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Continuous time stochastic optimal control under discrete time partial
observations

Christian Bayer, Boualem Djehiche, Eliza Rezvanova, Raúl Tempone

Abstract

This work addresses stochastic optimal control problems where the unknown state evolves in continu-
ous time while partial, noisy, and possibly controllable measurements are only available in discrete time. We
develop a framework for controlling such systems, focusing on the measure-valued process of the system’s
state and the control actions that depend on noisy and incomplete data. Our approach uses a stochastic
optimal control framework with a probability measure-valued state, which accommodates noisy measure-
ments and integrates them into control decisions through a Bayesian update mechanism. We characterize
the control optimality in terms of a sequence of interlaced Hamilton Jacobi Bellman (HJB) equations coupled
with controlled impulse steps at the measurement times. For the case of Gaussian-controlled processes,
we derive an equivalent HJB equation whose state variable is finite-dimensional, namely the state’s mean
and covariance. We demonstrate the effectiveness of our methods through numerical examples. These
include control under perfect observations, control under no observations, and control under noisy observa-
tions. Our numerical results highlight significant differences in the control strategies and their performance,
emphasizing the challenges and computational demands of dealing with uncertainty in state observation.

1 Introduction

This work studies Stochastic Optimal Control (SOC) problems where the state evolves in continuous time but
observations are available only in discrete time. The focus is on probability measure-valued processes and
control actions dependent on noisy and incomplete data. SOC is a vital area of study in both theoretical and
applied mathematics, finding applications in finance, engineering, and various sciences. This field deals with the
challenge of making optimal decisions in systems whose dynamics are driven by random processes.

In optimal control, we aim to determine a control strategy for a dynamical system that minimizes a given cumu-
lative running cost function over time, plus a terminal cost, within a finite time horizon. As general references,
we refer to books [FS93] (providing a comprehensive introduction to the theory of SOC, focusing on Hamilto-
nian systems and Hamilton-Jacobi-Bellman (HJB) equations) and [BCD97] (exploring the connection between
Optimal Control and the viscosity solutions of HJB equations).

In many applications which motivate our work, the system’s state evolves continuously over time, but the current
state of the controlled system is not perfectly known. This discrepancy between the continuous evolution of
the state and imperfect observations presents a significant challenge for control strategies. The books [Ben92;
Mao06; Kri16] address control problems where the system state is only partially observable, using a filtering
framework and applying it to problems of control under uncertainty.

In this work, we concentrate on the important special case that

� the state process evolves in continuous time on a finite time interval, but is observed in discrete time;

� the control on the state process acts in continuous time, incurring running as well as terminal costs to be
minimized;

� the (noisy, partial) observations incur costs, as well, which are taken into account in the minimization
problem.
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As discussed below, the literature on SOC under partial observation mainly concentrates on cases where both
control and observations happen in continuous or discrete time. Moreover, the observation process is usually not
considered to incur costs. The mixed case studied in this work is highly relevant in many applications where the
“observation” corresponds to an actual, physical measurement, especially one requiring manual intervention.

As a practical application of such stochastic control problems, consider the treatment of a disease guided by
regular diagnostic tests. The disease evolves continuously, and the medical doctor must decide when and how
to treat the patient and when and which kinds of medical tests to prescribe. Each step incurs costs that should
be accounted for when optimizing the patient’s health. Other applications include automated trading systems in
finance, where the market state evolves continuously, but traders only have discrete and noisy observations of
market indicators. The goal is to optimize trading strategies to maximize profit or minimize risk. In autonomous
vehicle navigation within robotics, the vehicle’s position and environment evolve continuously, but sensors pro-
vide discrete, incomplete, and noisy measurements. The control strategy aims to navigate the vehicle safely and
efficiently. In epidemiology, disease spreads continuously, but health officials only obtain periodic and potentially
noisy data through tests of a relatively small number of individuals. The objective is to control the spread by
optimizing costly interventions like vaccination or quarantine. Lastly, in industrial process control, the state of a
process evolves continuously, but observations from sensors are discrete and noisy. The goal is to control the
process to ensure product quality while minimizing control and data acquisition costs.

Literature review

We start by describing the main frameworks for analyzing classical SOC problems. In the 1960s, Ronald A.
Howard [How60] popularized the term “Markov Decision Processes” (MDPs) and developed the policy itera-
tion method, which is a fundamental technique for solving MDPs. Throughout the 1970s and 1980s, MDPs
addressed more complex settings, including continuous-time processes and infinite-horizon problems, leading
to the development of methods like value iteration and Q-learning. The integration of MDPs with machine learn-
ing, particularly reinforcement learning (RL), in the late 1980s and 1990s, see [BT96; Sze10; SB18], among
others, has led to significant advancements. This includes the development of algorithms like Temporal Differ-
ence (TD) learning and the popularization of Q-learning and deep reinforcement learning. Today, MDPs are
central to many applications in artificial intelligence, robotics, economics, and operations research. The Kalman
filter [Kal60] became an essential tool for dealing with linear systems with Gaussian noise, while the need for
handling non-linear systems led to the development of the Extended Kalman Filter [WB95], Ensemble Kalman
Filter [Eve94] and, later, the Particle Filter in the 1990s [DFG01]. The concept of separation principle in control
theory, which suggests that control and filtering can be separated in some cases, was a significant result for
linear systems but proved challenging in non-linear settings, see [AM79]. This book develops the separation
principle in the context of linear systems and discusses its extension to non-linear systems through various
filtering techniques.

The main alternative approach is based on the Hamilton-Jacobi-Bellman (HJB) equation. It describes the optimal
cost function’s evolution in dynamic programming terms. This approach was extensively developed during the
1970s and 1980s. The application of viscosity solutions to HJB equations, cf. [Lio82; CL83; CL84] by Michael
Crandall and Pierre-Louis Lions in the 1980s provided critical mathematical tools for dealing with the chal-
lenges posed by the non-linearity and high dimensionality of realistic control problems. Modern research focuses
on bridging the gap between theoretical optimality and practical computability, especially in high-dimensional
spaces where traditional methods are computationally infeasible. Applications now span complex systems in
finance, engineering, and networked systems, where uncertainty and partial observability are key concerns.

The research in MDPs and stochastic control of partially observed systems continues to be a vibrant field, driven
by both theoretical interests and practical applications.

To fix notations, let us assume that we are controlling a system Xt in continuous time t ∈ [0, T ], which is given
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SOC under discrete time partial observations 3

as the solution of a stochastic differential equation (SDE), symbolically

dXt = b(Xt;α)dt+ σ(Xt;α)dWt, (1.1)

driven by m-dimensional Brownian motion W , taking values in Rd. Here, α denotes the control, taking values
in a suitable set – and being progressively measurable w.r.t. a suitable filtration. Suppose now that rather than
Xt, we observe a process Yt satisfying

dYt = h(Xt)dt+ ζdBt,

driven by another Brownian motion B. (In this context, X is often referred to as the signal process and Y as
the observation process.) Given the observations (Ys)s∈[0,t] up to time t, we can first compute the conditional
distribution µt of the state process Xt at time t, i.e., we solve the filtering problem. Note that µt is a measure-
valued stochastic process, which is adapted to the filtration generated by the observation process (Yt). The
control problem can now be re-expressed as a control problem for the conditional distribution, i.e., a measure-
valued stochastic optimal control problem. However, the analysis and numerics for such stochastic optimal
control problems is much less understood compared to the standard, finite-dimensional situation.

An important technical tool required for deriving dynamic programming principles or Hamilton-Jacobi-Bellman
equations for measure-valued stochastic processes is an appropriate Itô formula. There has been renewed
interest in this problem, mainly coming from mean-field games and control of McKean–Vlasov equations. A very
general Itô formula for measure-valued semi-martingales has recently been derived in [GPW23] and references
therein. More related works in the context of mean-field optimal control or optimal stopping, we refer to [TTZ23a;
TTZ23b; GPW22].

The SOC problem with partial state observation is better understood when controls are relaxed i.e., αt is re-
placed by a measure, see, for instance, [FN84; EKNJP88] for existence results for relaxed optimal controls.
The classical work by Fleming [Fle80] introduced measure-valued processes for partially observed control prob-
lems, providing a theoretical foundation for analyzing stochastic control problems where the state is not fully
observable. Fleming’s insights are essential for our analysis of measure-valued processes. Recent works have
made significant strides in approximating SOC problems under partial observation. Tan and Yang [TY23] dis-
cuss discrete-time approximation of continuous-time stochastic control problems under continuous time, partial
observation. Their methods’ convergence properties support our work’s theoretical foundation, especially in
the context of the measure-valued control framework we discuss. This recent work deals with approximating
schemes for filtered problems, which may be relevant to our problem, which is not a standard filtering-control
problem and only uses discrete time, partial observations.

The situation changes quite drastically when we consider SOC problems formulated within the field of MDPs. In-
deed, there is a classical and rich literature on so-called partially observed Markov decision processes (POMDPs),
which, as the name suggests, is concerned with MDPs where only partial, noisy observation of the controlled
state process are available. We refer to [Kri16] for a monograph and [BR17] for an interesting recent application
to an economics problem. As discussed earlier, the strategy is to lift the POMDP by considering the conditional
distribution of the unobserved full state. The resulting control problem for measure-valued (hence, in general,
infinite-dimensional) processes is the seen to be a standard MDP, and can be analysed by standard meth-
ods. Note that, in contrast to the stochastic optimal control literature, the MDP literature is almost exclusively
concerned with discrete time problems, and this also extends to the partially-observed case.

The problem of SOC under noisy observation is also related to the problem of reinforcement learning [SB18].
Indeed, reinforcement learning operates under even less information, since not even knowledge of the driv-
ing dynamics of the controlled system is given, but rather has to be learned while controlling the system. Of
course, stationarity of the system is usually assumed. Reinforcement learning is, again, generically formulated
in discrete time, even though some attempts of continuous time extensions have recently been made, see, e.g.,
[WZZ20].
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Our contribution

In our work, we consider a different problem, arising from the need to develop more efficient and reliable control
strategies for systems with discrete, partial and noisy observations. Consider a continuous time SOC (1.1) with
partial and noisy observations Yti available at (fixed) discrete times 0 < t1 < t2 < · · · tn < T . As before,
decisions have to be based on the conditional distribution µt of the (unobserved) state process Xt given all the
observations already available to us, i.e., {Yti : ti ≤ t }. The dynamics of µt can now be described as follows:

1 Between observation times, µt follows the Fokker-Planck equation associated to the process (1.1) – a
deterministic dynamics.

