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A posteriori error control for stochastic Galerkin FEM with
high-dimensional random parametric PDEs

Martin Eigel, Christian Merdon

Abstract

PDEs with random data are investigated and simulated in the field of Uncertainty Quantification
(UQ), where uncertainties or (planned) variations of coefficients, forces, domains and boundary con-
ditions in differential equations formally depend on random events with respect to a pre-determined
probability distribution. The discretization of these PDEs typically leads to high-dimensional (determin-
istic) systems, where in addition to the physical space also the (often much larger) parameter space
has to be considered. A proven technique for this task is the Stochastic Galerkin Finite Element Method
(SGFEM), for which a review of the state of the art is provided. Moreover, important concepts and
results are summarized. A special focus lies on the a posteriori error estimation and the derivation
of an adaptive algorithm that controls all discretization parameters. In addition to an explicit residual
based error estimator, also an equilibration estimator with guaranteed bounds is discussed. Under cer-
tain mild assumptions it can be shown that the successive refinement produced by such an adaptive
algorithm leads to a sequence of approximations with guaranteed convergence to the true solution. Nu-
merical examples illustrate the practical behavior for some common benchmark problems. Additionally,
an adaptive algorithm for a problem with a non-affine coefficient is shown. By transforming the original
PDE a convection-diffusion problem is obtained, which can be treated similarly to the standard affine
case.

1 Introduction

High-dimensional parametric PDEs have become an important applied mathematical research area in the
last decade mainly because of the popularity the field of Uncertainty Quantification (UQ) has experienced.
On the one hand, this is due to the importance of incorporating uncertainties in the simulation of real-
world problems, e.g. in the engineering and natural sciences. On the other hand, introducing dependence
on random parameters is a natural extension of differential equations, opening up a broad analytical and
methodological research areas by combining concepts from numerical, functional and stochastic analysis.

Classically, two conceptual approaches co-exist peacefully: statistical sampling methods based on the uni-
versal workhorse of Monte Carlo (MC) simulations, and functional approximations such as Stochastic Col-
location (SC) and Stochastic Galerkin FEM (SGFEM), which are rooted in a function space perspective. To
mention just a few aspects and provide initial references for the interested reader, in the last decade progress
with sampling methods has for instance be achieved with multilevel MC (MLMC), multi-index MC (MIMC),
and quasi-MC (QMC) methods [TSGU13, HS17, HANT16]. Stochastic Collocation is one of the most popu-
lar functional representations, based on a sparse grid polynomial interpolation in parameter space. Seminal
works are [BTZ05, BNT10] with later extensions e.g. in [EST18] and related multilevel quadrature methods
for quantities of interest in [HPS16]. Another common functional method is an extension of classical finite
element methods to the parametric setting, called Stochastic (Galerkin) FEM (SGFEM), initially presented
in[GS91, GK96] with further developments in [KM03, Mat08]. The tensor structure of the solution space
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M. Eigel, Ch. Merdon 2

of parametric PDEs lends itself to higher-order tensor compression for which [MZ12, EHL+13] are early
examples.

To obtain a better numerical efficacy, the discretization has to be adjusted iteratively. The challenge consists
of the derivation of reliable error estimators for all discretization parameters and a balanced refinement pro-
cedure, taking all error components into account. As with deterministic FEM, also stochastic FEM provide
a solid basis for this task due to the projection property of the discrete solution. This can be exploited to
derive reliable residual based error estimators for the parametric truncation error, see [Git13] and in com-
bination with the physical approximation error see [EGSZ14, EGSZ15, EM16a], all of which lead to sparse
generalized (Legendre) polynomial chaos (GPC) representations. Similar ASGFEM approaches with low-
rank tensor representations were shown in [EPS17] and (for the first time) for the lognormal (Hermite chaos)
setting in [EMPS20]. Generalization to approximate Galerkin projections by sample-based nonlinear least-
squares tensor reconstructions can be found in [EFHT23a, EST22]. A strand of work using hierarchical
error estimators with sparse GPC SGFEM was started in [BPS12, BPS14, BS16]. It was later extended
in [BPRR19b, BPR22] to goal-oriented error estimation and multilevel adaptive grids, which are also used
in [EGSZ14]. Convergence results for these ASGFEM are derived in [EGSZ15] for the residual based error
estimator and in [BPRR19a, BPR22] for the hierarchical one. An early work on a posteriori error estimation
with small uncertainties is [GNP16] and recently the standard residual based error estimator was trans-
ferred to SC methods [GN18], which before only were based on a priori information or heuristic indicators
during runtime [NTTT16]. With a reliable error estimator readily available, convergence results for adaptive
SC became feasible as shown in [FS21, EST22].

In this review chapter for ASGFEM with sparse GPC expansion, we recall a standard linear benchmark
model1 with affine parameter dependence of the coefficient on the parameters. To make it concrete, consider
some domainD ⊂ Rd and let (Ω,Σ, π) be a σ-finite probability space. The coefficient a(ω, x) is assumed
to be isotropic for the sake of simplicity. Moreover, we require a ∈ L∞(Ω × D) to be bounded, strictly
positive2 and to be represented in terms of independent and identically distributed (i.i.d.) random variables
Ym ∼ U [−1, 1] in an expansion of the form

a(ω, x) = a0 +

∞∑
m=1

am(x)Ym(ω),

which is affine in the “random coordinates” Ym. The model problem with random operator is given by

−div(a(ω, x)∇u(ω, x)) = f(x) for (ω, x) ∈ Ω×D. (1)

Here, the coefficient a(ω, x) and consequently also the solution u(ω, x) are measurable functions Ω ×
D → R. The representation of a(ω, x) can be based on artificial or factual (“expert opinion”) assumptions
regarding the characterization of the considered random field, or it can be based on real-world measure-
ments from which empirical statistical data of the actual field is determined. Given an artificial or empirical
covariance operator, a random field representation for use in the PDE model can then be computed as a
Karhunen-Loève expansion (KLE) as discussed in Section 2.1. Although the numerical experiments in the
later sections use an artificial KLE, we nevertheless cite some theoretical results regarding the decay behav-
ior with respect to regularity properties of some prescribed covariance, which should be of general interest.
Instead of working with random variables, the image of the (countable infinite) random vector (Ym)m≥1 is

1usually called the “affine Darcy problem”
2An exception to this setting is presented with the log-transformed problem in Section 7.
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Error control for stochastic Galerkin FEM for parametric PDEs 3

given by Γ = [−1, 1]N with an associated product probability measure π. A basis for Γ is given by the
so-called generalized polynomial chaos, i.e. polynomials orthogonal with respect to π, which in this setting
is determined by the joint (uniform) distribution of the model parameters. The density of the respective ten-
sorized Legendre polynomials is a result of the famous Cameron-Martin theorem [EMSU12, LPS14]. We
recall properties required for constructing the parameter space approximations in Section 2.2. Section 3
begins with a definition of the affine linear model problem used in this work and its weak formulation in
Section 3.1. With this at hand, Section 3.2 introduces the SGFEM for that problem, in particular the notation
for the discrete spaces that are used in the Galerkin projection. Moreover, the algebraic structure of the
discretization, its tensor structure and low-rank compression as well as some central theoretical (conver-
gence) results are recalled in Section 3.3, Section 3.4 and Section 3.5, respectively. Section 4 reviews an
error splitting into subresiduals in Section 4.1 and defines an explicit residual based error estimator in Sec-
tion 4.2, which is known to be efficient and reliable, albeit (as usual with FEM) with unknown multiplicative
constants. We then also introduce a guaranteed and constant-free flux equilibration error estimator, which
is state-of-the-art in deterministic FEM in Section 4.3 and discuss the handling of the potentially infinite
dimensional stochastic boundary in Section 4.4. Section 5 describes the adaptive algorithm, which uses the
error estimators for the two error components (approximation and parametric truncation) of the preceding
section to successively refine all discretization parameters. For this adaptive algorithm, convergence results
are known, which we briefly recall. Numerical experiments are depicted in Section 6, where the perfor-
mance of the adaptive algorithm is illustrated on the unit square and L-shaped domain for different decay
rates of the KLE modes. In Section 7, we briefly touch upon the lognormal problem, consisting of the same
linear PDE as before but with the affine coefficient replaced by a lognormal field. We present the numerical
convergence of an adaptive algorithm akin the one developed for the affine case, which becomes possible
because of a suitable transformation, resulting again in an equation with an affine coefficient.

2 Random field expansion and polynomial chaos

For the discretization of the random PDE (1), a parameter dependent representation of the random data is
required, which we discuss in this section. The most common approach is the Karhunen-Loève expansion
(KLE, also known as proper orthogonal decomposition), which is an affine expansion in terms of indepen-
dent random variables with respect to the eigenfunctions of the covariance integral operator. It separates
the deterministic and stochastic variables optimally in a mean square sense. In the same reference, the
stochastic Galerkin FEM (SGFEM) with polynomial chaos, i.e. univariate polynomials that are orthonormal
with respect to the joint distribution of the data random variables, was initially presented. For the random
field representation, different other approaches can be used that might exhibit favorable properties from a
theoretical or practical point of view, see e.g. [BC24, BV22].

2.1 Representation of random fields

Random fields admissible as data in the framework we consider here have to adhere to certain (in many
cases non-restricting) properties. Inevitably, a parametric representation such as the KLE has to be available
if they are to be used in a SGFEM discretization. A vital notion (not unique to the KLE) is the separation of
spatial and random variables and by this of a random coordinate system spanned by independent random
variables with known product distribution. We recapitulate central results of the KLE in the following, examine
the crucial decay properties and its numerical approximation. For further details, we refer to [ST06b, LPS14,
FST05, Loè77].
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2.1.1 The Karhunen-Loève expansion

For the coefficient a(ω, x) in (1) we assume its mean field and two-point correlation to be specified, i.e.,

Ea(x) :=

∫
Ω
a(ω, x)dπ(ω), Ca(x, x

′) :=

∫
Ω
a(ω, x)a(ω, x′)dπ(ω) for x, x′ ∈ D ⊂ Rd. (2)

Note that this implies the covariance of the field

Va(x, x
′) = Ca(x, x

′)− Ea(x)Ea(x
′), (3)

the smoothness of which directly determines how many terms are required in a parametric expansion to
reach a certain accuracy in a certain norm. The KLE is optimal with respect to the L2-norm.

