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Phase transitions for contact processes on one-dimensional
networks

Benedikt Jahnel, Lukas Lüchtrath, Christian Mönch

Abstract

We study the survival/extinction phase transition for contact processes with quenched dis-
order. The disorder is given by a locally finite random graph with vertices indexed by Z that is
assumed to be invariant under index shifts and augments the nearest-neighbour lattice by addi-
tional long-range edges. We provide sufficient conditions that imply the existence of a subcritical
phase and therefore the non-triviality of the phase transition. Our results apply to instances of
scale-free random geometric graphs with any integrable degree distribution. The present work
complements previously developed techniques to establish the existence of a subcritical phase
on Poisson–Gilbert graphs and Poisson–Delaunay triangulations (Ménard et al., Ann. Sci. éc.
Norm. Supér., 2016), on Galton–Watson trees (Bhamidi et al., Ann. Probab., 2021) and on locally
tree-like random graphs (Nam et al., Trans. Am. Math. Soc., 2022), all of which require exponen-
tial decay of the degree distribution. Two applications of our approach are particularly noteworthy:
First, for Gilbert graphs derived from stationary point processes on R marked with i.i.d. random
radii, our results are sharp. We show that there is a non-trivial phase transition if and only if the
graph is locally finite. Second, for independent Bernoulli long-range percolation on Z, with cou-
pling constants Jx,y � |x − y|−δ , we verify a conjecture of Can (Electron. Commun. Probab.,
2015) stating the non-triviality of the phase transition whenever δ > 2. Although our approach
utilises the restrictive topology of the line, we believe that the results are indicative of the behaviour
of contact processes on spatial random graphs also in higher dimensions.

1 Background and motivation

We investigate contact processes on spatial random graphs. Let us briefly introduce the contact pro-
cess and the question of its global survival/extinction, both on fixed and on random graphs.

1.1 Survival and extinction of contact processes

The contact process (sometimes also referred to as the SIS epidemic model) is a Markovian inter-
acting particle system, which was first introduced to the mathematical literature by Harris [16] and
has been studied extensively on hypercubic lattices throughout the 1970s, 1980s and early 1990s.
An introduction to this classical theory as well as an overview of its main results is provided in the
monographs [26, 25]. In the 2000s renewed interest in the contact process emerged in the context of
complex networks, and in particular researchers began to investigate the behaviour of the process on
large but finite random graphs as a toy model for the spread of disease or information in a variety of
mesoscopic systems, see, for example, [11] for an account of rigorous results in this area.

Together with percolation and oriented percolation, the contact process is one of the simplest random
interacting systems that may display a non-trivial phase transition, the existence of which is the subject
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B. Jahnel, L. Lüchtrath, Ch. Mönch 2

of the present paper. More precisely, let G be a locally finite connected graph with vertex set V (G)
and edge set

E(G) ⊂ V (G)[2] := {{x, y} : x ∈ V (G), y ∈ V (G), x 6= y}.

In the contact process on G, infected vertices in V (G) infect their susceptible neighbours at expo-
nential rate λ > 0 and turn back into susceptible vertices at rate 1. Formally, we view this process as
a Markov process with values in the set of subsets of V (G) and generator L given by

Lf(A) = λ
∑

{u,v}∈E(G)

1{u∈A,v/∈A}
(
f(A ∪ {v})− f(A)

)
+
∑

v∈V (G)

1{v∈A}
(
f(A \ {v})− f(A)

)
,

where λ > 0 is called the infection rate and f is any non-negative bounded function on V (G).
Starting at time 0 with an initially infected set A0 ⊂ V (G), we denote by ξA0

t ⊂ V (G) the set of
infected vertices at time t under the dynamics prescribed by L. The law of ξ is denoted by Pλ. For
the purpose of this paper, we always consider rooted graphs (G, o), i.e., we distinguish a specific
vertex o ∈ V (G) as the root of G. We usually set A0 = {o} and omit the initially infected set from
the notation in this case. We say that the contact process (with infection rate λ) survives on G if
Pλ(ξt 6= ∅ for all t > 0) > 0 and define the corresponding critical infection rate by

λc(G) := inf
{
λ > 0: Pλ(ξt 6= ∅ for all t > 0) > 0

}
.

If λc(G) ∈ (0,∞), then the survival/extinction phase transition for ξ on G is called non-trivial.

Since ∅ is an absorbing state of the dynamics, it follows immediately that λc(G) = ∞ for any finite
graph G. Conversely, if G is assumed to be infinite we have

λc(G) ≤ λc(Znn) <∞, (1)

where Znn denotes the nearest-neighbour graph on Z, which we always consider as rooted at 0. The
second inequality in (1) is due to Harris’ foundational work [16] and the first inequality follows from
the fact that λc(·) is monotone with respect to the canonical partial order on rooted graphs. The non-
triviality of the survival/extinction phase transition thus reduces to the question whether λc(G) > 0, in
which case we say that the contact process on G has a subcritical phase. A simple comparison with
a branching process shows that λc(G) > 0 whenever the vertices of G have a uniformly bounded
degree. At the other end of the spectrum, it is not difficult to construct graphs with unbounded degrees
on which ξ survives for any λ > 0, for instance by considering a sequence of sufficiently rapidly
growing star-graphs whose centre vertices are placed on a copy of the line graph Znn. Moreover, if we
interpret the breadth-first exploration of a Bernoulli bond percolation cluster as a contact-type process
in which every vertex can only be infected once, then an elementary coupling argument shows that
any graph G with bond percolation threshold pc(G) = 0 also satisfies λc(G) = 0.

