ

dπ
)dπ in the Hellinger geometry, it can be shown that Λ := infw≥0

{
wϕ′′(w) +

1
2
ϕ′(w)

}
. This gives the same result when considering the p-power family ϕp. But for general ϕ, we

may have 2Λ � cŁ. The geodesic Λ-convexity in the HK geometry has been established in [LMS23a,
Theorem 7.2]. However, one can only obtain a Łojasiewicz type inequality with constant zero by directly
applying the results in [LMS23a], which is not sufficient for exponential convergence.

3.2.1 Explicit solution of the Hellinger gradient flow equation

To further characterize the phenomena regarding the HK gradient flow mathematically, we now delve
deeper into the gradient-flow equation for the Hellinger gradient systems

(
M+, F,He

)
with F =
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Dϕp(·|π), which is the reaction equation

µ̇ = −β · µ
δDϕp(µ|π)

δµ
[µ] = −β · µ ϕ′p(

dµ

dπ
). (40)

A delicate situation arises when considering the gradient flow equation (40): in general, not all solutions
of (40) will converge to the desired equilibrium π. The reason is the degeneracy of the Hellinger
Onsager operator KHe(µ)ξ = µ · ξ at µ = 0.

Example 3.11 (Hellinger gradient flow of KL) Taking the driving energy to be the KL divergence
(p = 1) in (40), we obtain the gradient flow equation

µ̇ = −βµ log

(
dµ

dπ

)
. (KL-He)

This ODE can be explicitly solved with elementary arguments, yielding the following result.

Proposition 3.12 The ODE (KL-He) admits the unique solution, for all x ∈ Ω and t ≥ 0,

µ(t, x) = π(x)
(

dµ(0, ·)
dπ

(x)
)e−βt

(41)

Furthermore, we have µ(t, x)→ π(x) as t→∞ if and only if µ(0, x) 	 0.

In other words, for some location x′ with zero initial density µ(0, x′) = 0, the solution gets stuck
and no new mass is born. This precisely corresponds the illustration in Figure 3. In addition to the
KL divergence functional (p = 1), similar problems occur for the Hellinger gradient flow of the Dϕp-
divergence with p ∈ (0, 1), because solutions starting with µ(0, x) = 0 may satisfy µ(t, x) = 0 for
t ∈ [0, τ(x)] and µ(t, x) > 0 for t > τ(x), where τ(x) can be chosen arbitrarily. However, for the
interesting case of ϕp-divergence with p ≤ 1/2, the notion of curves of maximal slope selects the
unique solution with µ(t, x) > 0 for t > 0.

3.2.2 Exponential decaying Lyapunov functions for Hellinger gradient flows

Clearly, the driving energy Dϕp( · |π) itself decays along solutions because it is the driving energy of
the gradient system. Furthermore, an examination of the simple structure of the gradient flow equa-
tion (40) implies that ρ̇ ≥ 0 for dρ

dπ
∈ [0, 1] and ρ̇ ≤ 0 for dρ

dπ
≥ 1. Hence, the divergence functional

Dϕq( · |π) with any q is non-increasing along solutions. We have

d

dt
Dϕq(µ(t)|π) = −β

∫
Ω

µϕ′p

(
dµ

dπ

)
ϕ′q

(
dµ

dπ

)
︸ ︷︷ ︸

≥0

dx ≤ 0,

i.e., Dϕq( · |π) is a Lyapunov functional for the Hellinger gradient flow of the ϕp-divergence.

We now show that the divergence Dϕq(·|π), for some q 6= p, decays exponentially along the gradient
flow solutions. Set an auxiliary constant depending on p and q as

mp,q := inf
{ rϕ′p(r)ϕ′q(r)

ϕq(r)

∣∣∣ r > 0 and r 6= 1
}
≥ 0.
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Proposition 3.13 (Lyapunov functionals for (M+,Dϕp ,He)) For p, q ∈ R, we have

mp,q 	 0 ⇐⇒ p ≤ max
{

0,min{1, 1−q}
}
.

Assume that the initial condition µ(0) satisfies Dϕq(µ(0)|π) < ∞ and mp,q > 0. Then Dϕq decays
exponentially along the solutions of the gradient flow for (M+, Dϕp(·|π),He), namely

Dϕq(µ(t)|π) ≤ e−βmp,qtDϕq(µ(0)|π) for t ≥ 0.

That is, the ϕq-divergence is an exponentially decaying Lyapunov functional for the Hellinger gradient
flow of the ϕp-divergence.

Proof. The technical characterization of the region with mp,q > 0 is given in Lemma A.1.

For the decay estimate we simply observe that

− d

dt
Dϕq(µ(t)|π) = β

∫
Ω

ϕ′p
(
µ
π

)
ϕ′q
(
µ
π

)
dµ = β

∫
Ω

ϕ′p
(
µ
π

)
ϕ′q
(
µ
π

)
µ
π

dπ

≥
∫

Ω

mp,qϕq
(
µ
π

)
dπ = Dϕq(µ(t)).

Now, the desired result follows by Grönwall’s estimate.

0.0 0.5 1.0
q

0.5

0.0

0.5

1.0

p

(q=0.5, p=0.5)

Figure 6: The plot illustrates the p and q values that satisfy the condition
p ≤ max

{
0,min{1, 1−q}

}
. The shaded area represents the region where p ≤

max
{

0,min{1, 1−q}
}
⇐⇒ mp,q > 0, i.e., the ϕq-divergence converges exponentially for

the Hellinger gradient flow of the ϕp-divergence. See Proposition 3.13 and Lemma A.1 for the details.
Furthermore, we observe that the shaded area contains the part of the line p = q for q ≤ 1

2
. This

shows that Proposition 3.13 generalizes the result in Corollary 3.8 to exponentially decaying Lyapunov
functionals. In this case, when q > 1

2
, the intersection is empty and hence our result no longer implies

Dϕp itself decays exponentially.
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The proof above and Lemma A.1 can further explain why it is easier to have decay estimates for the di-
vergences Dϕq(µ(t)|π) with q≤0. Since, if q > 0, the condition Dϕq(µ(0)|π) <∞ will impose strict
positivity of the density µ(0, x) > 0 a.e. with respect to π. For example, the forward KL divergence
(q = 0) does not impose this condition.

