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An introduction to tensors for path signatures
Jack Beda, Gonçalo dos Reis, Nikolas Tapia

Abstract

We present a fit-for-purpose introduction to tensors and their operations. It is envisaged to help
the reader become acquainted with its underpinning concepts for the study of path signatures. The
text includes exercises, solutions and many intuitive explanations. The material discusses direct
sums and tensor products as two possible operations that make the Cartesian product of vectors
spaces a vector space. The difference lies in linear Vs. multilinear structures – the latter being
the suitable one to deal with path signatures. The presentation is offered to understand tensors
in a deeper sense than just a multidimensional array. The text concludes with the prime example
of an algebra in relation to path signatures: the tensor algebra. This manuscript is the extended
version (with two extra sections) of a chapter to appear in Open Access in a forthcoming Springer
volume “Signatures Methods in Finance: An Introduction with Computational Applications”. The two
additional sections here discuss the factoring of tensor product expressions to a minimal number
of terms. This problem is not critical for path signatures theory, but is an elegant way of becoming
familiar with the language of tensors and tensor products that are used throughout the forthcoming
volume. A GitHub repository is attached.

1 Introduction

Throughout mathematics, computer science, and physics, the term tensor is used to describe a myriad
of similar, but fundamentally different mathematical objects. For amusement, we invite the reader to visit
the “100 Questions: A Mathematical Conventions Survey” and check 

1
 “Question 45: What is a tensor?"

That answer’s wide distribution seems to hint at a gap, as folks knowledge goes, to the mathematical
meaning of a tensor (even among the informed?). It is thus necessary to be clear and unambiguous
with our definitions and language so that at the end of this chapter the reader will be able to agree with
us on the answer. For practical purposes, it often suffices to describe a tensor as a multidimensional
array that extends the concept of a matrix [ 8 ]. This is surely true, but only after a certain structure on
the underlying space is assumed. Tensors are much more, especially when the underlying spaces are
infinite-dimensional [ 2 ,  3 ,  9 ].

For path signatures, seeing tensors as multidimensional arrays is a good starting point, but their power
is only fully realized with an understanding of the operations that go with them: that is, with the algebra
mixed in. The assumption behind the next sections is that the reader is largely unfamiliar with tensors
(but having heard of multidimensional arrays).

Why do tensors come up in path signatures and how to read this chapter? We saw in [ 1 ] that path
signatures rely heavily on iterated integrals and involve products of path components across different
times. The path signature is a sequence of terms encoding information about a path at different levels of
complexity: the first-level signature captures linear information via integrals of individual components; the

1Find the survey here:  https://cims.nyu.edu/~tjl8195/survey/results.html#q45 , at the time this
manuscript was written.
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J. Beda, G. dos Reis, N. Tapia 2

second-level signature captures pairwise interactions, so-called bilinear relationships, like
∬

dx i dx j ,
meaning they combine two inputs in a way that is linear in each (with x i fixed, we have linearity in x j ,
and vice-versa) whereas joint linearity does not hold; higher levels of the signature require more iterated
integrals and in turn one requires multilinear relationships to describe these complicated interactions.
Tensors and multilinear maps are natural and powerful mathematical tools to represent and analyze
these interactions.

 Section 2 introduces the basic definitions and properties of tensors by guiding the reader to first
understand the difference between linear and bilinear operators, and how linear operators can be
recovered from bilinear ones via the tensors product operation and the so-called universal property.

 Section 3 then goes into a few other deeper properties and connects more explicitly tensors and
algebras by introducing the tensor algebra. We will leave to subsequent chapters the development of
further concepts like shuffle algebras, and power series to obtain exponentials and logarithms (alluded
to in [ 1 ]).

2 A brief introduction to tensors

This section introduces two operations: direct sums and tensor products, two different ways of making
new vector spaces out of old ones. Formally, each is a way of equipping the Cartesian product of
vector spaces, U ×V , with a linear structure. The first leads to linear operators while the second leads
to bilinear ones. While both are related, in many aspects they behave very differently 

2
 . In a nutshell,

bilinear maps exhibit separate linearity in U andV while linear maps exhibit global linearity in U ×V .
The distinction is particularly important in the algebra of tensors, where bilinear maps give rise to the
tensor product structure through the so-called universal property. Linear maps correspond to mappings
on the direct product space.

2.1 Direct sums

Let us recall that for two sets X andY , their Cartesian product X ×Y is defined as

X ×Y B {(x , y ) : x ∈ X , y ∈ Y },

that is, the set of all ordered pairs where the first is an element of X and the second an element ofY .

Given vector spaces U andV , their Cartesian product does not immediately have a linear structure
(i.e. is not immediately a vector space). In other words, after constructing the set U ×V it is not clear
how to add two ordered pairs, or multiply them by scalars. We must define a way to add and scale the
elements of this set, and it turns out there are multiple, sensible and useful definitions. Direct sums are
the simplest way to equip the Cartesian product of two (or more) vector spaces with a linear structure
of its own.

Definition 2.1. Let U ,V be vector spaces. On the Cartesian product U ×V we define the following
linearity operations: for u,u1,u2 ∈ U , v ,v 1,v 2 ∈ V and λ ∈ Ò

(u1,v 1) + (u2,v 2) B (u1 + u2,v 1 + v 2), (1)

λ (u,v ) B (λu, λv ). (2)
2For instance, there is no open mapping theorem for bilinear surjective maps, nor is there a Hahn-Banach theorem for

bilinear continuous forms.
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An introduction to tensors for path signatures 3

One can check thatU ×V , equipped with the operations from  eqs. (1)  and  (2) , is a vector space, which
it is customary to denote as U ⊕V , i.e the direct sum of U andV .

Exercise 2.2. State the axioms that define a vector space and show that U ⊕V is indeed a vector
space.

It can also be checked that if BU and BV are bases forU andV (respectively) with 0U and 0V denoting
the zero elements of U andV (respectively) then the set

B = {(u, 0V ) : u ∈ BU } ∪ {(0U ,v ) : v ∈ BV }

is a basis for U ⊕V . It follows immediately that dim(U ⊕V ) = dim(U ) + dim(V ).

Example 2.3. Let U = Ò3 and V = M2×2(Ò) be the space of real 2-by-2 matrices. A generic
element of U ⊕ V is an ordered pair (u,A) for a vector u ∈ Ò3 and a matrix A ∈ M2×2(Ò). A
concrete example would be letting

(u,A) = ©«

3
−1
4

,
[
1 −1
2 3

]ª®¬ and (v ,B ) = ©«

−2
1
1

,
[
5 3
−1 2

]ª®¬
then we have

(u,A) + (v ,B ) = ©«

1
0
5

,
[
6 2
1 5

]ª®¬.
A basis for U ⊕V is (with a slight abuse of notation for what ‘0’ means)©«


1
0
0

, 0ª®¬, ©«

0
1
0

, 0ª®¬, ©«

0
0
1

, 0ª®¬,
(
0,

[
1 0
0 0

] )
,

(
0,

[
0 1
0 0

] )
,

(
0,

[
0 0
1 0

] )
,

(
0,

[
0 0
0 1

] ).
We observe that indeed dim(U ⊕V ) = 7 = dim(Ò3) + dim(M2×2(Ò)).

Remark 2.4 (On notation). Elements of U ⊕V can also be written additively, that is u + v denotes
the vector (u,v ) ∈ U ⊕V . This notation is harmless because of  Definition 2.1 , as it behaves in the
expected way. We can then restate the two linearity  eqs. (1) and  (2) in more natural notation:

u1 + v 1 + u2 + v 2 = u1 + u2 + v 1 + v 2, λ (u + v ) = λu + λv ,

and we note that there is no confusion in the first equality with the two different meanings of + since
due to the associativity and commutativity of addition, the four terms can be rearranged in an arbitrary
way to give the same result 

3
 . Importantly, both the bracket notation, (u,v ), and the additive notation,

u + v , are used interchangeably in the path signature community.

 Definition 2.1 generalizes easily to a finite number of summands: if U1, . . . ,Un are vector spaces, the
set U1 × · · · × Un carries a linear structure given by componentwise addition and multiplication by
scalars. The resulting vector space is denoted by U1 ⊕ · · · ⊕ Un . Extending this concept to infinite
families requires some care.

3Formally, there is a canonical isomorphism between U ⊕V andV ⊕ U , so that the pairs (u,v ) and (v ,u) can be
identified.
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Definition 2.5. Consider an infinite index set I and let (Ui : i ∈ I ) be a family of vector spaces. The
direct sum is defined to be the set of all sequences (u i : i ∈ I ) such that u i , 0 for finitely many
indices i ∈ I . Addition and scalar multiplication are defined componentwise. The resulting vector space
is denoted by ⊕

i ∈I
Ui .