2 At an observation time t = ti, we update the conditional distribution with the (random) new information
Yti , leading to a random jump µti = Kε(µt−i

, Yti)µt−i
, where Kε denotes the Radon–Nikodym deriva-

tive of the updated distribution w.r.t. the distribution prior to the update, and ε indicates the level of the
noise in our observation.

We refer to (3.7) for the precise dynamics in the controlled case. Note that in a statistical sense, the second
step can be interpreted as a Bayesian update of the prior distribution µt−i

to a posterior distribution µti at time

ti taking into account our data Yti .

As in the case of continuous time observation, we replace the control problem in the unobserved stateX by the
corresponding control problem in its conditional distribution µt. The dynamics of µt is, however, quite different
from the continuous-time case, at least on a formal level. Rather than solving a Zakai SPDE, we need to solve
a deterministic PDE with finitely many stochastic jumps. Of course, this problem is still infinite-dimensional.

The above setup invites to include a second control into our problem. As already indicated above, measurements
are usually noisy (say, with standard deviation ε), and may not convey information about the full state Xt,
anyway, – think of noisy observations of a function ofXt, e.g., just a single component. However, in many cases,
more precise measurement methods may be available, albeit at a higher cost. Hence, in addition to the control
α guiding the state process Xt, we may consider a second control β for the measurement method, as well
as an associated cost term. In the statistical literature, this is also known as optimal experimental design, see,
for instance, [SKA18]. Mathematically, this means that we obtain Bayesian updates µti = Kβti

(µt−i
, Yti)µt−i

which are directly influenced by the control, not only indirectly via µ and Y . Of course, this principle may also
be applied to the observation times themselves, which could, more generally, be chosen by the controller.

From a computational perspective, we are still faced with an inherently infinite-dimensional SOC, since the
conditional distribution µt takes values in the set of probability measures on the underlying state space. We
propose to solve the stochastic optimal control problem numerically under the assumption that µt can be accu-
rately characterized by the expectations

∫
ϕjdµt of finitely many test functions ϕj , j ∈ J – either exactly, or

in an approximate sense. In this case, the HJB equation for our SOC can be reduced to an HJB equation in |J |
space variables and one time variable.

As an example, consider a drift-controlled Ornstein–Uhlenbeck process, in which case all conditional distri-
butions µt are Gaussian, and, hence, can be characterized by their means mt and co-variances σ2

t . More
generally, assume that the conditional distribution µt can be approximated by Gaussians N (mt, σ

2
t ). We can

still solve the corresponding HJB equation, projecting both the dynamics of µt between observation times as
well as the Bayesian updates to the set of Gaussian distributions as we go. This method can be interpreted as
a generalization of the Kalman filter.

Outline of this work

We start with a motivating example of a SOC problem in continuous time with discrete time noisy observations
in Section 2. In the following Section 3 we provide a formal setup for the problem, prove that the dynamic pro-
gramming principle holds and derive the HJB equations under suitable regularity conditions. We then discuss
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the specific example of a drift-controlled one-dimensional Ornstein–Uhlenbeck process under observations with
additive, independent Gaussian noise and quadratic costs, see Section 4. We observe that the problem cannot
be reduced to solving a system of Riccati ODEs as usual, but we derive the associated HJB equation in time,
mean and variance of the underlying Gaussian distribution µt. We then propose an appropriate finite-difference
solver for the HJB equation, analyze its behavior and provide numerical examples in Section 5. Finally, in Sec-
tion 6 we generalize the HJB equation to the multi-dimensional (approximately) Gaussian case, and make the
link to the Kalman filter.

2 A motivating example

Consider an example based on a controlled Ornstein-Uhlenbeck process, with variance controlled Gaussian
noisy measurements at times ti, i = 1, . . . , n. More precisely, for t ≥ 0, we consider the following controlled
SDE representing the unobserved dynamics of the real-valued process X :

dXt = (−θXt + αt) dt+ b dWt, (2.1)

where αt ∈ R is the control and X0 ∼ µ0 is the initial condition.

Let µαt denote the random evolution of the conditional law of the unobserved controlled process Xα under
the control process αt. The natural conditioning event corresponds to all observations made up to time t, i.e.,
ti ≤ t.

Our goal is to minimize the expected cost given by a running cost, a final cost, and a cost associated to each of
the measurements, namely

J(α) := E

[∫ T

0

(∫
R
x2µαt (dx) + Cα2

t

)
dt+

∫
R
x2µαT (dx) +

n∑
i=1

1

βi

]
. (2.2)

The last sum term in the above corresponds to the cost of the measurements. More precisely, at each time ti,
we observe a noisy version of Xti ,

Yi := Xti + βiZi,

where Zi ∼ N (0, 1) are independent of each other and all other sources of randomness, and Xti ∼ µα
t−i

.

We assume that the noise level βi > 0 of the measurement at time ti is also a control parameter. Therefore, at
each time ti, we have to update the conditional distribution µα according to the Bayesian update:

µαti(dy) ∝ Kβi(y;µα
t−i
, Yi)µ

α
t−i

(dy), (2.3)

where Kβ(y;µα
t−i
, Yi) denotes the Gaussian likelihood corresponding to the measurement Yi. It is intuitive

to see that smaller values of βi will provide better measurements and thus reduce the values of the first two
terms in the objective functional (2.2). However, these smaller βi values will make the last term in (2.2) larger,
indicating that there is a non-trivial tradeoff to address when solving this SOC problem.

Motivated by this problem, we will state in the next section our SOC problem entirely in terms of the evolution
of the conditional distribution, which is an interlaced sequence of controlled time evolutions, governed by the
control αt during intervals (ti, ti+1), with discontinuous jumps at times ti given by the Bayesian updates, which
are controlled by the βi. This evolution of µt will be then Markovian and will naturally take us into a sequence of
interlaced HJB equations, connected by conditional expectations matching conditions. See Section 3 for more
details.
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3 General theory

For a fixed time horizon T > 0, consider a large enough filtered probability space (Ω,F ,F,P). We also denote
by P(Rd) the set of probability measures on

(
Rd,B(Rd)

)
, furnished with the topology of weak convergence.

We construct a stochastic optimal control problem for a probability-measure-valued process µt = µt(dx;ω)
generalizing the example discussed in Section 2. In particular, we consider a continuous-time version of the
problem, where the underlying, unobserved process is a diffusion process.

3.1 Formulation of the problem

To fix notation, let us first look at the dynamics of the uncontrolled process. To start out, we fix observation
times 0 < t1 < · · · < tn < T , which are (for simplicity) assumed to be deterministic. Likewise, for simplicity
we assume that there are no observations at times 0 and T , and we introduce t0 := 0, tn+1 := T . We
also introduce the notation btc := max { i | ti < t }, with the convention that b0c := 0. Let G denote the
infinitesimal generator of a d-dimensional diffusion process defined for f ∈ C2

b (Rd) by

Gf(y) :=

d∑
i=1

bi(y)∂if(y) +
1

2

d∑
i,j=1

aij(y)∂2
ijf(y). (3.1)

Between observation times, the process µt satisfies the Fokker–Planck equation associated with G, i.e., using
the adjoint operator we write

dµt = G∗µtdt, ti ≤ t < ti+1, i = 1, . . . , n. (3.2a)

We note that G∗µt can be seen as a differential operator acting on the density of µt – tacitly assuming the exis-
tence of such a density, as well as identifying the measure with its density. More generally, we can understand
G∗ as an operator acting on (signed) measures defined in a weak sense.

At each observation time ti, we obtain a noisy observation Yi, and update the conditional measure µ according
to the Bayes rule

µti(dx) = Kε(x;µt−i
, Yi)µt−i

(dx), i = 1, . . . , n. (3.2b)

where the kernel Kε depends on the noise level ε ≥ 0 as well as the nature of the measurement procedure.
The following example illustrates a typical choice of measurement procedure and the corresponding choice of
the kernel.

Example 3.1 (A sequence of measurements). Let the measurement at ti is given by Yi = X̂i + εZi for
X̂i ∼ µt−i andZi ∼ N (0, 1) independent random variables, where we assume, for simplicity, that d = 1. More

specifically, let (Ui)
n
i=1, (Zi)

n
i=1 denote two i.i.d. sequences of standard uniform and normal r.v.s, respectively.

Then we define
X̂i := F [µt−i

]−1(Ui), Yi := X̂i + εZi,

where F maps probability measures to their c.d.f.s. With ρε denoting the density of N (0, ε2), the posterior
distribution is given by (3.2b) with

Kε(x;µ, y) :=
Lε(x; y)∫

R Lε(x; y)µ(dx)
, Lε(x; y) := ρε(y − x).

As anticipated in Section 2, we ensure that the dynamics for µt satisfies the Markov property. For this reason,
we impose

Assumption 3.2 (Likelihood structure). The observation Yi at time ti is a deterministic function of the observa-
tion time ti, the probability measure µt−i

, the noise level ε, and a random variable Γi belonging to an sequence

of independent r.v.s (Γi)
n
i=1 which are independent of all other sources of randomness.
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See the above Example 3.1 for an illustrative example of an update rule satisfying Assumption 3.2 – with Γi =

(Ui, Zi). To reflect Assumption 3.2 in the notation, we may also write Yi = Y
ε,µ

t−
i

i = Y ε
i , depending on the

context.

Note that the P(Rd)-valued Markov process µt defined above has the property that its dynamics between
measurement times is deterministic. The sole stochastic effects enter through the measurement values at the
measurement times. At the observation points, it jumps in a random manner according to the Bayes update
(3.2b).

As such, it is easy to see that µt satisfies an Ïtô-formula”. Given Φ : P(Rd)→ R “nice enough”, we associate
to it its flat derivative, see, for instance, [Daw93, Page 18f] or [Kol10, Appendix F].