To derive the KLE of a(ω, x), assume that it has bounded variance a ∈ L2(Ω × D). It follows that
Va ∈ L2(D ×D). For u ∈ L2(D) its covariance operator

Va : L2(D)→ L2(D), (Vau)(x) :=

∫
D
Va(x, x

′)u(x′) dx′ (4)

is symmetric, non-negative and compact, resulting in a countable sequence of eigenpairs (λm, am)m≥1

with λm converging to 0 from above for m → ∞ and such that λ1 ≥ λ2 ≥ . . . ≥ 0. The KLE of the
random field a(ω, x) is then given by

a(ω, x) = Ea(x) +
∞∑
m=1

√
λmam(x)Xm(ω). (5)

Here, the sequence (Xm)m≥1 of centered independent random variables∫
Ω
Xm(ω) dπ(ω) = 0,

∫
Ω
Xm(ω)Xn(ω) dπ(ω) = δmn for all m,n ≥ 1, (6)

defines a coordinate system of the random space that is used in the reformulation of the stochastic into a
parametric problem in Section 3.1. The KLE (5) converges in L2(Ω×D) since

∞∑
m=1

λm =

∫
Ω

∫
D

(a(ω, x)− Ea(x))2 dπ(ω) dx <∞. (7)

A stronger uniform convergence is obtained if (am)m≥1 and (Xm)m≥1 are uniformly bounded in their
respective spaces and if

∑
m≥1 λm <∞.

In any numerical method, the number of terms of the expansion (5) has to be finite. It hence is crucial to
understand the decay properties of the sequence of eigenvalues. A common assumption is piecewise ana-
lyticity of Va, meaning that there exists a finite decomposition of hypercubesD ⊆

⋃J
j=1Dj and V |Dj×Dj′

admits an analytic continuation in a neighborhood of Dj ×Dj′ for any j 6= j′. For the eigenvalues, it then
holds that for some c > 0

0 ≤ λm . e−cm
1/d

for m ≥ 1.

For practical purposes, i.e. when the covariance is defined explicitly or based on empirical estimates from
measurement data, the following results are of interest.
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Proposition 2.1 ([FST05] Propositions 2.4 & 2.5).

1 Assume the Gaussian covariance kernel

Va(x, x
′) = σ2 exp(|x− x′|2/(γ|D|)2)

with standard deviation σ > 0 and correlation length γ > 0. It admits an analytic continuation in the
whole complex space Cd with eigenvalue decay given by

0 < λm ≤ σ2 γ
−m1/d−2

Γ(1
2m

1/d)
.

2 For a less (piecewise Sobolev Hp,0, p ≥ 0) regular covariance, e.g., with δ ∈ [0, 1),

Va(x, x
′) = σ2 exp(− |x− x

′|1+δ

γ1+δ|D|1+δ
),

algebraic decay rates are obtained,

0 ≥ λm . m−p/q for m ≥ 1.

The next result provides decay rates for the pointwise error.

Proposition 2.2 ([FST05] Proposition 2.6). Assume Va to be piecewise smooth on a decomposition ofD as
above. For the ordered sequence of eigenpairs (λm, φm) with normalized eigenfunction ||φm||L2(D) = 1,

for any s > 0 and any multi-index α ∈ Nd it holds that

||∂αφm||L∞(Dj) ≤ C(s, α, Va)|λm|−s, for all j = 1, . . . , J, m ≥ 1,

for some C(s, α, Va) > 0.

With respect to the results cited above, a theorem of Widom relates the asymptotic decay of the radial
spectral density of an isotropic covariance function (such as the common Whittle-Matèrn covariance) and
the decay rate of the respective eigenvalues. The interested reader is advised to consult [LPS14, Loè77]
and references therein to learn more about spectral properties of covariance operators and the associated
KLE.

Remark 2.3. Typically, the eigenpairs (λm, am)m≥1 of the covariance (Hilbert-Schmidt) operator Va (4)
satisfying the Fredholm integral equation

Vaam = λmam, m ∈ N (8)

do not exhibit a known closed form and hence have to be computed numerically. Assuming a finite element
basis Vn = span{ϕi : i = 1, . . . , Nh} as in Section 3.2 and setting Φh(x) = (ϕ1(x), . . . , ϕNh(x)), a
projection of (8) onto this discrete space yields the generalized eigenvalue problem (EVP)

Wam,h = λm,hMam,h (9)
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with am,h(x) = Φh(x)am,h and

Wi,j := (ϕi, Vaϕj)L2(D) =

∫∫
D×D

ϕi(x)Va(x, x
′)ϕj(x

′) dx dx′,

Mi,j := (ϕi, ϕj)L2(D) =

∫
D
ϕi(x)ϕj(x) dx for i, j = 1, . . . , Nh.

Note that W is symmetric positive semi-definite and the Gram (mass) matrix M is symmetric positive
definite. When an explicit discretization of Va in the FE space exists, i.e.,

Va(x, x
′) ≈ Va,h(x, x′) :=

Nh∑
i,j=1

ϕi(x)Vi,jϕ(x′) = Φ(x)VΦ(x′)ᵀ

then W ≈MVM and instead of (9), the following EVP can be solved

MVMam,h = λm,hMam,h,

which (due to regularity of M = LLᵀ) is equivalent to the possibly advantageous reformulation as standard
EVP

LᵀVLãm,h = λmãm,h

with am,h = L−ᵀãm,h. Further details can be found in [Kee03].

When used in SGFEM discretizations, the truncation error (due to restriction to M terms) and the FE
approximation error in principle have to be taken into account, which can classically be achieved by some
Strang lemma as shown in [Mat08, FST05]. For other efficient approaches to solve the KLE numerically, we
refer the interested reader to [HPS15, ST06a, BC24].

2.2 Polynomial chaos expansion

The term polynomial chaos (also called Wiener-Hermite expansion) was originally introduced by Wiener
in [Wie38] in the context of statistical mechanics. The ideas were extended subsequently by Cameron and
Martin in [CM47], showing that any square-integrable functional on the set of continuous functions on the
unit interval can be expanded in an L2-convergent series of Hermite polynomials in a countable sequence
of Gaussian random variables. A modern exposition of the subject can be found in [Jan97]. We follow the
presentation in [EMSU12], which analyses the convergence of generalized polynomial chaos expansions
and also provides references for the historical context.

To recall the setting, assume a probability space (Ω,Σ, π) admitting the definition of nontrivial normally
distributed random variables ξ ∼ N (0, σ2). By L2(Γ,Σ, π) we denote the Hilbert space of equivalence
classes of random variables defined on the probability space with values in R. The respective inner product
(·, ·)π induces the norm ‖ · ‖π and the convergence with respect to this norm is called mean-square
convergence. A complete linear subspace of L2(Γ,Σ, π) is called a Gaussian Hilbert spaceH if it consists
of centered Gaussian random variables. For any Gaussian linear spaceH and n ∈ N0, the set

Pn(H) := {P (ξ1, . . . , ξm) : deg(p) ≤ n, ξi ∈ H, i = 1, . . . ,m, m ∈ N}

is a linear subspace of L2(Γ,Σ, π) spanned by polynomials up to degree n in an arbitrary number of
random variables and {Pn(H)}n≥0 forms a strictly increasing sequence of subspaces. Note that P0(H)
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Error control for stochastic Galerkin FEM for parametric PDEs 7

and P1(H) consist of (degenerate a.s.) constant and normally distributed random variables, respectively.
For n > 1,Pn(H) contains also random variables that are non-Gaussian. By an orthogonal decomposition
given by the spaces

Hn := Pn(H) ∩ Pn−1(H)⊥, n ∈ N,

it follows that

Pn(H) =
n⊕
i=1

Hi.

With this, the famous Cameron-Martin density result for polynomials of Gaussian random variables can be
summarized as follows: {Hn}n≥0 forms a sequence of closed, pairwise orthogonal linear subspaces of
L2(Γ,Σ, π) such that ⊕

n≥0

Hn = L2(Γ,Σ, π).

Moreover, if for the sigma algebra it holds that σ(H) = Σ then the following orthogonal decomposition is
given

L2(Γ,Σ, π) =
⊕
n≥0

Hn.

For further details we refer to [EMSU12]. Since many problems involve random variables that are non-
Gaussian, generalizations of the Wiener-Hermite chaos were proposed in particular in [XK02] and other
works of these authors. A central idea is to construct orthogonal polynomials with respect to a measure that
is close to the actual measure of the problem parameters. This in principle is possible for any probability
distribution. The mentioned reference proposed to use hypergeometric orthogonal polynomials of the Askey
scheme and by this introduced the generalized polynomial chaos (GPC) expansion that is used in this work.

The preceding considerations motivate the use of polynomials in random variables as a means to discretize
the probability space of the random variables Ym that determine the randomness on the coefficient a(ω, x)
of (1). Since it would be inconvenient to operate on a probability space, any method resulting in a functional
approximation of the random solution u(ω, x) considers the images of the random variables Ym, denoted
by Γ and associated with the probability measure of Y = (Ym)m≥1. This leads to a “change of variables”
and a deterministic problem in a parameter vector y = (y1, . . .) in the parameter space L2

π(Γ). For details,
we refer to [SG11, LPS14].

