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A T−coercivity approach to the nonlinear Stokes equations
Cristian Cárcamo, Patrick Ciarlet Jr.

Abstract

We address the nonlinear Stokes problem with Dirichlet boundary conditions, introducing ad-
ditional variables into the standard formulation to accommodate solutions with reduced regularity
requirements. To ground this analysis, we first review relevant preliminary results, emphasizing the
significance of achieving T−coercivity in the context of nonlinear Stokes flows. We then introduce
a specially designed operator T , proving its bijectivity and showing that it induces coercivity when
applied to the test function space. This result provides a rigorous foundation for solving the quasi-
Newtonian Stokes problem with minimal regularity constraint and also sets up the T−coercivity
as an alternative to the well-posedness of the nonlinear Stokes problems.

1 Introduction

Nonlinear Stokes flow is common in industry and nature, being of special interest in areas such as
geology and glaciology, commonly called the p−Stokes problem due to the viscosity depends on the
gradient of the velocity or the strain rate tensor with an exponent p ∈ (1,∞), which is the param-
eter that determines the non-linearity of the material [1, 11]. This problem has been widely studied
from differents perspectives. Some of them are by using Newton linearization [12], and clasic mixed
formulation [13], among others. On the other hand, the T−coercivity is a tool, that has been widely
applied in the last years as a great alternative to prove the well-posedness of some class of problems,
most of them with linear characteristics [5, 6]. In many cases, this strategy plays an important role or
even is the key to proving the existence of solutions [3, 7], despite the challenge that implies setting
up the operator T . Another important aspect to consider is the regularity of the solution, above all
when a problem is studied from a numerical point of view where usually in practice the solutions have
low regularity. In this regard, [9] introduces an alternative path to deal with quasi-Newtonian fluid by
means of the introduction of new variables in the continuous problem, being this path on which we will
base our main result. Therefore, our contribution aim to set up an operator T whereby we will prove
the existence and uniqueness of the solution for a nonlinear Stokes problem in its weak form, showing
that this problem satisfy T -coerciveness.

Let us consider a domain Ω ⊂ Rd, with d = 2, 3, an open bounded domain with Lipschitz continuous
boundary ∂Ω = Γ. A Dirichlet boundary condition is imposed on Γ. We employ conventional notation
for Lebesgue spaces Lp(O), with norm ∥ · ∥Lp(O) and ∥ · ∥0,O for p = 2 and inner product (·, ·)O,
and Sobolev spaces Hm(O) with norm ∥ · ∥Hm(O) and seminorm | · |Hm(O), where O ∈ {Ω,Γ}. We
will interpret these same spaces as vector spaces whenever they are written in bold, and as tensor
spaces when written in calligraphic font.

We are interested to study the nonlinear Stokes equations given by
−divσ = f in Ω,
divu = 0 in Ω,

u = h on Γ
(1.1)
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where σ is the nonlinear stress tensor defined as

σ = ν(|∇u|)∇u− pI,

u : Ω → Rd is the velocity field, p : Ω → R is the pressure field, ν : R+ → R+ represents the
nonlinear kinematic viscosity, | · | corresponds to the Euclidean norm in Rd×d, f ∈ L2(Ω) is a given
source term, and h ∈ H1/2(Ω). Furthermore, for any τ = (τij), ζ = (ζij) ∈ Rd×d we use the
notations tr(τ ) =

∑d
i=1 τii, τ

t = (τij) and (τ , ζ)L2(Ω)d×d = τ : ζ = tr(τ ζt).

We define the mapping νij : Rd×d → R as νij(s) := ν(|s|)sij for all s := (sij) ∈ Rd×d and for
all i, j ∈ {1, . . . , d}. We then define the tensor ν : Rd×d → Rd×d by ν(s) := (νij(s)) for every
s ∈ Rd×d. Throughout this paper, we assume that ν is of class C1 and that there exist constants
C1, C2 > 0 such that, for all s := (sij) and r := (rij) ∈ Rd×d, the following holds:

|νij(s)| ≤ C1∥s∥Rd×d ,

∣∣∣∣∣ ∂

∂skl
νij(s)

∣∣∣∣∣ ≤ C1 ∀i, j, k, l ∈ {1, . . . , d}

2∑
i,j,k,l=1

∂

∂skl
ν(s)rijrkl ≥ C2∥r∥2R2×2 .