1.2 Contact processes on random graphs

Let us now consider a random rooted graph (G , o) with distribution P. We mostly consider cases in
which G is infinite but locally finite P-almost surely1. Furthermore, we assume P to be invariant and
ergodic with respect to shifts of the root, e.g., see [2, 22] for discussions of the concept. Note that
these assumptions are naturally satisfied in many cases of interest, for instance whenever G arises as

1If G is not locally finite, the contact process can still be defined in the way presented until it infects a vertex of infinite
degree. If G is also connected, this explosion event always has positive probability and we consequently have λc(G ) = 0.
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Contact process in 1d 3

a local limit of a sequence of finite graphs in which the degree of the root is uniformly integrable [1], or
if G is the infinite cluster of some translation-invariant percolation model on the hypercubic lattice. We
focus mainly on the latter case. Note further, that monotonicity of λc(·) allows us to assume (G , o) to
be connected, either by incorporating additional edges deterministically or by considering an infinite
cluster of the original graph instance under investigation. Ergodicity then ensures that λc ≡ λc(G ) is
non-random.

Let degG (o) denote the number of edges incident to the root of G , or root degree for short. We
say that G has unbounded degrees if P(degG (o) ≥ k) > 0 for all k ∈ N. There are sur-
prisingly few examples of random-graph ensembles with unbounded degrees for which the non-
triviality of the survival/extinction phase transition for the contact process has been demonstrated.
This contrasts with Bernoulli percolation, where the corresponding question is often easier to answer
[36, 28, 35, 31, 8, 19, 15, 14]. Let us provide some intuition from where this difficulty stems. One
way of characterising the percolation phase transition on G is by looking at sequences of cut-sets of
edges separating o from infinity. These sets serve as ‘bottlenecks’ for the percolation cluster, and if
there are sufficiently many ‘small’ cut-sets, then there must be a subcritical percolation phase. The
cut-set characterisation is prominent, for instance, in Lyons’ classical works connecting percolation on
trees to electrical networks [28, 29] and in the modern approach of Duminil-Copin and Tassion to the
question of sharpness of the percolation phase transition [9, 10]. It is also closely related to the max-
flow/min-cut principle of network optimisation [12]. The infection paths in the contact process, however,
are not self-avoiding and in particular may return many times to vertices of high degree, which in turn
sustain the infection for a very long time. Intuitively, this means that even if the graph is broken up by
cut-sets, the infection gets many attempts at getting through these bottlenecks, if there is an infected
vertex of high degree in the vicinity. In general, a far better control on the large-scale geometry of the
graph is therefore needed to show that high-degree vertices are sufficiently separated by zones of low
connectivity which, in turn, is necessary for the extinction of the contact process.

The random-graph family for which the survival/extinction transition is best understood are Galton–
Watson trees. The study of the contact process on Galton–Watson trees was initiated in [34], see also
[17]. A sufficient and necessary condition for non-triviality of the phase transition is now known due to
seminal work of Bhamidi, Nam, Nguyen and Sly [3]:

Let Pµ denote the law of a supercritical Galton–Watson tree T with offspring distribution µ conditioned
on non-extinction. Then, the contact process on Pµ-almost every T has a subcritical phase if and only
if µ has an exponential tail.

Remark 1.1. Since the root vertex of Galton–Watson trees is special, they do not quite fit into our shift-
invariant framework. However, if one size-biases the offspring distribution at the root and conditions
the tree to be infinite, it is not difficult to see that the resulting infinite augmented Galton–Watson tree is
distributionally invariant under rerooting; see, for instance, [30, Chapter 17]. Since these modifications
have no effect on the existence of exponential tails for the offspring distribution, the result of Bhamidi et
al. has an equivalent formulation in terms of augmented Galton–Watson trees conditioned on survival.

The above result for Galton–Watson trees also has consequences for locally tree-like graphs [3, 33],
which include a variety of popular network models, such as configuration graphs and inhomogeneous
random graphs. Outside the locally tree-like setting, the subcritical phase of the contact process on
random graphs is rather poorly understood. The only approach available so far is based on the use of a
technically challenging auxiliary process called cumulative merging percolation, which was introduced
by Ménard and Singh [32]. This approach essentially formalises the above heuristics about quantifying
the distributions of zones of good and bad connectivity in the graph. Ménard and Singh applied their
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approach to the contact process on the Gilbert graph and the Delaunay triangulation based on a
homogeneous Poisson point process in Rd. More precisely, they showed the following:

Let P denote the distribution of either one of the following random graphs,

� the origin’s cluster in the Gilbert graph with supercritical radius r ∈ (0,∞) derived from the
Palm version of a unit intensity Poisson point process on Rd conditioned on being infinite, or

� the Delaunay triangulation derived from the Palm version of a unit intensity Poisson point pro-
cess on Rd rooted at the origin,

then, the corresponding contact process has a subcritical phase P-almost surely.