Stochastic Galerkin methods rely on a discretization of the parameter space L2
π(Γ) by an orthogonal basis

for a given parameter domain Γ :=
⊗∞

m=1 Γm, which is associated to the image of the random variables
parametrizing the random coefficient in (1). Since these are i.i.d. and in our setting uniformly distributed in
[−1, 1], the parameter space is endowed with the product probability measure π :=

⊗∞
m=1 πm. This ren-

ders the construction of an orthogonal basis of L2
π(Γ) simple, since it can be obtained by a tensorization of

a univariate basis of L2
π1

. In case of uniform distributions, i.e., Γm = [−1, 1]N and πm(ym) := 1
2 dπ(ym),

the appropriate orthogonal polynomials are Legendre polynomials. In general, orthogonal polynomials sat-
isfy a recurrence relation that allows a recursive computation. For the Legendre polynomials, the recurrence
relation reads

(n+ 1)Ln+1(y) = (2n+ 1)yLn(y)− nLn−1 for n ≥ 2 and L0(y) = 1, L1(y) = y.

The norm of the Legendre polynomials is given by

‖Ln‖2L2(Γ) = 2/(2n+ 1).
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Hence, the L2
π-normalized Legendre polynomials Pn := Ln/||Ln||L2

π(Γ) satisfy the recurrence relation

(n+ 1)Pn+1(y) = (2n+ 1)y
‖Ln‖L2

π(Γ)

‖Ln+1‖L2
π(Γ)

Pn(y)− n
‖Ln−1‖L2

π(Γ)

‖Ln+1‖L2
π(Γ)

Pn−1

with

P0(y) = 1 and P1(y) =
L1

||L1||L2
π(Γ)

.

An orthogonal basis of L2
π(Γ) is obtained by tensorization of the univariate polynomials above. For this, we

introduce the set of finitely supported multi-indices

F := {µ ∈ N∞0 : |supp(µ)| <∞} ,

where supp(µ) := {m : µm 6= 0}. Then, for µ ∈ F the associated multi-variate polynomial reads

Pµ(y) =

∞⊗
m=1

Pµm(ym) =
∏

m∈suppµ

Pµm(ym) (10)

and all {Pµ : µ ∈ F} form an orthogonal basis of L2
π(Γ). Note that the recurrence relations above still

hold for Pµ+εm , Pµ and Pµ−εm if only the m-th position in µ is changed by εm := (δmn)n=1∞ , i.e.,

αmPµ+εm(y) = βmymPµ(y) + γmPµ−εm (11)

for some coefficients αm, βm, γm.

3 SGFEM for the parametric Poisson model problem

This section introduces the model problem in more detail and studies its discretization via a Galerkin or-
thogonal projection onto a finite dimensional subspace as well as some important analytical results.

3.1 The model problem and its weak formulation

As a common benchmark model, we consider the parametric Poisson problem on some Lipschitz domain
D. With this, we seek a solution u such that

−div(a(y, x)∇u(y, x)) = f(x) for (y, x) ∈ Γ×D, (12)

where a is a stochastic coefficient depending on a countable infinite set of parameters y = (ym)m∈N.
These parameters can be understood as the image of i.i.d. random variables parametrizing the model data.
We assume an affine dependence of a on y in the sense that

a(y, x) = a0(x) +
∞∑
m=1

ymam(x). (13)
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Error control for stochastic Galerkin FEM for parametric PDEs 9

Moreover, assume y ∈ Γ := [−1, 1]∞, am ∈W 1,∞(D) and

ess inf
x∈D

a0(x) > 0 and
∞∑
m=1

∥∥∥∥ama0

∥∥∥∥
L∞(D)

≤ γ < 1. (14)

These conditions imply in particular that a(y, x) is uniformly bounded away from zero and from above
and the series in (13) converges in the L2 sense. The coefficient functions am may, e.g., stem from a
Karhunen-Loève expansion as in Section 2.1.1. It consists in this case of plane wave Fourier modes and
can be understood as eigenfunctions of a smooth covariance on the square domain, see [LPS14] for details.

Unique solvability of u ∈ V := L2
π(Γ;V ) ' H1

0 (D) ⊗ L2
π(Γ) follows from the uniform ellipticity of the

bilinear form A : V × V → R defined by

A(u, v) :=

∫
Γ

∫
D
a(y, x)∇u(y, x) · ∇v(y, x) dx dπ(y) (15)

=

∫
Γ

∫
D

(
a0 +

∞∑
m=1

ymam

)
∇u(y, x) · ∇v(y, x) dx dπ(y).

This also induces the energy norm and mean energy norm

‖u‖2A := A(u, u) and ‖u‖2A0
:=

∫
Γ

∫
D
a0∇u · ∇u dx dπ(y). (16)

All assumptions lead to the well-posedness of the weak formulation of (12): seek u ∈ V such that, for all
v ∈ V ,

A(u, v) = F (v) :=

∫
Γ

∫
D
f(x)v(y, x) dx dπ(y) (17)

where existence and uniqueness follow from the Riesz representation theorem as usual.

Since the spatial and parametric spaces Vh and Pn are dense in V andH for h→ 0 and n→∞, it can
be shown [CDS10, CDS11] that the solution u has an L2

π(Γ;V ) convergent expansion of the form

u(y, x) =
∑
µ∈F

uµ(x)Pµ(y) (18)

with coefficients uµ ∈ V . Then, (11) allows to identify the uµ in (18) as the solution of the variational
equations∫
D
a0∇uµ,∇vµ dx+

∞∑
m=1

∫
D
am

Å
αm
βm
∇uµ+εm +

γm
βm
∇uµ−εm

ã
· ∇vµ dx =

∫
D
fµvµ dx for all vµ ∈ V.

(19)

Here, fµ(x) :=
∫

Γ f(x)Pµ(y) dπ(y) = fδµ0 for a deterministic right-hand side f .

3.2 Discretization

The tensorized representation (18) is the point of departure for the SGFEM. The method involves an approx-
imation of the stochastic parameter dimension F by selection of a finite subset Λ ⊂ F (ideally the most
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important ones) and a spatial approximation of the coefficients uµ for µ ∈ Λ by FEM for some discrete
space Vµ,h based on some regular triangulation of D, i.e., by some

uN (y, x) =
∑
µ∈Λ

uN,µ(x)Pµ(y). (20)

We assume3 that all uN,µ live in the same discrete ansatz space, i.e., uN,µ ∈ Vh for all µ.

Remark 3.1. It is in principle possible to seek each uN,µ in a different approximation space Vh,µ, e.g.,
based on a different triangulation or a different polynomial order. In fact, one would expect mode-dependent
adaptive methods to lead to a discretization that is optimally tailored to the problem at hand in terms of
complexity. However, due to the coupling of the spatial coefficients of neighboring stochastic modes, this
requires costly interpolations between the different spaces, at least when realized naively. A first result for
this was shown in [EGSZ14] (see also the comparison with single-mesh approximations in [EGSZ15]) and
later in [BPR22]. Moreover, an approach based on hierarchical frames representations was demonstrated
in [BEEV24]. For Stochastic Collocation, this was realized in [BS23]. Note that the suboptimality of a single-
mesh representation can at least be compensated partially by higher-order methods as shown in [Git14].

Remark 3.2. A polynomial chaos representation exhibits noteworthy advantages not only when evaluating
specific realizations of random fields such as the solution but also enables a fast computation of statistical
quantities, in particular moments. It is easy to see [EPS17, LMK10] that the expectation is just

E[uN (·, x)] =

∫
Γ
u(y, x) dπ(y) = u(0, x).

For the variance it holds that

V(uN (·, x)) = E[uN (·, x)2]− E[uN (·, x)]2

where we can use that, due to orthogonality,

E[uN (·, x)2] =

∫
Γ
uN (y, x)2 dπ(y)

=
∑
ν,ν′∈Λ

uN,ν(x)uN,ν′(x)

∫
Γ
Pν(y)Pν′(y) dπ(y)

=
∑
ν∈Λ

uN,ν(x)2.

While the ansatz space for the stochastic part Pµ is discussed above, the spatial discretization needs some
further introduction. Here, classical conforming H1-conforming Lagrange FEM on a regular triangulation T
of D into simplices is employed. The vertices and edges (or faces in three dimensions) of the triangulation
are denoted byN and E , respectively. The diameter of a simplex T ∈ T ∪ E is denoted by hT .

Any discrete function Vh := Pk(T ) ∩ V can be written as a continuous piecewise polynomial from the
space

Pk(T ) := {qh ∈ L2(D) : qh|T ∈ Pk(T ) for all T ∈ T },

3for simplicity, see the following remark
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Error control for stochastic Galerkin FEM for parametric PDEs 11

where Pk(T ) are the polynomials of maximal degree k on a simplex T ∈ T .

Given a finite set of multi-indices Λ ⊂ F and the finite element space Vh ⊂ H1
0 (D), the discrete product

space that approximates V reads

VN (Λ, T ) :=

∑
µ∈Λ

vN,µPµ : µ ∈ Λ, vN,µ ∈ Vh

 ⊂ V.
The discrete problem seeks the Galerkin projection uN ∈ VN with

A(uN , vN ) = F (vN ) for all vN ∈ VN . (21)

Note that for implementing (21), the sum in the evaluation of the operator A in (15) can be truncated at the
maximal involved stochastic mode M := maxµ∈Λ len(µ).

Moreover, testing (21) with vh = Pµwh for wh ∈ Vh yields the mode-wise Galerkin orthogonality

A(u− uN , Pµwh) = F (Pµwh)−A(uN , Pµwh) = 0 for all wh ∈ Vh. (22)

This is crucial for the a posteriori error control discussed in Section 4 below.

3.3 Algebraic structure and linear solver

The system matrix of problem (21) can be written in the form

A = G0 ⊗A0 +

M∑
m=1

Gm ⊗Am, (23)

where Am are the spatial stiffness matrices connected to the coefficients am. Given some enumeration
τ : [dim(Λ)] ⊂ N→ Λ of the multi-indices in Λ, the parametric matrices Gm can be expressed by

G0 =

Å∫
Γ
Pτ(j)(y)Pτ(k)(y) dπ(y)

ã
j,k=1,...,dim(Λ)

= Idim(Λ),

Gm =

Å∫
Γ
ymPτ(j)(y)Pτ(k)(y) dπ(y)

ã
j,k=1,...,dim(Λ)

for m = 1,. . . ,M.