Example 3.14 (Lypunov functional for Hellinger gradient flows of KL) We again
consider the driving energy of a Hellinger gradient flow to be the KL divergence (p = 1). Due to
Proposition 3.13, the forward KL (q = 0) divergence, Dϕ0(·|π) = DKL(π|·), and the reverse χ2

(q = −1) divergence, Dϕ−1(·|π) = Dχ2(π|·), are both exponentially decaying Lyapunov candidates
for this system, i.e., they decay exponentially along the Hellinger gradient flow of the KL divergence,
given the finite initialization condition in Proposition 3.13. See also Figure 6 for the relation between p
and q.

4 Spherical HK gradient flows of probability measures P

Our main goal of this section is to advance the state-of-the-art analysis for the spherical Hellinger-
Kantorovich (a.k.a., spherical Wasserstein-Fisher-Rao) space and gradient flows of probability mea-
sures P . Its properties differ from the HK (a.k.a. WFR) geometry over positive measuresM+. Re-
markably, we are able to establish a global Polyak-Łojasiewicz inequality for the ϕp-divergence energy
when p ∈ (−∞, 1

2
] ∪ [1,∞), which showcases the advantages of the SHK geometry over the pure

Otto-Wasserstein and Hellinger geometries. This is due to the flexibility of SHK by combining the
strengths of the Otto-Wasserstein and the spherical Hellinger geometries over probability measures.
We note that a detailed and insightful analysis of the gradient flow for (M+(Ω),Dϕ(·|π), SHe) is also
contained in [CC∗24]. In particular, sufficient conditions for geodesic convexity are presented, and a
necessary and sufficient condition for the Łojasiewicz inequality (called “gradient dominance” therein)
are derived. Our results are different in the sense that we look for general Lyapunov functions such
as Dϕq(·|π), where q 6= p is allowed, whereas their focus is on the decay of the sum of certain two
entropy functionals.

4.1 Pure spherical Hellinger gradient flow of probability measures

The gradient-flow equation for the gradient system (P(Ω),Dϕp( · |π), SHe) takes the form

ρ̇ = −βρ
(
ϕ′p

(
dρ

dπ

)
−
∫

Ω

ϕ′p

(
dρ

dπ

)
dρ

)
, (42)

where we have used the letter ρ ∈ P for probability measure instead of the positive measure µ ∈
M+. The following result establishes a Polyak-Łojasiewicz inequality for the pure SHe gradient flow,
which reads ∫

Ω

ϕ′p

(
dρ

dπ

)
KSHe(ρ)ϕ′p

(
dρ

dπ

)
dx ≥ βMpDp(ρ|π) for some Mp > 0 (43)

for the case p ∈ [0, 1/2] that leads to exponential decay of solutions for t > 0. Recall the definition of
the spherical Hellinger Onsager operator KSHe in (29) and use

∫
Ω

dρ = 1, we establish the following
result.
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Theorem 4.1 (Ł-SHe estimate) Assume p ∈ (−∞, 1/2] and that ρ ∈ P(Ω) satisfies ρ(x) > 0 a.e.
with respect to π. Then, the following functional inequality holds,∫

Ω

dρ

dπ

(
ϕ′p

(
dρ

dπ

))2

dπ −
(∫

Ω

dρ

dπ
ϕ′p

(
dρ

dπ

)
dπ

)2

≥Mp

∫
Ω

ϕp

(
dρ

dπ

)
dπ (Ł-SHe)

with Mp =

{
1

1−p for p ≤ 1
3
,

p(7−12p)
1−p for p ∈ [1

3
, 1

2
].

For p > 1/2 the best possible constant is Mp = 0.

For p > 1/2, we do not have convergence because there are multiple steady states, namely ρsteady(x) =
1

π(A)
1A(x) for arbitrary sets A ⊂ Ω with π(A) > 0.

Proof of Theorem 4.1. We use the abbreviation r = dρ
dπ

such that r ≥ 0 a.e. We treat the case
p ∈ (0, 1/2] first. We now use the definition of ϕp (7) and the abbreviation Iα(r) =

∫
Ω
rα dπ. Since

ρ, π ∈ P(Ω) we have

I0(ρ) = I1(ρ) = 1 and Dϕp(ρ|π) =
1− Ip(r)
p(1−p)

≥ 0, (44)

which implies Ip(r) ≤ 1.

For the left-hand side of (Ł-SHe), we obtain, after some major cancellations, the simple relation

LHS =
1

(1−p)2

(
I2p−1(r)− Ip(r)2

)
.

Moreover, Hölder’s inequality gives

Iα+β(r) ≤ Iα/θ(r)
θIβ/(1−θ)(r)

1−θ for α, β ∈ R and θ ∈ (0, 1).

We use I0(ρ) = 1 and choose α, β, and θ such that α + β = 0, α/θ = p, and β/(1−θ) =
2p − 1. This gives θ = (1−2p)/(1−p) ∈ [0, 1] and α = −β = p(1−2p)/(1−p), and we find

I
p/(1−p)
2p−1 I

(1−2p)/(1−p)
p ≥ I0(r) = 1 and conclude

LHS ≥ Ip(r)
2−1/p − Ip(r)2

(1−p)2
≥ Ap

(1−p)2

(
1− Ip(r)

)
with Ap =

{
1/p for p ∈ (0, 1

3
],

7−12p for p ∈ [1
3
, 1

2
].

The last estimate follows from the fact that y 7→ gp(y) := (y2−1/p−y2)/(1−y) satisfies gp(y) →
1/p for y ↗ 1. Moreover, for p ∈ (0, 1

3
] we have g′p(y) ≤ 0 which gives gp(y) ≥ 1/p. For p ∈ [1

3
, 1

2
]

the result can be similarly checked or numerically verified.

The case p = 0 is easier, because
∫

Ω
rϕ′0(r)dξ =

∫
Ω

(r−1)dξ =
∫

Ω
dρ−

∫
Ω

dπ = 0. Hence, we
have

LHS =

∫
Ω

r
(
1− 1

r

)2
dπ and Dϕ0(ρ|π) =

∫
Ω

− log r dπ.

