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Dormancy in random environment: Symmetric exclusion
Helia Shafigh

Abstract

In this paper, we study a spatial model for dormancy in random environment via
a two-type branching random walk in continuous-time, where individuals can switch
between dormant and active states through spontaneous switching independent of the
random environment. However, the branching mechanism is governed by a random en-
vironment which dictates the branching rates, namely the simple symmetric exclusion
process. We will interpret the presence of the exclusion particles either as catalysts,
accelerating the branching mechanism, or as traps, aiming to kill the individuals. The
difference between active and dormant individuals is defined in such a way that dor-
mant individuals are protected from being trapped, but do not participate in migration
or branching.

We quantify the influence of dormancy on the growth resp. survival of the population
by identifying the large-time asymptotics of the expected population size. The starting
point for our mathematical considerations and proofs is the parabolic Anderson model
via the Feynman-Kac formula. In particular, the quantitative investigation of the role of
dormancy is done by extending the Parabolic Anderson model to a two-type random
walk.

1 Introduction and main results

1.1 Biological Motivation

Dormancy is an evolutionary trait that has developed independently across various life forms
and is particularly common in microbial communities. To give a definition, we follow [BHS21]
and refer to dormancy as the ability of individuals to enter a reversible state of minimal
metabolic activity. The collection of all dormant individuals within a population is also often
called a seed-bank. Maintaining a seed-bank leads to a decline in the reproduction rate, but it
also reduces the need for resources, making dormancy a viable strategy during unfavourable
periods. Initially studied in plants as a survival strategy (cf. [C66]), dormancy is now recog-
nized as a prevalent trait in microbial communities with significant evolutionary, ecological,
and pathogenic implications, serving as an efficient strategy to survive challenging environ-
mental conditions, competitive pressure, or antibiotic treatment. However, it is at the same
time a costly trait whose maintenance requires energy and a sophisticated mechanisms for
switching between active and dormant states. Moreover, the increased survival rate of dor-
mant individuals must be weighed against their low reproductive activity. Despite its costs,
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H. Shafigh 2

dormancy still seems to provide advantages in variable environments. For a recent overview
on biological dormancy and seed-banks we refer to [BHLWB21].

The existing stochastic models for dormancy can be roughly categorized into two approaches:
population genetic models and population dynamic models. While the first approach as-
sumes a constant population size and focusses on the genealogical implications of seed-
banks, the latter is typically concerned with individual-based modelling through the theory
of branching processes. Following a brief example in the book [HJV07], a two-type branch-
ing process (without migration) in a fluctuating random environment has been introduced
in [BHS21], which served as a motivation for this paper. In [BHS21], the authors consider
three different switching strategies between the two types (dormant and active), namely the
stochastic (or: spontaneous; simultaneous) switching, responsive switching and anticipatory
switching. In the latter two strategies, individuals adapt to the fluctuating environment by
selecting their state (dormant or active) based on environmental conditions via e.g. an in-
creased reproduction activity during beneficial phases and a more extensive seed-bank dur-
ing unfavourable ones in the responsive strategy resp. vice versa in the anticipatory strategy.
In contrast, the stochastic switching strategy, which remains unaffected by environmental
changes, proves especially advantageous during catastrophic events, as it, with high prob-
ability, ensures the existence of dormant individuals, which may contribute to the survival of
the whole population, when a severely adverse environment might eradicate all active ones.
As an example, it is estimated that more than 80% of soil bacteria are metabolically inactive
at any given time, forming extensive seed-banks of dormant individuals independent of the
current conditions (cf. [JL11] and [LS18]). This makes the understanding of the stochastic
switching strategy an interesting and important task.

1.2 Modelling Approach and Goals

The aim of this paper is to investigate the stochastic switching strategy in order to quan-
titatively compare the long-term behaviour of populations with and without this dormancy
mechanism, when the underlying environment is random and given by a simple symmetric
exclusion process, which will be rigorously defined later.

Inspired by the Galton-Watson process with dormancy introduced in [BHS21], a spatial
model for dormancy in random environment has been recently introduced in [S24], in which
the effect of dormancy on the population growth resp. survival of a population on Zd is quan-
tified by identifying the large-time asymptotics of the expected population size. The random
environment, which drives the population dynamics, was modelled through three different
particle systems: Bernoulli field of immobile particles, one moving particle, and a Poisson
field of moving particles. Thus, extending this framework to another classical particle sys-
tem, such as the simple symmetric exclusion process, seems to be a natural step. Moreover,
as will be discussed later, the simple exclusion exhibits an interesting clumping properties in
the lower dimensions d ≤ 2. Specifically, a finite region occupied by particles takes longer
to empty, and conversely, a vacant region takes longer to become occupied. This slower
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dynamic in lower dimensions makes the exclusion process a particularly suitable choice for
modelling the environment, as real-world environments (e.g. seasonal changes) often evolve
gradually rather than abruptly.