Shortly after, Can [6] applied the same technique to long-range percolation clusters on Z. To state his
result, which is the starting point of our own investigation, we first provide an explicit definition of the
underlying random graph G . We set V (G ) = Z and choose 0 as the root. Each edge {x, y} is now
included into E(G ) independently of all other edges with probability

P
(
{x, y} ∈ E(G )

)
= ϕ(|x− y|), {x, y} ∈ Z[2].

We call ϕ the connection function of the long-range percolation graph. Of particular interest is the case
when

ϕ(k) = k−δ for some δ > 1 and all k ∈ N. (2)

In this setting, we define

δ∗ := inf{δ > 1: P-almost every G admits a subcritical phase for the contact process}.

Can conjectured that δ∗ ≤ 2 and obtained the following bound [6]:

For the contact process on long-range percolation graphs induced by connection functions of the
type (2), the exponent δ∗ satisfies

δ∗ ≤ 102. (3)

1.3 Our contribution

We consider the problem of existence of a phase transition for contact processes on stationary random
graphs in one dimension. Although infinite Galton–Watson trees are arguably the simplest infinite
random graphs without geometry, our setting lies at the opposite end of the spectrum as we consider
complete confinement by geometry. In contrast to previous investigations of contact processes on
random graphs, which use heavy technical machinery, we obtain in Theorem 2.2 a rather general
statement by technically effortless means. Aside from improving upon Can’s result (3) for long-range
percolation graphs, the main contribution of this work, as we see it, is twofold.

First, we provide a ‘proof of concept’: As is illustrated by our Theorems 2.5 and 2.7, in the geometric
setting, there are simple and ergodic random-graph models producing sparse graphs with arbitrarily
heavy-tailed degree distributions on which the contact process nevertheless undergoes a non-trivial
phase transition. This is in stark contrast to the non-spatial Galton–Watson setting. Moreover, all previ-
ous results of this type for spatial models only apply to graphs with exponentially decaying degree tails
and heavily rely on independence or asymptotic independence of graph neighbourhoods – besides
the existence of zones of low edge density, we only require invariance, ergodicity and finite expected
root degree, see Theorem 2.2.
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The second, and more technical, innovation of the present work is the coupling with a random walk
in random environment that we develop to prove Theorem 2.2. It replaces the ‘cumulative merging’
approach previously used on random geometric graphs and we believe it to be of independent interest.

Admittedly, our technique heavily utilises the restrictive geometry of the line and cannot be readily
generalised to higher dimensions. We believe that, in more than one dimension, a result of comparable
scope as Theorem 2.2 is currently out of reach. However, we are convinced that the presence of a
phase transition on random geometric graphs in which connection probabilities decay sufficiently fast
in the vertex distance is not an artefact of the one-dimensional setting, and we discuss this matter in
greater detail at the end of Section 2.1.3.

Paper overview. The remainder of the paper is structured as follows: Our results are presented and
discussed in Section 2. Here, we first state our main result, Theorem 2.2, and then its implications for
specific models, such as long-range percolation and Gilbert graphs derived from Boolean models with
additional edges as well as weight-dependent random connection models. Section 3 is dedicated to
proofs.

2 Main results and discussion

We proceed with formulating our main results and explain how they relate to previous work and the
general spatial case. We begin with the key result of this work, which provides a general sufficient
criterium for the existence of a phase transition in the contact process on stationary random graphs
embedded in Z. Subsequently, we focus on the consequences of our approach for a number of models
that have received attention in the literature.

Consider a random graph G = (Z, E) rooted at 0 ∈ Z with law P that satisfies the following
assumptions:

(A.1) G is stationary and ergodic, i.e., P is invariant and ergodic with respect to additive shifts along
Z.

(A.2) G is sparse, i.e., we have ∆G := E[degG (0)] <∞.

Note that, without loss of generality, we may henceforth assume that G is connected: If G is stationary,
then so is the graph obtained from G by adding all nearest-neighbour edges. Furthermore, ergodicity
and sparsity imply local finiteness as they ensure that P-almost surely no vertex has infinitely many
neighbours.

Remark 2.1. The reason that we equate sparsity with finite expected root degree is that the total
number of edges En of the subgraph induced by {0, . . . , n− 1}, under Assumptions (A.1) and (A.2),
satisfies

lim
n→∞

En
n

=
1

2
∆G P-almost surely, (4)

by the pointwise ergodic theorem. Consequently, the number of edges is locally of the same order as
the number of vertices precisely if the mean degree of the root is finite.

We now set up a decomposition of G inspired by the cut-set characterisation of percolation alluded to
in the introduction. We distinguish between nearest-neighbour pairs `z = {z − 1, z}, z ∈ Z which
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we call links and the edges of G . As indicated by the notation, we usually identify links with their larger
endpoint. Not every link necessarily needs to correspond to an edge of G , but as explained earlier,
there is no harm in assuming that Znn is a subgraph of G . For a given link `z, z ∈ Z, we define the
number of edges above `z as

e(z) =
∣∣{{x, y} ∈ E : x ∈ (−∞, z − 1], y ∈ [z,∞)

}∣∣ ∈ N ∪ {0,∞}.