We further process the left-hand side,∫
Ω

r
(
1− 1

r

)2
dπ =

∫
Ω

(
r − 2 +

1

r

)
dπ =

∫
Ω

(
1

r
− 1

)
dπ,
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where the last equality follows from
∫

Ω
r dπ = 1. Then, the desired estimate with M0 = 1 follows

from the elementary inequality 1
r
− 1 ≥ − log r for r > 0, i.e.,

LHS =

∫
Ω

(1

r
− 1
)

dπ ≥
∫

Ω

(
− log r

)
dπ = Dϕ0(ρ|π).

In the case of p < 0, we use an argument similar to the case of 0 < p < 1/2, but taking into
account Ip(ρ) ≥ 1. Using Hölder’s inequality, we have Ip(ρ) ≤ I0(ρ)1−θIp/θ(ρ)θ = Ip/θ(ρ)θ.
Choosing θ = −p/(1−2p) ∈ [0, 1

2
) gives I2p−1(ρ) ≥ Ip(ρ)2+1/|p|. By the convexity of the function

y2+1/|p| − y2 and a Taylor expansion around y = 1, we have y2+1/|p| − y2 ≥ 1
|p|(y−1) for y ≥ 1.

With y = Ip(ρ) ≥ 1, we find

LHS =
I2p−1(ρ)−Ip(ρ)2

(p− 1)2
≥ Ip(ρ)2+1/|p|−Ip(ρ)2

(p− 1)2
≥ Ip(ρ)−1

|p|(p−1)2
=

1

1−p
Dp(ρ|π),

which is the desired result.

For p > 1/2 we consider the measure ρε such that ρε(x) = ε · π(x), ε > 0 on Aε and ρε(x) =
2 ·π(x) onX \Aε. Since I1(ρε) = 1 must be satisfied, we obtain π(Aε) = 1/(2−ε), 1−π(Aε) =
(1−ε)/(2−ε). Moreover, for q > 0 we have Iq(ρε)→ 2q−1 for ε→ 0. Thus, for ε→ 0, we obtain

Dϕp(ρε|π)→ (2p−1)/(p2 − p) > 0, Ip(ρε)→ 2p−1, I2p−1(ρε)→ 22p−2,

where the last relation uses the assumption p > 1/2. Thus, LHS(ρε) → 0 for ε → 0, and the ratio
LHS(ρε)/Dϕp(ρε|π) → 0, i.e., this ratio cannot be lower bounded by a positive constant Mp > 0.
Hence, the statement is proved.

Remark 4.2 (Hellinger flow of forward KL is mass-preserving) From the proof of Theorem 4.1, we
observe that the Łojasiewicz inequality for the spherical Hellinger gradient flow of the forward KL en-
ergy (ϕp with p = 0) is contained in the case for the (non-spherical) Hellinger Łojasiewicz (Ł-He).
However, it must be noted that those two gradient flows are not the same: in the case of (non-
spherical) Hellinger, the mass is only preserved when starting in the probability subspace P(Ω),
but not otherwise. In fact, the total mass can be explicitly calculated with elementary arguments as
Z(t) = 1 + e−βt(Z(0) − 1). In contrast, the SHK flows can be extended to the outside of P(Ω) to
a mass-preserving flow. This is often done for the Otto-Wasserstein flow on positive measures; see
Section 5.

Corollary 4.3 (Exponential Decay of Dϕp-divergence along SHe gradient flow)
Assume p ∈ (−∞, 1

2
] and consider an initial datum ρ(0) ∈ P(Ω) with Dϕp(ρ(0)|π) < ∞. Then,

the solution ρ of (42) with ρ(t, x) > 0 for all t > 0 a.e. with respect to π satisfies an exponential
decay estimate with constant Mp > 0 from Theorem 4.1, namely

Dϕp(ρ(t)|π) ≤ e−βMptDϕp(ρ(0)|π) for all t > 0.

Proof. This follows directly from (43) and a Grönwall estimate.
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4.2 Spherical Hellinger-Kantorovich space and gradient flows

Finally, we apply our results for the SHe flows above to obtain the global functional inequality and
hence exponential convergence of the spherical Hellinger-Kantorovich gradient flow over probability
measures P .

The specialized Łojasiewicz inequality for the SHK gradient flow reads∫
ρ

(
α

∣∣∣∣∇δFδρ [ρ]

∣∣∣∣2+ β

∣∣∣∣δFδρ [ρ]

∣∣∣∣2
)
− β

(∫
ρ · δF

δρ
[ρ]

)2

≥ c∗

(
F (ρ)− inf

ν∈M+
F (ν)

)
. (45)

We establish the following result.

Theorem 4.4 (Functional inequality for spherical Hellinger-Kantorovich) The
SHK Łojasiewicz inequality (45) holds globally with a positive constant for the spherical Hellinger-
Kantorovich (a.k.a., Wasserstein-Fisher-Rao) gradient flow over probability measures for the ϕp diver-
gence energy for p ∈ (−∞, 1

2
] with c∗ = cSHe = βMp > 0.

Furthermore, if the Otto-Wasserstein-Łojasiewicz inequality (Ł-W) with reference measure π holds
with cŁ-W > 0 for all probability measures P(Ω), then the SHK Łojasiewicz inequality holds with
c∗ = αcŁ-W > 0. Consequently, the SHK gradient flow converges globally with exponential decay rate
c∗ = max{αcŁ-W , βMp}.

Note that, for bounded Lipschitz domains Ω and π ∈ L∞(Ω) with infΩ π(x) > 0, the Otto-Wasserstein-
Łojasiewicz inequality (Ł-W) indeed holds with cŁ-W > 0 for p > 1−1

d
, see [MiM18, Sec. 3.1]. If the

domain Ω = Rd, the Łojasiewicz inequality holds for the SHK gradient flows of ϕp-divergence energy
for p ∈ (−∞, 1

2
] ∪ [1, 2] given that (Ł-W) holds.

Remark 4.5 This theorem showcases the strength of the SHK gradient flows. For dimension d ≤ 4,
the Łojasiewicz inequality holds for SHK gradient flows of all ϕp–divergence energy! For d ≥ 5, we
still have the generous interval p ∈ (−∞, 1/2] ∪ [1 − 1

d
,∞), which improves significantly from the

pure Otto-Wasserstein and the pure (spherical) Hellinger geometries.