To the best of our knowledge, other spatial models for dormancy in random environment in
the setting of population size models are still missing.

1.3 Description of the Model

In our model, the population lives on Zd and consists of two different types i ∈ {0, 1} of
particles, where we refer to 0 as dormant and to 1 as active. Let η(x, i, t) be the number
of particles in spatial point x ∈ Zd and state i at time t ≥ 0, which shall evolve in time
according to the following rules:

� at time t = 0, there is only one active particle in 0 ∈ Zd and all other sites are vacant;

� all particles act independently of each other;

� active particles become dormant at rate s1 ≥ 0 and dormant particles become active
at rate s0 ≥ 0;

� active particles split into two at rate ξ+(x, t) ≥ 0 and die at rate ξ−(x, t) ≥ 0,
depending on their spatial location x and on time t, where both ξ+ and ξ− are random
fields;

� active particles jump to one of the neighbour sites with equal rate κ ≥ 0;

� dormant particles do not participate in branching, dying or migration.

Figure 1: The evolution in every single point. Active individuals are subject to migration,
branching and switching to dormant. Dormant individuals can only get active.

By assumption, the initial condition is given by η(x, i, 0) = δ(0,1)(x, i). Let us define

η(t) :=
{
η(x, i, t) | (x, i) ∈ Zd

}
as configurations on NZd×{0,1}, representing the number
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of particles in each point x ∈ Zd and state i ∈ {0, 1} at time t. Then η = (η(t))t≥0 is
a Markov process on NZd×{0,1}. However, as we will see later, we will use other methods
throughout the paper to describe our population, such that a further formalization of η shall
not be necessary. In the following, we abbreviate ξ(x, t) := ξ+(x, t) − ξ−(x, t) for the
balance between branching and dying and refer to ξ as the underlying random environment.
In the following, if we fix a realization of ξ, then we will denote by

u(x, i, t) := uξ(x, i, t) := E[η(x, i, t) | ξ] (1.1)

the expected number of particles in x ∈ Zd and state i ∈ {0, 1} at time t with initial
condition

u(x, i, 0) = δ(0,1)(x, i),

where the expectation is only taken over switching, branching and dying (i. e. over the evo-
lution of η for fixed ξ) and not over the random environment ξ. If we average over ξ as well,
what we will denote in the following by 〈·〉, then we refer to

〈u(x, i, t)〉

as the annealed number of particles in x ∈ Zd and in state i ∈ {0, 1} at time t.

1.4 Simple Exclusion as Random Environment

As the underlying random environment, we are going to consider the simple symmetric exclu-
sion process ξ = (ξ(x, t))x∈Zd,t≥0, a Markov process on {0, 1}Zd with generator (cf [L85])

LSEf(η) = ρ
∑
x,y∈Zd
x∼y

η(x)(1− η(y))(f(ηx,y)− f(η)) = ρ
∑
x,y∈Zd
x∼y

(f(ηx,y)− f(η)),

(1.2)

for suitable test functions f : {0, 1}Zd → R, where

ηx,y(z) =


η(z), z 6= x, y,
η(y), z = x,
η(x), z = y.

In words, if there is a particle located at site x ∈ Zd, it attempts to jump to a neighbouring site
y ∈ Zd with rate ρ, where the attempt is only successful if the site y is vacant. Reformulating
this mechanism, and as we can see from the right hand-side of (1.2), we can say that two
neighbouring sites x and y change states (vacant or occupied by a particles) at rate ρ.
In the following, we will always assume that ξ starts under a Bernoulli product measure
νp := ν with density p ∈ (0, 1), which is known to be an equilibrium measure for the
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exclusion dynamics. The graphical representation shows that the evolution is invariant under
time reversal and the equilibrium measure ν is reversible.

Note, that ξ is a non-negative number, which results always in an positive balance between
branching and killing. To allow for negative rates as well, we multiply ξ with some factor
γ ∈ [−∞,∞) and will consider γξ as the underlying random environment. Thus, the ex-
clusion process can be either interpreted as a field of traps, which corresponds to γ < 0, or
catalysts, if γ > 0. In the first case, active individuals will die with rate |γ| if they encounter
one of the traps, whereas they branch into two with rate γ in the presence of catalysts in the
latter case.