Here, the matrixG0 simply is the identity matrix Idim(Λ) ∈ Rdim(Λ)×dim(Λ) due to the orthonormality of the
stochastic ansatz functions, and the (sparse) matricesGm can be computed by the recurrence relation (11).
Analogously to (19), uh,µ is the solution of the subproblem

∫
D
a0∇uh,µ,∇vh,µ dx+

∞∑
m=1

∫
D
am

Å
αm
βm
∇uh,µ+εm +

γm
βm
∇uh,µ−εm

ã
· ∇vh,µ dx =

∫
D
fµvh,µ dx

for all vh,µ ∈ Vh.
(24)
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Hence, the linear system with the system matrix from (23) can be written explicitly in the form

. . .
... . .

.

A0 · · · γm
βm
Am · · · 0

...
. . .

... . .
. ...

· · · γm
βm
Am · · · A0 · · · αm

βm
Am · · ·

... . .
. ...

. . .
...

0 · · · αm
βm
Am · · · A0

. .
. ...

. . .





...
uµ−εm

...
uµ
...

uµ+εm
...


=



...
fµ−εm

...
fµ
...

fµ+εm
...


where uµ denotes the coefficients of uh,µ with respect to the basis of Vh and fµ denotes the discrete
right-hand side with entries (fµ)j :=

∫
D fµϕj dx for the j-th spatial basis function ϕj from Vh.

Due to the large size of the system matrix, direct solvers become prohibitively expensive for larger numbers
of stochastic modes. To alleviate this computational burden, it is advised to use an iterative solver that
exploits the sparse block structure of the problem. The simplest but already quite powerful approach is a
mean-based construction relying on a factorization ofA0, e.g., usingP0 := G0⊗A0 and its inverseP−1

0 =
G0⊗A−1

0 in a conjugated gradients algorithm. Further discussions and more sophisticated approaches can
be found in [EPSU09, Ull10]. We also point out that a full construction of the involved matrices is not required
and block-wise solution process is much more efficient memory-wise. For details on how to approach this
with a preconditioned conjugate gradient (PCG) iterative solver, we refer to [Git13, EGSZ14].

3.4 Tensor structure and low-rank compression

According to the Bochner tensor space V = H1
0 (D) ⊗

(⊗∞
m=1 L

2
πm(Γm)

)
of the model problem (12),

the representation of the stochastic Galerkin FEM discretization (23) exhibits a natural tensor structure,
which lends itself to modern low-rank tensor formats [BSU16, Nou17]. An in principle direct translation of
the adaptive algorithm described in Section 5 and likewise [EGSZ14] can be found in [EPS17]. Concretely,
the algebraic Galerkin system has the form

A(U) :=

(
M∑
m=0

Am

)
(U) = F (25)

with

Am := Km ⊗ I ⊗ · · · ⊗Bm ⊗ I ⊗ · · · ⊗ I, (26)

F := f ⊗ e1 ⊗ · · · ⊗ e1. (27)

Here, e1 denotes the first unit vector and for m = 1, . . . ,M ,

Km(i, j) :=

∫
D
am(x)∇ϕi(x) · ∇ϕj(x) dx, i, j = 1, . . . , Nh, (28)

Bm(µ, ν) :=

∫
Γm

ymPµmPνm dπm(ym), µ, ν ∈ F , (29)

f(j) :=

∫
D
f(x)ϕj(x) dx, j = 1, . . . , Nh. (30)
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By this, the coefficient tensor U ∈ RdimVh×d1×···×dM for the tensorized finite dimensional approximation
space is determined by the tensor set

Λ := {(µ1, . . . , µM , 0, . . .) : µm = 1, . . . , dm; m = 1, . . . ,M}

such that

uN (y, x) =

N∑
i=1

∑
µ∈Λ

U(i, µ)ϕi(x)Pµ(y). (31)

Here, in contrast to the sparse discretization Section 3.2 with respect to some selection of active modes
in the set Λ ⊂ F , the space VN (Λ, T ) contains all polynomials up to a certain degree dm in mode m.
Since this discrete space and hence the coefficient tensor in (31) scales like O(dM ) in the parameter
dimensions with d = max{d1, . . . , dM}, the problem cannot be solved without some form of model
reduction or compression. In [EPS17], the popular tensor train (TT) format (also known as Matrix Product
States (MPS) in quantum physics) is used, which exhibits a storage complexity ofO(Mdr2

max), i.e. linear in
the dimension M and quadratic in the rank rmax = max r. Solving (25) with an alternating linear scheme
(ALS) then leads to the representation

U(i, µ1, . . . , µM ) =

r1∑
k1=1

· · ·
∑
k
rM+1
M+1

U0(i, k1)
M∏
m=1

Um(km, µm, km+1)

with ranks r = (r1, . . . , rM+1), rM+1 = 1 and component tensors Um ∈ Rrm−1×dm×rm . This format
can significantly reduce the representation complexity of the Galerkin approximation.

We note in passing that an explicit tensor construction for the substantially more involved lognormal Darcy
problem is shown in [EMPS20] and a tensor reconstruction of the lognormal representation with different
means is derived in [EFHT23b].

3.5 Convergence analysis

A priori convergence results for sparse polynomial representations were derived in [CDS10, CDS11]. These
were refined later in [BCM17] with the main novelty of compactly and locally supported expansions of the
data, resulting in a larger class of admissible coefficient expansions. We recall the main statements as given
in [SG11], which also includes the overall convergence when combining the physical FE with the parameter
space discretization. For further details, the interested reader is referred to [CD15].

Theorem 3.3 ([SG11] Theorem 3.7). Under the boundedness assumptions on a(y, x) and if the summa-
bility condition (||am||L∞(D))m≥1 ∈ `p(N) holds true for some p < 1, then the coefficient sequences
(||uν ||V )ν∈F ∈ `p(F) and the Legendre GPC expansion converges in L2

π(Γ;V ) like∥∥∥∥∥∥u−
∑
ν∈ΛN

uνPν

∥∥∥∥∥∥
L2
π(Γ;V )

≤ ‖(||vν ||V )‖`(F)N
−s, s =

1

p
− 1

2
,

where ΛN ⊂ F is the set of indices corresponding to the N largest ||uν ||V of (18).

For the a priori convergence rate of the SGFEM, approximation properties of the physical discretization
have to be considered. Assuming sufficient regularity of the right-hand side f ∈ L2(D) ⊂ V ′, u ∈W :=
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H2∩V and finite element degrees of freedomMh = dim(Vh) ∼ h−d with standard conforming Lagrange
elements on a regular triangulation with mesh width h of the convex polyhedral domain D ⊂ Rd, for some
0 < t ≤ 1/d we can expect that

inf
vh∈Vh

‖u− vh‖V .M−th |u|W . (32)

This leads to the following regularity result of the solution.

Theorem 3.4 ([SG11] Theorem 3.8). Under the boundedness assumptions on a(y, x), with f ∈ L2(D),
||∇a0||L∞(D) <∞ and if the summability conditions (||am||L∞(D))m≥1 ∈ `p(N) and (||∇am||L∞(D))m≥1 ∈
`p(N) hold true for some p < 1, then the coefficient sequence (||uν ||V )ν∈F ∈ `p(F).

Finally, we recall the overall discretization convergence rate.

Theorem 3.5 ([SG11] Theorem 3.9). For the set ΛN ⊂ F consisting of the multi-indices of the N largest
||uν ||W of (18), for ν ∈ ΛN there exist finite element spaces Vν ⊂ V of dimension Mν such that∥∥∥∥∥∥u−

∑
ν∈ΛN

uνPν

∥∥∥∥∥∥
L2
π(Γ;V )

.

Ñ∑
ν∈ΛN

Mν

é−min{s,t}

with s =
1

p
− 1

2
.

Remark 3.6. Note that the optimal convergence stated above cannot be achieved with the single mesh
approach used for the numerical examples in Section 6. Instead, different meshes adjusted to the required
accuracy of each stochastic mode have to be used as in [BEEV24, BPR22, EGSZ14].

It is known that the stochastic convergence, i.e. the convergence in the generalized polynomial chaos repre-
sentation of the parameter space, is exponential in the polynomial degrees if the model randomness is finite
dimensional. This is in particular the case when certain pre-determined parameters in the model are varied
(in contrast to representing a random field as with the KLE) a common problem for which is the so-called
“cookie problem” with varying values on a fixed number of inclusions in the physical domain. We refer to the
convergence result in [BNT07, Theorem 4.1] for details.

4 A posteriori error control

While theoretical properties of the affine model problem are well understood as sketched in Section 3.5
and [SG11, CD15, BCM17], obtaining optimal discretizations numerically is challenging due to the possibly
large dimensions of the parameter space and the required balancing of approximation and truncation er-
rors. Adaptive Stochastic Galerkin FEM (ASGFEM) have proved to be an efficient method to obtain sparse
GPC representations with reliable error estimates, in particular exploiting the orthogonality property of the
Galerkin projection not given in most other methods.

In this section we discuss residual and equilibration based a posteriori error control for the mean energy
error of the approximation, i.e., for the norm

‖u‖2A0
=

∫
Γ

∫
D
a0(x)|∇u(y, x)|2 dx dπ(y) =

∑
µ∈F

∫
D
a0|∇uµ|2 dx =:

∑
µ∈F
‖uµ‖2a0

.

Due to (14), this mean energy norm is equivalent to the energy norm [EGSZ14, BPS14] via

(1− γ)‖u‖2A0
≤ ‖u‖2A ≤ (1 + γ)‖u‖2A0

.
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Error control for stochastic Galerkin FEM for parametric PDEs 15

Since A(·, ·) is a scalar product on V , the Riesz representation theorem yields

‖u− uN‖A = sup
v∈V

A(u− uN , v)

‖v‖A
≤ (1− γ)−1/2‖R‖A?0 (33)

for the residual R ∈ V? defined by

R(v) := A(u− uN , v) for all v ∈ V

measured in the dual norm

‖R‖A?0 := sup
v∈V

|R(v)|
‖v‖A0

.