We say z ∈ Z is a K-cut point (for G ), if there are at most K ≥ 1 edges of G above `z, i.e.,
e(z) ≤ K . Since we assume G to be connected, we have that e(z) ≤ 1 if and only if e(z) = 1. We
set e = e(0) and focus on the case in which the random variable e under P is almost-surely finite, in
which case 0 has a positive probability of being aK-cut point for someK <∞. It is worth noting that
interesting models fulfilling (A.1) and (A.2) exist for which e is infinite almost-surely and consequently
no cut points are present in the graph. However, the existence of cut points is crucial for our method.
Let us now state our main theorem for models with cut points.

Theorem 2.2 (Sufficient criterium for the existence of the survival/extinction phase transition). Let G
satisfy the Assumptions (A.1) and (A.2) and let e be P-almost-surely finite. Then,

λc(G ) ≡ λc ∈ (0,∞) P-almost-surely.

Remark 2.3. (i) Note that Assumptions (A.1) and (A.2) combined imply that finiteness of e is a zero-
one event. Indeed, using sparsity, P(e =∞) = P(e(z) =∞ for all z ∈ Z) and since the event
{e(z) = ∞ for all z ∈ Z} is translation invariant, under ergodicity, P(e = ∞) ∈ {0, 1}. Fur-
thermore, observe that the finiteness of e assumption generalises Schulman’s classical condition
for the absence of percolation in one-dimensional long-range percolation models [36]. Conse-
quently, the ‘typical’ random graph models that fall under the scope of Theorem 2.2 do not have
infinite clusters and adding edges is necessary to obtain an infinite environment for the contact
process.

(ii) The condition P(e < ∞) = 1 implies that long-range edges in G are so few, that G remains
essentially 1-dimensional. In particular, P(e < ∞) = 1 implies pc(G ) = 1, and hence the
percolation phase transition on G is trivial. The converse is not true: take G to be scale-invariant
long-range percolation at the critical point [?], then clearly pc(G ) = 1 but P(e =∞) = 1, since
e is a sum of independent Bernoulli random variables with E[e] =∞.

2.1 Extinction phases for specific graph models

We now apply our main result to a variety of graph models from the literature, namely, long-range
percolation, augmented Gilbert graphs as well as weight-dependent random connection models.

2.1.1 Long-range percolation

We begin by improving Can’s result for long-range percolation models, thereby verifying his conjecture
from [6].

Theorem 2.4 (Extinction in long-range percolation). Let G denote the graph obtained by performing
independent Bernoulli long-range percolation on Z with connection function ϕ : N→ [0, 1] satisfying

∞∑
k=1

kϕ(k) <∞ and {k : ϕ(k) = 1} 6= ∅.

Then, λc(G ) ≡ λc > 0 P-almost surely. In particular, we have that δ∗ ≤ 2.
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In fact, we believe that this result is still not sharp, the conclusion of Theorem 2.4 should remain valid
whenever

∞∑
k=1

ϕ(k) <∞.

In particular this would imply δ∗ = 1. The intuition behind this prediction comes from the fact that
sparse i.i.d. Bernoulli percolation graphs have a degree distribution with all exponential moments. We
know from the result of Bhamidi et al. [3] that this is a sufficient condition for the non-triviality of the
survival-extinction phase transition in Galton–Watson trees. As the latter can be viewed as spread-out
limits of long-range percolation clusters, see e.g. [5], it is hard to conceive how imposing the additional
restriction of a low-dimensional ambient geometry could help the contact process survive.

2.1.2 Augmented Gilbert graphs

The next model we discuss is a variant of the Gilbert graph associated with Boolean percolation
models. Let X = {. . . , X−1, X0 = 0, X1, . . . } denote a stationary and ergodic point process on
R under its Palm-distribution, i.e., with a point X0 = 0 at the origin. We assume that X is indexed
according to the natural order on R. To each Xj ∈ X we assign a random radius Rj drawn from a
given distribution ρ on (0,∞). Note that the radii are not assumed to be independent, it suffices that
the joint process of points and radii be stationary and ergodic under additive shifts in R. The graph G
is then obtained by setting V (G ) = Z and

{i, j} ∈ E(G ) ⇐⇒ |Xi −Xj| ≤ Ri +Rj or |i− j| = 1,

which is equivalent to taking the Gilbert graph associated with the Boolean model induced by the radii,
adding edges between consecutive vertices and identifying the vertices with their index, while keeping
all edges. We call this model the augmented Gilbert graph.

Theorem 2.5 (Extinction in augmented Gilbert graphs). Let (Xi, Ri)i∈Z ⊂ R × [0,∞) denote a
stationary and ergodic sequence such that X = (Xi)i∈Z forms a simple point process and such that
the law ρ of R0 satisfies ∫ ∞

0

rρ(dr) <∞. (5)

Let furthermore G denote the corresponding augmented Gilbert graph. Then, λc(G ) ≡ λc > 0
P-almost surely, and thus the contact process on G has a subcritical phase.