1.5 Results

Recall the number of particles u(x, i, t) in point x ∈ Zd and state i ∈ {0, 1} at time t,
as defined in (1.1). The quantity we are interested in at most in the current paper is the
annealed expected number of all particles

〈U(t)〉 :=
∑
x∈Zd

∑
i∈{0,1}

〈u(x, i, t)〉 , (1.3)

which turns into the annealed survival probability up to time t for γ < 0. Our results concern
the large-time asymptotics of 〈U(t)〉 in case of both positive and negative γ. However, our
first result is related to the survival probability in case of no dormancy, when the random walk
X is active the whole time, i.e. s1 = 0:

Theorem 1.1 (Survival probability without dormancy). Let s1 = 0. Then, for all γ ∈ (−∞, 0),
the annealed survival probability 〈U(t)〉 converges to zero as t → ∞ and satisfies the
asymptotics

log 〈U(t)〉 =


−4Kp,1

√
ρ

π

√
t(1 + o(1)), d = 1,

−4Kp,2ρπ
t

log(t)
(1 + o(1)), d = 2,

−λd,γ,ρ,p,κt(1 + o(1)), d ≥ 3,

(1.4)

as t→∞, for some constants Kp,1, Kp,2 ∈ [p,− log(1− p)] and

λd,γ,ρ,p,κ ≥
pρ

ρ
|γ| +Gd(0)

,

where Gd(0) denotes the Green’s function of a simple symmetric random walk with genera-
tor ∆.

In the next theorem the survival probability in case of the stochastic dormancy mechanism
is established:
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Theorem 1.2 (Survival probability with dormancy). For all s0, s1 > 0 and all γ ∈ (−∞, 0)
we have

log 〈U(t)〉 =


−4Kp,1

√
s0ρ

(s0 + s1)π

√
t(1 + o(1)), d = 1,

−4Kp,2
s0ρπ

s0 + s1

t

log(t)
(1 + o(1)), d = 2,

−λd,γ,ρ,p,s0,s1t(1 + o(1)), d ≥ 3,

as t→∞, with a constant λd,γ,ρ,p,s0,s1 satisfying

λd,γ,ρ,p,s0,s1 ≥
pρ

ρ
|γ| +Gd(0)

− C,

for some C > 0.

In the catalytic case γ > 0, we first state a variational formula for the exponential growth
rate of the population size:

Theorem 1.3 (Variational formula for the population size). For all γ > 0 and all d ≥ 1 the
annealed number of particles 〈U(t)〉 grows exponentially as t→∞ with rate

lim
t→∞

1

t
log 〈U(t)〉 = sup

f∈`2
(
{0,1}Zd×Zd×{0,1}

)
,

‖f‖2=1

(A1(f)− A2(f)− A3(f)− A4(f)) +
√
s0s1,

(1.5)

where

A1(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

(iγη(z)− si)f(η, z, 1)2

A2(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

1

2

∑
x,y∈Zd,x∼y

ρ(f(ηx,y, z, i)− f(η, z, i))2,

A3(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

1

2

∑
y∈Zd,y∼z

κ(f(η, y, 1)− f(η, z, 1))2,

A4(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

2
√
s0s1(f(η, z, 1)− f(η, z, 0))2.

The next theorem quantifies the explicit growth rate in the lower dimensions d ∈ {1, 2} and
provides bound for the growth rate in dimensions d ≥ 3:

Theorem 1.4 (Growth rate). Let γ ∈ (0,∞) .
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(a) If d ∈ {1, 2}, then

lim
t→∞

1

t
log 〈U(t)〉 = γ − s1 −

(γ + s0 − s1)2 − s0s1√
γ2 + 2γ(s0 − s1) + (s0 + s1)2

.

(b) If d ≥ 3, then

γ > lim
t→∞

1

t
log 〈U(t)〉 >


γp, s1 ≤ s0,
γp− s1 + s0, s1 > s0 and γp− s1 + s0 ≥ 0,
0, s1 > s0 and γp− s1 + s0 < 0.

1.6 Relation to the Parabolic Anderson Model

Recall the number of particles u(x, i, t) in point x ∈ Zd and state i ∈ {0, 1} at time t as
defined in (1.1). It is already known (cf. [BYZ13]) that u : Zd×{0, 1}× [0,∞)→ R solves
the partial differential equation

d
dt
u(x, i, t) = iκ∆u(x, i, t) +Qu(x, i, t) + iγξ(x, t)u(x, i, t), t > 0,

u(x, i, 0) = δ(0,1)(x, i),
(1.6)

where

Qu(x, i, t) := si(u(x, 1− i, t)− u(x, i, t))

and ∆ is the discrete Laplacian defined as

∆u(x, i, t) :=
∑

y∈Zd,x∼y

[u(y, i, t)− u(x, i, t)].