The finiteness constraint in this definition means that direct sum is a subset of the Cartesian product of
the spaces, that is, ⊕

i ∈I
Ui ⊆

∏
i ∈I

Ui ,

where
∏

i ∈I Ui is simply the set of all sequences indexed by I .

For our purposes it will be enough to consider countable families of vector spaces, that is, we will take
I = Î. In this case, elements of

⊕
n∈ÎUn may be denoted as

(u0,u1,u2, . . . )

with the convention that there is only a finite number of non-zero elements in the sequence. The
Cartesian product also carries the same linear structure and is indeed a vector space, whose elements
consist of arbitrary Î-indexed sequences, which are still denoted as (u0,u1,u2, . . . ) where all entries
may be non-zero.

It should be noted that in the case that I ⊂ Î is a finite set, say I = {1, . . . ,N }, both spaces
coincide but the inclusion becomes strict as soon as I is countable. In particular, when dealing with
finite collections of spaces there is no ambiguity in the notation.

The main application of direct sums in the world of signatures is to decompose a vector space in terms
of subspaces of objects sharing similar “shape” properties.

Definition 2.6. A vector spaceV is said to be graded if it can be decomposed as a direct sum:

V =
⊕
n∈Î

Vn .

The subspaceVn is called the homogeneous component of degree n . For v ∈ Vn we write |v | = n for
its degree.

We also note that this definition includes the case of finitely many summands, in which case there is
N ∈ Î such thatVn = {0} for all n > N .

2.2 Tensor product and Tensors

We have now seen how the direct product is one way of equipping the Cartesian product of two vector
spaces with a vector space structure. There is another way, the tensor product, in many ways similar,
but with a structure such that it is compatible with multilinear functions in a way to be made precise
later.

Definition 2.7. LetU ,V be vector spaces. On the setU ×V define the following bilinearity operations:
for u,u1,u2 ∈ U , v ,v 1,v 2 ∈ V and λ ∈ Ò

(u1,v ) + (u2,v ) B (u1 + u2,v ),
(u,v 1) + (u,v 2) B (u,v 1 + v 2),

λ (u,v ) B (λu,v ) and 

4
 λ (u,v ) B (u, λv ).

DOI 10.20347/WIAS.PREPRINT.3173 Berlin 2025
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As in the direct sum case ( Definition 2.1  ), it can be verified that U ×V equipped with the bilinearity
operations is a vector space. We denote the tensor product ofU andV as U ⊗V . For elements of the
tensor product space, we write u ⊗ v B (u,v ) ∈ U ⊗V . By a slight abuse of language we also refer
to u ⊗ v as the tensor product of the vectors u ∈ U and v ∈ V . As we will see later in  Section 3 , this
name is justified.

Exercise 2.8. Show that U ⊗V is a vector space (recall  Exercise 2.2 ).

Exercise 2.9. In this exercise we see why the ⊗ notation is an intuitive way of writing the tensor product:
(a) Rewrite the bilinearity operations of  Definition 2.7  using the notation u ⊗ v instead of (u,v ); (b)
Expand (u1 + u2) ⊗ (v 1 + v 2), where of course the addition u1 + u2 ∈ U is simply the addition in U ,
and the same forV ; (c) We have λu ⊗ λv ∝ (u ⊗ v ). What is the constant of proportionality?

Contrary to the direct sum case, for tensor products its not always possible to write u1 ⊗ v 1 + u2 ⊗ v 2

as a single tensor product of a vector in U with a vector inV  

5
 .

Exercise 2.10. Show that 0U ⊗ v = u ⊗ 0V = 0U⊗V for all u ∈ U ,v ∈ V .

In the same vein as the comment offered just before  Definition 2.5 , the  Definition 2.7 admits a straight-
forward generalization to finitely many vector spaces and extending this concept to infinite families
requires some care. In particular, we write

U ⊗n B U ⊗ U ⊗ · · · ⊗ U︸               ︷︷               ︸
n times

.

Proposition 2.11. For U ,V vector spaces with bases BU ,BV , respectively, the set

B = {u ⊗ v : u ∈ BU ,v ∈ BV }

is a basis for U ⊗V . It follows that dim(U ⊗V ) = dim(U ) · dim(V ).

We can tell immediately by the dimension of the spaces that the direct product and tensor product
produce fundamentally different vector structures on the same set 

6
 . What distinguishes the tensor

product vector space from all other possible linear structures is the following universal property.

Theorem 2.12. Let U ,V ,W be vector spaces, and let f : U ×V →W be a bilinear map. That is, f
satisfies for all u,u1,u2 ∈ U , v ,v 1,v 2 ∈ V and λ ∈ Ò

f (u1 + u2,v ) = f (u1,v ) + f (u2,v ), f (u,v 1 + v 2) = f (u,v 1) + f (u,v 2),
and f (λu,v ) = f (u, λv ) = λf (u,v ).

Then, there exists a unique linear function f̂ : U ⊗V →W such that f (u,v ) = f̂ (u ⊗ v ).
4This last element of the definition is actually imposing the vectors (λu,v ) and (u, λv ) to be equal in U ⊗V . This

could be formalized by the use of quotient spaces, but doing such would involve a level of additional complexity not really
necessary at the moment. (This also takes care of the apparent non-uniqueness of 0U⊗V hinted at in Exercise 2.10.)

5As an aside, it is this property of tensor product spaces that mathematically captures the phenomenon of entanglement

of quantum particles. A quantum state like |ϕ⟩ =
[
1
0

]
⊗

[
0
1

]
+

[
0
1

]
⊗

[
1
0

]
is entangled as it cannot be written as

[
a
b

]
⊗

[
c
d

]
for any scalars a, b, c, d . This entangled state says “I have two particles, and their spins are always opposite, but I cannot
know which one is spin-up, and which one is spin-down".

6Recall dim(U ⊕V ) = dim(U ) + dim(V ), whereas dim(U ⊗V ) = dim(U ) · dim(V ).
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We say that bilinear functions factor through the tensor product. In fact, the tensor product is character-
ized by this property, in the sense that any other vector space Z equipped with a map ⊗ : U ×V → Z
factorizing bilinear functions must be isomorphic to U ⊗V . In other words, the tensor product is the
unique (up to isomorphism) vector space having this property. For the sake of simplicity we will omit the
proof of this result, but refer the interested reader to the classical texts [ 2 ,  3 ]. At first sight bilinear maps
are not quite as powerful as linear maps, nonetheless, the universal property fixes things as it allows to
write the bilinear map as a linear map of the tensor product and thus recovers the neat results of linear
maps that were not available (at the cost of using tensor products).

The next example highlights the difference between direct sums and tensor products.

Example 2.13 (Direct sums ⊕ Vs tensor products ⊗). LetU =V = Ò. The direct sumU ⊕V satisfies
U ⊕V � Ò2. Indeed, elements of U ⊕V are ordered pairs of real numbers with component-wise
addition and scalar multiplication. Moreover, a basis forU ⊕V is {(1, 0), (0, 1)} which is the canonical
basis of Ò2, so dim(U ⊕V ) = 2.

On the contrary, we will show now thatU ⊗V satisfiesU ⊗V � Ò which is obviously not Ò2 � U ⊕V .
Consider the map ϕ : U ×V → Ò given by ϕ (x , y ) = x y ; this map ϕ (x , y ) is clearly bilinear. By
the universal property, there exists a unique map ϕ̂ : U ⊗V → Ò, given by ϕ̂ (x ⊗ y ) = x y . The
map ϕ is injective since the equation ϕ̂ (x ⊗ y ) = 0 implies that either x = 0 or y = 0; in any case
x ⊗ y = 0 by  Exercise 2.10 . Finally, if λ ∈ Ò then ϕ̂ (λ ⊗ 1) = λ so that ϕ̂ is surjective. In particular,
Ò ⊗ Ò is spanned by the vector 1 ⊗ 1 so that dim(U ⊗V ) = 1.

Exercise 2.14. Show that if U is any vector space, then U ⊗ Ò and Ò ⊗U are isomorphic to U . (Hint:
generalize  Example 2.13 .)

The word tensor has many different meanings across different fields [ 2 ,  3 ,  9 ]. We will mostly be interested
in the case where we are taking tensor products of a finite number of finite-dimensional vector spaces,
represented as Òd for some integer d ≥ 1. In this setting, tensors may be represented in a simpler,
more concrete way, by working with canonical bases. It is at at this specific juncture (assuming a basis)
that it is intuitive to define a tensor as a multidimensional array – see  Remark 2.16 .