Let us note that the requirement that R0 be integrable cannot be weakened since otherwise the un-
derlying Graph model will in general not be locally finite. In that sense, we believe that the condition in
Theorem 2.5 is indeed sharp and for classical Gilbert graphs derived from i.i.d. radii the existence of
an extinction phase for the contact process on the augmented graph coincides with the existence of a
connectivity phase transition of the unaugmented graph with respect to the intensity of the underlying
point process.

Theorem 2.6 (Survival and extinction in augmented Gilbert graphs with i.i.d. radii). LetX = (Xi)i∈Z ⊂
R × [0,∞) denote a stationary and ergodic simple point process endowed with i.i.d. marks (Ri)i∈Z
drawn from a distribution ρ on [0,∞) independently of X . Then, the contact process on the induced
augmented Gilbert graph G has a subcritical phase P-almost surely if and only if∫ ∞

0

rρ(dr) <∞.
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2.1.3 Augmented weight-dependent random connection models

Finally, let us extend the application of our main theorem to weight-dependent random connection
models (WDRCMs), introduced in [13], which generalises both previous examples. We use the frame-
work of [18] and assume X = (Xi)i∈Z to be either a stationary and ergodic simple point process
under its Palm distribution, or the lattice Z. Next, let U = (Ui)i∈Z be a sequence of independent
random variables distributed uniformly on (0, 1), and define X = ((Xi, Ui))i∈Z. Note that X is an
independently marked stationary and ergodic simple point process under its Palm distribution. We
build an auxiliary graph G on the points of X from which we will derive the graph G . To this end,
let ϕ : (0, 1) × (0, 1) × (0,∞) → [0, 1] be a connection function that is symmetric in the first two
arguments and non-increasing in all three arguments. Now, given X, we connect any pair of vertices
Xi,Xj in G independently with probability

P
(
{Xi,Xj} ∈ E(G)

∣∣ (X,U) = (x, u)
)

= ϕ(ui, uj, |xi − xj|).

Note that the non-increasing property of the marks arguments imply that vertices with a mark closer
to zero have a higher probability of being connected. Hence, the mark models the inverse weight of
a vertex, giving the model its name. Similarly, short edges are more probable than long edges. The
augmented graph G is now obtained from G by setting

V (G ) = Z and E(G ) =
{
{i, i+ 1} : i ∈ Z

}
∪
{
{i, j} : {Xi,Xj} ∈ E(G), i 6= j ∈ Z

}
.

It is clear that G satisfies the Conditions (A.1) and (A.2) if and only if G does. Furthermore, the
existence of cut points, i.e., the finiteness of e, in G is determined by the edge set of G, and thus by
the properties of ϕ in particular.

Theorem 2.7 (Extinction in augmented weight-dependent random connection models). Let G be the
augmented graph of a WDRCM, constructed on the points of the Palm version of a stationary and
ergodic simple point process X with connection function ϕ. Suppose that there exists µ > 0 such
that ∑

n∈N

22n

1∫
2−n−µn

1∫
2−n−µn

ϕ(u, v, 2n) du dv <∞, (6)

then λc(G ) = λc > 0 P-almost surely and thus, the contact process on G has a subcritical phase.

Potential extensions to higher dimensions. Property (6), which simultaneously guarantees sparse-
ness (A.2) and the existence of cut points embodies a general theme of the study in the WDRCMs in
general, namely that the presence of many long edges drastically changes the model’s properties,
see also Remark 2.3. As elaborated in [14], the n-th summand in Property (6) essentially deter-
mines the expected number of long edges directly connecting the sets {X−2n , . . . ,X−2n−1} and
{X2n−1 , . . . ,X2n}. As the event of X0 being a (1-)cut point is equivalent to the absence of any
such edge, summability ensures that X0 is a cut point with positive probability, hence implying finite-
ness of e. It is important to note that truncating the lower integral bound in (6) is crucial to exclude
atypically powerful vertices that would dominate the expected number of long edges without actually
being present. Specifically, the expected number of vertices in the two considered sets, that have mark
smaller than 2−n−nµ, is 2−2µn, which again is summable.

Although the relationship between long edges and cut points is inherently one-dimensional, the con-
cept of quantifying long edges in a graph via the tail of an integral, as in (6), can be generalised
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to higher dimensions. For the existence of a subcritical percolation phase, this strategy has proven
successful in the recent work [18]. The geometric arguments in that paper are based on crossing
probabilities for annuli of the form {x ∈ Rd : n < |x| ≤ 2n}. This is a natural extension of the
cut-point concept: Consider an edge long if it connects a vertex within the inner ball {|x| ≤ n} to
some vertex located outside of the annulus. In [18], it is established that, if long edges asymptotically
vanish, then annulus crossings characterise the existence of a percolation phase transition. More pre-
cisely, by optimising an integral formula similar to (6), the authors exactly quantify the occurrence of
long edges and establish two regimes: Either long edges appear frequently, allowing large annuli to
be crossed by a single edge, or long edges are rare, in which case large annuli can only be traversed
via relatively long paths. The latter scenario can always be suppressed by significantly decreasing the
underlying intensity parameter, ultimately preventing large annuli from being traversed. Therefore, a
subcritical percolation phase exists. Similar geometric restrictions apply to the spread of the contact
process, which makes it very plausible that the absence of long edges is sufficient for the existence of
a subcritical phase also in WDRCMs in higher dimension.