We call (1.6) the parabolic Anderson model with switching. The parabolic Anderson model
without switching, i. e. with only one (active) type, has been studied intensely during the
past years and a comprehensive overview of results can be found in [K16]. One of the most
powerful tools and often the starting point of the analysis of the PAM is the Feynman-Kac
formula, which asserts that the time evolution of all particles up to a deterministic time can
be expressed as an expectation over single particle moving around according to the same
migration kernel and with a varying mass, which corresponds to the underlying population
size. Let us formulate the Feynman-Kac formula in the setting of our dormancy strategy. To
this end, let α = (α(t))t≥0 be a continuous-time Markov process with state space {0, 1}
and generator

Qf(i) := si(f(1− i)− f(i)) (1.7)

for f : {0, 1} → R. Conditioned on the evolution of α, we define a continuous-time random
walk X = (X(t))t≥0 on Zd which is supposed to stay still at a time t, if α(t) = 0, or
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perform a simple symmetric walk with jump rate 2dκ, if α(t) = 1. In other words, the joint
process (X,α) is the Markov process with the generator

Lf(x, i) := iκ
∑
y∼x

(f(y, i)− f(x, i)) + si(f(x, 1− i)− f(x, i)) (1.8)

for x ∈ Zd, i, j ∈ {0, 1} and a test function f : Zd × {0, 1} → R. Note, that the random
walk X itself is not Markovian due to the dependence on α. Then, we call (X,α) a regime-
switching random walk (cf. [YZ10] for the continuous-space version) and interpret X as a
particle which is active at time t, if α(t) = 1, and dormant otherwise. Then, given a fixed
realization of ξ, the formal solution of (1.6) is given by the Feynman-Kac formula

u(x, i, t) = E(X,α)
(x,i)

[
exp

(∫ t

0

γα(s)ξ(X(s), t− s) ds

)
δ(0,1)(X(t), α(t))

]
, (1.9)

whereE(X,α)
(x,i) denotes the expectation over the joint process (X,α) starting in (x, i) (cf. [BYZ13]).

Thus, the study of our two-type branching process can be reduced to the analysis of only
one particle with the same migration, branching and switching rates.

1.7 Related Results

The parabolic Anderson model without switching has been a topic of great interest during
the past years and has been studied for several different random environments built out of
particles. For a recent overview of results related to the Parabolic Anderson model we refer
to [K16]. In the catalytic case γ > 0, the simple symmetric exclusion process as a random
environment has been investigated in [GdHM07], in which the authors prove exponential
growth of the annealed population size 〈U(t)〉 as t → ∞. More precisely, in [GdHM07,
Proposition 2.2.2] it has been proven that

lim
t→∞

1

t
log 〈U(t)〉 = sup

f∈`2
(
{0,1}Zd×Zd

)
,

‖f‖2=1

(A1(f)− A2(f)− A3(f))

with

A1(f) :=

∫
{0,1}Zd

ν(dη)
∑
x∈Zd

η(x)f(η, x)2,

A2(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

1

2

∑
x,y∈Zd,x∼y

ρ(f(ηx,y, z)− f(η, z))2,

A3(f) :=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

1

2

∑
y∈Zd,y∼z

κ(f(η, y)− f(η, z))2,
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for all dimensions d ≥ 1. Moreover, [GdHM07, Theorem 1.3.2(a)] asserts that, under our
assumptions as defined in section 1.4, we have that

lim
t→∞

1

t
log 〈U(t)〉

{
= γ, d ∈ {1, 2},
∈ (pγ, γ), d ≥ 3.

In the trapping case γ < 0 and in the higher dimensions d ≥ 3, the upper bound on the
survival probability of a random walk in a dynamic random trap model has been studied in
[R94] within a more general framework. More precisely, it was shown that

lim sup
t→∞

1

t
log 〈U(t)〉 < 0

under certain assumptions on the environment, which are satisfied for the simple symmetric
exclusion. To the best of our knowledge, this result is currently the only one addressing the
large-time asymptotics of the survival probability in the context of the exclusion process as
a random environment. Notably, precise asymptotics in the lower dimensions d ≤ 2 remain
unexplored, such that our Theorem 1.1 appears to fill a gap in the study of the Parabolic
Anderson model (without switching) driven by the exclusion process as random environment.