Definition 3.3 (Flat derivative). A function Φ : P(Rd) −→ R is said to be differentiable at µ with derivative
δΦ
δµ : P(Rd)× Rd → R if for any ν ∈ P(Rd),

Φ(µ)− Φ(ν) =

∫ 1

0
〈µ− ν, δΦ

δµ
(ν + λ(µ− ν), ·)〉 dλ. (3.3)

Moreover, assuming that Φ is actually even defined in a neighborhood of µ in the space of signed measures,
we can equivalently require the limit

δΦ

δµ
(µ, x) := lim

θ↓0

Φ(µ+ θδx)− Φ(µ)

θ
=

d

dθ

∣∣∣∣
θ=0

Φ(µ+ θδx) (3.4)

to exist for every x ∈ Rd.

The function Φ is continuously differentiable if furthermore the function Rd 3 x 7→ δΦ
δµ (µ, x) is continuous in

Rd.

Observe, that according to Definition 3.3, if we have Φ(µ) = F (〈µ , f〉) for a differentiable functionF : R→ R
and a bounded function f : Rd → R, then the flat derivative δΦ

δµ always exists and satisfies

δΦ

δµ
(µ, x) = F ′(〈µ , f〉)f(x). (3.5)

In this context, in the next lemma we state a chain rule for the following class of function.

Definition 3.4 (Class S1,1(P(Rd))). We say that a function Φ ∈ S1,1(P(Rd)) if there is a continuous version
of the flat derivative δΦ

δµ (µ, x) such that

� the mapping (µ, x) 7→ δΦ
δµ (µ, x) is jointly continuous w.r.t. (µ, x),

� the mapping x 7→ δΦ
δµ (µ, x) is twice continuously differentiable with bounded first and second order

derivatives.

Lemma 3.5 (Chain rule). Assume (µt)t∈[0,T ] solves (3.2) and that the function Φ(t, µ) from [0, T ] × P(Rd)
to R is differentiable w.r.t. the time variable t and is in S1,1(P(Rd)) w.r.t. µ.

Then, we have

Φ(t, µt) = Φ(0, µ0) +

∫ t

0

[
∂Φ

∂s
(s, µs) + 〈G∗µs,

δΦ

δµ
(s, µs, ·)〉

]
ds

+
∑
ti≤t

[
Φ
(
ti,Kε(·;µt−i , Yi)µt−i

)
− Φ(ti, µt−i

)
]
. (3.6)
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Sketch of proof, following [GPW23]. The proof of the chain rule lemma is first checked for the class of functions
Φ(µ) := F (〈µ, f〉) for a differentiable function F : R −→ R and a bounded function f : Rd −→ R. Then,
the result is naturally extended to the class of functions

Φ(µ) := F (〈µ, f1〉, 〈µ, f2〉, . . . , 〈µ, fn〉)

for any fixed n ∈ N and polynomial F : Rn −→ R and polynomials f1, f2, . . . , fn : Rd −→ R. Finally,
apply the Stone-Weierstrass (density) theorem to conclude that the chain rule is valid for any differentiable
function Φ(µ).

For the controlled dynamics, we consider the situation of the generator G depending on a control α. In general,
we assume that both the drift b and the diffusion σ depend on the control α. In addition, we may also assume
ε to be a control, which we then also denote by β – i.e., we consider controls α of the dynamics and β of the
measurement we take. Hence, we consider u := (α, β) ∈ U ⊂ Rk1 ×Rk2 . Consider the filtration (Ft)t∈[0,T ]

generated by the observations, i.e.,
Ft = σ ({Yi : ti ≤ t }) .

Note that the filtration is constant between observation times and “jumps” at the observation times ti – we
denote Ft−i := Fti−1 . We recall that the controls α and β play very different roles:

� α acts on the dynamics of the unobserved process in continuous time, and is adapted to the filtration
(Ft)t∈[0,T ];

� β only acts as an impulse control at the observation times ti, but can only use information available just
before ti – hence, it is predictable w.r.t. the filtration (Ft)t∈[0,T ] and not just adapted in general.

Admissible controls are processes in the following class:

Definition 3.6. Let U [0, T ] denote the set of all controls u = (α, β) such that

1 α is adapted w.r.t. the filtration (Ft)t∈[0,T ].

2 β is a piece-wise constant process, which only jumps at observation times ti, where it is left-continuous.
As a process, it is predictable w.r.t. the filtration (Ft)t∈[0,T ].

3 For any t, we have ut = (αt, βt) ∈ U .

We also introduce the notation U [t, T ], defined in the obvious way.

Note that β only acts at the observation times t1, . . . , tn. For this reason, abusing notation, we denote βi := βti
– keeping in mind that βi ∈ Ft−i . Furthermore, α being adapted to (Ft)t∈[0,T ] does, of course, not imply that
α is piecewise-constant as well. It only implies that the dynamics of αt between observation times has to be
deterministic – conditional on all the observation made before time t.

We denote by G(α) the controlled generator and by Kβ the controlled update. The dynamics of the controlled
process can, hence, be described by

dµut = G∗(α)µut dt, ti ≤ t < ti+1, (3.7a)

µuti+1
(dx) = Kβi+1

(
x;µu

t−i+1
, Y

βi+1,µ
u

t−
i+1

i+1

)
µu
t−i+1

(dx), (3.7b)

for 0 ≤ i < n and µu0 = µ0 ∈ P(Rd). The cost functional associated to the stochastic optimal control problem
is given by

J(u) := E

[∫ T

0
` (t, µut , αt) dt+

n∑
i=1

h(ti, µ
u
t−i
, βi) + g(µuT )

]
, (3.8)
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where ` is the running cost associated to the control of the underlying process (generally only depending on α),
whereas h is the cost associated to the design of the measurement (generally only depending on β). Finally, g
is the terminal cost, which in most cases is linear on the measure.

The optimal control problem is to minimize (3.8) over all admissible controls u, subject to the dynamics (3.7). An
optimizing control is denoted by u∗ and the corresponding optimal path by µ∗t . Under the above assumptions,
we expect optimal controls to be of feedback form, i.e., ut = θ(t, µt).

3.2 Dynamic programming principle

For given µ ∈ P(Rd) and 0 ≤ s < T , consider the (weak) solution of the controlled system

dµut = G∗(α)µut dt, s ∧ ti < t < ti+1, (3.9a)

µuti+1
(dx) = Kβi+1

(
x;µu

t−i+1
, Y

βi+1,µ
u

t−
i+1

i+1

)
µu
t−i+1

(dx), (3.9b)

(for all i s.t. ti ≥ s) with µus = µ, denoted by µut (s, µ) for s ≤ t ≤ T . By uniqueness of solutions, we have the
flow property for u ∈ U [s, T ] and s ≤ t ≤ v ≤ T :

µuv (s, µ) = µuv (t, µut (s, µ)). (3.10)

The flow property implies that the cost function associated to the control u satisfies

J(s, µ;u|[s,T ]) := E
[∫ T
s `(t, µut (s, µ), ut)dt+

∑n
i=bsc+1 h(ti, µ

u
t−i

(s, µ), βi) + g(µuT )
]

= E
[∫ t
s `(r, µ

u
r (s, µ), ur)dr +

∑btc
i=bsc+1 h(ti, µ

u
t−i

(s, µ), βi)

+J
(
t, µut (s, µ);u|[t,T ]

)]
.

Definition 3.7. The value function V : [0, T ]× P(Rd)→ R is defined by V (T, µ) := g(µ) and

V (s, µ) := inf
u∈U [s,T ]

J(s, µ;u), 0 ≤ s < T, µ ∈ P(Rd).

The value function satisfies the dynamic programming principle:

Theorem 3.8 (Dynamic Programming Principle). For any 0 ≤ s < T , µ ∈ P(Rd), and s ≤ t ≤ T we have

V (s, µ) = inf
u∈U [s,t]

E

∫ t

s
`(r, µur (s, µ), ur)dr +

btc∑
i=bsc+1

h(ti, µ
u
t−i

(s, µ), βi) + V (t, µut (s, µ))

 .
(3.11)

In particular, at jump times ti – interpreting s = t−i and t = ti – we have

V (t−i , µ) = inf
(α,β)∈U

{
h(ti, µ, β) + E

[
V (ti,Kβ(·;µ, Y β,µ

i )µ)
]}

, (3.12)

where the expectation is effectively taken over Y β,µ
i .

We note that the objective function in the optimization problem at the observation time ti stated above does not,
in fact, depend on α at all. Nonetheless, minimization over (α, β) is used to reflect the fact that the constraint
(α, β) ∈ U acts on both components of the control.

Proof of Theorem (3.8). The proof is standard. We recall it for convenience. Denote the right-hand side of (3.11)
by W (s, µ).
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For any ε > 0, there exists a control uε ∈ U [s, T ] such that

V (s, µ) + ε ≥ J(s, µ;uε)

= E

[∫ t

s
`(r, µu

ε

r (s, µ), uεr)dr +

btc∑
i=bsc+1

h(ti, µ
uε

t−i
(s, µ), βi)

+ J
(
t, µu

ε

t (s, µ);uε|[t,T ]

)]

≥ E

[∫ t

s
`(r, µu

ε

r (s, µ), uεr)dr +

btc∑
i=bsc+1

h(ti, µ
uε

t−i
(s, µ), βi) + V (t, µu

ε

t (s, µ)

]
≥W (s, µ).

To obtain the reverse inequality, we have for any v ∈ U [s, T ]

V (s, µ) ≤ J(s, µ; v) =

E

∫ t

s
`(r, µvr(s, µ), vr)dr +

btc∑
i=bsc+1

h(ti, µ
v
t−i

(s, µ), βi) + J(t, µvt (s, µ); v)

 .
In particular, given arbitrary controls u = (α, β), u′ = (α′, β′) ∈ U [s, T ], by choosing

ν(r) =

{
u(r), r ∈ [s, t],

u′(r), r ∈ (t, T ],

we have∫ t

s
`(r, µvr(s, µ), vr)dr +

btc∑
i=bsc+1

h(ti, µ
v
t−i

(s, µ), βi) =

∫ t

s
`(r, µur (s, µ), ur)dr +

btc∑
i=bsc+1

h(ti, µ
u
t−i

(s, µ), βi),

and by the flow property (3.10), we obtain

J(t, µvt (s, µ); ν) = J(t, µut (s, µ; t);u′).