(1.2)

Now, following the ideas developed in [9], introducing the variables t = ∇u, and taking σ as a
variable the problem (1.1) is reduced to

t−∇u = 0 in Ω,
σ − ν(t) + pI = 0 in Ω,

−divσ = f in Ω,
tr(t) = 0 in Ω,

u = h on Γ

(1.3)

Let us start introducing the spaces

X := L2(Ω), Y := H(div; Ω)× L2(Ω), and Z := L2(Ω)× R

H = H0(div; Ω) = {τ ∈ H(div; Ω) :

∫
Ω

tr(τ) = 0}

As next, we define the next operators

A : X ×X → R, A(r, s) := (ν(r), s)Ω

B1 : X × Y → R, B1(r, (τ , q)) := −(τ , r)Ω − (q, tr(r))Ω

B2 : Y ×Z → R, B2((τ , q), (v, η)) := −(v,div τ )Ω + (η, tr(τ ))Ω

F : Z → R, F (v, τ ) := (f ,v)Ω

G : Y → R, G(τ , q) := −⟨h, τn⟩ΓD
.

The variational formulation of Problem (1.3) reads:
Find t⃗ = (t, (σ, p), (u, ξ)) ∈ X × Y ×Z such that

⟨A(t⃗), s⃗⟩ = ⟨F , s⃗⟩, (1.4)
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for all s⃗ = (s, (τ , q), (v, η)), with

⟨A(t⃗), s⃗⟩ :=A(t, s) +B1(s, (σ, p)) +B1(t, (τ , q))

+B2((τ , q), (u, ξ)) +B2((σ, p), (v, η))

⟨F , s⃗⟩ :=F (v, τ ) +G(τ , q)

Now, in order to prove that the continuous problem has one solution we are going to start showing the
continuity of the operators A and F . For this purpose, we introduce the norm

∥s⃗∥ :=
{
∥s∥2X + ∥(τ , q)∥2Y + ∥(v, η)∥2Z

}1/2
.

2 Preliminaries

We aim to prove that (1.4) by using T−coercivity. Hence, we need to introduce the next defintion and
lemma (details are explained in [6]).

Definition 1. Let V and W be two Hilbert spaces and A(·, ·) be a continuous and linear on the
second component form over V ×W . It is T−coercive if

∃T ∈ L(V,W ), bijective, ∃α > 0, ∀ v ∈ V, |A(v, T (v)) ≥ α∥v∥2V . (2.5)

Notice that if (2.5) is fulfilled, the injectivity of T follows.

Theorem 2. Let A(·, ·) be a continuous form over V ×W . The problem

A(u, v) = F (v)

is well-posed if, and only if, the form A(·, ·) is T−coercive in the sense of the Definition (1).

The next result guarantees the surjectivity of the operator div : H → L2(Ω), necessary to define
the operator T .

Lemma 3. There exists β̂ > 0 such that s

sup
0 ̸=τ∈H

(div τ ,v)Ω
∥τ∥H(div,Ω)

≥ β̂∥v∥L2(Ω)d , ∀v ∈ L2(Ω). (2.6)

Proof. To prove (2.6) we refer to inequality (3.4) in [10, Lemma 3.6].

The next results plays an important role to prove the well-possednes of the continuous problem (1.4).

Lemma 4. The following statements hold:

a) The nonlinear operator A is strongly monotone and Lipschitz continuous. That is, there exists
constants Cm, Cl such that for all t, r, s ∈ X it holds

A(r, r − s)−A(s, r − s) ≥ Cm∥r − s∥2X
|A(t, r)−A(s, r)| ≤ Cl ∥t− s∥X∥r∥X

(2.7)
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b) Let us define the space

Ỹ = {(τ , q) ∈ Y : div(τ ) = 0 in Ω and

∫
Ω

tr(τ )dx = 0}.

For all (τ , q) ∈ Ỹ there exists a positive constant β1 such that

sup
0 ̸=s∈X

B1(s, (τ , q))

∥s∥X
≥ β1∥(τ , q)∥Y (2.8)

c) For all (v, η) ∈ Z there exists a positive constant β2 dependent of Ω, such that

sup
0̸=(τ ,q)∈Y

B2((τ , q), (v, η))

∥(τ , q)∥Y
≥ β2∥(v, η)∥Z (2.9)

Proof. For further details we refer to [9, Theo. 2.4].