Recently, the Parabolic Anderson model with the stochastic dormancy strategy as defined in
section 1.3 has been studied in [S24] for some specific choices of the random environment ξ.
More precisely, in both cases γ > 0 and γ < 0, the annealed number of particles resp. the
asymptotics of annealed survival probability 〈U(t)〉 has been quantified for the cases when
ξ is given by 1) a Bernoulli field of immobile particles, 2) one moving particles, and 3) a
Poisson field of independently moving particles. In the latter case, it has been shown that, if
γ ∈ [−∞, 0), the annealed survival probability 〈U(t)〉 converges exponentially fast to 0 as
t→∞ in all dimensions d ≥ 1 and obeys the asymptotics

log 〈U(t)〉 =


−4p

√
ρs0

(s0 + s1)π

√
t(1 + o(1)), d = 1,

−4p
ρπs0
s0 + s1

t

log (t)
(1 + o(1)), d = 2,

−µd,γ,ρ,p,s0,s1t(1 + o(1)), d ≥ 3,

(1.10)

as t → ∞, for some constant µd,γ,ρ,p,s0,s1 > 0 depending on all the parameters. Interest-
ingly, the decays rates, at least in dimensions d ∈ {1, 2}, equal our decay rates in case
of the exclusion process. However, for γ > 0, the large-time behaviour of the population
size 〈U(t)〉 does not appear to closely align with the large-time asymptotics observed in the
simple exclusion process. More precisely, 〈U(t)〉 has been shown in [S24] to grow double-
exponentially fast with limiting rate given by

lim
t→∞

1

t
log log 〈U(t)〉 = sup

f∈`2(Zd),‖f‖2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

ρ(f(x)− f(y))2

 ,

(1.11)
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which coincides with the growth rate without dormancy, as studied in [DGRS11]. In contrast,
[S24, Theorem 1.1(b)] asserts that the annealed population size 〈U(t)〉 in case of a Bernoulli
field of immobile particles grows exponentially fast in all dimensions d ≥ 1 with rate given
by

lim
t→∞

1

t
log 〈U(t)〉 = γ − s1 −

(γ + s0 − s1)2 − s0s1√
γ2 + 2γ(s0 − s1) + (s0 + s1)2

,

which coincides with our growth rate in the case of the exclusion process in the lower dimen-
sions d ∈ {1, 2}. This comparison suggests that the exclusion process in lower dimension
tends to stay close to the initial Bernoulli distribution to maximize the growth rate. As we
will demonstrate in the proofs, this behaviour is a consequence of the fact that, in lower di-
mensions, remaining stationary incurs a lower cost for the exclusion process relative to the
corresponding growth rate.

2 Preparatory facts

In the following, we will consistently use the notation PYµ and EYµ to denote the distribution
and expectation, respectively, with respect to any random sequence Y := (Y (t))t≥0 with
initial measure µ. For real-valued sequences with a delta initial distribution µ = δy, we will
write PYy and EYy , respectively, and this convention will be used throughout the paper without
further clarification.

2.1 Total population size

As discussed in the introduction, our proofs and considerations regarding the total population
size are founded on the Feynman-Kac formula (1.9), which serves as the cornerstone for
the subsequent steps throughout the remainder of this paper. Recall, that the symmetric
exclusion is reversible in time under ν, in the sense that (ξ(·, t))0≤t≤T is equally distributed
to (ξ(·, T − t))0≤t≤T , for all T > 0. Hence, in the same manner as in [S24, Section 2.1],
we observe that the total population size can be expressed as

〈U(t)〉 = EξνE
(X,α)
(0,1)

[
exp

(∫ t

0

γα(s)ξ(X(s), s) ds

)]
.

2.2 Symmetric Exclusion: Large deviations and the environmental pro-
cess

In this section we summarize a few known properties of the symmetric exclusion process,
which will be used in the proofs of our results. We start with some notations. For a test
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function f ∈ `2({0, 1}Zd), where the integral is taken with respect to the invariant measure
ν, write

D(f) := 〈−LSEf, f〉 = −
∫
{0,1}Zd

ν(dη)ρ
∑
x∈Zd

∑
y∈Zd
x∼y

(f(ηx,y)− f(η))f(η)