Therefore, by taking the infimum over u′ ∈ U [s, T ] we obtain

V (s, µ) ≤ E

∫ t

s
`(r, µur (s, µ), ur)dr +

btc∑
i=bsc+1

h(ti, µ
u
t−i

(s, µ), βi) + V (t, µut (s, µ))

 .
Since u is an arbitrary admissible control, we finally obtain V (s, µ) ≤W (s, µ).

3.3 The HJB equation

We are now ready to derive the Hamilton–Jacobi–Bellman (HJB) equation for our control problem. We first
introduce the Hamiltonian for the control problem outside the observation dates. For t ∈ [0, T ] and µ ∈ P(Rd)
and p ∈ Cb(Rd) we set

H(t, µ, p) := inf
(α,β)∈U

{〈G∗(α)µ , p〉+ `(t, µ, α)} . (3.13)
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Theorem 3.9 (HJB equation). Provided that the value function V (t, µ) is differentiable w.r.t. the time variable t
and is in S1,1(P(Rd)) w.r.t. µ, it satisfies the HJB equation

∂V

∂t
(t, µ) +H

(
t, µ,

δV

δµ
(t, µ, ·)

)
= 0, ti ≤ t < ti+1, i = 1, . . . , n, (3.14a)

V (t−i , µ) = inf
(α,β)∈U

{
h(ti, µ, β) + E

[
V (ti,Kβ(·;µ, Y β,µ

i )µ)
]}

, i = 1, . . . , n, (3.14b)

V (T, µ) = g(µ). (3.14c)

Fix a function u∗ : [0, T ]× P(Rd)→ U by

u∗(t, µ) ∈

arg min(α,β)∈U

{〈
G∗(α)µ , δVδµ (t, µ, ·)

〉
+ `(t, µ, α)

}
, t /∈ { t1, . . . , tn } ,

arg min(α,β)∈U

{
h(ti, µ, β) + E

[
V (ti,Kβ(·;µ, Y β,µ

i )µ)
]}

, t = t−i , i ∈ { 1, . . . , n } ,
(3.15)

provided the set of minimizers in (3.15) is not empty. Additionally, assume that µ∗t denotes an optimal path. Then
an optimal control is defined by u∗t := u∗(t, µ∗t ).

Note that the minimization problem for the β-component of u∗ is not unique for t not an observation time, which
allows us to choose a piecewise-constant, predictable version, enforcing the admissibility conditions. We write
u∗ = (α∗, β∗) and, continuing our abuse of notation, β∗i = β∗

t−i
.

Proof of Theorem 3.9. First we note that at observation times ti, (3.12) is exactly (3.14b). We only need to
derive (3.14a). Consider in (3.11) a constant control u := a = (ᾱ, β̄) for some arbitrary a ∈ U . For any
t, θ > 0 such that, for some i = 1, . . . , n, [t, t+ θ] ⊂ [ti, ti+1), we have

V (t, µ) ≤ E
[∫ t+θ
t `(s, µas(t, µ), a) ds+ V (t+ θ, µat+θ(t, µ))

]
.

Since V satisfies the smoothness assumptions of the chain rule (3.6), we obtain

E
[∫ t+θ

t

∂V

∂s
(s, µas(t, µ)) + 〈G∗(a)µas(t, µ),

δV

δµ
(s, µas(t, µ), ·)〉+ `(s, µas(t, µ), a) ds

]
≥ 0.

By the mean-value theorem, dividing by θ and then sending it to 0, yields

∂V

∂t
(t, µ) + 〈G∗(a)µ,

δV

δµ
(t, µ, ·)〉+ `(t, µ, a) ≥ 0, ti ≤ t < ti+1, i = 1, . . . , n.

Since this inequality is true for all a ∈ U , we obtain

∂V

∂t
(t, µ) +H

(
t, µ,

δV

δµ
(t, µ, ·)

)
≥ 0, ti ≤ t < ti+1, i = 1, . . . , n. (3.16)

Now, suppose that u∗ = (α∗, β∗) is an optimal control. Then the value function satisfies

V (t, µ) = E

∫ t+θ

t
`(s, µu

∗
s (t, µ), u∗s) ds+

bt+θc∑
i=btc+1

h(ti, µ
u∗

t−i
(s, µ), β∗i ) + V (t+ θ, µu

∗
t+θ(t, µ))

 .
In particular, at the jump times, we have

V (t−i , µ
u∗

t−i
) = h(ti, µ

u∗

t−i
, β∗i ) + E

[
V (ti,Kβ∗

i
(·;µu∗

t−i
, Y

βi,µ
u∗

t−
i

i )µu
∗

t−i
)

]
, i = 1, . . . , n. (3.17)
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Thus, by using a similar argument as above between jump times, we obtain

∂V

∂t
(t, µ) +

[
〈G∗(u∗)µ, δV

δµ
(s, µ)(·)〉+ `(s, µ, u∗(s))

]
= 0, ti ≤ t < ti+1, i = 1, . . . , n,

which, in view of (3.16), suggests the value function should satisfy

∂V

∂t
(t, µ) + inf

a∈U

[
〈G∗(a)µ,

δV

δµ
(s, µ)(·)〉+ `(s, µ, a)

]
= 0, ti ≤ t < ti+1, i = 1, . . . , n.

Next, we derive a verification theorem for our SOC problem.

Theorem 3.10 (Verification theorem). Let W (t, µ) be a solution to the HJB equation (3.14a), (3.14b) and
(3.14c). Then,

W (s, µ) = inf
u∈U [s,T ]

J(s, µ;u), 0 ≤ s < T, µ ∈ P(Rd).

Furthermore, assume the function û : [0, T ]× P(Rd)→ U satisfies

û(t, µ) ∈

{
arg min(α,β)∈U {〈G∗(α)µ , p〉+ `(t, µ, α)} , t /∈ { t1, . . . , tn } ,
arg min(α,β)∈U

{
h(ti, µ, β) + E

[
W (ti,Kβ(·;µ, Y β,µ

i )µ)
]}

, t = t−i , i ∈ { 1, . . . , n } .

Then, the feedback control u∗ given by u∗t := û(t, µ) is optimal.

Proof. In view of (3.14a), (3.14b) and (3.14c) it follows that, for each a ∈ U and (t, µ) ∈ [0, T ]× P(Rd),

∂W

∂t
(t, µ) + 〈G∗(a)µ,

δW

δµ
(s, µ, ·)〉+ `(s, µ, a) ≥ 0, ti ≤ t < ti+1, i = 1, . . . , n,

W (t−i , µ) = inf
(α,β)∈U

{
h(ti, µ, β) + E

[
W (ti,Kβ(·;µ, Y β,µ

i )µ)
]}

, i = 1, . . . , n,

and W (T, µ) = g(µ). Let us now replace t, a, µ by s and ur = (αr, βr), µ
u
r , s ≤ r ≤ T . Upon conditioning

on µus = µ, we get

W (s, µ) ≤ E

∫ T

s
`(t, µut (s, µ), ut)dt+

n∑
i=bsc+1

h(ti, µ
u
t−i

(s, µ), βti) + g(µuT )
∣∣∣µus = µ

 ,
which entails that

W (s, µ) = inf
u∈U [s,T ]

J(s, µ;u), 0 ≤ s < T, µ ∈ P(Rd).

Now, for u∗ = û, the last inequality becomes an equality. Therefore, W (t, µ) = J(s, µ;u∗) i.e., u∗ is optimal.

Remark 3.11 (Solving the HJB equation). The HJB equation (3.14) is a piecewise backward PDE. Given the
solution V (t−i , ·) at time ti, i = 1, . . . , n + 1 (interpreted as V (t−n+1, µ) = g(µ) at tn+1 = T ), we obtain
the solution on [ti−1, ti) by solving the PDE (3.14a) backward in time. Then, we define V (t−i−1, µ) by (3.14b),
and continue as before.

Remark 3.12 (Parameterized HJB equation). Suppose that we are given a subset M ⊂ P(Rd), which is
invariant under G∗(α) as well as under the Bayesian update for any optimal control u, and that we start in
µ0 ∈M. Let us further assume that probability measures inM are uniquely characterized by the expectations
of functions { ϕj | j ∈ J } indexed by a (finite or infinite) index set J .
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In this case, we can recast the value function as a function

V (t, µ) = U (t, (〈µ , ϕj〉)j∈J ) ,

with µ ∈M, for some function U(t, z), z ∈ R|J |. Note that we thus have

δV

δµ
(t, µ, ·) =

∑
j∈J

∂U

∂zj
(t, (〈µ , ϕj〉)j∈J )ϕj(·). (3.18)

Hence, the HJB equation (3.14) can be recasted into an HJB equation for U(t, z).

Example 3.13. [Parameterized HJB equation] For a general example of Remark 3.12, consider a compact set
K ⊂ Rd which is invariant under the controlled dynamics described by Gα. LetM ⊂ P(Rd) denote the set
of probability measures supported byK , and further assume that the Bayesian updateKβ leavesM invariant.
Hence, if we start in µ0 ∈M, we stay inM for any choice of control.

Recall that any ν ∈ M is characterized by its moments
∫
ϕj(x)ν(dx), ϕj(x) := xj11 · · ·x

jd
d , j ∈ J = Nd0.

Hence, we are formally in the situation of Remark 3.12 and we can introduce moment coordinates in this space of
measures, reducing the problem from a SOC formulation with probability measures valued states to the simpler
case of a countable sequence valued state, that one may have to truncate for constructive approximation.

4 Optimal control of an Ornstein – Uhlenbeck process

Consider the linear–quadratic example based on a controlled Ornstein–Uhlenbeck process, with Gaussian noisy
observations at times ti, i = 1, . . . , n. More precisely, we consider the controlled generator

G(α)f(x) = (−θx+ α)∂xf(x) +
1

2
b2∂xxf(x), (4.1)

based on a control α ∈ R, implying that

G(α)∗p(x) = θp(x) + (θx− α)∂xp(x) +
1

2
∂xxp(x).

We denote by µut the random evolution of conditional law of the unobserved controlled process Xu with a
control process ut = (αt, βt).

We try to minimize quadratic costs, i.e.,

`(t, µ, α) :=

∫
R
x2µ(dx) + Cα2, g(µ) :=

∫
R
x2µ(dx), (4.2)

with all other cost terms vanishing.