This is further corroborated by another important consequence of the scarcity of long edges, namely
the comparability of graph distances with Euclidean distances. In [27], it is shown that, if long edges
are rare, then the graph distance between any two vertices at a large distance is bounded from below
by a multiple of their Euclidean distance. The result holds for any sparse translation-invariant graph in
which long edges are rare. This behaviour contrasts sharply with the non-spatial case, where graph
distances typically grow no faster than logarithmically in the system size, see [4, 7, 38].

At an intuitive level, this phenomenon explains the existence of an extinction phase for graphs with
power-law degree distributions due to spatially induced clustering. Although high-degree nodes, on
which the contact process survives locally for a long time, exist, these vertices are too far apart to apply
the “chain of stars” strategy, which guarantees supercriticality on heavy-tailed trees in [3]. In summary,
we are convinced that our results extend to certain spatial graph models, such as the WDRCM, in all
dimensions under the provision that long edges be sufficiently rare.

3 Proofs

3.1 Proof of Theorem 2.2

We begin by proving the theorem under the stronger assumption of existence of K-cut points with
K = 1 and explain how to obtain the general case at the end of the section. For this, we say that
z ∈ Z is a cut point if e(z) = 1 and the edge above `z is {z − 1, z}. If cut points exist, i.e.,
P(τ <∞) = 1, where

τ = min{z ≥ 0: z is a cut point},
they must have positive density due to ergodicity. In particular, the distribution

P(·) = P( · |0 is a cut point)

is well-defined, and the contact process with infection rate λ > 0 dies out almost surely on P-almost
every realisation of G if and only if it dies out almost surely on P-almost-every G . We denote by
zk, k ≥ 1, the k-th cut point to the right of z0 = 0. By ergodicity, the sequence of cut points is
well-defined and

lim
n→∞

∣∣{z ∈ {0, . . . , n} : z is a cut point
}∣∣

n
=: p P-almost surely,
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where p denotes the probability (w.r.t.P) that 0 is a cut point. Define, for k ≥ 1,Ck := {zk−1, . . . , zk−
1} to be the k-th block in the partition of Z derived from the cut points (and 0) and let Ck be the sub-
graph induced by Ck in G .

Proposition 3.1. Let G satisfy the Assumptions (A.1) and (A.2), and let p = P(0 is a cut point) > 0.
Then, the sequence (Ck)k≥0 is stationary under P and we have

E|C1| = 1/p <∞ as well as E|C1|2 = (1 + 2E[τ ])/p. (7)

Proof. Stationarity of (G , 0) under P yields (‘cycle’-)stationarity of (G , 0) under P if the origin is
shifted to consecutive cut points, see [37]. In particular this implies the stationarity statement for the
subgraphs Ck, k ≥ 1. The fact that E|C1| = 1/p follows from Kac’s Lemma [20] applied to the
sequence (1{z is a cut point})z∈Z, see [21] for a short proof in the case of binary sequences that
suffices for our purpose. Further, the expression for E|C1|2 is found in [20, Equation (5)] or can be
obtained directly by size-biasing the distribution of |C1| to move from P to P.

Remark 3.2. The conclusion of Proposition 3.1 is in fact still essentially valid without the assumption
of ergodicity as long as there exists a cut point with positive probability. The bound on E|C1| then
becomes

E|C1| =
1−P(there is no cut point)

p
<∞,

see [21, Equation (2)].

We further require that, under P, the expected number of edges per block is finite.

Proposition 3.3. Let G satisfy the Assumptions (A.1) and (A.2), and let p = P(0 is a cut point) > 0,
then

E|E(C1)| <∞.

Proof. By (4), the global edge density of G is ∆G /2 P-almost surely, and thus the same is true
P-almost surely. In particular, under P we have for any ε > 0

∆G

2
≥ lim sup

n→∞

∑n
i=1 |E(Ci)|∑n
i=1 |Ci|

≥ lim
n→∞

∑n
i=1 |E(Ci)|

(1 + ε)nE|C1|
, (8)

since

lim
n→∞

1

n

n∑
i=1

|Ci| = E|C1| <∞

by Proposition 3.1 and the pointwise ergodic theorem. Taking expectations in (8) and letting ε → 0
yields

E|E(C1)| ≤
∆G

2
E|C1| =

∆G

2p
<∞,

as desired.