A direct consequence is the following qualitative statement that applies to a large family of practical
energy functionals

Corollary 4.6 The SHK gradient flows converge exponentially globally for the following energy func-
tionals: KL divergence (p = 1) under LSI, forward KL divergence (p = 0) unconditionally, χ2-
divergence (p = 2) under a Łojasiewicz inequality, reverse χ2-divergence (p = −1) unconditionally,
and the Hellinger distance (p = 1/2).

5 Hellinger-Kantorovich gradient flows of positive measuresM+

Unlike the spherical counterpart, the HK gradient flows over positive measuresM+ are more chal-
lenging to treat. This is due to the absence of the global LSI type inequalities for the Otto-Wasserstein
flows over positive measures M+, which we discuss in Section 5.1. Subsequently, we provide the
analysis for the HK gradient flow over positive measuresM+. Concretely, we establish global con-
vergence results for the ϕp-divergence energy for p ∈ (−∞, 1/2], as well as for the KL divergence
energy (p = 1)using a novel analysis via a shape-mass decomposition.
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5.1 The loss of LSI on positive measuresM+ and a sufficient condition

For the Wasserstein distance, the McCann condition (see, e.g., [AGS05]) shows that Dϕp(·|dx) (i.e.,
the reference measure is Lebesgue) is geodesically convex only for p ≥ (d−1)/d where d is the
dimension. In [LMS23a], necessary and sufficient conditions for the geodesic convexity of entropy
functionals with respect to the HK distance were derived. The upper threshold p = 1/2 was also
observed in the sense that densities with p ∈ [p∗, 1/2] ∪ (1,∞) lead to geodesically convex p-
divergences, where p∗ = 1/3 for space dimension d = 1 and p∗ = 1/2 for d = 2. For d ≥ 3 only
the range p > 1 is admitted. However, only the convexity constant Λ = 0 has been shown for all
p > 1 (i.e., not strongly convex).

To improve on the state-of-the-art analysis, we first provide our result on the HK Łojasiewicz in the
following corollary. The Łojasiewicz inequality in the HK geometry over positive measuresM+ reads,
for α, β > 0,∫ (

α

∣∣∣∣∇δFδµ [µ]

∣∣∣∣2 + β

∣∣∣∣δFδµ [µ]

∣∣∣∣2
)

dµ ≥ βc∗

(
F (µ)− inf

ν∈M+
F (ν)

)
. (46)

Corollary 5.1 (A sufficient condition for HK flow) For ϕp-divergence energy F (µ) = Dϕp(µ|π)
with p ∈ (−∞, 1

2
], the Łojasiewicz inequality (46) holds globally over positive measuresM+ with the

constant c∗ =
1

1− p
.

In relating those results to previous geodesic convexity results for the HK gradient flows in Table 1, we
first note that geodesic convexity implies Łojasiewicz inequality but only with a non-negative constant
c ≥ 0. As the dimension increases, [LMS23a]’s result and the McCann condition have an increasing
power threshold for the value of p. For dimension d ≥ 3, their intervals no longer overlap with the
threshold of p ≤ 1

2
for the global Łojasiewicz in the Hellinger geometry. Yet, we are able to provide a

further Łojasiewicz result that is weaker than [LMS23a]’s geodesic convexity condition; see Table 1.
In previous works such as [LMS23b], it has been suggested that the Łojasiewicz inequality for the HK
geometry holds whenever the Łojasiewicz inequalities for the Otto-Wasserstein (LSI) and Hellinger
both hold. However, we next show that such a strategy cannot result in a global Łojasiewicz inequality.

First, if p ≤ 1
2
, Corollary 5.1 has established the Łojasiewicz inequality (Ł-He) with a constant c ≥ 1

1−p .

This directly results in the Łojasiewicz inequality in the HK geometry. If p > 1
2
, different from the pure

Fisher-Rao case, it does not automatically imply the absence of the HK Łojasiewicz inequality. This
can be seen by first assuming a Łojasiewicz condition for the Otto-Wasserstein dissipation (Ł-W) with
a constant condition cW > 0. Then, since the Hellinger dissipation quantity is always non-negative
along gradient flows,∫

µ ·

(
α

∣∣∣∣∇δFδµ [µ]

∣∣∣∣2 + β

∣∣∣∣δFδµ [µ]

∣∣∣∣2
)
≥ αcW ·

(
F (µ)− inf

ν∈M+
F (ν)

)
+ β · 0,

which yields the HK Łojasiewicz with the constant cW . Now, it may seem that the Łojasiewicz inequality
in the HK geometry can be established in this manner. However, the situation is more nuanced due
to the Otto-Wasserstein dissipation over positive measuresM+, instead of the probability measure
space P . In such cases, Łojasiewicz inequality cannot hold globally for the Otto-Wasserstein flow.

Proposition 5.2 (No Łojasiewicz for Otto-Wasserstein flows overM+) Given the ϕ-divergence
energy functional Dϕ(·|π). Then, there exists no global Łojasiewicz inequality (Ł-W) for the Otto-
Wasserstein gradient flow over the positive measuresM+.
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Proof of proposition 5.2. For any non-negative target measure π ∈ M+, we pick the measure µ
to be a scalar multiple of π, i.e., µ = Z π with Z > 0. See the illustration in Figure 7. The Radon-
Nikodym derivative is a constant dµ

dπ
≡ Z . Then, the Łojasiewicz inequality reads

0 =

∥∥∥∥∇(ϕ′( dµ

dπ

))∥∥∥∥2

L2
µ

≥ c ·Dϕ(µ|π) for some c > 0,

which cannot hold whenever Dϕ(µ|π) = ϕ(Z)π(Ω) > 0.

The intuition for the above proposition is that the Otto-Wasserstein flow of Dϕ(·|π) “gets stuck” when
the density ratio is constant dµ

dπ
≡ Z since the metric slope is zero. See also the illustration in Figure 7.

This result shows that we cannot hope to rely on the Otto-Wasserstein dissipation to establish the
Łojasiewicz inequality in the HK flow of positive measures.