At time ti we observe Y β
i := X̂u

i +βiZi with Zi ∼ N (0, 1) – independent of each other and all other sources

of randomness – and X̂u
i ∼ µut−i

, see Example 3.1. Hence, we update µu according to the specification

µuti(dy) = Kβi(y;µu
t−i
, Y β

i )µu
t−i

(dy). (4.3)

For now, we assume that the noise level β is fixed, and not a control parameter. To make this clear notation-wise,
we write ε = β.

Observe that the above updating rule preserves Gaussian random variables. Indeed, we have

Lemma 4.1. Suppose that µ = N (m,σ2). Then ν defined by ν(dx) := Kε(x;µ, y)µ(dx) is equal to

N
(
m+ σ2

σ2+ε2
(y −m), σ2ε2

σ2+ε2

)
.
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Proof. Use the formula for the conditional distribution of (X|Y = y) for jointly Gaussian (X,Y ) and apply it
with X = X̂u

i and Y = Y ε
i .

It is well–known, see [GPW23], that the value function to the stochastic optimal control problem – with no
observation of the trajectories – is given as

V (t, µ) = ζ(t)

∫
R
x2µ(dx) + η(t)

(∫
R
xµ(dx)

)2

+ ξ(t) (4.4)

in terms of the Riccati equations

ζ̇(t)− 2θζ(t) + 1 = 0, (4.5a)

η̇(t)− C − 1

C2
(ζ(t) + η(t))2 − 2θη(t) = 0, (4.5b)

ξ̇(t) + b2ζ(t) = 0, (4.5c)

with terminal conditions ζ(T ) = 1, η(T ) = ξ(T ) = 0.

Now let us consider the case with noisy observations (in the sense of Example 3.1) at times t1, . . . , tn. It is
easy to see that optimal trajectories of µut remain in the class of (random) normal distributions1, provided that the
initial distribution µ0 is within this class. Nonetheless, the Bayesian update step (3.14b) destroys the form (4.4).

Lemma 4.2. Assume that µ = N (m,σ2) for some m ∈ R, σ2 > 0, and V (t, µ) = α
∫
R x

2µ(dx) +

ε
(∫

R xµ(dx)
)2

+ γ = α(m2 + σ2) + εm2 + γ. For Y ∼ N (m,σ2 + ε2), we have

E [V (t,Kε(·;µ, Y )µ)] = α(m2 + σ2) + ε

(
m2 +

σ4

σ2 + ε2

)
+ γ,

which is not of the form (4.4) for a Gaussian distribution unless ε = 0.

Proof. By Lemma 4.1, we know that

ν := Kε(·;µ, Y ) = N
(
m+

σ2

σ2 + ε2
(Y −m),

σ2ε2

σ2 + ε2

)
.

Hence,

V (t, ν) = α

(
σ2ε2

σ2 + ε2
+

[
m+

σ2

σ2 + ε2
(Y −m)

]2
)

+ ε

(
m+

σ2

σ2 + ε2
(Y −m)

)2

+ γ,

and we conclude by taking expectations.

Following the parametric approach suggested in Remark 3.12, we note that normal distributions are uniquely
determined by their first and second moments, or, more appropriately, by mean and variance. In order to avoid
confusion with the measure µ and when taking derivatives, we use the variables m for the mean and z for the
variance of our measures.

1I.e., normal distributions with possibly random mean or variance.
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Lemma 4.3 (HJB, controlled O-U case). Let Û = Û(t,m, z) denote the value function V (t, µ) in terms of
mean m and variance z of the Gaussian measure µ. The function Û satisfies the HJB equation

∂Û

∂t
(t,m, z) + z +m2 − θm∂Û

∂m
(t,m, z) + (b2 − 2θz)

∂Û

∂z
(t,m, z) (4.6a)

− 1

4C

[
∂Û

∂m
(t,m, z)

]2

= 0, ti ≤ t < ti+1, i = 1, ..., n

Û(t−i ,m, z) =

∫
R
Û

(
ti,m+

z√
z + ε2

z,
zε2

z + ε2

)
φ(z)dz, (4.6b)

Û(T,m, z) = m2 + z, (4.6c)

where φ denotes the density of a standard normal.

Since the function Û is defined on R+ × R × R+, we naturally wonder if we need to impose a value of Û on
the boundary z = 0. Recall that equation (4.6a) - (4.6c) is a terminal value problem, which is solved backwards
in time. Using the method of characteristics for first order nonlinear PDEs, it can be shown that for any point in
the domain R×R+ at terminal time the information propagates backwards via the characteristic lines z(τ) and
crosses the boundary z = 0 from inside the domain to the outside, and no information is entering the domain
from the z < 0 (see Section 5). Therefore, we do not need to impose a boundary condition at z = 0.

Proof of Lemma 4.3. Following Remark 3.12, since we are working with Gaussian distributions in one dimen-
sion, it is enough to choose ϕ1(x) := x, ϕ2(x) := x2, as well as U(t,m, s) := V (t, µ), for m :=∫
R ϕ1(x)µ(dx), s :=

∫
R ϕ2(x)µ(dx). By (3.18), we have

δV

δµ
(t, µ) =

∂U

∂m
(t,m, s)ϕ1 +

∂U

∂s
(t,m, s)ϕ2.

Note that

H
(
t, µ,

δV

δµ
(t, µ)

)
= inf

α∈R

{〈
µ ,G(α)

δV

δµ
(t, µ)

〉
+ 〈µ , ϕ2〉+ Cα2

}
,

= inf
α∈R

{∫
R

[
∂U

∂m
(t,m, s)(−θx+ α) + 2

∂U

∂s
(t,m, s)x(−θx+ α) + b2

∂U

∂s
(t,m, s)

]
µ(dx)+

+

∫
Rd
x2µ(dx) + Cα2

}
= inf

α∈R

{
Cα2 +

[∫
R

(
∂U

∂m
(t,m, s) + 2x

∂U

∂s
(t,m, s)

)
µ(dx)

]
α+

+

∫
R

[
x2 − θx∂U

∂m
(t,m, s) + (b2 − 2θx2)

∂U

∂s
(t,m, s)

]
µ(dx)

}
= inf

α∈R

{
Cα2 +

(
∂U

∂m
(t,m, s) + 2m

∂U

∂s
(t,m, s)

)
u+

+

[
s− θm∂U

∂m
(t,m, s) + (b2 − 2θs)

∂U

∂s
(t,m, s)

]}
= s− θm∂U

∂m
(t,m, s) + (b2 − 2θs)

∂U

∂s
(t,m, s)

− 1

4C

(
∂U

∂m
(t,m, s) + 2m

∂U

∂s
(t,m, s)

)2

.

Changing variables s→ z = s−m2, we get

∂U

∂m
(t,m, s) =

∂Û

∂m
(t,m, z)− 2m

∂Û

∂z
(t,m, z),
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whereas derivatives w.r.t. s can just be replaced by derivatives w.r.t. z. This change of variables implies that

H
(
t, µ,

δV

δµ
(t, µ)

)
= m2 + z − θm∂Û

∂m
(t,m, z) + (b2 − 2θz)

∂Û

∂s
(t,m, z)

− 1

4C

(
∂Û

∂m
(t,m, z)

)2

,

from which we immediately get (4.6a).

By Lemma 4.1, for µ = N (m, z),

V (ti,Kε(·;µ, y)) = U

(
ti,m+

z

z + ε2
(y −m),

zε2

z + ε2

)
.

By assumption, Y α
i = X̂α

i + εZi ∼ N (m, z + ε2), for Zi ∼ N (0, 1), and provided that µ = N (m, z). As
h ≡ 0 and ε is considered fix (i.e., not controlled), (3.14b) implies (4.6b).

5 Numerical approach

Recall from Lemma 4.3 the problem under consideration: find Û = Û(t,m, z) which satisfies the HJB equation

∂Û

∂t
(t,m, z) + z +m2 − θm∂Û

∂m
(t,m, z) + (b2 − 2θz)

∂Û

∂z
(t,m, z) (5.1a)

− 1

4C

[
∂Û

∂m
(t,m, z)

]2

= 0, tn ≤ t < tn+1, n = 0, ..., N

Û(t−n ,m, z) =

∫
R
Û

(
tn,m+

z√
z + ε2

w,
zε2

z + ε2

)
φ(w)dw, (5.1b)

Û(T,m, z) = m2+z, (5.1c)

where φ denotes the density of a standard normal.

In this section we present the numerical approach to solving this problem. Observe that this equation is defined
on an unbounded domain. We show how we truncate the domain to be able to treat this problem numerically.
We introduce the numerical scheme used to solve the HJB equation (5.1a) on time interval t ∈ [tn, tn+1),
and we show how to transform the result at time ti according to (5.1b). Finally, we present the results obtained
testing this approach on a synthetic problem.

5.1 Choice of the computational domain and boundary conditions

As mentioned, the original problem is defined on an unbounded domain with m ∈ (−∞,∞) and z ∈ [0,∞).
However, to solve the equation numerically, one must choose the truncated domain. Furthermore, one should
either prescribe the boundary conditions at the boundaries of the chosen domain, or propose the numerical
scheme, which uses only the interior points to compute current values and is shown to be stable. The upwind
difference scheme has the desired property as long as information propagates from the initial conditions by
lines flowing outside the domain. To check if this is the case, one can compute the characteristic lines of the
equation following section 3.2 of [Eva10]. In our case, the characteristic lines of (5.1a) are flowing from outside
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the domain, which is unwanted. However, if we restate the problem in a reversed time flow as follows

∂Û

∂t
(t,m, z) +H

(
m, z,

∂Û

∂m
,
∂Û

∂z

)
= 0, ti ≤ t < ti+1, (5.2a)

H
(
m, z,

∂Û

∂m
,
∂Û

∂z

)
:= H1

(
m, z,

∂Û

∂m

)
+H2

(
m, z,

∂Û

∂z

)
(5.2b)

H1

(
m, z,

∂Û

∂m

)
:= −m2 + θm

∂Û

∂m
(t,m, z) +

1

4C

[
∂Û

∂m
(t,m, z)

]2

, (5.2c)

H2

(
m, z,

∂Û

∂z

)
:= −z − (b2 − 2θz)

∂Û

∂z
(t,m, z), (5.2d)

we can choose a domain, such that the characteristic lines cross the boundary from inside the domain. See,
for example, Figure 1, which shows the characteristic lines for m ∈ [−1, 1] and z ∈ [0, 1] for the synthetic
problem with parameters given in subsection 5.5. The lines for m are symmetric around m(0) = 0; for z
they are symmetric around z = b2/(2θ) = 0.5. Therefore, as long as the computational domain contains
m = 0 and z = 0.5, the numerical solution is stable. The details on the derivation of the characteristics are
presented in Appendix A. Additionally, Saldi, Basar, and Raginsky [SBR18] explored the asymptotic optimality
of finite model approximations for partially observed Markov decision processes (POMDPs). Although relevant
for a time discrete setting, their approximation results for POMDPs may provide theoretical support for our
domain truncation numerical approach as well, connecting our work to established results in the approximation
of partially observed control problems.