Finally, our proof uses a coupling between the contact process and a random walk in random envi-
ronment. To make this coupling effective, we require a classical result of Ledrappier. The setting is as
follows: Consider a stationary and ergodic sequence (ωz)z∈N with distribution Q, called the environ-
ment. Conditionally on the environment, the random walk S is now defined as the Q-almost surely
well-defined Markov chain (St)t∈N with S0 = 0 and generator

1{x>0}
[
ωx
(
f(x− 1)− f(x)

)
+ (1− ωx)

(
f(x+ 1)− f(x)

)]
+ 1{x=0}

(
f(1)− f(0)

)
,

for x ∈ {0, 1, 2, . . . }.
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Proposition 3.4 (Ledrappier [24], cf. [39]). S is recurrent if and only if∫
log
(1− ω1

ω1

)
Q(dω1) ≥ 0,

provided this expectation is well-defined.

Remark 3.5. The standard version of this result, given in [24, 39], is in fact formulated for the two-
sided variant of the random walk in random environment. Proposition 3.4 is a simple corollary of the
standard version, obtained by reflecting the walk at 0.

As a key step we now give the proof for the special case that cut points exist and generalise this below
to the general case, where only the existence K-cut points, for some K ≥ 1, is required.

Proposition 3.6. Let G satisfy the Assumptions (A.1) and (A.2), and assume P(τ <∞) = 1. Then,
P-almost-surely

λc(G ) ≡ λc ∈ (0,∞).

Proof. We may work under the distribution P, since the almost-sure extinction of the contact process
is a graph property that does not depend on where the initially infected vertex lies. Let us further modify
the usual contact process ξ on G in such a way that the initially infected set is A0 = {−1, 0} and
that A0 remains permanently infected. It follows immediately that the resulting contact processes on
the non-negative and negative half-line, respectively, evolve independently of each other and have the
same distribution. Thus it suffices to consider the contact process ξ† on the subgraph of G induced
by {0, 1, 2, . . . }.
Note that the process ξ{−1,0} dies out Pλ-almost surely for P-almost-every realisation of G , if

Pλ
( ⋂
n≥1

⋃
t>n

{ξ†t = ∅}
)

= 1. (9)

To show that (9) holds, consider another auxiliary process η = (ηt)t≥0. Its dynamics are those of ξ†,
but following the convention that, at the update times of the right-most infected vertex, all vertices to
the left of it become infected instantaneously. Further define

Xt := max ηt,

and let 0 = J0, J1, J2 . . . denote the jump times of Xt. Then η evolves according to the Markovian
dynamics as ξ† on the time intervals (Jk−1, Jk], k ≥ 1, but jumps to state {0, . . . , XJk} instanta-
neously at the times Jk, k ≥ 1. By attractiveness of the contact process, we have that η dominates
ξ†, and thus (9) is implied by

Pλ
( ⋂
n≥1

⋃
t>n

{ηt = ∅}
)

= 1. (10)

Our next step is to introduce a coarse-grained version of the right-most particle processX = (Xt)t≥0.
Define

Yt := k if Xt ∈ Ck,

and note that the k-th block Ck is followed by the k-th cut point zk. Let J ′n, n ≥ 0, denote the jump
times of (Yt)t≥0 and define the discrete block process

Zn := YJ ′n , n ∈ {0, 1, . . . }.
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This final reduction allows us to deduce (10) from the recurrence of Z = (Zn)n≥0. To obtain re-
currence, we now use the crucial observation that, by Assumption (A.2) and Proposition 3.1, Z is
a random walk in a stationary ergodic random environment on N ∪ {0}, which is induced by the
realisation of G .

Let us introduce, for k > 0, the transition probabilities

Pλ(Zk+1 = z + 1|Zk = z) =: ωk(λ).

Observe that ωk(λ) is a random variable under P that depends only on the structure of the k-th block
Ck. Clearly, if Xt ∈ Ck, the particle configuration inside the k-th block that maximises the probability
thatX jumps to the (k+1)-st block in the next update is to have every single vertex inCk infected. Let
us assume that we are in this configuration and that, without loss of generality, λ < 1. Then, the time
that X needs to traverse the edge above `zk is bounded from below by an Exp(1) random variable
by virtue of zk being a cut point. It follows by attractiveness of the contact process that, given G , the
probability that the whole k-th block recovers before X jumps to the k + 1-st block is at least

e−|Ck|−2λ|E(Ck)| ≤ 1− ωk(λ), k ≥ 1. (11)

Setting ωk(λ) := 1−exp(−|Ck|−2λ|E(Ck)|), we obtain that Z is recurrent, if the modified random
walk in random environment Z induced by the ωk(λ), k ≥ 1, is recurrent.

Our goal is now to apply Proposition 3.4 in order to show recurrence. First, note that ω1(λ) → 0
almost surely as λ→ 0, since the first block is a finite graph. Hence, by dominated convergence and
Jensen’s inequality, it suffices to show that

inf
λ∈(0,1)

E log
(
1− ω1(λ)

)
> −∞.

But the left-hand side is simply

inf
λ∈(0,1)

(
− E|C1| − 2λE|E(C1)|

)
= −E|C1| − 2E|E(C1)|, (12)

which is finite by Propositions 3.1 and 3.3.