8 6 4 2 0 2 4
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Figure 7: See Proposition 5.2 for the details of the functional inequality and Otto-Wasserstein flow of
positive measures. In this plot, the density ratio dν

dπ
is a constant Z > 0. Hence, there is no “Otto-

Wasserstein gradient” to drive the curve from ν towards π. In the opposite regime, the density ratio dµ
dπ

has many close-to-zero locations. Hence, there is not enough “Hellinger gradient” to drive the curve
from µ towards π.

5.2 A special case: HK gradient flows of KL divergence energy

In contrast to the global convergence results for the SHK gradient flows in Section 4, results such as
Proposition 5.2 might hint a pessimism about the HK gradient flows. However, in this section, we show
that the HK gradient flows of KL divergence (i.e. ϕp for p = 1) driving energy have a special property
that still guarantees the global convergence.

To further understand the idea behind Proposition 5.2, we first show a straightforward extension of the
(LSI) over probability measures to positive measures. Without loss of generality, we assume that the
target measure π is a probability measure, i.e., π(Ω) = 1.
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Proposition 5.3 (Generalized log-Sobolev inequality onM+) Suppose the logarithmic Sobolev in-
equality (LSI) holds with a positive constant cLSI-P > 0 when restricted to probability measures (i.e. µ
and π are probability measures). Then, the following inequality holds for the Otto-Wasserstein gradient
flow over the positive measuresM+:∫ ∣∣∣∣∇ log

dµ

dπ

∣∣∣∣2 dµ ≥ cLSI-P ·
(

DKL (µ|π)− (z log z − z + 1)

)
, (LSI-M+)

where z := µ(Ω) is the total mass of the measure µ. Moreover, we have∫ ∣∣∣∣∇ log
dµ

dπ

∣∣∣∣2 dµ ≥ cLSI-P ·DKL (µ|z · π) . (47)

The intuition here is that the Otto-Wasserstein gradient flow, viewed as a mass-preserving flow with
total mass µ(Ω), satisfies the LSI type inequality. This is illustrated in Figure 7.

Proof of Proposition 5.3. We have the logarithmic Sobolev inequality (LSI) for the probability mea-
sures µ̃ := 1

z
· µ where z := µ(Ω) is the mass of µ,∫

dµ̃

dπ

(
∇ log

dµ̃

dπ

)2

dπ ≥ cLSI-P ·DKL(µ̃|π).

Expanding the KL divergence, we have

DKL(µ̃|π) =

∫
dµ̃

dπ
log

dµ̃

dπ
dπ =

∫
1

z

dµ

dπ

(
log

dµ

dπ
− log z

)
dπ

=
1

z

(∫
dµ

dπ
log

dµ

dπ
dπ − z + 1

)
− log z + 1− 1

z

=
1

z
DKL(µ|π)− 1

z
(z log z − z + 1).

Combining the above relation with property of the Sobolev norm,∫
dµ

dπ

(
∇ log

dµ

dπ

)2

dπ = z ·
∫

dµ̃

dπ

(
∇ log

dµ̃

dπ

)2

dπ

≥ cLSI-P · (DKL (µ|π)− (z log z − z + 1))

= cLSI-P · (DKL (µ|π)−DKL (µ(Ω) · π|π)) .

For the last part of the result, we rewrite the right-hand side of the inequality above using the rela-
tion z log z − z + 1 = DKL (µ(Ω) · π|π). Recall a generalized Pythagorean inequality for the KL
divergence that reads

DKL (µ|π) ≥ DKL (µ|π∗) + DKL (π∗|π) ,

where π∗ is the information projection of π onto the positive measures of total mass z

π∗ ∈ arginf
{

DKL (γ|π) | γ ∈M+, γ(Ω) = z
}
.

By Jensen’s inequality,

DKL (γ|π) =

∫
ϕKL dπ ≥ ϕKL

(∫
dπ

)
= ϕKL(z),
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where the inequality holds when π∗ = z · π. Therefore,

DKL (µ|π) ≥ DKL (µ|z · π) + DKL (z · π|π) . (48)

Combining the results above, we obtain the desired inequality∫
dµ

dπ
(∇ log

dµ

dπ
)2 dπ ≥ cLSI-P · (DKL (µ|π)−DKL (µ(Ω) · π|π)) ≥ C ·DKL (µ|µ(Ω) · π) .

(49)

Thus, Proposition 5.3 is established.

The insight from Proposition 5.3 also provides us an exponentially decaying Lyapunov functional along
the Otto-Wasserstein flow over theM+. Noting the property of the KL divergence DKL (µ|z · π) =
z ·DKL

(
1
z
· µ|π

)
, we find

− d

dt
DKL (µ|z · π) =

1

z

∫
dµ

dπ
·
(
∇
(

log
dµ

dπ
− log z

))2

d(z · π)

=

∫
dµ

dπ
·
(
∇ log

dµ

dπ

)2

dπ
Prop. 5.3
≥ cLSI-P ·DKL (µ|z · π) (50)

Then, by Grönwall’s lemma, the Lyapunov functional DKL (µ|z · π) decays exponentially along the
mass-preserving Otto-Wasserstein gradient flow.

Corollary 5.4 (DKL (µ|µ(Ω) · π) is Lyapunov for Otto-Wasserstein-M+) For the mass-preserving
Otto-Wasserstein gradient flow over the positive measuresM+ with the KL divergence energyF (µ) =
DKL(µ|π), the Lyapunov functional DKL (µ|z · π) (where z := µ(Ω) is the total mass of the measure
µ) decays exponentially along the flow, i.e.,

DKL(µ(t)|z · π) ≤ e−cLSI-P ·tDKL(µ(0)|z · π) and DKL(
1

z
µ(t)|π) ≤ e−cLSI-P ·tDKL(

1

z
µ(0)|π)

for t ≥ 0 and the LSI constant cLSI-P as in Proposition 5.3.

This result, combined with the Pythagorean type relation (48), shows the Lyapunov functional
DKL (µ|z · π) decays towards the lower bound DKL(z · π|π) = z log z − z + 1. Furthermore, it
implies that, while µ itself does not converge to π due to Proposition 5.2, the shape 1

µ(Ω)
µ does con-

verge to the target. Using a similar idea, we next analyze the Hellinger (He) and the spherical Hellinger
(SHe) geometries.