Definition 2.15 (Tensor: order and shape). Take n ≥ 1, set d1, . . . , dn ≥ 1 and take the associated
vector spaces Òdj for j = 1, . . . , n . An order n tensor of shape (d1, . . . , dn) is an element of the
tensor product Òd1 ⊗ · · · ⊗ Òdn .

It should be clear that elements of, say, Ò2 ⊗ Ò4, Ò4 ⊗ Ò2, and Ò3 ⊗ Ò3, are all order 2 tensors,
but their shapes are all very different – and, just like matrices, they cannot be added together as the
shapes do not match.

Remark 2.16 (Basis, vectors and their components, and some notation). Denote by {e1, . . . , ed } the
canonical basis of Òd for some d ≥ 1. We have seen that the set{

e i1 ⊗ · · · ⊗ e in : i j ∈ {1, . . . , dj } for all j = 1, . . . , n
}

is a basis for Òd1 ⊗ · · · ⊗ Òdn , which we call the canonical basis. In particular, an order n tensorT is
determined by the n-dimensional array of its coefficients in this basis:

T =
d1∑
i1=1

· · ·
dn∑
in=1

T i1···ine i1 ⊗ · · · ⊗ e in .

DOI 10.20347/WIAS.PREPRINT.3173 Berlin 2025



An introduction to tensors for path signatures 7

As long as we keep this in mind, the assignmentT ↦→ (T i1···in ) defines a one-to-one correspondence
between elements of the tensor productT ∈ Òd1 ⊗ · · · ⊗Òdn and multidimensional arrays (T i1···in ) ∈
Òd1×···×dn . We remark once again that this isomorphism depends on the fixing of a basis and is, in
general, not canonical.

Thus, notation wise, we shall refer to tensors using either a symbol (i.e.T ) or in component notation
(i.e. T i j k – using superscript notation for its components); for multiple tensors or vectors we use
subscript notation, i.e.,T 1,T 2, . . . or u1,u2, . . ..

For example, C i j ,T i j k and Q i j k p refer to the components of tensors C ,T , and Q of order 2, 3, and
4 respectively. In particular, the order 1 tensors e1, . . . , ed constitute the canonical basis of Òd . The
i th basis vector e i has components given in the canonical basis by

e
j
i
=

{
1 j = i

0 else
for j = 1, . . . , d .

Example 2.17. We see that tensors of order 1 and 2 can be identified with column vectors and matrices,
respectively. A scalar is by convention an order 0 tensor. For example, u , A, andT are tensors of order
1, 2, and 3 respectively:

u B


1
2
3

 ∈ Ò3, A B

[
1 2
3 4

]
∈ Ò2 ⊗ Ò2 = (Ò2)⊗2 � Ò2×2,

T B
1 2

3 4

5 6

7 8 ∈ (Ò2)⊗3 � Ò2×2×2.

(3)

Remark 2.18. The tensor is an intrinsic object, in the sense that tensors do not depend on any choice
of basis. From  Remark 2.16  , we see that a tensor can be uniquely described by a multidimensional
array of numbers, but this is only true once we have fixed a basis. For many applications, it is possible,
and practical, to think of tensors only in the terms of their components in a particular (e.g. the canonical)
basis. Nonetheless, we encourage the reader to be mindful with the language and recognize when
they are being loose with the concepts. This is exactly the same idea to how we can think of linear
transformations from Òn to Òn in terms of an n-by-n square matrix, once we have fixed a basis. For

example, the linear map (x1, x2) ↦→ (x1 + x2, x1 − x2) can be represented by the matrix

(
1 1
1 −1

)
in the standard basis, but in the eigenbasis, it is represented by the diagonal matrix

(√
2 0

0 −
√
2

)
.

The characterizing property of tensors is that given a change of basis, we immediately know how the
coordinate representation transforms. In this example we can go from the first to the second matrix
representation by multiplication with an invertible matrix (diagonalization).

Writing explicit examples for the tensor product quickly becomes cumbersome, nevertheless we offer a
few simple examples.

Example 2.19 (Tensor multiplication). Let u ∈ Ò2, v ∈ Ò3 be vectors, that is, order 1 tensors of
shapes (2) and (3), respectively. By definition, their tensor product is an order 2 tensor of shape (2, 3):
u ⊗ v ∈ Ò2 ⊗ Ò3. In the canonical basis they are represented by 2 and 3 coefficients, respectively.
Namely

u = u1e1 + u2e2, v = v 1e1 + v 2e2 + v 3e3,

DOI 10.20347/WIAS.PREPRINT.3173 Berlin 2025
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or in the more traditional column vector notation,

u = u1

[
1
0

]
+ u2

[
0
1

]
=

[
u1

u2

]
and v =


v 1

v 2

v 3

 .
By using the bilinearity of the tensor product (  Definition 2.7 ) we may obtain the coordinates of u ⊗ v in
the canonical basis. Indeed, recalling that the components of both vectors are scalars,

u ⊗ v =
(
u1e1 + u2e2

)
⊗

(
v 1e1 + v 2e2 + v 3e3

)
= u1v 1e1 ⊗ e1 + u1v 2e1 ⊗ e2 + u1v 3e1 ⊗ e3

+ u2v 1e2 ⊗ e1 + u2v 2e2 ⊗ e2 + u2v 3e2 ⊗ e3.

(4)

Thus, in the canonical basis the order 2 tensor u ⊗ v has components given by (u ⊗ v )i j = u iv j .
Identifying the canonical basis of order 2 tensors with matrices (i.e., e i ⊗ e j forming the standard 2-by-2
matrix basis), we may write

u ⊗ v =

[
u1v 1 u1v 2 u1v 3

u2v 1 u2v 2 u2v 3

]
and likewise v ⊗ u =


v 1u1 v 1u2

v 2u1 v 2u2

v 3u1 v 3u2

 ∈ Ò3 ⊗ Ò2.

Consider now the matrix

A B

[
A11 A12

A21 A22

]
∈ Ò2 ⊗ Ò2.

Where, as before, the entries in the matrix notation corresponds to the coordinates in the canonical
order 2 tensor basis: A = A11e1 ⊗ e1 +A12e1 ⊗ e2 +A21e2 ⊗ e1 +A22e2 ⊗ e2. Note that although
A is an element of Ò2 ⊗ Ò2, it does not necessarily mean that it can be written as u ⊗ v for some
u,v ∈ Ò2. That is, the components Ai j are not necessarily of the form Ai j = u iv j for some vectors u
and v of the appropriate dimensions. In the cases where it is possible to find such a decomposition, we
say that A is a rank 1 tensor. On the other hand, A can always be written as a linear combination of
sums of tensor products of some u i ,v i ∈ Ò2, that is, sums of rank 1 tensors.

Continuing with the example, we may compute

u ⊗ A =

u2A11 u2A12

u2A21 u2A22
u1A11 u1A12

u1A21 u1A22

∈ Ò2 ⊗ Ò2 ⊗ Ò2 = (Ò2)⊗3,

where the expression on the right-hand side is a matrix-like notation for organizing the components of
the order 3 tensor u ⊗ A.

We will later see, in  Section 3 , that the computation performed in  eq. (4) makes use of a larger structure.
The tensor product can be thought of as a non-commutative analogue of polynomial multiplication, in
the sense that it is an associative and bilinear operation. Note that it is, however, not commutative as
the results of u ⊗ v and v ⊗ u are order 2 tensors of different shapes, at least in this example. In
general, the results may differ even thought the shapes match.
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Example 2.20 (Connecting to Signatures of [ 1 ] ). Suppose x : [0, 1] → Òd is a smooth vector-valued
path, which simply means, e.g., that for each t ∈ [0, 1] we may write x t = (x 1

t , . . . , x
d
t ) ∈ Òd in the

canonical basis. In particular, for each t ∈ [0, 1], x t is a tensor of order 1.

We may use the tensor product to compactly write the collection of iterated integrals of x . That is,∫ t

0

∫ s

0
dxu ⊗ dx s ∈ Òd ⊗ Òd

is an order 2 tensor (i.e. a d -by-d matrix) with components (for x “sufficiently nice”)(∫ t

0

∫ s

0
dxu ⊗ dx s

) i j
=

∫ t

0

∫ s

0
¤x iu ¤x

j
s duds .

Before delving into tensors properties we can go back to “Question 45: What is a tensor?” of the “100
Questions: A Mathematical Conventions Survey”. We hope to have convinced the reader that a tensor
is nothing other than “an element of a tensor product of vector spaces”.

3 A little bit more on tensors: The tensor algebra

We now venture into a few additional properties of tensors.

Definition 3.1. An associative algebra is a vector space A equipped with a bilinear map m : A×A→ A,
called product, satisfying the associativity condition

m
(
m (x , y ), z

)
= m

(
x ,m (y , z )

)
.