It is important to mention the relevance of the assumptions described in (1.2), because without them
It would be impossible to prove the result (2.7).

3 Well-posedness of the problem

Lemma 5. There exists a positive constant CA0 , such that

⟨A0(t⃗), s⃗⟩ ≤ CA0∥t⃗∥∥s⃗∥, and ⟨F0, s⃗⟩ ≤ CF0

[
∥f∥L2(Ω) + ∥h∥

H
1
2 (Γ)

]
∥s⃗∥.

Proof. By applying triangle and Cauchy-Schwarz inequalites we get

|⟨A0(t⃗), s⃗⟩| ≤C1∥t∥X∥s∥X + ∥σ∥H(div,Ω)∥s∥X +
√
d∥p∥L2(Ω)∥s∥X

+ ∥τ∥H(div,Ω)∥t∥X +
√
d∥q∥L2(Ω)∥t∥X + ∥u∥L2(Ω)d∥τ∥H(div,Ω)

+
√
d|ξ|∥τ∥H(div,Ω) + ∥v∥L2(Ω)d∥σ∥H(div,Ω) +

√
d|η|∥σ∥H(div,Ω)

≤CA0∥t⃗∥∥s⃗∥,

where CA0 = max{1, C1,
√
d} Analogously, by applying triangle, trace inequality en H(div; Ω)

(see e.g. [4, 8]), and Cauchy-Schwarz in R2 we get

⟨F0, s⃗⟩ ≤|(f ,v)Ω|+ |⟨h, τn⟩ΓD
|

≤∥f∥L2(Ω)d∥v∥L2(Ω)d + ∥h∥
H

1
2 (Γ)

∥τn∥
H− 1

2 (Γ)

≤
√
2

[
∥f∥L2(Ω)d + ∥h∥

H
1
2 (Γ)

][
∥v∥L2(Ω)d + ∥τ∥H(div;Ω)

]
≤CF0

[
∥f∥L2(Ω)d + ∥h∥

H
1
2 (Γ)

]
∥s⃗∥,

where CF0 =
√
2.

Next, inspired by [6] and in virtue of the previous results, the next theorem is established.
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Theorem 6. The form ⟨A0(·), ·⟩ is T−coercive.

Proof. Before to formulate the operator T we are going to call the Lemma (4). We know that B1

satisfy an inf-sup condition in the space Ỹ , and so, following the ideas developed in [2, Lemma. 3.1]
and [9, Theo. 2.4], let us consider the pair (σ′, p′) such that

s =

{
−(σ′ − 1

2
tr(σ′)I), if ∥p′|L2(Ω) ≤ ∥σ′∥H(div,Ω)

−p′I+ σ′, if ∥σ′∥H(div,Ω) ≤ ∥p′∥L2(Ω)

and in both cases it is posible to prove that

B1(s, (σ
′, p′)) ≥ β1∥(σ′, p′)∥2Y and ∥s∥X ≤ 1

β1

∥(σ′, p′∥)∥Y .

On the other hand, we know that each τ ∈ H(div; Ω), it can be decomposed uniquely as

τ = τ0 + cI, with τ0 ∈ H and c :=
1

d|Ω|

∫
Ω

tr(τ ) ∈ R.

By Lemma (3) be know that given u′ ∈ [L2(Ω)]d there exists τ0 ∈ H such that divτ0 = u′. Let us
also consider ξ′ ∈ R and then we can build the function

τ = −τ0 −
1

d|Ω|
ξ′I

which clearly belongs to H(div; Ω). Consequently, we have

B2((τ , q), (u
′, ξ′)) =− (u′,div(τ ))Ω − (ξ′, tr(τ ))Ω

=(u′,div(τ0))Ω + (ξ′, tr(
1

d|Ω|
ξ′I))Ω

=∥u′∥2[L2(Ω)]d + |ξ′|2

=∥(u′, ξ′)∥2Z .

Additionally, the inequality (2.9) implies particularly that

β2∥(τ , q)∥Y ∥(u′, ξ′)∥Z ≤ B2((τ , q), (u
′, ξ′)) = ∥(u′, ξ′)∥2Z ,

and one obtains ∥(τ , q)∥Y ≤ 1
β2
∥(u′, ξ′)∥Z .