4.1 Error expansion

The control of the error between u and uN is based on the decomposition of the residual into components
with respect to the PCE of the parametric space, namely

R(v) = A(u− uN , v) = A
(
u− uN ,

∑
µ∈F

vµPµ

)
=
∑
µ∈F

rµ(vµ) for v ∈ V,

where the subresiduals are defined for all v ∈ V (now a deterministic function like vµ above) by

rµ(v) := F (Pµv)−A(uN , Pµv) =

∫
D
fµv dx−

∫
D
σµ∇v dx with fµ :=

®
f for µ = 0

0 else
(34)

and some effective numerical subresidual stress σµ defined by

σµ := a0∇uN,µ +
∞∑
m=1

am · ∇
Å
αm
βm

uN,µ+εm +
γm
βm

uN,µ−εm

ã
.

This effective subresidual stress σh mainly reflects the coupling of different solution modes to the mode µ
by the recurrence relation (11), mirroring the operator coupling structure (24).

Since uN,µ = 0 for µ ∈ F \ Λ, it follows that σµ vanishes for those µ where µ± εm /∈ Λ for all m. This
leads to the definition of the boundary set of modes

∂Λ :=
{
ν ∈ F : ∃µ ∈ Λ,m ∈ N such that ν = µ+ εm ∈ F \ Λ

}
.

Consequently, the subresiduals rµ beyond the boundary ∂Λ vanish, i.e.,

rµ ≡ 0 for all µ ∈ F \ (Λ ∪ ∂Λ). (35)

Because of the orthonormality of the PCE, the Parseval identity (see e.g. [EM16a, Theorem 1] for details)

and (35) yield

‖R‖2A?0 =
∑
µ∈F
‖rµ‖2a?0 =

∑
µ∈Λ

‖rµ‖2a?0 +
∑
µ∈∂Λ

‖rµ‖2a?0 , (36)
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where the subresiduals are measured in the dual norm

‖r‖a?0 := sup
v∈V

r(v)

‖v‖a0

. (37)

Hence, to bound the dual norm of the full residual one can bound the dual norm of all subresiduals. Recall
from (22), that the subresiduals for µ ∈ Λ enjoy Galerkin orthogonality, i.e. it holds that

rµ(vh) = 0 for all vh ∈ Vh.

This allows to apply standard techniques known for deterministic problems. The subresiduals and their local
contributions are subsequently used to steer the adaptive refinement in the spatial dimension.

Note that the remaining subresiduals µ ∈ ∂Λ lack Galerkin orthogonality but are crucial since they estimate
the error incurred by neglecting the modes that are not in Λ (yet). Therefore, the estimators for these
subresiduals are essential to steer the stochastic refinement.

Below, two approaches to derive reliable error estimators for the subresiduals are discussed, namely the
explicit residual-based error estimator and the equilibration error estimator.

4.2 Explicit residual-based error estimator

The classical explicit residual-based error estimator involves a volume contribution consisting of the piece-
wise divergence divh and normal jumps [[σµ · nF ]] over faces F ∈ F of the discrete stress σµ.

The resulting local error estimator for the dual norm (37) of the subresidual (34) on some element T ∈ T
with edges E(T ) := {E ∈ E : E ⊂ ∂T} reads

η2
µ,T :=

h2
T

a0,T
‖fµ + divhσµ‖2L2(T ) +

∑
E∈E(T )

hE
a0,E
‖[[σµ · nE ]]‖2L2(E) for µ ∈ Λ, and (38)

η2
µ,T :=

1

a0,D
‖fµ + divhσµ‖2L2(T ) +

∑
E∈E(T )

h−1
E

a0,D
‖[[σµ · nE ]]‖2L2(E) for µ ∈ ∂Λ, (39)

where a0,T := essinfx∈Ta0(x) and a0,E := essinfx∈ωEa0(x) for the edge patch ωE of E ∈ E . Note
that the jump [[·]] is defined as zero for boundary edges E ∈ E , E ⊂ ∂D. The estimator (38) is derived
in the same way as in the classical deterministic context by using the Galerkin orthogonality and a quasi-
interpolation operator J : V → Vh (e.g. the Scott–Zhang interpolator [SZ90]) such that

rµ(v) = rµ(v − Jv) =

∫
D

(f + divσµ)(v − Jv) dx+
∑
E∈E

∫
E

[[σµ · nF ]](v − Jv) ds.

Subsequently, the first order approximation properties of J are used, namely

‖(1− J)v‖L2(T ) . hT ‖∇v‖L2(ΩT ) and ‖(1− J)v‖L2(E) . h
1/2
E ‖∇v‖L2(ΩE),

for local neighborhoods ΩT and ΩE of T ∈ T and E ∈ E , respectively, and some overlap argument to
get the bound

‖rµ‖a?0 ≤ Crelηµ for η2
µ :=

∑
T∈T ]

η2
µ,T
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with some reliability constant Crel that only depends on the shape constants of T . For (39) Galerkin orthog-
onality cannot be used. Instead, the residual is estimated directly and the trace inequality

‖v‖2L2(E) . h
−1/2
E ‖v‖L2(TE) + h

1/2
E ‖∇v‖L2(TE)

for some neighboring simplex TE of E ∈ E is employed. With these estimates it follows that

∑
E∈E

∫
E

[[σµ · nE ]]v ds ≤
∑
E∈E

h
−1/2
F

a
1/2
0,D

‖[[σµ · nE ]]‖L2(E)a
1/2
0,D

(
‖v‖L2(TE) + hE‖∇v‖L2(TE)

)
.

(∑
E∈E

h−1
E

a0,D
‖[[σµ · nE ]]‖2L2(E)

)1/2

(1 + h) ‖∇v‖a0 .

Here, a0,D := essinfx∈Da0(x) denotes the global infimum of a0. Efficiency can be derived in the spirit
of [Ver13] by testing the residual with appropriate bubble functions. The combination of this shows that
equivalence holds in the sense that

Ceff(ηµ + osc(fµ)) ≤ ‖rµ‖a?0 ≤ Crelηµ

with the usual data oscillations osc2(f) :=
∑

T∈T h
2
T ‖f − |T |−1

∫
T fdx‖

2
L2(T ).

4.3 Flux equilibration-based error estimator

Flux equilibration in the spirit of [BS08, Voh11, Mer13, EM16a] is based on the idea that by an integration
by parts, any qµ ∈ H(div, D) exhibits the property that

r(v) =

∫
D

(fµ + divqµ)v dx+

∫
D

(qµ − σµ) · ∇v dx.

If qµ additionally satisfies the equilibration constraint
∫
T fµ + divqµ dx = 0 for all T ∈ T , v can be

replaced by v − vT in the first term, where vT is the P0(T ) best-approximation of v. This allows to apply
a piecewise Poincaré inequality, i.e.,∫

D
(fµ + divqµ)v dx ≤ hT

πa
1/2
0,T

‖fµ + divqµ‖L2(T )‖a
1/2
0 ∇v‖L2(T ) for all T ∈ T .

Altogether, this leads to the element-wise flux equilibration error estimator

ηµ,T :=
hT

a
1/2
0,T

‖fµ + divqµ‖L2(T ) + ‖a−1/2
0 (σµ − qµ)‖L2(T ) for all T ∈ T .

For µ ∈ Λ, a suitable qµ can be designed via the local patch problems

qµ,z = argmin
τz∈BDMk(T (z))

{
‖a−1/2

0 (ϕzσµ − τz)‖L2(ωz) : τz · ~n = 0 along ∂ωz \ ∂D, (40)

div(τz) + πk−1(fµϕz + σµ · ∇ϕz)} = 0
}

and their superposition into the global flux

qµ =
∑
z∈N

qµ,z ∈ BDMk(T ).
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We point out that the local space in (40) is not empty since Galerkin orthogonality shows that the compati-
bility condition (essentially the Gauss theorem) between the divergence and the boundary conditions on the
node patch ωz holds true, i.e.

∫
ωz

divτz dx =
∫
∂ωz

τz · ~nds = 0. As derived above, the estimator yields
a guaranteed upper bound in the sense that, for all µ ∈ Λ,

‖rµ‖a?0 ≤ ηµ for η2
µ :=

∑
T∈T

η2
µ,T .

For µ ∈ ∂Λh, Galerkin orthogonality cannot be used and one can simply set qµ = 0 to arrive at

‖rµ‖a?0 ≤ ηµ :=
1

a
1/2
0,D

‖fµ‖L2(D) + ‖a−1/2
0 σµ‖L2(D) for µ ∈ ∂Λ. (41)

4.4 Tail error estimator

In the two previous subsections, two possible estimates for ‖rµ‖a?0 for µ ∈ ∂Λ were suggested, namely
(39) and (41). However, a remaining problem persists in that ∂Λ contains countable infinitely many terms.
There are (at least) two ways to proceed from here, which we discuss in the following.

The strategy in [EGSZ14, EM16b] relies on the assumption that fµ = 0 for µ ∈ ∂Λ, which is the case for
Poisson model problem with deterministic right-hand side f , and then further estimates the last term in (41)
by

‖a−1/2
0 σµ‖ . ‖a1/2

0 ∇uN,µ‖+

∞∑
m=1

∥∥∥ am
a

1/2
0

∥∥∥
L∞(D)

∥∥∥∇Åαm
βm

uN,µ+εm +
γm
βm

uN,µ−εm

ã∥∥∥
L2(D)

.

For µ ∈ ∂Λ, we have that uN,µ = 0 and usually also uN,µ+εm = 0. Hence, it remains

‖a−1/2
0 σµ‖ .

∞∑
m=1

∥∥∥ am
a

1/2
0

∥∥∥
L∞(D)

γm
βm
‖uN,µ−εm‖L2(D).