0 0.2 0.4 0.6 0.8 1

t

-4

-2

0

2

4

m

0 0.2 0.4 0.6 0.8 1

t

-0.5

0

0.5

1

1.5

Figure 1: Characteristic lines shown for the domain of interest mi ∈ [−1, 1], zj ∈ [0, 1]. For m, the lines are
symmetric w.r.t. zero; for z they are symmetric around z = b2/(2θ) = 0.5.

5.2 Numerical scheme for HJB equation

In order to construct a convergent scheme we will follow the guidelines outlined in section 3.1 of [FF16] and
[CL84]. We introduce the grid

G := {(mi, zj , tn) : mi = i∆m, zj = j∆z, tn = n∆t, (5.3)

∀i ∈ [0, ..., I], j ∈ [0, ..., J ], n ∈ [0, ..., N ]} (5.4)

with uniform step sizes ∆m = mI−m0
I , ∆z = zJ−z0

J , ∆t = tN−t0
N . The boundary points m0, mI , z0 and zJ

are chosen to ensure the stability of the scheme as described in the previous subsection.

Let Uni,j ≈ Û(tn,mi, zj) denote the approximation of the solution to (5.2a). To approximate the spatial deriva-
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tives at time tn we will use left and right finite differences denoted by D±(Uni,j) and defined as follows:

D−m(Uni,j) =
Uni,j − Uni−1,j

∆m
, D+

m(Uni,j) =
Uni+1,j − Uni,j

∆m
,

D−z (Uni,j) =
Uni,j − Uni,j−1

∆z
, D+

z (Uni,j) =
Uni,j+1 − Uni,j

∆z
. (5.5)

We aim to construct a scheme in a differenced form

Un+1
i,j = G(Uni−1,j , U

n
i,j ,U

n
i+1,j , U

n
i,j−1, U

n
i,j+1), (5.6)

G(Uni−1,j , U
n
i,j , U

n
i+1,j ,U

n
i,j−1, U

n
i,j+1) := (5.7)

Uni,j −∆tH(m,D−m(Uni,j), D
+
m(Uni,j); z,D

−
z (Uni,j), D

+
z (Uni,j)), (5.8)

where the function H is called the numerical Hamiltonian. Theorem 1 in [CL84] guarantees the convergence,
provided that the scheme G is monotone and consistent.

Monotonicity : The scheme is said to be monotone, if the function G is monotone in each of its arguments
as long as |D±m(Uni,j)|, |D±z (Uni,j)| ≤ L. To achieve that, the information about the speed of propagation of

the solution ∂H/∂m, ∂H/∂z is used. For instance, ∂H1

∂(∂Û/∂m)
≥ 0, if ∂Û

∂m ≥ −2Cθm, and ∂H2

∂(∂Û/∂z)
≥

0, if b2 − 2θz ≤ 0, thus the numerical Hamiltonians can be defined as follows:

H1(m, z,D−m, D
+
m) = (5.9)

H1(m, z,D−m), if D−m, D
+
m ≥ −2Cθm,

H1(m, z,D+
m) +H1(m, z,D−m)−H1(m, z,−2Cθm), if D−m ≥ −2Cθm, D+

m ≤ −2Cθm

H1(m, z,−2Cθm), if D−m ≤ −2Cθm, D+
m ≥ −2Cθm

H1(m, z,D+
m), if D−m, D

+
m ≤ −2Cθm

H2(m, z,D−z , D
+
z ) =

{
H2(m, z,D−z ), if b2 − 2θz < 0,

H2(m, z,D+
z ), if b2 − 2θz ≥ 0

, (5.10)

H(m,D−m(Uni,j), D
+
m(Uni,j); z,D

−
z (Uni,j), D

+
z (Uni,j)) = H1(m, z,D−m, D

+
m) +H2(m, z,D−z , D

+
z )

(5.11)

With Hamiltonian defined in (5.11) the scheme G is monotone if

1− 2
∆t

∆m

∣∣∣ ∂H1

∂(∂Û/∂m)
(m, z, α)

∣∣∣− ∆t

∆z

∣∣∣ ∂H2

∂(∂Û/∂z)
(m, z, γ)

∣∣∣ ≥ 0 (5.12)

as long as |α|, |γ| ≤ L, which is an a priori bound on the derivatives of the value function. The derivation of
(5.12) and the discussion of the bounds L are given in Appendix B.

Consistency. It is easy to check that the consistency of the proposed scheme is trivially satisfied

H(m,α, α; z, β, β) = H1(m,α) +H2(z, β) = H(m, z, α, β). (5.13)

5.3 Computation of Û at time tn.

Once we obtained the value of Û(tn,m, z) at time tn, the observation is made and this information is used to
correct the value function Û(t−n ,m, z) according to (5.1b):

Û(t−n ,m, z) =

∫
R
Û
(
tn,m+

z√
z + ε2

w,
zε2

z + ε2

)
φ(w)dw, (5.14)
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where φ(w) = 1√
2π
e−

w2

2 . With a change of variable − z√
z+ε2

w = τ we can rewrite the integral as

Û(t−n ,m, z) =

∫
R
Û
(
tn,m− τ,

zε2

z + ε2

)
φ̂(τ)dτ, (5.15)

where

φ̂(τ) =

√
z + ε2

z

1√
2π
e−

τ2(z+ε2)

2z2 (5.16)

The integral (5.15) is a convolution for each given z and can be computed using Fourier transform. Note that
the points (·, ·, zε2

z+ε2
) are off grid G, therefore the value function at these points can be interpolated from the

nearby points.

5.4 Control under perfect observation

We now assume that we are in the classical case, namely that the process X(t) can be fully observed at all
times with no noise. Consider again the linear-quadratic example based on a controlled Ornstein-Uhlenbeck
process described in Section 4

dX(t) = (−θX(t) + α(t))dt+ bdW (t), t > 0 (5.17)

X(0) = X0 (5.18)

with the cost function to minimize given by

E
[ ∫ T

0
X(t)2dt+ C

∫ T

0
α(t)2dt

]
→ min (5.19)

Define the value function

u(t, x) := min
α

E
[ ∫ T

t
X(t)2dt+ C

∫ T

t
α(t)2dt

∣∣∣X(t) = x
]

(5.20)

Then u solves the HJB equation

∂tu+H(x, t, ∂xu, ∂
2
xu) = 0, t < T (5.21)

u(T, ·) = 0, (5.22)

with

H(x, t, ∂xu, ∂
2
xu) = min

α
{(−θx+ α)∂xu+ b2∂2

xu/2 + x2 + Cα2} (5.23)

= (−θx− ∂xu/(2C))∂xu+ b2∂2
xu/2 + x2 +

(∂xu)2

4C
. (5.24)

One can check that u(t, x) = f(t)x2 + g(t) solves the HJB equation (5.21)-(5.23) if f(t) solves the following
Ricatti ODE

1− 2θf − f2/C + f ′ = 0, (5.25)

f(T ) = 0, (5.26)

and g(t) = σ2
∫ T
t f(s)ds. Equation (5.25) can be integrated numerically. Thus, computing u(t, x) provides a

lower bound on the value function for the case with noisy measurements.
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5.5 Simulations.

In this section we present the numerical results obtained for a test problem with the following parameters:

θ = 0.25, b = 0.5, C = 1, ε = 0.9 (5.27)

We truncated the domain with m ∈ [−1, 1], z ∈ [0, 1], and T ∈ [0, 1], as described in section 5.1. The step
sizes ∆t = 0.0125, ∆m = 0.1, ∆z = 0.1 were chosen to satisfy condition 5.12.

The tests were performed for three cases:

� Control under no observations

� Control under noisy observations (observations happen with time step ∆tobs = 20∆t)

� Control under perfect observation (no noise, full observation in continuous time)

Figure 2 (A) shows the projection of the value function onto axes of m and z at time t = 0, in the case of no
observations. Observe that the cost is smaller for smaller values of z, because small z means more accurate
information about the state. Figure 2 (B) shows the slices of the value function onto axes of t andm with z = 1;
and (C) onto axes of t and z with m = 1.

(a) (b) (c)

Figure 2: The value function of control under no observations problem. (A) The value function at initial time; (B)
the slice of value function w.r.t. m and t, fixed z = 1; (C) the slice of value function w.r.t. z and t, fixed m = 1.

Figure 3 shows the same slices of the value function in the case with noisy observations made with time step
∆tobs = 20∆t. Overall we see that the cost is smaller compared to the case with no observations (Figure 2).
Furthermore, according to (5.1b), at each observation point t−n and all z the value function is updated from the

value function at points with significantly smaller variance zε2

z+ε2
at time tn, where the value function is smaller.

That explains the jumps at each observation point which can be seen on Figure 3 (B) and (C). The information
gained due to observation improves our knowledge and facilitates better decision making.

Figure 4 shows the optimal paths of the mean m∗(t) and variance z∗(t). The optimal paths are computed
according to the dynamics (5.28) between the observation points and updated at the observation points using
the simulated noisy observations of X(tn+1), namely Y (tn+1) ∼ N (m∗(t−n+1), z∗(t−n+1) + ε2) as follows:

dm∗(t) =
(
− θm∗(t) + ∂Û

∂m(t,m∗(t), z∗(t))
)
dt, tn ≤ t < tn+1, n = 0, ..., N

m∗(tn+1) = m∗(t−n+1) +
z∗(t−n+1)

z∗(t−n+1)+ε2
(Y (tn+1)−m∗(t−n+1)), n = 0, ..., N

m∗(t0) = m0,

dz∗(t) =
(
− 2θz∗(t) + b2

)
dt, tn ≤ t < tn+1, n = 0, ..., N

z∗(tn+1) =
z∗(t−n+1)ε2

z∗(t−n+1)+ε2
, n = 0, ..., N

z∗(t0) = z0

(5.28)
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(a) (b) (c)

Figure 3: The value function of control under noisy observations problem. (A) The value function at initial time;
(B) the slice of value function w.r.t. m and t, fixed z = 1; (C) the slice of value function w.r.t. z and t, fixed
m = 1.