Now, we are in position to build the operator T . Indeed, for t⃗′ = (t′, (σ′, p′), (u′, ξ′)) ∈ X×Y ×Z
and ζ ∈ R+, we define

T : X × Y ×Z → X × Y ×Z

(t′, (σ′, p′), (u′, ξ′)) 7→ T (t′, (σ′, p′), (u′, ξ′))

= (ζt′ + s, (−ζσ′ + τ ,−ζp′ + q), (ζu′, ζξ′))

Consequently, replacing the test vector function s⃗ by T (t⃗′) one gets

⟨A0(t⃗
′),T (t⃗′)⟩

=(ν(t′), ζt′ + s)Ω − (σ′, ζt′ + s)Ω − (p′, tr(ζt′ + s))Ω − (−ζσ′ + τ , t′)Ω
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− (−ζp′ + q, tr(t′))Ω − (u′,div(−ζσ′ + τ ))Ω + (ξ′, tr(−ζσ′ + τ ))Ω

− (ζu′,div(σ′))Ω + (ζξ′, tr(σ′))Ω

= ζ(ν(t′), t′)Ω + (ν(t′),σ)Ω − (σ′, s)Ω − (p′, tr(s))Ω − (τ , t′)Ω − (q, tr(t′))Ω

− (u′,div(τ ))Ω + (ξ′, tr(τ ))Ω

= ζA(t′, t′)−A(t′, s) +B1(s, (σ
′, p′)) +B1(t

′, (τ , q)) +B2((τ , q), (u
′, ξ′)

≥ ζA(t′, t′)−A(t′, s) + β1∥(σ′, p′)∥2Y +B1(t
′, (τ , q)) + ∥(u′, ξ′)∥2Z .

Given that the inequalities given in (2.7) holds for all r, s ∈ X , in particular if s = 0 one obtains

A(r, r) ≥ Cm∥r∥2X ,

because ν(0) = 0. In addition, it is clear that by Cauchy-Schwarz inequality and inequality (1.2) one
proves

|A(r, s)| ≤ C1∥r∥X∥s∥X

for all r, s ∈ X . On the other hand, by applying again Cauchy-Schwarz inequality one gets

|B1(s, (τ , q))| ≤ ∥s∥X∥(τ , q)∥Y

for all s ∈ X and (τ , q) ∈ Y . Hence, by using Young inequality one arrives

⟨A0(t⃗
′),T (t⃗′)⟩ ≥ ζ Cm ∥t′∥2X − C1∥t′∥X∥s∥X + β1∥(σ′, p′)∥2Y

+ ∥t′∥X∥(τ , q)∥Y + ∥(u′, ξ′)∥2Z

≥ ζ Cm ∥t′∥2X − C2
1

δ1
2
∥t′∥2X − 1

2δ1
∥s∥2X + β1∥(σ′, p′)∥2Y

− δ2
2
∥t′∥2X − 1

2δ2
∥(τ , q)∥2Y + ∥(u′, ξ′)∥2Z

≥
(
ζ Cm − C2

1

δ1
2
− δ2

2

)
∥t′∥2X +

(
β1 −

1

2β1δ1

)
∥(σ′, p′)∥2Y

+

(
1− 1

2β2δ2

)
∥(u′, ξ′)∥Z .

Imposing the conditions δ1 >
1

2β2
1

, δ2 >
1

2β2
and 2 ζ Cm > C2

1δ1 + δ2 one can conclude that

⟨A(t⃗′),T (t⃗′)⟩ ≥ α

(
∥t′∥2X + ∥(σ′, p′)∥2Y + ∥(u′, ξ′)∥Z

)
, (3.10)

where α = min
{
ζ Cm − C2

1
δ1
2
− δ2

2
, β1 − 1

2β1δ1
, 1− 1

2β2δ2

}
> 0.

Finally, note that if T (t⃗) = 0, replacing in (2.5) we get that t⃗ = 0. Thereby, the injectivity for operator
T follows. Additionally, given s⃗∗ = (τ ∗, (τ ∗, q∗), (v∗, η∗)) ∈ X × Y ×Z, choosing

(t′, (σ′, p′), (u′, ξ′)) =
1

ζ
(s∗ − s,−(τ ∗ − τ , q∗ − q), (v∗, η∗))

yields T (t⃗′) = s⃗∗, and therefore the operator T is bijective.
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