=
1

2
ρ

∫
{0,1}Zd

ν(dη)
∑
x,y∈Zd
x∼y

(f(ηx,y)− f(η))2

for the Dirichlet form associated with LSE and define

Iξ(x) := inf
µ∈M1

(
{0,1}Zd

)
∫
{0,1}Zd

µ(dη)η(0)=x

lim
ε→0

inf
ϕ∈B(µ,ε)
ϕ�ν

D

(√
dϕ

dν

)
, (2.1)

where we denote by M1

(
{0, 1}Zd

)
the set of probability measures on {0, 1}Zd and by

B(µ, ε) the open ball of radius ε around µ. Further, let

Tt :=

∫ t

0

ξ(0, s)ds

be the local time of the exclusion process in the origin up to time t. Then, it is already known
from [L92] that the normalized local times (1

t
Tt) satisfy a large deviation principle on scale

t and with rate function Iξ in dimensions d ≥ 3, which is non-trivial in these dimensions
as seen from the Dirichlet form, as well as convex and lower semi-continuous with a unique
zero at x = ρ. However, in the lower dimensions d ∈ {1, 2} the rate function (2.1) equals
zero due to the recurrence of the random walk, such that a different scaling than t would
be needed. Regarding this, in [L92] and [A85] it has been shown that (1

t

∫ t
0
ξ(0, s) ds)t>0

satisfies a large deviation principle on [0, 1], as t→∞, with speed

at :=

{ √
t, d = 1,
t

log t
, d = 2,

(2.2)

and a non-trivial rate function, which we shall not need in the following. In [GdHM07], similar
methods have been used to derive a lower bound with the same scales as (2.2) on the
occupation probability of a finite box. More precisely, [GdHM07, Lemma 3.1.1] asserts that
in dimensions d ∈ {1, 2} and for any finite box Q ⊆ Zd,

Pξν(ξ(x, s) = i for all x ∈ Q for all s ≤ t) ≥ e−Cd|Q|at

for some constants C1, C2 > 0. In other words, the exclusion process exhibits a clumping
property in lower dimensions, meaning that it takes significantly longer for a finite box Q
filled with particles to empty, or for a vacant box Q to become filled with particles, relative to
the time scale t.
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An important and useful concept in the study of random walks on top of the exclusion process
is the environmental process, also known as the environment as seen from the walker. This
process captures how the environment evolves at the locations visited by the random walk.
In our case, as the random walk depends on α, the environmental process is defined as the
Markov process (ζ, α) with generator

LEPf(η, i) = LSEf(·, i)(η) +Qf(η, ·)(i) +
∑
y∼0

iκ(f(τyη, i)− f(η, i)),

where τy denotes the shift-operator in y, i. e. ,

τyη(z) = η(z + y). (2.3)

In other words,

ζ(x, t) = τX(t)ξ(x, t) = ξ(x+X(t), t), (2.4)

such that the environmental process changes whenever the random walk moves or the con-
figuration of the exclusion process changes. It is worth mentioning that the Bernoulli product
measure ν remains an invariant measure for the environmental process (cf. [L85]).

2.3 Switching mechanism: Large deviations and change of measure

Let us recall a large deviation principle which we will frequently use throughout the paper. In
the following, we define

Lt(i) :=

∫ t

0

α(s)ds, i ∈ {0, 1},

as the local times of the Markov chain α in state i up to time t > 0. It was shown in [S24,
Corollary 2.2] that the normalized local times (1

t
Lt(1))t>0 in the active state 1 satisfy a large

deviation principle on [0, 1] with rate function I : [0, 1]→ R given by

I(a) = −2
√
s0s1a(1− a) + (s1 − s0)a+ s0, (2.5)

where we recall that s0, s1 ≥ 0 are the switching rates of α. This strictly convex rate function
has a unique zero in s0

s0+s1
and is valid for every choise of s0, s1 ≥ 0. In particular, when

s0 = s1, the rate function simplifies to I(a) = s(
√
a −
√

1− a)2 which corresponds to
the well-known large deviation rate function for symmetric transition rates (cf. [K20, Theorem
3.6.1 and Remark 3.6.4]).

One consequence of the large deviation result for (1
t
Lt(1))t>0 on scale t is the follow-

ing: for any sequence (f(t))t≥0 of positive real numbers with limt→∞ f(t) = ∞ and

limt→∞
f(t)
t

= 0, and for any continuous and bounded function F : [0, 1]→ R,

lim
t→∞

1

f(t)
logEα1

[
ef(t)F( 1

t
Lt(1))

]
= F

(
s0

s0 + s1

)
. (2.6)
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Dormancy 13

This is the assertion of [S24, Lemma 2.4] and implies that on any smaller scale than t,
the best the sequence (1

t
Lt(1))t>0 can do in order to maximize the expectation on the left

hand-side of (2.6) is to take its average value s0
s0+s1

.