We exploit a special property of the KL divergence, namely, for any constant Z ∈ R+, the SHe flow of
the KL divergence energy DKL(·|Zπ) is independent of Z . Yet, in the He flow of positive measures,
the constant Z in the minimization has an impact. This idea can be easily seen by calculating the
gradient flow equation of the He flow

ρ̇ = −ρ log

(
dρ

d(Zπ)

)
= −ρ

(
log

(
dρ

dπ

)
− logZ

)
,

i.e., the growth field is indeed affected by the scalar Z . In comparison, the scalar Z is canceled for the
SHe flow of probability measures

ρ̇ = −ρ
(

log

(
dρ

d(Zπ)

)
−
∫
ρ log

(
dρ

d(Zπ)

))
= −ρ

(
log

(
dρ

dπ

)
−
∫
ρ log

(
dρ

dπ

))
.

Since the Otto-Wasserstein flow is always mass-conserving, this difference in He and SHe is the key
for our analysis next, which we term the shape-mass analysis.
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5.3 Shape-mass analysis: global KL decay of HK gradient flows

Our starting point is to carefully compare the HK and SHK gradient flows. For the convenience, we
remember below the associated gradient-flow equations of HK and SHK flows under the KL energy

µ̇ = α div
(
∇µ+

dµ

dπ
∇π
)
− βµ log

(
dµ

dπ

)
, (HK-KL)

ρ̇ = α div
(
∇ρ+

dρ

dπ
∇π
)
− βρ

(
log

(
dρ

dπ

)
−
∫
Rd
ρ log

(
dρ

dπ

)
dx
)
. (SHK-KL)

For the clarity of the analysis, we use the symbol µ for the positive measure in the HK flow and ρ
for the probability measure in the SHK flow. We exploit the following simple observation of those two
equations.

Theorem 5.5 (Relation between solutions to HK and SHK equations) If t 7→ µ(t) solves (HK-KL),
then t 7→ ρ(t) = 1

z(t)
µ(t) with z(t) =

∫
Rd µ(t, x)dx solves (SHK-KL). Moreover, if t 7→ ρ(t) solves

(SHK-KL), then t 7→ µ(t) = κ(t)ρ(t) solves (HK-KL) for suitable functions t 7→ κ(t) independent of
the variable x. Furthermore, κ(t) is the solution to the following equation of mass

ż = −βz log z − βz
∫
Rd
ρ log

(
dρ

dπ

)
dx. (Mass-HK)

Proof of Theorem 5.5. The first part of the proposition is straightforward. To derive the mass equa-
tion, suppose µ is a solution to the HK equation (HK-KL). Applying the chain rule to the time derivative
µ̇ = żρ + zρ̇, where the shape-mass decomposition µ = zρ is used. Plug this into the HK equa-
tion (HK-KL),

żρ = α div

(
∇µ+

dµ

dπ
∇π
)
− βµ log

(
dµ

dπ

)
− zρ̇.

Since the shape ρ is a probability measure, we have
∫
ρ dx = 1,

∫
ρ̇ dx = 0. Then, we integrate

both sides of the above equation to obtain

ż = α

∫
div

(
∇µ+

dµ

dπ
∇π
)
− β

∫
µ log

(
dµ

dπ

)
dx

IBP
= −βz log z − β

∫
ρ log

(
dρ

dπ

)
dx,

which is the desired mass equation (Mass-HK).

This observation reveals the key to the following shape-mass analysis we will present: consider a
general solution t 7→ µ(t) of (HK-KL) and write it in the form µ(t) = z(t)ρ(t) with the normalized
density ρ(t) ∈ P(Ω) describing the shape and z(t) > 0 the total mass. Using this observation, We
can further extend the SHK analysis to general target measure π ∈M+. The ρ-equation (SHK-KL) is
mass-preserving and invariant under the change of variable from π to γπ with γ > 0. In that case, one
expects convergence to the steady state γππ ∈ P(Ω), where γπ is a normalizing constant. Hence, we
now denote the shape-mass decomposition of the target π = z∗π∗ where π∗ ∈ P(Ω). Then, when
starting from a solution t 7→ ρ(t) of the mass-preserving flow (SHK-KL) and assuming π∗ ∈ P(Ω),
z0 > 0, and z∗ > 0, the mass equation (Mass-HK) reads

ż = β z
(

log z∗ −DKL(ρ|π)− log z
)
, z(0) = z0.
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Then t 7→ µ(t) = z(t)ρ(t) is a solution of (HK-KL) with the initial condition ρ(0) = z0ρ(0) for the
energy functional DKL( · |z∗π∗).

To provide a general decay estimate for solutions of (M+(Ω),HB,HKα,β), we now use the shape-
mass decomposition µ(t, x) = z(t)ρ(t, x). As shown in Proposition 5.2 and Proposition 5.3, LSI
cannot hold globally overM+. Therefore, we use the standard log-Sobolev inequality but restricted
to the probability measures, which is the same as in (LSI) and recalled here for convenience: for
π∗ = γπ π ∈ P(Ω),

∃ cLSI > 0 ∀ ρ ∈ P(Ω) :

∫
Ω

ρ
∣∣∇ log(ρ/π∗)

∣∣2 dx ≥ cLSIDKL(ρ|π∗). (LSI-P)

In the following result, we can see two contributions to the convergence of µ(t) = z(t)ρ(t) to π =
z∗π∗, where z∗ := π(Ω) is the total mass of the target measure and π∗ is a probability measure,
a.k.a. the shape. We now detail the results of the shape-mass analysis for the HK-KL gradient flow.

We first provide the convergence of the mass variable z(t) to the target mass z∗.

Proposition 5.6 (Solution of the mass equation) The equation of mass (Mass-HK) admits the ex-
plicit solution

z(t) = z∗

(
z0

z∗

)e−βt

e−h(t). (51)

where h(t) =
∫ t

0
e−β(t−s)DKL(ρ(s)|π∗)ds is an auxiliary function.

If DKL(ρ(s)|π∗)→ 0 for t→∞, then h(t)→ 0 and z(t)→ z∗.

Setting H0 = DKL(ρ(0)|π∗) and α̂ = αcLSI-P , we now deliver the convergence of the shape ρ(t) to
the target shape π∗ and the mass z(t) to the target mass z∗.