The universal property of the tensor product (see  Theorem 2.12 ) yields that equivalently, it may be
represented by a linear map m : A ⊗ A→ A, which is the one we will use from now on.

We say that an algebra A is unital if it has a distinguished element 1A ∈ A, called the unit, satisfying
for all x ∈ A

m (1A ⊗ x ) = x = m (x ⊗ 1A).

It is customary to write the product, denoted ·A, of two elements of A using infix notation 

7
 , that is,

x ·A y B m (x ⊗ y ). Oftentimes, when no confusion can arise, we write simply x · y or even omit the
symbol completely and just write x y instead. As we will mostly work with unital associative algebras,
from here on we simply write algebra. In this notation, the condition for (A, ·A) to be an algebra can be
written as

(x ·A y ) ·A z = x ·A (y ·A z )
for all x , y , z ∈ A and the unit satisfies 1 ·A x = x ·A 1 = x for all x ∈ A. We note that bilinearity of
the product translates into the distributivity of ·A over +, e.g.,

(x + y ) ·A z = x ·A z + y ·A z , λ (x ·A y ) = (λx ) ·A y = x ·A (λy ),

and so on. We also remark that we do not require the product to be commutative, that is, we do not
enforce that x ·A y = y ·A x for every x , y ∈ A, although this may hold for some pairs of elements. In
case this identity does hold for every x , y ∈ A we say A is commutative (or Abelian).

7Infix notation is a way of writing mathematical (and logic) expressions where operators are placed between the operands
they act upon. This is the most familiar notation to us humans and matches how we (humans) interpret math expressions.
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Example 3.2. LetMn×n (Ò) be the space of n-by-n square matrices with real entries with its usual
vector space structure (entry-wise addition and scalar multiplication). The matrix product A · B B AB
equips A with the structure of a (non-commutative) associative algebra with unit 1A = I n , the n-by-n
identity matrix.

Example 3.3. Denote by Ò[x ] the space of polynomials in a single variable x , and for polynomials
p (x ) and q (x ) define the multiplication rule by

(p · q ) (x ) B p (x )q (x ).

It is clear that this multiplication is bilinear in p and q and satisfies the associativity condition. The unit
for this product is the constant polynomial 1A (x ) = 1. For instance

(x 3 + 1) · (x 2 + x ) = x 5 + x 4 + x 2 + x .

In fact, since the monomials {x n : n ≥ 1} form a linear basis for A, the four terms on the right-hand
side correspond simply to x 3 · x 2, x 3 · x and so on, where we use the bilinearity of the product. This is
an example of a commutative algebra.

Example 3.4. Many structures with which one is already very familiar are just algebras in disguise,
 Table 1 gives a few examples.

Vector Space Bilinear Operator Associative Commutative Unitary
Ã Complex product Yes Yes Yes

Ò3 Vector cross product: ®a × ®b No No No
Ò[x ] Multiplication Yes Yes Yes
Mn×n (Ò) Matrix multiplication Yes No Yes

Table 1: Various examples of algebras. Some authors use the term algebra to refer to a vector space
equipped with any bilinear operation, not necessarily associative. In that sense, the cross product is an
algebra that is not associative.

The prime example of an algebra in relation to signatures is the tensor algebra.

Definition 3.5. LetV be a finite-dimensional vector space. The tensor algebra overV is the vector
space

T (V ) B
⊕
n≥0

V ⊗n with V ⊗0 � Ò1.

The product is simply the tensor product, and its unit is the vector 1 spanningV ⊗0.

The tensor algebra is therefore a graded vector space in the sense of  Definition 2.6 , where order n
tensors are placed in degree n . We stress the fact (see  Definition 2.5 ) that elements ofT (V ) are finite
sequences of tensors of arbitrary order. For this reason, vectors inT (V ) are usually called tensor (or
non-commutative) polynomials. Later on we will construct the space of tensor series, which are infinite
sequences.

Remark 3.6. WhenV = Òd the product can be written more explicitly in terms of the canonical basis
{e1, . . . , ed } . Introducing the word notation, recall [ 1 , Example 1.5] e i1···in B e i1⊗· · ·⊗e in ∈ (Òd )⊗n
for (i1, . . . , in) ∈ {1, . . . , d }n , the product (denoted for now by ·T (V )) is then defined as

e i1···in ·T (V ) e j1···jm = e i1···in j1···jm .

For this reason it is commonly known as the concatenation product. In this case, it corresponds to the
product introduced in  Definition 2.7 . Common notations for x ·T (V ) y include x ⊗ y and x y .
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Theorem 3.7. The tensor algebra enjoys the following universal property: given any algebra A and any
linear map f : V → A, there exists a unique map f̂ : T (V ) → A, such that f (u ⊗v ) = f (u) ·A f (v )
for all u,v ∈ T (V ).

As is the case with the tensor product, this property actually characterizes the tensor algebra in the
sense that any other algebra satisfying this property is necessarily isomorphic toT (V ) for some vector
spaceV .

We note that even thoughV is finite-dimensional,T (V ) is always infinite dimensional since, owing to
 Proposition 2.11 ,

dimV ⊗n = (dimV )n .
For this reason, while the tensor algebra is a neat theoretical construction, it is not very useful for
practical purposes. There are a couple of ways of obtaining finite-dimensional versions ofT (V ) which
preserve its structure. The most common in signature applications is truncation. The basic idea is
that we want to preserve “low order” information while still retaining the algebra structure, where the
meaning of “order” is in the sense of tensor level. Luckily, the straightforward idea of just discarding
high-order information works, with the caveat that the product has to be slightly modified.

Definition 3.8. Given N ≥ 1, the level-N truncated tensor algebra is the finite-dimensional graded
vector space (recall  Definition 2.6 )

T N (V ) B
N⊕
n=0

V ⊗n with product x ·N y =

{
x ⊗ y if |x | + |y | ≤ N

0 else .
.

Following from  Definition 2.6 , we note that in particular every element ofT N (V ) can be written as a
sequence of homogeneous elements, that is every v ∈ T N (V ) is of the form v = (v 0,v 1, . . . ,v N )
with v n ∈ V ⊗n (with some of them eventually zero). Hence, the product ·N is well-defined for all
x , y ∈ T N (V ) and not just for homogeneous tensors – elements inT N (V ) are thus finite sequence
of tensors of order up to N , with componentwise addition and multiplication by scalars.

It can be checked thatT N (V ) is an algebra 

8
 and

dimT N (V ) = dN+1 − 1
d − 1 where dimV = d .

Example 3.9. Let us take N = 2 andV = Òd . The spaceT 2(V ) � Ò1 ⊕ Òd ⊕ (Òd )⊗2 consists of
elements of the form (a, x ,A) with a ∈ Ò, x ∈ Òd and A ∈ Md×d (Ò)  

9
 .

The product reads

(a, x ,A) ⊗ (a′, x ′,A′) = (aa′, ax ′ + a′x , a′A + aA′ + x ⊗ x ′).

We remark that this product is not commutative, meaning that in general the above expression will be
different from that of (a′, x ′,A′) ⊗ (a, x ,A).

Exercise 3.10. Let N = 2 andV = Òd . Show that an element (a, x ,A) ∈ T 2(V ) is invertible if and
only if a , 0, and compute its inverse.

8Technically speakingT N (V ) is a quotient ofT (V ) by a two-sided ideal.
9Note that we are tacitly identifying real valued 2 tensors (of shape (2, 2)) with real valued 2-by-2 matrices – looking

back at  Remark 2.16 and  Examples 2.17 and  2.19 , we have implicitly made the assumption of working with the canonical
basis of Ò2.
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Definition 3.11. The extended tensor algebra is the direct product

T ((V )) B
∞∏
n=0

V ⊗n .

We identify T ((V )) with the space of infinite sequences u = (u0,u1, . . . ) with u0 ∈ Ò, u1 ∈ V ,
and so on. The product is induced by the product on T (V ) and is given, for u = (u0,u1, . . . ) and
v = (v 0,v 1, . . . ), by uv = w = (w 0,w 1, . . . ) where

w n =
n∑

k=0

uk ⊗ v n−k ∈ (V ∗)⊗n .

This product mimics polynomial multiplication and is sometimes called the Cauchy product for this
reason. Since this space contains arbitrarily long sequences of tensors, its elements are commonly
called tensor series. We note that the tensor algebraT (V ) is a strict subspace ofT ((V )).
For each integer N ≥ 1 there is a canonical projection πN : T ((V )) → T N (V ), preserving multiplica-
tion, given simply by discarding tensors of degree greater than N , that is,

πN (u0,u1, . . . ) = (u0,u1, . . . ,uN ).