The measurements Y (tn+1) are independent in the sense that Y (tn+1) = m∗(t−n+1)+
√
z∗(t−n+1) + ε2 Wn+1

with {Wn+1}n≥0 i.i.d. ∼ N (0, 1). Note also that m∗ is updated using the obtained observation, while z∗

evolves deterministically. The probability density function, ρ(x), over the optimal path becomes more peaked
around the mean from one observation point to the next as we collect information through Bayesian updates, as
seen in Figure 4(C).
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0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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(b) (c)

Figure 4: The optimal paths of the meanm∗(t) and variance z∗(t) of control under noisy observations problem.
(A) The optimal paths of the mean m∗(t) for several simulated scenarios; (B) the optimal path of the variance
z∗(t); (C) the probability density function, ρ(x), over one of the optimal paths (the blue line on plot (A)).

Figure 5 illustrates the value function’s slices w.r.t. m and t with fixed z = 1 for the three scenarios: (A) -
perfect observations; (B) - noisy observations; (C) - no observations. Evidently, the case with perfect observa-
tions provides a lower bound for the solution in the presence of noisy observations, while the scenario with no
observations gives the upper bound for the solution.

6 Multidimensional example - Kalman filters with control

In this section we generalize the linear quadratic example from Section 4 to the optimal control of a multidi-
mensional Ornstein-Uhlenbeck process under noisy, discrete time Gaussian observations. While the multidi-
mensional case is practically important, we initially introduced the concepts in a one-dimensional setting for
didactical purposes. Here, we demonstrate that the information update step following each observation can be
effectively characterized using the Kalman filter.
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(a) (b) (c)

Figure 5: The comparison of the value functions at time t = 0 in three cases. (A) The value function of problem
with full information; this case corresponds to the variance z = 0 in cases B and C with partially available
information, and x is the exact known state which we compare to the mean m in B and C; (B) the slice of the
value function of the problem with observations w.r.t. m and t, fixed z = 1; (C) the slice of the value function of
the problem with no observations w.r.t. m and t, fixed z = 1.

Consider the multidimensional Ornstein-Uhlenbeck process in Rd, with its controlled generator

G(u)f(x) =

d∑
i=1

(
(−θixi + ui)∂xif(x) +

d∑
j=i

b2ij
2
∂xixjf(x)

)
. (6.1)

The sets of summation indices above are I = {1, ..., d}, Ji = {i, ..., d}, and we will later use the notation
J +
i = {i + 1, ..., d} as well. Following Remark 3.12, since we are working with multivariate Gaussian distri-

butions, it is enough to choose ϕ1,i(x) = xi, ϕ2,ij(x) = xixj , i, j = 1, ..., d, and then represent the value
function

V (t, µ) = U(t, {〈µ , ϕ1,i〉}i∈I , {〈µ , ϕ2,ij〉}i∈I, j∈Ji) = U(t,m, s), (6.2)

with the first moments m = (m1, ...,md) ∈ Rd, the second moments, s = ({sij}i=1,...,d, j∈Ji), and their
corresponding definitions, namely mi =

∫
Rd ϕ1,i(x)µ(dx), sij =

∫
Rd ϕ2,ij(x)µ(dx). Thus, U : R+ ×

R1+d+
d(d+1)

2 7→ R is a real valued function with a particular domain, since the covariance matrix associated to
µ has to be non negative definite.

Using the representation of the flat derivative (3.18), we obtain

G(u)
δV

δµ
(t, µ)(x) =

d∑
i=1

{
(−θixi + ui)

( d∑
l=1

[
∂U

∂ml
(t,m, s)∂xiϕ1,l(x) +

d∑
k=l

∂U

∂slk
(t,m, s)∂xiϕ2,lk(x)

])

+
d∑
j=i

b2ij
2

( d∑
l=1

[
∂U

∂ml
(t,m, s)∂xixjϕ1,l(x) +

d∑
k=l

∂U

∂slk
(t,m, s)∂xixjϕ2,lk(x)

]]}
.

(6.3)

Now we need to substitute the particular values of the partial derivatives of the ϕ functions. Indeed, noting right
away that ∂xixjϕ1,l ≡ 0, each of the terms in (6.3) yield

d∑
i=1

(−θixi + ui)
d∑
l=1

∂U

∂ml
(t,m, s)∂xiϕ1,l(x) =

d∑
i=1

(−θixi + ui)
∂U

∂mi
(t,m, s),

d∑
i=1

(−θixi + ui)

d∑
l=1

d∑
k=l

∂U

∂slk
(t,m, s)∂xiϕ2,lk(x) =

d∑
i=1

(−θixi +ui)

(
2
∂U

∂sii
(t,m, s)ϕ1,i(x) +

d∑
k=i+1

∂U

∂sik
(t,m, s)ϕ1,k(x) +

∑
1≤l<i

∂U

∂sli
(t,m, s)ϕ1,l(x)

)
,
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and finally

d∑
i=1

d∑
j=i

b2ij
2

d∑
l=1

d∑
k=l

∂U

∂slk
(t,m, s)∂xixjϕ2,lk(x) =

d∑
i=1

(
b2ii
∂U

∂sii
(t,m, s) +

d∑
j=i+1

b2ij
2

∂U

∂sij
(t,m, s)

)
.

To compute the resulting Hamiltonian following (3.13), we need to use the value of G(u) δVδµ (t, µ) from (6.3),
which yields

H

(
t, µ,

δV

δµ
(t, µ)

)
= inf

u∈Rd

{〈
µ ,G(u)

δV

δµ
(t, µ)

〉
+

d∑
i=1

〈µ , ϕ2,ii〉+
d∑
i=1

Ciu
2
i

}
,

= inf
u∈Rd

{∫
Rd

[
d∑
i=1

∂U

∂mi
(t,m, s)(−θixi + ui)

+

d∑
i=1

(
2xi

∂U

∂sii
(t,m, s) +

d∑
j=i+1

xj
∂U

∂sij
(t,m, s) +

∑
1≤l<i

xl
∂U

∂sli
(t,m, s)

)
(−θixi + ui)

+

d∑
i=1

(
b2ii
∂U

∂sii
(t,m, s) +

d∑
j=i+1

b2ij
2

∂U

∂sij
(t,m, s)

)]
µ(dx) +

∫
Rd

d∑
i=1

x2
iµ(dx) +

d∑
i=1

Ciu
2
i

}

=

d∑
i=1

[
sii − θimi

∂U

∂mi
(t,m, s) + (b2ii − 2θisii)

∂U

∂sii
(t,m, s)

+

d∑
j=i+1

(b2ij
2
− θisij

) ∂U
∂sij

(t,m, s)− θi
∑

1≤l<i
sli
∂U

∂sli
(t,m, s)

]

−
d∑
i=1

1

4Ci

 ∂U

∂mi
(t,m, s) + 2mi

∂U

∂sii
(t,m, s) +

d∑
j=i+1

mj
∂U

∂sij
(t,m, s) +

∑
1≤l<i

ml
∂U

∂sli
(t,m, s)

2

.

In the Hamiltonian above, U is a function of the first and the second moments. We can transform the input
second moment variables of U into the corresponding entries of the covariance matrix of X, Σ, yielding a new
function Û(t,m, z) as follows. Let zii = sii − m2

i and zij = sij − mimj , so that Σ = Σ(z) satisfies
Σij = zij if i ≤ j and Σij = zji otherwise. With this construction, Σ is only symmetric and we will have to
ensure later that it is nonnegative definite by properly defining the state domain. The derivative ∂U

∂mi
(t,m, s),

for i ∈ I , can be written using the new variables, namely:

∂U

∂mi
(t,m, s) =

∂Û

∂mi
(t,m, z)− 2mi

∂Û

∂zii
(t,m, z)−

d∑
j=i+1

mj
∂Û

∂zij
(t,m, z). (6.4)

Similarly, the partial derivatives of U w.r.t. sii, sij are replaced by the corresponding derivatives of Û w.r.t. zii,
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zij . The Hamiltonian for this problem expressed in terms of Û and the new input variables then reads:

H

(
t, µ,

δV

δµ
(t, µ)

)
= Ĥ

(
t,m, z,DÛ(t,m, z)

)

=
d∑
i=1

[
zii +m2

i − θimi
∂Û

∂mi
(t,m, z) + (b2ii − 2θizii)

∂Û

∂zii
(t,m, z) (6.5)

− θi
∑

1≤l<i
zli
∂Û

∂zli
(t,m, z)− θi

∑
1≤l<i

mlmi
∂Û

∂zli
(t,m, z) (6.6)

+

d∑
j=i+1

(b2ij
2
− θizij

) ∂Û
∂zij

(t,m, z)− 1

4Ci

 ∂Û

∂mi
(t,m, z) +

∑
1≤l<i

ml
∂Û

∂zli
(t,m, z)

2 ]
.

This Hamiltonian determines the evolution of the value function Û in between observations according to the
HJB equation in its natural domain, namely m in the same domain as x and z such that Σ(z) is non negative
definite.

Update after each observation:

At the observation time ti we gather the datum Y α
i := HX̂α

i + εZi with X̂α
i ∈ Rd, and Y α

i , Zi ∈ Rn.