Proposition 5.7 (Shape and mass convergence) The shape, i.e. the normalized probability mea-
sure ρ(t) = 1

z(t)
µ(t), converges to the target π∗ exponentially in KL divergence along the HK gradient

flow, i.e.,

DKL(ρ(t)|π∗) ≤ e−α̂tH0. (shape convergence)

The mass variable z(t) converges to the target mass z∗ exponentially, i.e.,

|z(t)− z∗| ≤ max{z0, z∗}
∣∣∣∣log

(
z0

z∗

)∣∣∣∣ e−βt +H0
e−α̂t − e−βt

β − α̂
. (mass convergence)

Note that the convergence rate of the shape ρ(t) to the limiting shape π∗ is dominated by the transport
part alone, with an exponential decay rate α̂ = αCLSI. The total mass can only be changed by the
growth through the Hellinger dissipation. Hence, the decay rate is simply β, but it may be delayed by
e−α̂t if the shape converges only slowly.

Combining the results of Proposition 5.6 and Proposition 5.7, we can now provide the global exponen-
tial decay analysis for the HK-KL gradient flow in the sense of the Hellinger distance.
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Theorem 5.8 (Convergence to equilibrium via shape-mass analysis) The following convergence
estimate in the Hellinger distance holds

He(µ(t), π) ≤

(
max{z1/2

0 , z
1/2
∗ }

2
H

1/2
0 + z1/2

∗

(
g

((
z0

z∗

)1/2
)

+
1

α̂

))
e−γt for t > 0, (52)

where γ = min
{
β, α̂/2

}
and g(a) = max{log(1/a), a−1} ≥ 0.

Before delving into the proof, we highlight that the singularity of g(a) = log(1/a) (for a < 1) is
needed to cover the case that, for a very small initial mass z0, it takes a long time to build up enough
mass to see the exponential decay to the limiting profile.

The above results imply that we cannot have a global Łojasiewicz inequality for the HK gradient flow
over the positive measures M+. However, the last theorem shows that, for the KL divergence as
driving energy, global exponential decay is still guaranteed. An exception is the case that we start with
µ = 0, which remains an unstable steady state of the flow.

Proof of Theorem 5.8. We use the shape-mass decomposition µ(t) = z(t)ρ(t) and π = z∗π∗ with
π∗, ρ(t) ∈ P(Rd). We first estimate the convergence of ρ to π∗ via

− d

dt
DKL(ρ|π∗) =

∫
Rd

(
αρ
∣∣∇ log(ρ/π∗)

∣∣2 + βρ
(

log(ρ/π∗)−
∫
ρ log(ρ/π∗)

)2
)

dx

≥ α̂DKL(ρ|π∗) + β · 0,

where we ignored the term due to the spherical Hellinger geometry since it’s non-negative. Thus, we
obtain

DKL(ρ(t)|π∗) ≤ e−α̂tH0 with α̂ = αcLSI-P and H0 = DKL(ρ(0)|π∗).

Next, we use the relation for z(t) with z0 =
∫
Rd µ(0, x)dx:

z(t) = z∗
(
z0/z∗

)e−βt
e−h(t) with h(t) =

∫ t

0

e−β(t−s)DKL(ρ(s)|π∗)ds.

Using the estimate for DKL(ρ(t)|π∗) we have 0 ≤ h(t) ≤ H(t) := H0

(
e−α̂t−e−βt

)
/(β−α̂).

Moreover, for all a, t > 0 we have∣∣ae−βt − 1
∣∣ ≤ g(a) e−βt where g(a) = supx∈(0,1)

|ax−1|
x

= max{log(1/a), a−1}.

Using e−h(t) ≤ 1, we find, for σ ∈ ]0, 1], the estimate

|z(t)σ−zσ∗ | ≤
∣∣zσ∗ (z0/z∗)

σ e−βte−h(t)σ − zσ∗ e−h(t)σ
∣∣ +

∣∣zσ∗ e−h(t)σ − zσ∗
∣∣

≤ zσ∗
∣∣(z0/z∗)

σ e−βt−1
∣∣+ zσ∗σH(t) ≤ zσ∗ g

(
zσ0 /z

σ
∗
)

e−βt + zσ∗σH(t).

We estimated the last term on the first line by |e−x−1| ≤ x for all x > 0, using x = σh(t).

For the full estimate, we use the classical bound 4He(ρ, π)2 = 2Dφ1/2(ρ|π) ≤ DKL(ρ|π) ≤ H0e−α̂t.
With z(t) ≤ max{z0, z∗}, we are now able to establish (52) as follows:

He(µ, π) = He(z(t)ρ, z∗π∗) ≤ He(z(t)ρ, z(t)π∗) + He(z(t)π∗, z∗π∗)

=
√
z He(ρ, π) + |

√
z−
√
z∗|

≤ max{z1/2
0 , z1/2

∗ }
H

1/2
0

2
eα̂t/2 + z1/2

∗ g
(
(z0/z∗)

1/2
)
e−βt +

z
1/2
∗

2
H(t).
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Moreover, we establish H(t) ≤ (2/α̂) e−γt with γ = min{β, α̂/2} as follows: For β ≤ α̂/2, we
have

e−α̂t−e−βt

β−α̂
= e−βt

∫ t

0

e(β−α̂)sds ≤ e−βt
∫ t

0

e−α̂s/2 ds ≤ 2

α̂
e−βt

and for β ≥ α̂/2 we estimate as follows:

e−α̂t−e−βt

β−α̂
=

∫ t

0

e−β(t−s)eα̂sds ≤
∫ t

0

e−α̂(t−s)/2e−α̂sds ≤ 2

α̂
e−α̂t/2.

Putting together the results, the desired estimate (52) is established.

A decay estimate for DKL(µ(t)|π) similar to (52) can also be derived by using the decomposition
DKL(µ(t)|π) = DKL(z(t)ρ(t)|z∗π∗) = z(t) DKL(ρ(t)|π∗) + z∗λ(z(t)/z∗) with λ(r) = r log r −
r + 1. We omit the elementary proof to avoid redundancy.

Remark 5.9 (Beyond the KL energy functional) It is tempting to generalize the above analysis to
general ϕ-divergence energy F (µ) = Dϕ(µ|π), beyond the KL case. However, we now present the
following observation that such a generalization is difficult.