Here, contributions to the sum are only nonzero if µ − εm ∈ Λ, which is a finite set. Consequently, a
reordering that collects all contributions to the modes in Λ is possible by defining

ζµ := ‖uN,µ‖
∞∑
m=1

µ+εm∈∂Λ

∥∥∥ am
a

1/2
0

∥∥∥
L∞(D)

γm
βm

for µ ∈ Λ.

This quantity measures the tail error of all modes that are connected to the mode µ ∈ Λ via the recurrence
relation (11). A refinement procedure based on this strategy first computes all ζµ ∈ Λ and then selects

those m with µ + εm ∈ ∂Λh with the largest factors ‖ama−1/2
0 ‖γmβ−1

m for refinement until the marking
criterion is satisfied.

However, in this paper a more pragmatic and general strategy is favored: given some desired “tail scanning
length” assignment SΛ : Λ→ N, a finite dimensional set can be constructed by

∂hΛ :=
{
ν ∈ F : ∃µ ∈ Λ,m ∈ len(µ) + {1, . . . , SΛ(µ)} such that ν = µ+ εm ∈ F \ Λ

}
. (42)
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Here len(µ) is the length of µ, i.e., the index of the last nonzero entry of µ.

By replacing ∂Λ with the truncated finite subset ∂Λh from (42), only the ηµ for µ ∈ ∂hΛ are computed. This
strategy can be generalized straight-forwardly to problems with stochastic right-hand sides f (as required in
the numerical example of Section 7) and also allows for a convenient “all-at-once” implementation approach,
treating all subresiduals in the same way. The decay property of the coefficient function am suggests that the
error incurred from neglecting ∂Λ\∂hΛ becomes relatively small quite quickly for largerm, i.e. increasingly
many considered parameter dimensions. This can be further accelerated by increasing the values of SΛ in
the definition of (42).

5 Adaptive refinement algorithm

This section explains how to adaptively refine the spatial and stochastic degrees of freedom based on the
a posteriori error estimators (ηµ)µ∈Λ∪∂hΛ from the previous section and collects some known results on
convergence of similar algorithms.

5.1 The algorithm

The pseudo-code for one iteration of the

Solve → Estimate → Mark → Refine

loop is given in Algorithm 1 and explained step by step below.

T ,Λ← ASGFEM[T ,Λ, θx, θy]
uN ← Solve[Λ, T ]
(ηT )T∈T , (ηµ)µ∈Λ, η(Λ), η(∂hΛ)← Estimate[uN , T ,Λ, ∂hΛ]
if η(Λ) ≥ η(∂hΛ) then
Trefine ← Mark[θx, (ηT )T∈T ]
T ← Refine[T , Trefine]

else
Λnew ← Mark[θy, (ηµ)µ∈∂hΛ]
Λ← Λ ∪ Λnew

After computing the solution uN of (21) with the current triangulation T and the current set of stochastic
modes Λ with the method Solve, the error estimators are computed in the method Estimate. This
involves the computation of all ηµ for µ ∈ Λ ∪ ∂hΛ as well as their combination to the total spatial and
stochastic error

η(Λ) := (1− γ)−1/2

Ñ∑
µ∈Λ

η2
µ

é1/2

and η(∂hΛ) := (1− γ)−1/2

Ñ ∑
µ∈∂hΛ

η2
µ

é1/2

to approximate the two sums in (36). The factor (1− γ)−1/2 is due to (33) such that

‖u− uN‖2A ≤ η(Λ)2 + η(∂hΛ)2
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in case of the equilibration error estimator (up to an estimate for the missing modes in ∂Λ\∂hΛ). Whichever
quantity of these two is larger determines whether a spatial or a stochastic refinement is performed.

If spatial refinement is selected (η(Λ) > η(∂hΛ)), cell-wise refinement indicators (ηT )T∈T are computed
by accumulating the cell-wise contributions of each ηµ for µ ∈ Λ, i.e.,

η2
T :=

∑
µ∈Λ

η2
µ,T .

Dörfler marking in the spirit of [Dör96] is used to select the elements with the largest indicators for refine-
ment. More precisely, for a given parameter θx ∈ (0, 1], the smallest set Trefine ⊆ T is selected such
that ∑

T∈Trefine

η2
T ≥ θxη(Λ)2.

An actual implementation of this strategy computes cumulative sums of the error contributions (ηT )T∈T
sorted in decreasing order. After marking, the triangles in Trefine are refined via classical procedures, e.g.,
red-green-blue refinement or newest vertex bisection.

If stochastic refinement is selected (η(Λ) ≤ η(∂hΛ)), a similar marking procedure selects the smallest
subset Λnew ⊆ ∂hΛ such that ∑

µ∈Λnew

η2
µ ≥ θyη(∂hΛ)2.

The selected modes Λnew are added to the active set Λ for the next iteration.

Remark 5.1. Algorithm 1 essentially is the same as [BPRR19a, Algorithm 4+Criterion A] where the set ∂hΛ
is called “detail set” and also other marking criterias are discussed. Therein, also a weighting parameter θ
in the comparison of η(Λ) and η(∂hΛ) is considered.

5.2 Convergence of adaptive SGFEM

In the analysis of deterministic adaptive FEM, results on the numerical convergence and optimality of the
iteratively constructed approximations are by now common knowledge, cf. [CKNS08, CFPP14, BDD04].
However, for ASGFEM, there are only few results available as yet, which me mention briefly in this sec-
tion. For the linear model problem discussed in this work with affine coefficient dependence, the approach
of [CKNS08] was extended to also accommodate the stochastic tail truncation error in [EGSZ15]. It can
then be shown that for the quasi error consisting of the energy error and the weighted approximation and
truncation error estimators, the adaptive algorithm is a contraction in the sense that for some ωη, ωζ > 0
and δ ∈ (0, 1),

‖uN,j+1 − u‖2A + ωηη
2
j+1 + ωζζ

2
j+1 ≤ δ

(
‖uN,j − u‖2A + ωηη

2
j + ωζζ

2
j

)
.

Remark 5.2. A generalization of the convergence proof in [EGSZ15] is provided in [EH23]. There, also the
setting with lognormal coefficient exp(a(y, x)) was scrutinized. In this more challenging setting with un-
bounded parameter domain and hence a lacking uniform ellipticity property of the operator, the contraction
rate depends on the iteration and cannot be stated uniformly4.

4at least not with the used techniques, it seems
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By using a hierarchical error estimator for the physical and the parametric error components of the stochastic
FEM discretization of the same model problem, in [BPRR19a] convergence of an adaptive algorithm was
shown under a (for this type of error estimator common) saturation assumption. Moreover, under somewhat
stronger assumptions, linear convergence could be shown.

An alternative approach was developed in [BEEV24], which relies on a multilevel expansions of the coef-
ficient field and achieves an error reduction with a uniform rate. Notably, the (sometimes only assumed)
saturation property of the refinements is ensured by the adaptive refinement of mode-dependent finite ele-
ment meshes. The error estimator is based on an appropriate residual approximation with adaptive operator
compression in the parametric variables.

For adaptive stochastic collocation, two similar convergence results (again only for the model problem dis-
cussed in this work) were derived in [FS21, EEST22].

6 Numerical experiments

This section presents some numerical examples to illustrate the performance of the stochastic Galerkin
finite element approximation and the presented adaptive refinement algorithm.

6.1 Experimental setup

To test the capabilities of the adaptive algorithm, two domains are studied. First, the convex unit square
domainD� = (0, 1)2, where one expects a rather uniform mesh refinement. Second, an L-shaped domain
DL := (−1, 1)2 \ ([−1, 0] × [0, 1]) where one expects a strong refinement at the reentrant corner. On
both domains, the deterministic right-hand side is f ≡ 1 and the coefficient κ is chosen as

κ(x, y) := a0 +

( ∞∑
m=1

am(x)ym

)
where

am(x) := γm−σ cos(2π%1(m)x1) cos(2π%2(m)x2)

with γ = 0.9. The coefficients %1 and %2 are computed as in [EGSZ14, EGSZ15] by

%1(m) = m− k(m)(k(m) + 1)/2 and %2(m) = k(m)− %1(m),

where k(m) = b−1/2 +
√

1/4 + 2mc, i.e., the coefficient functions am enumerate all planar Fourier
cosine modes in increasing total order. The coefficient a0 is the mean value of a(y, x) and is set to a0 = 1.

The adaptive algorithm (Algorithm 1) is performed with refinement parameters ϑx = ϑy = 0.5 with a
target number of degrees of freedom of 5 · 105. The total number of degrees of freedom is calculated
by dim(Λ) · dim(Vh). For the tail error estimation, the truncated boundary ∂Λh from (42) is used with
SΛ([0]) = 10 and SΛ(µ) = 2 otherwise.

The real energy error ‖u− uN‖A is unknown and therefore approximated by a Monte Carlo estimator with
M = 150 samples y(i), i = 1, . . . ,M in the sense that

‖u− uN‖2A =

∫
Γ
‖a(y, •)1/2∇(u(y)− uN (y))‖2V dγ(y)

≈

(
M∑
i=1

γ(y(i))‖a(y(i), •)1/2∇(u(y(i))− uN (y(i)))‖2V

)(
M∑
i=1

γ(y(i))

)−1

.
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Figure 1: Square domain: Convergence history of the error and the explicit residual-based error estimator
(left column) or equilibration error estimator (right column) for order k ∈ {1, 2, 3, 4} and decay σ = 2 (top
row) and decay σ = 4 (bottom row).

Here, the exact solutions u(y(i)) are approximated by solving problem (12) with fixed y = y(i) on the same
triangulation with one polynomial degree higher. The coefficient expansion in (13) is truncated after 150
terms, i.e., the samples have length y(i) ∈ R150.

6.2 Unit square domain

Figure 1 depicts the convergence histories of the H1 and L2 errors and the two error estimators η from
Sections 4.2 and 4.3. It can be seen that the equilibration error estimator is much closer to the real H1

error than the explicit residual error estimator. Otherwise, the convergence of the errors is comparable. De-
spite the truncated boundary ∂hΛ, no underestimation is observed, indicating that the neglected stochastic
dimensions do not contribute significantly to the error. Figure 2 depicts the convergence history of the two
error contributions η(Λ) and η(∂hΛ). After the initial gap between spatial and stochastic error is resolved,
both components are reduced similarly while the number of degrees of freedom in space dim(Vh) and the
number of stochastic modes dim(Λ) are increased by alternating refinements.