Here we have X̂α
i ∼ µt−i

= N (mt−i
,Σt−i

) and Zi ∼ N (0, 1), mutually independent. After observation, the

conditional distribution of X̂α
i |Y αi =y is Gaussian and can be computed using the Kalman filter as follows:

X̂α
i |Y αi =y ∼ N

(
mti ,Σti

)
(6.7)

with mti = mt−i
+Kti(y −Hmt−i

), (6.8)

Σti = (I −KtiH)Σt−i
, (6.9)

and the Kalman gain matrix Kti = Σt−i
HT
(
HΣt−i

HT + ε2I
)−1

(6.10)

We now introduce the auxiliary function z̃ : Rd×d → Rd+d(d+1)/2 with z̃(Σ)ij = Σij for i ≤ j. Thus,

according to (3.14b) we update Û(t−i ,mt−i
, z̃(Σt−i

)) as follows:

Û(t−i ,mt−i
, z̃(Σt−i

)) =

∫
Rn
Û

(
ti,mt−i

+KtiLw, z̃((I −KtiH)Σt−i
)

)
φ(w)dw, (6.11)

where the matrix L is such that LLT = HΣt−ti
HT + ε2I and φ(w) is a standard Gaussian density in Rn. The

matrix L can be computed using, for instance, a Cholesky decomposition.

Remark 6.1 (Observation costs). We can have additional, controllable costs, from the observation as in (3.14b).
In that case, (6.11) preserves the same structure, and only an additional optimization step is necessary to find
the optimal data acquisition setup β.

Summing up, in this section we have characterized the different ingredients to set up HJB equation in our multi-
variate Gaussian process case. The Hamiltonian defined by (6.7) determines the evolution of the value function
between observation times ti−1, ti, i = 1, ..., n, and the conditional expectation at each of the observation
times ti (6.11) using the Kalman filter equations. It is important to emphasize at this point that the state dimen-
sion of the time dependent HJB PDE is d + d(d+1)

2 , which is relatively large, even for d = 2. This means that
one should be particularly careful when choosing appropriate discretization tools, to address the ensuing curse
of dimensionality.
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A Details on the characteristics

As discussed in Section 5.1, it is necessary to truncate the originally unbounded domain to obtain a numerical
solution for the proposed PDE (5.1a). To effectively truncate the domain and construct a convergent numerical
scheme, it is crucial to understand the propagation of information within the PDE. To achieve this, we compute
the characteristics of equation (5.1a) by following the methodology outlined in Section 3.2 of [Eva10]. These
characteristics provide the curves along which information flows from initial points throughout the domain in
first-order PDEs. By knowing these curves, we can appropriately select a domain where the characteristic lines
flow from inside the domain to the outside, ensuring that the numerical scheme is well-posed and convergent.

Now we compute the characteristics of (5.1a). Letting p = ∂U
∂m , q = ∂U

∂z , the characteristics are given by the
following system of ordinary differential equations (ODEs):

dm
dτ = θm(τ) + 1

2C p(τ),
dz
dτ = −(b2 − 2θz(τ)),
dp
dτ = 2m(τ)− θp(τ),
dq
dτ = 1− 2θq(τ).

(A.1)

The solution to this system is given by:
z(τ) = b2

2θ + C1(m0, z0)e2θτ ,

q(τ) = 1
2θ + C2(m0, z0)e−2θτ ,

p(τ) = C3(m0, z0)e
√
θ2+1/Cτ + C4(m0, z0)e−

√
θ2+1/Cτ ,

m(τ) = (θ +
√
θ2 + 1/C)C3(m0,z0)

2 e
√
θ2+1/Cτ + (θ −

√
θ2 + 1/C)C4(m0,z0)

2 e−
√
θ2+1/Cτ

(A.2)

where the constants C1, C2, C3 and C4 depend on the root of the characteristic line - the initial point (m0, z0),
and can be determined from equations for m(0), z(0) and p(m(0), z(0)), q(m(0), z(0)). The explicit values
of the constants are the following:

C1(m0, z0) = z0 − b2

2θ ,

C2(m0, z0) = q0(m0, z0)− 1
2θ ,

C3(m0, z0) = p(m0, z0)− C4(m0, z0),

C4(m0, z0) =
(
θ+
√
θ2+1/C

2 p(m0, z0)−m0

)
1√

θ2+1/C
.

(A.3)

Thus, the characteristic curves are given by (A.2) - (A.3). Figure 1 in Section 5.1 shows an example of the
characteristics for m ∈ [−1, 1] and z ∈ [0, 1]. Choosing a domain which contains m = 0 and z = 0.5
ensures that the information flows across the boundary from inside of the domain to the outside. A similar
discussion applies to the multidimensional case.

B Derivation of the monotonicity condition

In Section 5.2 we construct the numerical scheme which is guaranteed to converge to the true solution, provided
that it is consistent and monotone. In this Appendix we derive the condition which ensures that our scheme is
monotone. To do that, we check directly under which conditions the function G is monotone in each of its
arguments Uni−1,j , U

n
i,j , U

n
i+1,j , U

n
i,j−1, Uni,j+1.

Let’s show the monotonicity w.r.t. Uni,j as an example. For a grid point (mi, zj), let α0 be the point where

the Hamiltonian H1 changes sign, so that ∂H1

∂(∂Û/∂m)
(mi, zj , α)(α − α0) ≥ 0. Let us also use the following
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notation for convenience:

α =
Uni,j − Uni−1,j

∆m
, β =

Uni+1,j − Uni,j
∆m

, (B.1)

γ =
Uni,j+1 − Uni,j

∆z
, δ =

Uni,j − Uni,j−1

∆z
(B.2)

We write out the scheme G explicitly as follows:

Un+1
i,j = Uni,j −∆t

[
1{β≤α0}

(
H1

(
mi, zj ,

Uni+1,j − Uni,j
∆m

)
−H1(mi, zj , α0)

)
(B.3)

+ (1− 1{α≤α0})
(
H1

(
mi, zj ,

Uni,j − Uni−1,j

∆m

)
−H1(mi, zj , α0)

)
+H1(mi, zj , α0) (B.4)

+ 1{b2−2θzj≥0}H2

(
mi, zj ,

Uni,j+1 − Uni,j
∆z

)
+ 1{b2−2θzj<0}H2

(
mi, zj ,

Uni,j − Uni,j−1

∆z

)]
(B.5)

The derivative of Un+1
i,j w.r.t. Uni,j is given by the following:

∂Un+1
i,j

∂Uni,j
=1−∆t

[
1{β≤α0}

∂H1

∂(∂Û/∂m)
(mi, zj , β)

(
− 1

∆m

)
+ (1− 1{α≤α0})

∂H1

∂(∂Û/∂m)
(mi, zj , α)

1

∆m︸ ︷︷ ︸
:=h1(mi,zj ,α,β)

(B.6)

+1{b2−2θzj≥0}
∂H2

∂(∂Û/∂z)
(mi, zj , γ)

(
− 1

∆z

)
+ 1{b2−2θzj<0}

∂H2

∂(∂Û/∂z)
(mi, zj , δ)

1

∆z︸ ︷︷ ︸
:=h2(mi,zj ,γ,δ)

]

(B.7)

Since Un+1
i,j is an increasing function, so

∂Un+1
i,j

∂Uni,j
≥ 0. Recalling that ∂H1

∂(∂Û/∂m)
(mi, zj , α)(α − α0) ≥ 0 and

expanding on h1(mi, α, β) we get

h1(mi, zj , α, β) =



1
∆m

∂H1

∂(∂Û/∂m)
(mi, zj , β), if β, α ≤ α0,

1
∆m

(
∂H1

∂(∂Û/∂m)
(mi, zj , β)− ∂H1

∂(∂Û/∂m)
(mi, zj , α)

)
, if β ≤ α0, α ≥ α0,

0, if β ≥ α0, α ≤ α0,
1

∆m
∂H1

∂(∂Û/∂m)
(mi, zj , α), if β, α ≥ α0

(B.8)

=



1
∆m

∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , β)

∣∣∣, if β, α ≤ α0,

1
∆m

(∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , β)

∣∣∣+
∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣), if β ≤ α0, α ≥ α0,

0, if β ≥ α0, α ≤ α0,
1

∆m

∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣, if β, α ≥ α0

(B.9)

W.l.o.g., suppose that
∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣ ≥ ∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , β)

∣∣∣. Then

h1(mi, zj , α, β) ≤ 2

∆m

∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣ (B.10)
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Expanding on h2(mi, zj , γ, δ) we get

h2(mi, zj , γ, δ) = 1{b2−2θzj≥0}
∂H2

∂(∂Û/∂z)
(mi, zj , γ)

(
− 1

∆z

)
︸ ︷︷ ︸

∂H2
∂(∂Û/∂z)

(mi,zj ,γ)≤0

+ 1{b2−2θzj<0}
∂H2

∂(∂Û/∂z)
(zj , δ)

1

∆z︸ ︷︷ ︸
∂H2

∂(∂Û/∂z)
(mi,zj ,δ)≥0

(B.11)

= 1{b2−2θzj≥0}
1

∆z

∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣+ 1{b2−2θzj<0}
1

∆z

∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , δ)

∣∣∣ (B.12)

Suppose, w.l.o.g. that
∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣ ≥ ∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , δ)

∣∣∣, then we have

h2(mi, zj , γ, δ) ≤
1

∆z

∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣ (B.13)

Combining (B.10) and (B.13), we get the condition which guarantees the monotonicity of the scheme G:

1− 2
∆t

∆m

∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣− ∆t

∆z

∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣ ≥ 0 (B.14)

To compute the relations ∆t/∆m, ∆t/∆z, which satisfy condition (B.14), we must estimate
∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣
and

∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣. The derivatives are given by the following

∂H1

∂(∂Û/∂m)
(mi, zj , α) = −θmi +

α

2C
, (B.15)

∂H2

∂(∂Û/∂z)
(mi, zj , γ) = 2θzj − b2 (B.16)

On a domain defined by [m0,mI ]× [z0, zJ ] with m0 < 0, we have the following bounds∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣ ≤ θ|m0|+
|α|
2C

, (B.17)∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣ ≤ 2θzJ − b2 (B.18)

Obtaining
∣∣∣ ∂H2

∂(∂Û/∂z)
(mi, zj , γ)

∣∣∣ is straightforward, while
∣∣∣ ∂H1

∂(∂Û/∂m)
(mi, zj , α)

∣∣∣ requires an a priori upper

bound on |α| = |∂Û/∂m|. For example, the Lipschitz constant can be used if known. Otherwise, condition
(B.14) could be verified to hold at every point of the grid (mi, zj) during numerical simulation. It is easy to see
that the requirement on the derivatives of Un+1

i,j (or G) w.r.t. the rest of the variables Uni−1,j , U
n
i+1,j , U

n
i,j−1,

Uni,j+1 to be positive is also satisfied by (B.14).
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