The fact that our transitions rates are allowed to be asymmetric not only changes the large
deviation rate function but may also introduce additional challenges. Specifically, one of the
proof techniques we will use later to derive the representation (1.5) relies on the Perron-
Frobenius spectral theory for bounded self-adjoint operators. However, the matrixQ, defined
in (1.7), is not symmetric, and consequently, any operator involving Q may fail to be self-
adjoint. To address this issue, it was shown in [S24, Corollary 2.6] using a result from [PR02]
that if α̃ is a Markov process on {0, 1} with symmetric generator

Q̃f(i) :=
√
s0s1(f(1− i)− f(i)) (2.7)

for f : {0, 1} → R, then

dPα1
dPα̃1

∣∣∣
Ft

= exp
(√

s0s1t− s0L̃t(0)− s1L̃t(1)
)

(2.8)

where we wrote L̃t(i) =
∫ t
0
δi(α̃(s)) ds for the local times of α̃ in state i ∈ {0, 1} up to

time t. In particular, if (ξ, X̃, α̃) is the Markov process with symmetric generator

L̃f(η, x, i) : = LSEf(·, x, i)(η) + iκ
∑
y∼x

(f(η, y, i)− f(η, x, i))

+
√
s0s1(f(η, x, 1− i)− f(η, x, i))

for test functions f : {0, 1}Zd × Zd × {0, 1} → R, then

dP(ξ,X,α)
ν,(0,1)

dP̃(ξ,X̃,α̃)
ν,(0,1)

∣∣∣
Ft

= exp
(√

s0s1t− s0L̃t(0)− s1L̃t(1)
)
, (2.9)

since the generator of X conditioned on α matches that of X̃ conditioned on α̃, and since
α and α̃ are independent of X and X̃ , respectively, as well as of ξ. It is straightforward
to verify that L̃ is indeed self-adjoint, enabling us to apply the Perron-Frobenius theory. The
same reasoning applies for the environmental process (ζ, α): If (ζ̃ , α̃) is the Markov process
with symmetric generator

L̃EPf(η, i) := LSEf(·, i)(η) + Q̃f(η, ·)(i) +
∑
y∼0

iκ(f(τyη, i)− f(η, i))

for test functions f : {0, 1}Zd × {0, 1} → R, then

dP(ζ,α)
ν,1

dP̃(ζ̃,α̃)
ν,1

∣∣∣
Ft

= exp
(√

s0s1t− s0L̃t(0)− s1L̃t(1)
)
, (2.10)

which we will utilize later in the proofs.

DOI 10.20347/WIAS.PREPRINT.3166 Berlin 2025



H. Shafigh 14

3 Survival Probability without Dormancy

This section is devoted to the proof of Theorem 1.1, which established the long-time asymp-
totics of the survival probability without the dormancy mechanism and therefore without the
switching Markov chain α. The proof is structured into two lemmas, which establish the upper
and lower bound, respectively.

Lemma 3.1 (Upper bound without switching). For all γ ∈ (−∞, 0),

logEX0 Eξν
[
exp

(
γ

∫ t

0

ξ(X(s), s) ds

)]
≤



−4p

√
ρ

π

√
t(1 + o(1)), d = 1,

−4pρπ
t

log(t)
(1 + o(1)), d = 2,

− ρp
ρ
|γ| +Gd(0)

t(1 + o(1)), d ≥ 3,

(3.1)

as t → ∞, where we write Gd(0) for the Green’s function of a simple symmetric random
walk with jump rate 2d in 0.

Proof. The proof relies on a comparison inequality between the simple exclusion process
and a system of independent random walks, as established in [GdHM07]. More precisely, let
ξ̂ = (ξ̂(x, t))x∈Zd,t≥0 represent the configurations generated by a collection of independent

simple symmetric random walks with jump rate 2dκ, where ξ̂(0) is distributed according to
nu. Then, [GdHM07, Proposition 1.2.1] asserts that for all K : Zd× [0,∞)→ R such that
either K ≥ 0 oder K ≤ 0, and all t ≥ 0 such that

∑
z∈Zd

∫ t
0
|K(z, s)| ds < ∞ and all

η ∈ {0, 1}Zd ,

Eξν

[
exp

(∑
z∈Zd

∫ t

0

K(z, s)ξ(z, s) ds

)]
≤ Eξ̂ν

[
exp

(∑
z∈Zd

∫ t

0

K(z, s)ξ̂(z, s) ds

)]
.

(3.2)

Now, fix a realization of X with Nt jumps up to time t and let τ1, τ2, · · · , τNt be the cor-
responding jump times. Further, let xk, k = 0, · · · , N)t denote the corresponding val-
ues on each interval [τk, τk+1), where we set x0 = 0 and τ0 = 0. Define the function
K : Zd × [0, t]→ R as

K(z, s) = γδxk(z) for all s ∈ [τk, τk+1), k = 1, · · · , Nt.