In the realm of signatures, this projection is used to produce finite-dimensional versions of the signature
(see Example 3.12 just below) that are suitable for its representation in a computer.

Example 3.12. Recall  Example 2.20 . Our prime example of an element inT
((
Òd

))
is the signature of

a smooth Òd -valued path x : [0, 1] → Òd . Its signature over the interval [s, t ] ⊆ [0, 1], denoted by
S (x )s,t , is the tensor series of iterated integrals:

S (x )s,t B
(
1,

∫ t

s
dxu ,

∫ t

s

∫ u2

s
dxu1 ⊗ dxu2, . . .

)
.

Projecting to the level-2 truncated tensor algebra we get

π2S (x )s,t =
(
1,

∫ t

s
dxu ,

∫ t

s

∫ u2

s
dxu1 ⊗ dxu2

)
.

4 Solutions to Exercises

Solution 4.1 (To  Exercise 2.2 ). We must check that the operations satisfy the axioms of a vector space, that is, that
+ is associative and commutative, and that scalar multiplication distributes over +. Let (u1,v 1), (u2,v 2) ∈ U ⊕V .
Then

(u1,v 1) + (u2,v 2) = (u1 + u2,v 1 + v 2) = (u2 + u1,v 2 + v 1) = (u2,v 2) + (u1,v 1).

Moreover, if (u3,v 3) ∈ U ⊕V then

((u1,v 1) + (u2,v 2)) + (u3,v 3) = (u1 + u2,v 1 + v 2) + (u3,v 3) = (u1 + u2 + u3,v 1 + v 2 + v 3)
= (u1,v 1) + (u2 + u3,v 2 + v 3)
= (u1,v 1) + ((u2,v 2) + (u3,v 3)).
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Likewise, for any λ ∈ Ò we have

λ ((u1,v 1) + (u2,v 2)) = λ (u1 + u2,v 1 + v 2)
= (λ (u1 + u2), λ (v 1 + v 2)) = (λu1 + λu2, λv 1 + λv 2)
= (λu1, λv 1) + (λu2, λv 2) = λ (u1,v 1) + λ (u2,v 2).

We have used throughout that U andV are vector spaces.

Additive inverses are given simply by −(u,v ) = (−u,−v ) while the neutral element is 0U⊕V = (0U , 0V ).

Solution 4.2 (To  Exercise 2.8  ). We have to check that the operations satisfy the axioms of a vector space. Since
addition is defined symmetrically, we only check one side. Let u1,u2 ∈ U and v ∈ V . Then

(u1,v ) + (u2,v ) = (u1 + u2,v ) = (u2 + u1,v ) = (u2,v ) + (u1,v ).

Associativity follows in a similar way:

((u1,v ) + (u2,v )) + (u3,v ) = (u1 + u2,v ) + (u3,v )
=

(
(u1 + u2) + u3,v

)
=

(
u1 + (u2 + u3),v

)
= (u1,v ) + (u2 + u3,v ) = (u1,v ) + ((u2,v ) + (u3,v )).

Now, for any λ ∈ Ò we see that (using throughout that U andV are vector spaces)

λ ((u1,v ) + (u2,v )) = λ (u1 + u2,v ) = (λ (u1 + u2),v )
= (λu1 + λu2,v ) = (λu1,v ) + (λu2,v ) = λ (u1,v ) + λ (u2,v ).

Additive inverses are given by −(u,v ) = (−u,v ) = (u,−v ).

Solution 4.3 (To  Exercise 2.9 ). (a) Let U ,V be vector spaces. On the set U ×V define the following bilin-
earity operations: for u,u1,u2 ∈ U , v ,v 1,v 2 ∈ V and λ ∈ Ò

(u1 ⊗ v ) + (u2 ⊗ v ) B (u1 + u2) ⊗ v ,
(u ⊗ v 1) + (u ⊗ v 2) B u ⊗ (v 1 + v 2) and λ (u ⊗ v ) B (λu) ⊗ v C u ⊗ (λv ).

(b) Set u B (u1 + u2). It is definitely not necessary to write u B (u1 + u2), but it may help to see how the
axioms from  Item (a) can be applied. We then have,

(u1 + u2) ⊗ (v 1 + v 2) = u ⊗ (v 1 + v 2) = u ⊗ v 1 + u ⊗ v 2 = (u1 + u2) ⊗ v 1 + (u1 + u2) ⊗ v 2

= u1 ⊗ v 1 + u2 ⊗ v 1 + u1 ⊗ v 1 + u2 ⊗ v 2.

(c) We have λu ⊗ λv = λ2(u ⊗ v ). Compare this with the linear scaling  eq. (2) in  Definition 2.1 .

Solution 4.4 (To  Exercise 2.10 ). It suffices to check that for anyu ∈ U and any elementary tensoru ′⊗v ′ ∈ U⊗V
it holds that u ⊗ 0V + u ′ ⊗ v ′ = u ′ ⊗ v ′.
Indeed, since we can write 0V = v ′ − v ′ it follows that

u ⊗ 0V + u ′ ⊗ v ′ = u ⊗ (v ′ − v ′) + u ′ ⊗ v ′ = u ⊗ v ′ + u ⊗ (−v ′) + u ′ ⊗ v ′ = u ′ ⊗ v ′

where in the last equality we have used that u ⊗ (−v ) is the additive inverse of u ⊗ v .

The check for 0U ⊗ v can be done in a similar way.
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Solution 4.5 (To  Exercise 2.14 ). We must find a bijective linear function Ψ : Ò ⊗ U → U . It suffices to define
Ψ(λ ⊗ u) = λu . Linearity follows from the fact that the right-hand side is bilinear in (λ,u) and the properties
of the tensor product. Injectivity is immediate since λ ⊗ u ∈ kerΨ if and only if Ψ(λ ⊗ u) = λu = 0U , which
in turn implies that either λ = 0 or u = 0U by the axioms of vector spaces, and in both cases this means that
λ ⊗ u = 0Ò⊗U . Therefore, it follows that kerΨ = {0}, i.e., Ψ is injective.

Bijectivity can be shown by noting that every u ∈ U can be obtained as u = Ψ(1⊗u) (which in particular implies
that the inverse map is Ψ−1(u) = 1 ⊗ u ), or by noting that since dim(Ò ⊗ U ) = dim(Ò) · dim(U ) = dim(U ),
by the rank-nullity theorem it follows that

dim
(

im(Ψ)
)
= dim

(
Ò ⊗ U

)
− dim

(
ker(Ψ)

)
= dim(U ) so that im(Ψ) = U .

Solution 4.6 (To  Exercise 3.10 ). The unit element in T 2(V ) is 1 = (1, 0, 0). From the product formula in
 Example 3.9 we see that the entries of the inverse element (a ′, x ′,A′) B (a, x ,A)−1 must satisfy

aa ′ = 1, ax ′ + a ′x = 0 and A + A′ + x ⊗ x ′ = 0.

The first equation is solvable if and only if a , 0, in which case a ′ = a−1. Inserting this in the second equation it
follows that x ′ = − 1

a2
x . Lastly, from the third equation we see that A′ = − 1

a2
A + 1

a3
x ⊗ x . Hence, inT 2(V ),

we have that
(a, x ,A)−1 = (a−1,−a−2x ,−a−2A + a−3x ⊗ x ).

This can also be seen from the more general formula A−1 =
∑

n≥0(1 − A)⊗n .
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5 Extended Section: Tensor rank

The goal of  Sections 5 and  6 is to introduce an applicable problem for the reader to grapple with:
algorithmically factoring tensor product expressions to a minimal number of terms (i.e. u ⊗v +u ⊗w →
u ⊗ (v +w )). While the problem itself is not critical for path signatures, through studying the problem,
we will get to apply the language of tensors and tensor products to be used continuously throughout
the rest of the book. For a machine learning introduction to tensors focused around the issue of tensor
decomposition we refer the reader to [ 8 ].

 Sections 5 and  6 also include a few programming exercises in Mathematica. Many of these require
nothing but a copy of Mathematica, but we also make use of a few useful functions which reside in a
Github repository at

 https://github.com/jfbeda/tensor_factoring .

From the repository, the reader can simply download and run main.nb to access to the functions.

5.1 Tensor rank

In linear algebra, the rank of a matrix, often defined as the number of linearly independent rows (or
columns) of the matrix, is an incredibly useful property. We wish to generalize matrix rank to tensor
rank, but it is not clear how the typical definition, in terms of linearly independent rows (or columns),
can be easily generalized. Instead, we begin by recharacterizing matrix rank in a way that is easily
generalized to tensors of arbitrary order.