In the bar plots in Figure 3, the maximal polynomial order of the stochastic ansatz polynomials can be seen
for each stochastic dimension ym. Moreover, the qualitative behavior is the same for both error estimators
and roughly follows the rule that a larger decay leads to a more concentrated refinement (i.e. higher order
polynomials) of the lower stochastic dimensions. Moreover, a higher polynomial order k in the spatial ansatz
spaces also allows for more concentration on the overall stochastic refinement. Both error estimators show
a similar behavior, but the equilibration error seems to concentrate a little bit more pronounced on the
stochastic refinements. This is probably due to the more accurate spatial error estimation, which might flip
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Figure 2: Square domain: Convergence history of the error estimator components η(Λ) and η(∂hΛ) (left)
and the number of degrees of freedom (right) versus the level for decay σ = 2 (top) and σ = 4 (bottom).

Figure 3: Square domain: Maximal polynomial degree in each stochastic dimensions ym for order k ∈
{1, 2, 3, 4} (from top to bottom) when using the explicit residual-based error estimator (left) or the equili-
bration error estimator (right).
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Figure 4: Square domain: refined grids after about 500.000 total degrees of freedom for order k = 2 with
decay σ = 2 (left) and σ = 4 (right).

the condition η(Λ) < η(∂hΛ) more often or earlier into the direction of stochastic refinement5.

Figure 4 shows adaptively refined grids for different values of spatial polynomial order k and decay factor
σ where the equilibration error estimator is used. As expected, the spatial refinement is less pronounced
for larger k. At least for order k = 2, also some more spatial refinement can be seen when the decay σ is
larger since less degrees of freedom need to be spent on the stochastic refinement.

6.3 L-shaped domain

Figure 5 presents the convergence histories for the L-shaped domain. The overall assessment is similar to
the unit square case. The main difference is the larger spatial error due to the singularity at the reentrant
corner of the domain. Figure 6 confirms that the spatial error is much larger in the beginning compared
to the square case and that the spatial refinement begins much earlier in particular for larger polynomial
degrees k. This is also confirmed by Figure 7 that compares the stochastic refinements between the two
error estimators and the different decay factors. It can be observed that the stochastic refinement after about
500.000 degrees of freedom is not as strong as in the square domain case.

Figure 8 shows adaptively refined grids for different values of spatial polynomial order k and decay factor
σ, where the equilibration error estimator is used. As expected, the grid refinement is concentrated at the
spatial singularity, Moreover. A larger decay σ (and hence less stochastic influence) leads to slightly higher
concentration on spatial refinement. Qualitatively similar results are obtained for the explicit residual-based
error-estimator.

Finally, Table 1 compares the stochastic refinement history for the two domains. It shows which multi-indices
are added to Λ at the iteration of the adaptive refinement loop of Algorithm 1 for the two domains under
consideration and a fixed set of parameters k = 2 and σ = 2 using the equilibration error estimator. The
two main observations are the following. First, the stochastic refinement is stronger for the square domain,
which confirms the earlier observations that the spatial error is less dominant here. Second, the ordering
of the multi-indices is more or less the same, they are just added in a later refinement level in case of the
L-shaped domain.

5Experiments not presented here with larger sets ∂hΛ do not show a noticeable improvement compared to the shown results.
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Figure 5: L-shaped domain: Convergence history of the error and the explicit residual-based error estimator
(left column) or equilibration error estimator (right column) for order k ∈ {1, 2, 3, 4} and decay σ = 2 (top
row) and decay σ = 4 (bottom row).

Figure 6: L-shaped domain: Convergence history of the error estimator components η(Λ) and η(∂hΛ) (left)
and the number of degrees of freedom (right) versus the level for decay σ = 2 (top) and σ = 4 (bottom).
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Figure 7: L-shaped domain: Maximal polynomial degree in each stochastic dimension ym for order
k ∈ {1, 2, 3, 4} (from top to bottom) when using the explicit residual-based error estimator (left) or the
equilibration error estimator (right).

Figure 8: L-shaped domain: refined grids after about 500.000 total degrees of freedom for order k = 2 with
decay σ = 2 (left) and σ = 4 (right).
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Table 1: Stochastic refinement history for the square domain up to level 14 (left) and the L-shaped domain
up to level 17 (right) with polynomial order k = 2 and decay σ = 2. Refinement levels without new
multi-indices indicate that spatial refinement was performed.

level added multi-indice(s) (D = D�)
1 [0]
2 [1]
4 [0, 1]
6 [0, 0, 1]

[2, 0, 0]
8 [1, 1, 0, 0, 0]

[0, 0, 0, 1, 0]
[0, 0, 0, 0, 1]

10 [0, 0, 0, 0, 0, 1]
[1, 0, 1, 0, 0, 0]

11 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0]

13 [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

14 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

level added multi-indice(s) (D = DL)

1 [0]
4 [1]
7 [0, 1]
9 [0, 0, 1]

[2, 0, 0]
11 [0, 0, 0, 1, 0]

[1, 1, 0, 0, 0]
[0, 0, 0, 0, 1]

13 [0, 0, 0, 0, 0, 1, 0]
[1, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1]

15 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

17 [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
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7 Extension to log-normal coefficients

This section gives a brief outlook onto a non-affine parametric problem, namely the random Poisson prob-
lem with log-normal coefficient κ(y, x) = exp(a(y, x)). As with the affine parametric model problem,
theoretical results are well established [CD13, HS14, BCDM17, Git10, GS09]. However, the unbounded-
ness of the parameter space and the much significantly more complex coupling structure of the opera-
tor in principle require different numerical techniques. Only few results exist regarding adaptive methods.
In [EMPS20, EH23], low-rank tensor formats are used to compress the algebraic equations, which either
is constructed explicitly or by solving a least squares problem in the nonlinear tensor manifold. However,
sparse GPC discretizations as discussed in this work are not directly possible due to an prohibitively high
computational complexity. An interesting way to obtain an equivalent equation equivalent to the lognormal
problem can be obtained by a log-transformation as shown in [UEE12]. By a multiplication of the model by
exp(−a), it is transformed to a parametric advection-diffusion problem that allows to apply the strategies
from the affine case, cf. [UEE12, UP15]. Further details of the ASGFEM presented below can be found in
the upcoming work [EGM25].

7.1 The model problem and its transformation

Consider once more a model problem of the form

−div(κ(y, x)∇u(y, x)) = f(x) for (y, x) ∈ Γ×D. (43)

This time, we assume an isotropic Gaussian random field log(κ(x, y)) and a Karhunen–Loève type expan-
sion for a(y, x) = log(a(x, y)), namely

a(y, x) =

∞∑
m=1

ymam(x), (44)

where each ym ∈ R is associated with an independent Gaussian random variable. To ensure summability
in (44), we assume that am ∈ L∞(D) for all m ∈ N such that

∞∑
m=1

‖am‖L∞(D) <∞. (45)

This condition – although not preventing the existence of sequences (ym)m∈N leading to divergence of
the sum in (44) – guarantees path-wise uniform boundedness of a(y, x) on the set Γ := {y ∈ RN :∑∞

m=1 am|ym| <∞}, which is a set of measure 1 with respect to the product measure π of all Gaussians.
This allows us to restrict the parameter domain from RN to Γ. We refer to [HS14] for further discussion on
the well-posedness.

From the computational side of view, a direct discretization with the nonlinear (with respect to ym) lognormal
coefficient κ would lead to a strongly coupled infinite system of equations, which easily becomes compu-
tationally intractable. In order to circumvent this issue with the numerical solution of the system, one can
transform the model problem (12) to assume again a formulation with only affine parameter dependence as
in the standard problem (12). In fact, a multiplication with exp(−a(x, y)) and an application of the product
rule yields the equivalent convection diffusion problem

−∆u(y, x)−∇a(y, x) · ∇u(y, x) = e−a(y,x)f(y, x) for (y, x) ∈ Γ×D. (46)
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One can show easily that any weak solution of the original problem (43) is also a weak solution of (46) and
vice versa and it holds stability in the sense

‖u(y)‖V ≤ c(y)‖f‖V ∗ for all y ∈ Γ

with some y-dependent constant c(y) that bounds κ(y, ·) from below. For practical evaluations, the refor-
mulation (46) has significant advantages, since the coefficient a(x, y) appears linearly (affine dependence
on y) in the stochastic part of the differential operator. Consequently, the coupling structure is much sparser
than in the lognormal case and akin the affine model problem, see [UEE12] for further discussions.

The weak formulation of (46) involves the operator

A(u, v) :=

∫
Γ

∫
D
∇u(y, x) · ∇v(y, x)−∇a(x) · ∇u(y, x)v(y, x) dx dπ(y)

:=

∫
Γ

∫
D
∇u(y, x) · ∇v(y, x)−

∞∑
m=1

ym∇am(x) · ∇u(y, x)v(y, x) dx dπ(y).

Moreover, the right-hand side is given by

F (v) :=

∫
Γ

∫
D
e−af(x)v(y, x) dx dπ(y). (47)

With this, the weak solution u ∈ V := L2
π(Γ;V ) is determined by

A(u, v) = F (v) for all v ∈ V.

7.2 Discretization

The main steps to derive a discretization by the SGFEM are the same as in the affine case. Based on a
triangulation T and a discrete set of active stochastic modes Λ, we seek the coefficient functions uN,µ ∈
Vh for µ ∈ Λ in the expansion

uN (y, x) =
∑
µ∈Λ

uN,µ(x)Pµ(y).