Using a similar shape-mass decomposition µ = zρ as in the proof of Theorem 5.5, we extract the
equation

ρ̇ = α div

(
ρ∇δF

δµ
[µ]

)
− βρ

(
δF

δµ
[µ] +

ż

z

)
. (53)

We integrate both sides and again use the fact that ρ remains a probability measure along the mass-
preserving flow. Noting the simple relation δF

δµ
[µ] = δF

δµ
[zρ], we obtain

ż

z
= −

∫
ρ · δF

δµ
[zρ]. (54)

Therefore, the shape equation (53) can be rewritten as

ρ̇ = α div

(
ρ∇δF

δµ
[zρ]

)
− βρ

(
δF

δµ
[zρ]−

∫
ρ · δF

δµ
[zρ]

)
Specialized to the ϕp-divergence energy F (µ) = Dϕp(µ|π), we have

ρ = α div

(
ρ∇ϕ′p

(
z

dρ

dπ

))
− βρ

(
ϕ′p

(
z

dρ

dπ

)
−
∫
ρ · ϕ′p

(
z

dρ

dπ

))
(55)

This shape equation (55) reveals the insight about the SHK flow of the ϕp-divergence energy. If p = 1,
i.e., the KL divergence energy, the shape equation (55) simplifies to the energy equation of (SHK-KL),
which is the observation of Theorem 5.5 and Section 5.2.

In the case of p 6= 1, the shape equation (55) is not the SHK gradient flow equation by itself – the
shape and mass variables are coupled. Therefore, the observation of Theorem 5.5 does not hold for
other ϕp-divergence energies than the KL. For example, in the case of p = 2, the shape equation (55)
reads

ρ̇ = α · z div

(
ρ∇ dρ

dπ

)
− β · zρ

(
dρ

dπ
−
∫
ρ · dρ

dπ

)
where the right-hand side has a coupled mass variable z. Hence, it is not the SHK gradient flow
equation. In this sense, our shap-mass analysis is specifically designed for the HK-KL gradient flow.
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A Further proofs and technical results

We need the following technical properties to prepare for the characterization of the Lyapunov func-
tional of the HK gradient flows.

Lemma A.1 The constant mp,q satisfies the following estimates:
(a) mp,q > 0 if and only if p ≤ p̂(q) with p̂(q) := max

{
0,min{1, 1−q}

}
,

(b) For p ≤ 1/2 we have mp,p = 1/(1−p).
(c) For p ∈ [0, 1] we have mp,1−p = min{1/p, 1/(1−p)} ∈ [1, 2].

Proof. We define Np,q(r) = rϕ′p(r)ϕ
′
q(r)/φq(r) which can be continuously extended at r = 1

by the value Np,q(1) = 2. Thus, using the continuity and positivity of Np,q : (0,∞) → (0,∞),
we obtain mp,q > 0 if and only if the two limits for Np,q(0) = limr→0Np,q(r) and Np,q(∞) =
limr→∞Np,q(∞) are positive as well.

The asymptotic behavior for r →∞ is easily discussed:

Np,q(∞) =

{
∞ for p ≥ 1,
max{q,1}

1−p for p < 1.

To see this, we first observe that rϕ′q(r)/φq(r) → max{1, q} for r → ∞. Second, we have
ϕ′p(r)→∞ for ≥ 1 and ϕ′p(r)→ 1/(1−p) for p < 1.

The determination ofNp,q(0) needs a more detailed case-by-case study, but is elementary. We obtain

Np,q(0) =



0 for q ≥ 1 and p ≥ max{0, 1−q},
q
q−1

for q > 1 and p = 0,
1

1−q for q ∈ ]0, 1] and p = 1−q,
−q
p−1

for q < 0 and p > 0,

∞ otherwise.

With this, part (a) is established.

To see part (b) we observe d
dr
Np,p(r) ≤ 0 and find mp,p = Np,p(∞) = 1/(1−p).

Similarly, for part (c) one shows d
dr
Np,1−p(r) ≤ 0 for p ∈ [0, 1/2] giving mp,1−p = Np,1−p(∞) =

1/(1−p). Moreover, for p ∈ [1/2, 1] one shows d
dr
Np,1−p(r) ≥ 0, which impliesmp,1−p = Np,1−p(0)

= 1/p.

Proof of Corollary 3.8. According to the previous result, we need to find c∗ = cp which is given via

1

cp
= sup

0<s 6=1
Φ(s) with Φ(s) :=

ϕp(s)

s(ϕ′p(s))
2
.

Observe that ϕ1/2(s) = 2(
√
s− 1)2 implies Φ1/2 ≡ 1/2, and hence c1/2 = 2.

The derivative of the power-like entropy generator (7) is

ϕ′p(s) =
sp−1 − 1

p− 1
for p ∈ R \ {0, 1}, ϕ′0(s) = 1− 1

s
, ϕ′1(s) = log s.
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For general p ∈ R, an explicit calculation yields

Φ(s) =
p− 1

p
· s

p − ps+ p− 1

s(sp−1 − 1)2
,

we easily verify that Φ is continuous at the s = 1 and hence continuous on (0,∞). Moreover, we have
Φ(s) → max{0, 1−p} for s → ∞. For s → 0 we obtain Φ(s) → ∞ for p > 1/2 and Φ(s) → 0
for p < 1/2.

Thus, we conclude sup Φ = ∞ for p > 1/2. For p ≤ 1/2 a closer inspection shows that sup Φ =
1−p. and hence cp = 1/(1−p) as stated.

Proof of Corollary 5.1. By our threshold condition, for p ∈ (−∞, 1
2
], the constant cHe = 1

1−p
satisfies ∥∥∥∥δFδµ [µ]

∥∥∥∥2

L2
µ

≥ cHe · (F (µ)− F (π)) .

Since the dissipation of the Otto-Wasserstein part is always non-negative, we trivially have

α

∥∥∥∥∇δFδµ [µ]

∥∥∥∥2

L2
µ

+ β

∥∥∥∥δFδµ [µ]

∥∥∥∥2

L2
µ

≥ βcHe · (F (µ)− F (π)) + 0,

which is the desired statement.
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