Example 5.1. Consider the order 1 tensors u and v , and the order 2 tensor A defined in the canonical
basis (see  Remark 2.16 ) by

u B

[
1
2

]
∈ Ò2, v B

[
3
4

]
∈ Ò2, A B

[
3 4
6 8

]
∈ Ò2 ⊗ Ò2. (5)

Notice that A may be written as a tensor product of u and v . That is

A = u ⊗ v , or in terms of components, Ai j = u iv j for i , j = 1, 2. (6)

However, such a decomposition does not always exist. For example, consider B given by

B B

[
1 0
1 1

]
∈ Ò2 ⊗ Ò2. (7)

It is not possible to find order 1 tensors w , z ∈ Ò2 such that B = w ⊗ z . It is however, possible to
decompose B into the sum of two tensor products:

B =

[
1 0
1 0

]
+

[
0 0
0 1

]
=

[
1
1

]
⊗

[
1
0

]
+

[
0
1

]
⊗

[
0
1

]
. (8)

In fact, the minimum number of distinct tensor products that must be summed to give a specific
matrix is another way of defining matrix rank. This number is always equivalent to the number
of independent rows (or columns). Notice that A has rank 1, and B has rank 2 with respect to both
definitions. This definition of rank is easily generalized to tensors of arbitrary order.
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Definition 5.2 (Tensor rank and rank decomposition). LetV1, . . . ,Vm be vector spaces.

■ An order m tensor T ∈ V1 ⊗ · · · ⊗Vm is said to be of rank 1 if it can be written as an outer
product of m order 1 tensors:

T = v 1 ⊗ · · · ⊗ vm (9)

for some v i ∈ Vi .

■ An order m tensorT ∈ V1 ⊗ · · ·Vm is said to be of rank r if it can be written as the sum of r
rank 1 tensors, and this is the smallest r for which such a decomposition is possible. That
is, r is the smallest integer such that

T =
r∑

l=1

v l ,1 ⊗ · · · ⊗ v l ,m (10)

for some vl ,i ∈ Vi . Such a decomposition of T into a minimum number of rank 1 tensors is
called a rank decomposition or rank factorization.

Remark 5.3. For order 2 tensors, tensor rank is equivalent to the usual definition of matrix rank and
thus provides a valid generalization. We omit a proof, but, as we saw in  Example 5.1 , Rank(A) = 1
and Rank(B ) = 2 in both the tensor rank sense of  Definition 5.2 , and in the sense of matrix rank 

10
 .

Remark 5.4.  Definition 5.2 is inherently basis independent. That said, we will often fix a basis for each
Vi , treating the tensors as multidimensional arrays ( Remark 2.16 .)

Remark 5.5 (‘Order’, ‘level’ and ‘degree’ are the same, but ‘rank’ is not.). In some contexts, particularly
in physics, it is common to use the term rank to refer to what we have called the order of a tensor. Do
not be confused! In our case, the order is trivial to compute, and the rank is difficult. The terminology
itself becomes more apparent after reading  Section 3 and comes from viewing the tensor algebra over
V = Òd as a graded vector space:T (V ) =

⊕
n≥0V

⊗n . Naturally, elements of “the homogeneous
component of degree n”,V ⊗n , are called homogeneous tensors and n is the degree or level.

Example 5.6. Let us verify some of the above examples in Mathematica. Mathematica has a built-in
TensorProduct function, that the reader may wish to to use. First, let us put the tensors u,v ,A, and
B from  Example 5.1 into the system.

Input

u = {1,2}
v = {3,4}
A = {{3 ,4} ,{6 ,8}}
B = {{1 ,0} ,{1 ,1}}

We can then indeed verify that A = u ⊗ v with:

Input 

11
 

10The astute reader may complain that we have not proven that it is not possible to write B as a single tensor product, thus
in the sense of tensor rank,  eq. (8) only shows us Rank(B ) ≤ 2. Indeed, this is correct, and as we will see, while verifying
an upper bound for tensor rank is easy (one must simply check the decomposition is valid), proving such a decomposition is
minimal can be difficult.

11Recall that in many coding languages, including Mathematica, Python, and C, ‘x = y ’ sets the variable x to be y ,
whereas ‘x == y ’ evaluates to True if x and y are equal, and False otherwise.
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TensorProduct[u, v] == A

Output

True

We have just shown that Rank(A) = 1 by using the tensor product definition of rank. To compute the
rank of B , which we expect to be 2, we might be tempted to use Mathematica’s in-built TensorRank
function. However, just as we warned in  Remark 5.5 , this function in fact computes the order of the
tensor it is fed, not the rank. To compute the tensor rank of  Definition 5.2 , we could of course just use
the inbuilt Mathematica function MatrixRank because as we have seen, tensor rank and matrix rank
are the same for tensors of order 2. Unsurprisingly, MatrixRank[A] and MatrixRank[B] return 1
and 2 respectively.

If we wish to compute a rank decomposition however, Mathematica does not have an in-built function. In-
stead, we turn to one of the functions in the provided git repository: e.g. displayRankDecompositionOrderTwo.
This function computes the rank decomposition of an order 2 tensor using a procedure that will be
illustrated in  Section 5.3 ( Algorithm 1 ).

Input

displayRankDecompositionOrderTwo[A]

Output (
3 4
6 8

)
=

(
3
6

)
⊗

(
1
4
3

)
Input

displayRankDecompositionOrderTwo[B]

Output (
1 0
1 1

)
=

(
1
1

)
⊗

(
1
0

)
+

(
0
1

)
⊗

(
0
1

)
We notice that, while the rank decomposition Mathematica gives in  example 5.6 is the same as the one
we gave in  eq. (8) , the decomposition it found for A in  example 5.6 is not the one we gave in  eq. (5) .
This illustrates the general point that rank decompositions are not unique.

5.2 Computing the rank decomposition of order 2 tensors

 Section 5.1 provides a formal definition of tensor rank, however, in terms of practically computing a
rank decomposition, it is useful to work with a slightly different formalism. As we will see, finding rank
decompositions for tensors of order 2 is straightforward, but for tensors of order 2 or greater it is much
more difficult, in fact, it is NP-hard. In this section we explore the question of algorithmically computing
rank decompositions of order 2 tensors (viewed as matrices in a particular basis), and in  Section 5.4 ,
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we see how the problem becomes much more challenging when we consider tensors of arbitrary order.

Suppose M ∈ Òn ⊗ Òm is an order 2 tensor of shape (n,m). By definition, we may write the
components of M in any basis as

M i j =
r∑

l=1

u i
l ,1u

j
l ,2. (11)

This equation is simply  eq. (10) but specified to the case of m = 2, and put into in coordinate form. For
computational purposes, it is now useful to abandon the view of decomposing M into tensor products
of order one tensors u l ,k by interpreting the components of the vectors u i

l ,1 and u j
l ,2 as components of

matrices D l i
1 and D

l j
2 respectively. This lets us write the rank decomposition of M i j as

M i j =
r∑

l=1

D l i
1D

l j
2 . (12)

Now, the entries of the two matrices D l i
1 and D

l j
2 encode the rank decomposition of M . We now notice

that  eq. (12) looks just like the matrix product in component form. That is, interpreting M
n×m

 

12
 as an

n-by-m matrix of its coefficients in a particular basis, we have that Rank (M ) = r is the smallest
integer such that there exist matrices D 1

r×n
and D 2

r×m
that satisfy:

M
n×m

=

(
D 1
r×n

)T
D 2
r×m
. (13)

Indeed, it is perfectly valid to define matrix rank in terms of  eq. (13)  (e.g. see [ 5 , p. 13]). We see
furthermore that finding D 1 and D 2 for a given M amounts to finding a rank decomposition of M
because the coordinates of u l ,1 and u l ,2 can be recovered via

u i
l ,1 = D l i

1 , and u
j
l ,2 = D

l j
2 . (14)

Remark 5.7. It is clear from  eq. (13) that a rank decomposition of a matrix is not unique: given a rank
decomposition M = DT

1D 2, then M = (PTD 1)T (P −1D 2) is also a valid rank decomposition for
any invertible r -by-r matrix P . Stronger uniqueness conditions exist for tensors of higher rank [ 7 ].