Remark 3.7. Consider an i.i.d. sequence K1, . . . , K2 of copies of a random variable K supported
on N. Identify every vertex n of the nearest-neighbour lattice N with the root of a rooted clique of size
Kn. Then, the above proof shows that the contact process has a non-trivial phase transition on the
induced graph G if EK2 <∞. On the other hand, EK2 =∞ implies that

E log(1− ω1(λ)) = −∞

for any λ > 0 and the fact that each block consists of at least one vertex provides the trivial uniform
bound

E log(ω1(λ)) ≥ log
(
1− e−1

)
> −∞.

Hence, by Ledrappier’s original theorem, e.g., in the form of [39, Theorem 2.1.2], the corresponding
Z process is transient for any λ. We believe that the contact process always survives in this case.
Studying this toy model in higher dimensions might be instructive before attempting to generalise the
results of this work to multi-dimensional models with a more complex cluster structure.

We conclude this section by lifting the previous domination argument from cut points to K-cut points.
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Proof of Theorem 2.2. Assume for the moment, that we can decompose G stationarily into consecu-
tive disjoint blocks of vertices Ck corresponding to induced subgraphs Ck such that there are at most
K edges joining each block to its successor. Then, only a minor modification in the proof of theK = 1
case is necessary, namely the traversal time between blocks is now uniformly lower bounded by an
Exp(K) random variable. This has obviously no qualitative effect on the argument. Hence it suffices
to show that such a decomposition exists, which does not trivially follow from the existence of K-cut
points if K 6= 1.

To construct such a decomposition, we say that z ∈ Z is a (K,L)-cut point, if there are precisely K
edges above `z and none of them is longer than L− 1. It follows from translation invariance and local
finiteness of G that, ifK-cut points exists, so do (K,L)-cut points for sufficiently largeL. Conditionally
on z0 = 0 being a (K,L)-cut point, we recursively declare zk to be the (L + 1)-st (K,L)-cut point
after zk−1, k ≥ 1. Then, the induced block structure has the desired properties and this concludes
the argument.

3.2 Analysis of specific random graph models

It remains to verify the assumptions of Theorem 2.2 for our example models to prove Theorems 2.4–
2.7.

Proof of Theorem 2.4. That G is stationary and ergodic follows from translation invariance of the edge
probabilities and independence of edges. Sparsity is equivalent to

∑
k ϕ(k) < ∞. Consider the link

`0 = {−1, 0}, then, the number of edges above is given by

e =
−1∑

x=−∞

∞∑
y=0

χ(x, y),

where each χ(x, y) is Bernoulli(ϕ(y − x))-distributed and the χ(x, y) are all independent. Since∑
k kϕ(k) <∞ by assumption, it follows that

P(e = 1) > 0,

and thus cut points have positive density.

Proof of Theorems 2.5 and 2.6. Consider the underlying Boolean model under its stationary distribu-
tion. Assume for the moment that radii can be arbitrarily small, i.e., inf supp(ρ) = 0. It is a classical
result of continuum percolation theory, see e.g. [31], that the probability that 0 is not covered by any
ball of the Boolean model is positive if and only if

∫
rρ(dr) <∞. Hence, under the Palm distribution

and after augmentation, 0 ∈ V (G ) = Z has a positive probability of being a cut point. Now assume
that inf supp(ρ) ≤ K for some integer K . Then, the same reasoning applies but with the property
of ‘being covered’ is replaced by the property of ‘being covered by at most 2K balls. This leads to a
positive density of 2K-cut points, which suffices to deduce Theorem 2.5 from Theorem 2.2. Finally,
suppose the radii of the balls of the Boolean model are independent – this is the classical setting for
continuum percolation. In this case ∫

rρ(dr) =∞

implies that 0 has infinite degree in G , see [31], and hence the contact process trivially survives at any
positive intensity, which establishes Theorem 2.6.
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Remark 3.8. The i.i.d. assumption in Theorem 2.6 can be relaxed, since the proof of almost every-
where infinite degree given in [31] also works under less restrictive assumptions. However, we are not
aware of a simple method to relax them to the minimal assumptions of Theorem 2.5 and this is not in
the scope of the present work.

Proof of Theorem 2.7. We again prove Theorem 2.7 by verifying the assumptions of Theorem 2.2.
Stationarity and ergodicity subject to (A.1) follow from the stationarity of the underlying vertex set X
and translation invariance and conditional independence of the edges. The existence of cut points is a
direct consequence of Property (6) and [14], which has already been outlined above. It thus remains
to prove sparsity (A.2). Using independence of the marks, Campbell’s formula [23] and stationarity of
the underlying point process, we obtain

∆G = 2 +
∞∑
n=0

∫ 1

0

E
[ ∑
Xj∈X

1{{Xj,X0} ∈ E(G)}1{2n < |Xj| ≤ 2n+1}
∣∣U0 = u

]
du

= 2 + 2
∞∑
n=0

∫ 1

0

∫ 1

0

∫ 2n+1

2n
ϕ(u, v, x) dx du dv.

Using that ϕ is non-increasing in the distance argument and (6), we thus infer

∆G ≤ 2 + 4
∞∑
n=0

(
2−n−2µn + 2n

∫ 1

2−n−nµ

∫ 1

2−n−nµ
ϕ(u, v, 2n) du dv

)
<∞,

as desired.
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