One important difference however is that this time orthogonal polynomials with respect to Γm = [−∞,∞]
and the probability measure with Gaussian density πm(y) = 1√

2π
e−y

2/2 are needed. This leads to Hermite

polynomials and their multivariate tensorizations {Pµ : µ ∈ F} that again satisfy a recurrence relation of
the form (11).

For the discretization of the right-hand side functional F in (47), we now have to use a representation of
e−af of the form

e−af =

(∑
µ

λµPµ

)
f =

∑
µ

fµPµ where fµ := λµf. (48)

The following lemma provides a formula to compute the coefficient functions λµ :=
∫

Γ e
−aPµ dπ(y)

analytically6.

6If f is stochastic (i.e. depends on parameters), the coefficient fµ :=
∫

Γ
e−afPµ dπ(y) has to be determined by quadrature.
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Lemma 7.1. It holds that

exp(−a(x, y)) = exp

(
1

2

∞∑
m=1

am(x)2

)∑
µ∈F

(−1)|µ|
a(x)µ

µ!
Pµ(y).

Proof. The generating function relation

exp

Å
− am(x)ym −

am(x)2

2

ã
=
∞∑
k=1

am(x)k

k!
Pk(ym) (49)

yields the expansion

exp(−a(x, y)) = exp

(
−
∞∑
m=1

am(x)ym

)
=

∞∏
m=1

exp(−am(x)ym)

=
∞∏
m=1

(
1

2
exp

(
am(x)2

) ∞∑
k=1

(−1)k
am(x)k

k!
Pk(ym)

)
. (50)

Expanding the products completes the proof.

With this, the SGFEM seeks a discrete uN ∈ Vh :=
¶∑

µ∈Λ vh,µPµ : vh,µ ∈ Vh
©

with

A(uN , vh) = F (vh) for all vh ∈ Vh.

Thanks to the representation (48) and the orthogonality of Pµ with respect to the Gaussian measure π, the
sum in the evaluation of the right-hand side is also finite, i.e., for any vh =

∑
µ vh,µPµ ∈ Vh it holds that

F (vh) =
∑

ν∈F ,µ∈Λ

∫
Γ
PνPµ dπ(y)

∫
D
fνvh,µ dx =

∑
µ∈Λ

∫
D
fνvh,µ dx.

Remark 7.2. The system matrix can (again) be written in tensor operator form

A = G0 ⊗A0 +

M∑
m=1

Gm ⊗Am, (51)

where A0 is the classical deterministic discrete Laplacian, i.e., the representation of (∇uh,∇vh)L2(D),
and Am are representations of the convection operators (∇am · ∇uh, vh)L2(D) for uh, vh ∈ Vh. The
matrices G0 and Gm are defined as in the affine case, see Section 3.3. Efficient preconditioners for the
log-transformed problem are discussed, e.g., in [UEE12].

7.3 Error estimator

To devise an (residual based) error estimator, the main idea is to treat the discrete solution component uN,µ
as an approximation to the perturbed Poisson problem

−∆uµ(x) = fµ(x) +

∫
Γ
Pµ(y)∇a(y, x) · ∇u(x) dπ(y),
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which is motivated by the Galerkin orthogonality rµ(wh) := A(u− uN , Pµwh) = 0 for all wh ∈ Vh and
µ ∈ Λ for the subresidual

rµ(wh) =

∫
D

(fµ + λµ)wh dx−
∫
D
∇uN,µ · ∇wh dx

where λµ :=

∫
Γ
∇a · ∇uNPµ dπ =

∞∑
m=1

∇am · ∇
Å
αm
βm

uN,µ+εm +
γm
βm

uN,µ−εm

ã
.

To bound its dual norm

‖rµ‖V ? := sup
vh∈Vh\{0}

|rµ(v)|
‖∇vh‖L2(D)

,

classical deterministic theory leads to the error estimator

η2
µ =

∑
T∈T

η2
µ,T with η2

µ,T := h2
T ‖fµ + λµ + ∆huN,µ‖2L2(T ) +

∑
F∈E(T )

hE‖[[∇uN,µ · nE ]]‖2L2(E).

(52)

Similarly, for µ ∈ F \ Λ (without Galerkin orthogonality) one obtains

η2
µ := ‖fµ + λµ‖2L2(D). (53)

As in the affine coefficient case, a split of the dual norm of the total error residual R(v) = A(u − uN , v)
into subresiduals is possible, namely

‖R‖2L2
π(Γ;V )? =

∑
µ∈F
‖rµ‖2V ? =

∑
µ∈Λ

‖rµ‖2V ? +
∑

µ∈F\Λ

‖rµ‖2V ? .

This motivates the decomposition into the spatial and stochastic errors

η2(Λ) :=
∑
µ∈Λ

η2
µ and η2(∂hΛ) :=

∑
µ∈∂hΛ

η2
µ.

As before, ∂hΛ denotes a finite-dimensional approximation of the infinite-dimensional remainder F \ Λ.

Remark 7.3. Opposite to the affine case with deterministic right-hand side, this time one cannot assume
rν ≡ 0 for ν ∈ F \ (Λ ∪ ∂Λ). In some situations it probably makes sense to modify the definition of the
discrete boundary (42) to include multi-indices that are more than an εm away from multi-indices in Λ, i.e.,
multi-indices from F \ (Λ ∪ ∂Λ). However, this is not further examined here.

7.4 A numerical example

This contribution concludes with a brief numerical example to illustrate that the suggested error estimator is
reliable and efficient and leads to reasonable mesh refinements. Further details and proofs are the content
of a future publication [EGM25].

The experiment is conducted on the L-shaped domainDL with data f ≡ 1 and the coefficient κ chosen as

κ(x, y) := exp

( ∞∑
m=1

am(x)ym

)
where

am(x) := γm−σ cos(2π%1(m)x1) cos(2π%2(m)x2)
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Figure 9: L-shaped domain logtransformed case: Convergence history of the error and the explicit residual-
based error estimator for order k ∈ {1, . . . , 4} with decay σ = 2 (left) and σ = 4 (right).

with γ = 1. The coefficients %1 and %2 are computed as in the affine case, see Section 6.1.

Algorithm 1 is performed with the error estimator from the previous section and the same parameters for
∂hΛ as in the affine case until the total number of degrees exceeds 5 · 105 < dim(Λ) · dim(Vh). Again
the exact error ‖∇(u − uN )‖L2 =

∫
Γ ‖∇(u(y) − uN (y))‖2V dπ(y) is approximated by Monte Carlo

sampling as described in Section 6 for the affine case.

Figure 9 shows the convergence history of the error estimator suggested above and the exact error for
polynomial order k = 1, . . . , 4. As in the affine case, the error estimator seems reliable and efficient
and leads to reasonable refinement in Vh and Λ. Qualitatively similar (despite the mesh refinement) but
undocumented results are obtained for the square domain. This illustrates that the affine reformulation of
the otherwise numerically quite challenging lognormal Darcy problem performs quite similarly to the well-
known affine case with a sparse ASGFEM discretization.

8 Summary and Outlook

The stochastic Galerkin method is a reliable and efficient method to tackle high-dimensional parametric
PDEs that has been one of the standard numerical approaches in Uncertainty Quantification since the sci-
entific field became popular. As in the classical deterministic case, it computes a Galerkin projection of the
parameter-to-solution map onto a finite dimensional product space of a spatial finite element space and a
parameter space spanned by a linear combination of orthogonal polynomials with respect to stochastic di-
mensions encoded in a set of multi-indices. This property renders Galerkin methods particularly well suited
for adaptive methods, which aim to achieve (quasi-)optimality with respect to the convergence rate as well
as the overall complexity with a problem-adapted refinement strategy. In our parametric setting, the purpose
of adaptive error control comprises not only the identification of areas of lower regularity in the physical
domain, resulting in appropriate refinements of the finite element space, but also the balanced selection of
the most influential stochastic dimensions. An adaptive algorithm that incorporates these two tasks is pre-
sented together with an overview over known results regarding its convergence. Modern equilibration error
estimators, built from known recipes for deterministic problems, even allow for guaranteed error bounds.
Interestingly, inspired by deterministic adaptive FEM, convergence of the adaptive algorithm can be shown
at least in the affine setting. A generalization was developed in [EH23], where it is pointed out that a uniform
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error reduction cannot be expected with the usual analytical techniques. Moreover, the question of optimal-
ity is still an open active research topic and possibly requires involved implementations as in [BEEV24] or
additional (as yet hard to verify) assumptions as in [BPR22].

While this contribution mainly summarizes well-established results for the stationary linear case with affine
coefficients, much less is known for nonlinear problems or cases with non-affine coefficients. In particular
the possible lack of uniform boundedness of the operator poses significant challenges for the theoretical and
numerical treatment and likely requires the development of new mathematical tools. As an example, the well-
known log-normal case was discussed, where it is possible to transform the problem to a structurally more
convenient affine case via an appropriate transformation. Nevertheless, the involved (energy) norms have to
be handled carefully to derive a posteriori error estimates and more advanced results such as convergence
of an adaptive numerical scheme do not exist yet. A new approach towards a more general analysis of
parametric PDEs, which in particular does not rely on the common holomorphic parameter dependence,
was recently presented in [ADF+23].

Another promising direction is to consider approximate Galerkin approximations, e.g. in a statistical learning
framework. As representation scheme, neural networks have become ubiquitous in many application areas
and there exist way too many approaches to attempt to provide an overview here. However, proper error
control and refinement of the approximation quality remain open research topics despite the respectable
success that were already obtained also with complicated problems. This is somewhat different for low-rank
tensor formats such as the popular tensor trains. Using a tensor reconstruction (in terms of a least squares
optimization) as in [EFHT23a], reliable error control also for non-affine and in principle non-linear problems
can be obtained, at least with high probability. Moreover, the implementation is much less involved than
specific (sparse) Galerkin discretizations and can be used for a wider range of problems.

Generally speaking, this (representation independent) direction of statistical operator learning is a promising
research area, which will likely play an important role in the upcoming improvements of numerical methods
for high-dimensional PDEs, especially when it comes to the solution of non-linear real-world problems.
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