5.3 Algorithms for computing the rank decomposition of a matrix

There are fast (i.e. polynomial time) algorithms for computing D 1 and D 2 from  eq. (13)  for an n-by-m
matrix M . One such algorithm is detailed below using the reduced row echelon form (RREF) of M  

13
 :

Another method, computationally slower, uses the singular value decomposition (SVD) 

14
 :

12We use the shorthand M
n×m

for the n-by-m matrix M .
13Recall the reduced row echelon form of a matrix is the result of applying elementary row operations on a matrix to bring

it into a reduced form. For example, the following matrices are all in reduced row echelon form:
1 7 0 2
0 0 1 2
0 0 0 0

,
[
1 0
0 1

]
, and


1 0 2
0 1 3
0 0 0

 . (15)

14The SVD of a matrix M
n×m

is a factorization to M = UΣV T where U
n×n

and V
m×m

are orthogonal matrices and Σ
n×m

is a

diagonal matrix with Rank(M ) non-zero entries.
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Algorithm 1 Rank decomposition of a matrix using the reduced row echelon form
1: M ← some matrix
2: R ← RREF(M ) ▷ Reduced row echelon form
3: DT

1 ← all columns of M that are pivot columns of R
4: D 2 ← all non-zero rows of R
5: assert M == DT

1D2

6: return D1 and D2

Algorithm 2 Rank decomposition of a matrix using singular value decomposition
1: M ← some matrix
2: U , Σ,V T ← SVD(M ) ▷ Singular value decomposition
3: r ← Rank(M ) ▷ Easily acquired from the SVD
4: U ′← first r columns of U
5: Σ′← top-left r × r diagonal block of Σ
6: V ′← first r columns ofV
7: assert C == U ′Σ′V ′T

8: DT
1 ← U ′

9: D2 ← Σ′V ′T

10: assert M == DT
1D2

11: return D 1 and D 2

Implementations of both  Algorithms 1 and  2 in Mathematica are available through the provided git reposi-
tory via rankDecompositionOrderTwoToMatricesRREF and rankDecompositionOrderTwoToMatricesSVD
respectively.

Exercise 5.8. Define M as

M =


3 4 2
1 2 1
0 −2 −1

 .
(a) Compute the rank of M by considering the number of independent columns.

(b) Compute the rank of M by considering the number of independent rows.

(c) Does the decomposition of M into the form of  eq. (16)  below contradict your answers to  Items (a) 

and  (b) ?


4
2
−1

 ⊗

1
0
0

 +

1
1
−1

 ⊗

−1
2
1

 +

1
0
0

 ⊗

0
2
1

 = M . (16)

5.4 Surprising properties of the tensor decomposition

Tensor rank is filled with surprising properties, not expected from a generalization of matrix rank.

▷ Computing tensor decompositions of tensors of order greater than 2 is NP-hard [ 4 ].

This is to say that, assuming P , NP , there is no polynomial time algorithm for computing
the tensor rank of tensors of order greater than 2. For the case of order 2, the algorithms in

 Section 5.3 are both polynomial time.
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▷ The rank of a real tensor can differ over Ò and Ã [ 7 , p. 10].

We can show this through the following illustrating example from Kruskal [ 6 , p. 464].

Example 5.9. Let Z ∈ Ò2 ⊗Ò2 ⊗Ò2 be the order 3 tensor of shape (2, 2, 2) defined in the canonical
basis by

Z i j 1 =

[
1 0
0 1

] i j
, Z i j 2 =

[
0 1
−1 0

] i j
. (17)

Define u l ,i by

u1,1 =

[
1
0

]
, u1,2 =

[
1
0

]
, u1,3 =

[
1
−1

]
, (18)

u2,1 =

[
0
1

]
, u2,2 =

[
0
1

]
, u2,3 =

[
1
1

]
, (19)

u3,1 =

[
1
−1

]
, u3,2 =

[
1
1

]
, u3,3 =

[
0
1

]
. (20)

Define v l ,j by

v 1,1 =
1
√
2

[
1
−i

]
, v 1,2 =

1
√
2

[
1
i

]
, v 1,3 =

[
1
−i

]
, (21)

v 2,1 =
1
√
2

[
1
i

]
, v 2,2 =

1
√
2

[
1
−i

]
, v 2,3 =

[
1
i

]
. (22)

We may decompose Z as

Z = u1,1 ⊗ u1,2 ⊗ u1,3 + u2,1 ⊗ u2,2 ⊗ u2,3 + u3,1 ⊗ u3,2 ⊗ u3,3 (23)

Which is a decomposition in three terms, using only real coefficient. However, despite the fact that Z is
real, we may also decompose Z as:

Z = v 1,1 ⊗ v 1,2 ⊗ v 1,3 + v 2,1 ⊗ v 2,2 ⊗ v 2,3 (24)

using only two terms. The price we pay for the two term decomposition is that the coefficients of the
tensors in which we expand Z are complex. In this way we see clearly that the rank of a tensor depends
on whether or not it is decomposed over Ò or over Ã. The astute reader will indeed point out that we
have not proven that no two-term decomposition of Z over Ò exists, but it can be shown that this is the
case. This example serves only as an illustration.

Remark 5.10. The tensors Z i j k , u l ,i and v l ,j above are hard coded in the git repository, and can be
accessed via Z[[i,j,k]], u[[k,i]] and v[[k,j]] respectively. We can then verify  eq. (23) and

 eq. (24) by running (recall  footnote 11 for the ‘==’ notation):

Input

Z==Sum[TensorProduct[u[[k,1]],u[[k,2]],u[[k,3]]] ,{k,3}]
Z==Sum[TensorProduct[v[[k,1]],v[[k,2]],v[[k,3]]] ,{k,2}]
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Output

True
True

6 Extended Section: Factoring tensor product expressions

In this section, we introduce an elegant toy problem to increase our familiarity with tensors and tensor
products. The problem is interesting in its own right, though the specifics are not necessary to signatures.
The problem is to find an algorithm to factor tensor product ⊗ expressions to a minimal number of
terms. As is often the case, this problem can be elegantly recast in the language of tensors: computing
a minimal factorization amounts to finding a rank decomposition.

6.1 The main problem

Given a tensor product expression comprising many terms, what is the minimum number of terms in
which it may be factored using the linearity rules of the tensor product?

Let us consider a few simple examples. Suppose a1, a2, a3 ∈ U , and b1, b2, b3 ∈ V for two vector
spaces U andV . Consider

X 0 B a1 ⊗ b1 + a1 ⊗ b2 + a2 ⊗ b1 + a2 ⊗ b2 → (a1 + a2) ⊗ (b1 + b2)
X 1 B a1 ⊗ b1 + a1 ⊗ b3 + a2 ⊗ b2 + a2 ⊗ b3 → a1 ⊗ (b1 + b3) + a2 ⊗ (b2 + b3)

(25)

We see that X 0, originally comprising 4 terms, can be factored into just 1 term. Whereas X 1, also
comprising 4 terms can only be factored into a minimum of 2 terms. It is not hard to convince yourself
that there is no way to factor X 1 into just a single term, but we would like to be able to prove this. That
is, given a tensor product expression X we would like a systematic way of finding a factorization of X
in a minimal number of terms. As it turns out, the answer to this question lies in computing the rank
decomposition of X . Let us start by formalizing what ‘minimal factorization’ means to then state the
problem appropriately (see  Problem 6.2 ).

Definition 6.1 (Minimal factorization). Let U ,V be vector spaces, and let X ∈ U ⊗V be a tensor
product expression. A factorization of X is called minimal (or ‘minimal factorization’) if there are no
factorizations of X with fewer terms.

We note immediately that minimal factorizations are not unique. Observe that X 1 from  eq. (25) can
also be minimally factored to two terms as

X 1 =
1

2
(a1 + a2) ⊗ (b1 + b2 + 2b3) +

1

2
(a2 − a1) ⊗ (b2 − b1).

Problem 6.2 (Minimally factoring tensor product expressions). LetU ,V be vector spaces of dimension
d1 and d2 with bases {a i } and {b j } respectively. Given the unfactored tensor product expression:

X B

d1∑
i=1

d2∑
j=1

X i j (a i ⊗ b j ) = X 11a1 ⊗ b1 + · · · + X d1d2ad1 ⊗ bd2 ∈ U ⊗V . (26)
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Determine the minimum r ∈ Î, such that there exist u l ∈ U , and v l ∈ V such that we may write X
as:

X =
r∑

l=1

u l ⊗ v l . (27)

6.2 The naive algorithm

Already you may be looking at  Problem 6.2 and seeing similarities to the tensor decompositions of the
previous section. For the moment however, we ignore this and try a simple algorithm for approaching
the problem. Suppose the expression we need to factor is:

X 0 = a1 ⊗ b1 + a2 ⊗ b2 + a1 ⊗ b3 + a2 ⊗ b3. (28)

A naive algorithm might try grouping left terms (a ⊗ c + b ⊗ c → (a + b) ⊗ c), then right terms
(a ⊗ b + a ⊗ c → a ⊗ (b + c)), until no further terms match. Applying such an algorithm starting
starting from the left would give:

X 0 = a1 ⊗ b1 + a2 ⊗ b2 + (a1 + a2) ⊗ b3 (3 terms) (29)

Or from the right:
X 0 = a1 ⊗ (b1 + b3) + a2 ⊗ (b2 + b3) (2 terms) (30)

It turns out the factorization with 2 terms is minimal, but we already see the limitations of this algorithm:
it can get stuck. The factorization in  eq. (29) contains no terms that can be grouped, and yet is not
minimal. This algorithm is greedy : it takes the locally optimal decision, but there is no guarantee that
the final factorization it provides is minimal.

6.3 Using the power of tensor rank

We seek a better factorization algorithm. To proceed, we take the equation for the factored form of an
arbitrary tensor product expression,  eq. (26) , and the equation for the unfactored form,  eq. (27) , and set
them equal:

X =
d1∑
i=1

d2∑
j=1

X i j (a i ⊗ b j ) =
r∑

l=1

u l ⊗ v l . (31)

Comparing  eq. (31)  with  Definition 5.2  , we notice that finding the minimal factorization of X , i.e. by
finding u l and v l , is exactly the problem of finding a rank decomposition of X . We saw various
algorithms in  Section 5.3 for computing the rank decomposition of an order 2 tensor, and we can indeed
use any of these to find a decomposition of X .

To be more explicit, we may write u l and v l in terms of the bases {a i } and {b i } respectively. That is,

u l =
d1∑
i=1

u i
l a i , and v l =

d2∑
j=1

v
j
l
b i . (32)
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Substituting this into  eq. (31) gives:

d1∑
i=1

d2∑
j=1

X i j (a i ⊗ b j ) =
r∑

l=1

d1∑
i=1

d2∑
j=1

u i
lv

j
l
a i ⊗ b j (33)

0 =
d1∑
i=1

d2∑
j=1

(
X i j −

r∑
l=1

u i
lv

j
l

)
a i ⊗ b j . (34)

=⇒ X i j =
r∑

l=1

u i
lv

j
l
. (35)

Where in the last line we have used the fact that {a i ⊗ b j } are a basis for U ⊗V ( Proposition 2.11 )
and so the coefficients in  eq. (34) must all vanish. We may now use any of the algorithms in  Section 5.3 

to find matrices D 1
r×n1

and D 2
r×n2

such that X i j = (DT
1D 2)i j , which allows us to recover the coefficients

of u l and v l in the {a i } and {b i } bases via

u i
l = D l i

1 , and v
j
l
= D

l j
2 . (36)

Exercise 6.3. Let U = Ò[x ], and V = Ò[y ] be the vector spaces of polynomials in the single
variable x , and y respectively. Consider the following expression:

E B −x ⊗ y + 2x 2 ⊗ y + 3x ⊗ y 2 − 4x 2 ⊗ y 2 + x 3 ⊗ y 2 ∈ U ⊗V . (37)

(a) Try to factor  eq. (37) to a minimal number of terms by grouping.

(b) Confirm your factorization is indeed minimal by using Mathematica, or otherwise.

6.4 Generalization

We have solved the problem of factorizing tensor product expressions containing one tensor product
symbol per term. That is, we have a computationally efficient 

15
 algorithm for solving  Problem 6.2 . We

can easily generalize this to the case of expressions that contain more than one tensor product symbol
in each term. For example

Z B u1 ⊗ v 1 ⊗ w 1 + u1 ⊗ v 2 ⊗ w 2 − u2 ⊗ v 1 ⊗ w 2 + u2 ⊗ v 2 ⊗ w 1. (38)

Proceeding just as in  Problem 6.2 we can state the question of factoring tensor product expressions
involving more than one tensor product symbol.

Problem 6.4. LetV1, · · · ,Vm be vector spaces of dimension d1, · · · , dm with bases {a1,i1}, · · · , {am,im }
respectively. Given the unfactored tensor product expression

Y B

d1∑
i1=1

· · ·
dm∑
im=1

Y i1i2···im (
a1,i1 ⊗ · · · ⊗ am,im

)
∈ V1 ⊗ · · · ⊗Vm (39)

15Since all of the algorithms in  Section 5.3 are polynomial time, factorizations of tensor product expressions involving a
single tensor product symbol are fast to compute.
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what is the minimum integer r such that we may writeY as

Y =
r∑

l=1

v l ,1 ⊗ · · · ⊗ v l ,m . (40)

Once again, we see that finding the minimum factorization of a tensor product expressionY amounts
simply to finding the rank decomposition ofY . The number of terms of terms in a minimal factorization
is simply the tensor rank.

It is here we can make use of some of the important properties of the tensor rank that we saw in
 Section 5.4 .

■ Since minimally factoring a tensor product expression is equivalent to finding its rank decomposi-
tion, both problems are NP-hard for tensors of order greater than 2.

■ The fact that the tensor rank of real tensors can differ over Ò and over Ã translates into the fact
that tensor product expressions of order greater than 2 differ when the factorization is over Ò or
over Ã. As an example, take Z from equation  eq. (38) :

Z = u1 ⊗ v 1 ⊗ w 1 + u1 ⊗ v 2 ⊗ w 2 − u2 ⊗ v 1 ⊗ w 2 + u2 ⊗ v 2 ⊗ w 1. (41)

This purely real expression can be minimally factored to three terms over Ò:

Z = u1 ⊗ v 1 ⊗ (w 1 −w 2) + u2 ⊗ v 2 ⊗ (w 1 +w 2) + (u1 − u2) ⊗ (v 1 + v 2) ⊗ w 2, (42)

but minimally factored to two terms over Ã:

Z =
1

2

(
(u1 − iu2) ⊗ (v 1 + iv 2) ⊗ (w 1 − iw 2)

+ (u1 + iu2) ⊗ (v 1 − iv 2) ⊗ (w 1 + iw 2)
)
. (43)

7 Extended Section: Solutions to additional Exercises

Solution 7.1 (To  Exercise 5.8 ). (a) Label the columns C 1,C 2,C 3. Notice that C 2 = 2C 3 and hence C 2

is linearly dependent on C 3. Since C 1 and C 3 are linearly independent, the matrix M has a total of 2
linearly independent columns. Thus the rank of M is 2.

(b) Label the rows R1,R2,R3. Note that R1 = 3R2 + R3, thus R1 is linearly dependent on R2 and R3.
Since R2 and R3 are linearly independent, the rank of M is 2.

(c) One might think that  eq. (16) provides a rank decomposition of M in three terms, and thus conclude that
Rank(M ) = 3, contradicting our results from  Items (a) and  (b) . However, just because the decomposition
in  eq. (16) does correctly produce M , it is not a decomposition with a minimal number of terms. In fact,
from the previous parts of the question we know that M can be decomposed into the sum of two outer
products. Finding these can be difficult (and the reader is not expected to be able to do so in their head),
but here is one such decomposition:

1
0
1

 ⊗

1
0
0

 +

2
1
−1

 ⊗

1
2
1

 = M . (44)
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We can guarantee that there is no decomposition of M in fewer than 2 terms because we saw earlier that
Rank(M ) = 2. We can also use the provided Mathematica code to find a rank decomposition of M .

Input

M = {{3,4,2},{1,2,1},{0,-2,-1}};
displayRankDecompositionOrderTwo[M]

Output

©«
3 4 2
1 2 1
0 −2 −1

ª®¬ =
©«
3
1
0

ª®¬ ⊗ ©«
1
0
0

ª®¬ + ©«
4
2
−2

ª®¬ ⊗ ©«
0
1
1
2

ª®¬
This is different, valid rank decomposition of M .

Solution 7.2 (To  Exercise 6.3 ). (a) We begin with:

E B −x ⊗ y + 2x 2 ⊗ y + 3x ⊗ y 2 − 4x 2 ⊗ y 2 + x 3 ⊗ y 2 ∈ U ⊗V . (45)

Grouping from the left gives:

E = x ⊗ (3y 2 − y ) + x 2 ⊗ (−4y 2 + 2y ) + x 3 ⊗ y 2. (46)

Which cannot be further grouped. Trying instead from the right gives:

E = (−x + 2x 2) ⊗ y + (3x − 4x 2 + x 3) ⊗ y 2. (47)

Thus the rank of E is no larger than 2.

(b) Let us assign the obvious bases {x , x 2, x 3, · · ·} and {y , y 2, y 3, · · ·} to U = Ò[x ] and V = Ò[y ].
Written in this basis we have

E =
3∑

i=1

2∑
j=1

E i j x i ⊗ y j . (48)

Where the coefficients E i j can be written in a matrix as:

E i j =


−1 3
2 −4
0 1

 . (49)

Letting Mathematica compute the rank of this matrix yields 2, which tells us that our factorization with 2
terms is minimal.
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