Then, K ≤ 0 and ∑
z∈Zd

∫ t

0

|K(z, s)| ds = |γ|t <∞
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for all t ≥ 0. Thus, by (3.2),

Eξν
[
exp

(
γ

∫ t

0

ξ(X(s), s) ds

)]
= Eξν

[
exp

(∑
z∈Zd

∫ t

0

K(z, s)ξ(z, s) ds

)]

≤ Eξ̂ν

[
exp

(∑
z∈Zd

∫ t

0

K(z, s)ξ̂(z, s) ds

)]

= Eξ̂ν
[
exp

(
γ

∫ t

0

ξ̂(X(s), s) ds

)]
.

For each configuration η ⊆ {0, 1}Zd , let Aη := {x ∈ Zd : η(x) = 1}. Further, let Yy
denote a random walk with jump rate 2dρ starting from y ∈ Zd. We now integrate over the
Bernoulli system of independent random walks to obtain

Eξ̂ν
[
exp

(
γ

∫ t

0

ξ̂(X(s), s) ds

)]
=

∫
{0,1}Zd

Eξ̂η

exp

γ ∫ t

0

∑
y∈Aη

δX(s)(Yy(s)) ds

 ν(dη)

=

∫
{0,1}Zd

∏
y∈Aη

vX(y, t)ν(dη),

where we used the independence of the random walks and abbreviated

vX(y, t) := EYyy
[
exp

(
γ

∫ t

0

δX(s)(Yy(s))ds

)]
.

Using the fact that ν is a Bernoulli product measure, we obtain∫
{0,1}Zd

∏
y∈Aη

vX(y, t)ν(dη) =
∏
y∈Zd

pvX(y, t) ≤ exp

p∑
y∈Zd

(vX(y, t)− 1)

 . (3.3)

In [DGRS11] it was shown that the right hand-side of (3.3) is nothing but the survival prob-
ability of X among a Poisson system of moving traps, which is maximized for κ = 0, cor-
responding to an immobile random walk, and follows the same asymptotics as on the right
hand-side of (3.1). �

Next, we prove the lower bound in Theorem 1.1:

Lemma 3.2 (Lower bound without switching in d = 1, 2). For all γ ∈ (−∞, 0),

logEX0 Eξν
[
exp

(
γ

∫ t

0

ξ(X(s), s) ds

)]
≥


4 log(1− p)

√
ρ

π

√
t(1 + o(1)), d = 1,

4 log(1− p)ρπ t

log(t)
(1 + o(1)), d = 2,

as t→∞.
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H. Shafigh 16

Proof. The proof if based on the graphical representation of the exclusion process, which
we will denote by G in the following. In G, space is drawn sidewards, time upwards, and, at
rate ρ, we place links between each neighbouring sites x, y ∈ Zd. The configuration of the
exclusion process at time t is then obtained from the one at time 0 of G by transporting the
local states along paths moving upwards with time and sidewards along links:

Figure 2: Graphical representation of the simple exclusion. Arrows represent a path from x
to y through the dashed lines, representing links between neighbours evolving with time.

Now, let Qt := [−rt, rt]d, where we choose rt =
√

t
log(t)

for d = 1 and rt = log(t) for

d = 2. The strategy is to impose a condition on the exclusion process to create a vacant
area Qt around zero up to time t and to constrain the random walk X to stay within Qt

throughout the interval [0, t]. Define the events

At := {ξ(x, s) = 0∀x ∈ Qt∀s ∈ [0, t]} and Bt := {X(s) ∈ Qt∀s ∈ [0, t]} .

Then,

EX0 Eξν
[
exp

(
γ

∫ t

0

ξ(X(s), s) ds

)]
≥ P(At)P(Bt).

In [DGRS11, Lemma 2.1] it was shown that there exist some constant β > 0 such that

logP(Bt) ≥ log(β)
t

r2t
=

{
log(β) log(t), d = 1,
log(β) t

log(t)2
, d = 2.

(3.4)

In order to determine P(At), we define

HQt
t :=

{
x ∈ Zd : ∃ path in G from (0, x) to [0, t]×Qt

}
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Dormancy 17

and H0
t analogously with Qt replaced by {0}. Further, denote by P and E the probability

and expectation, respectively, with respect to G. According to [A85],

P(At) = (P ⊗ Pν)(HQt
t ⊆ V0) = E [(1− p)|H

Qt
t |] ≥ (1− p)E[|H

Qt
t |] (3.5)

using Jensen’s inequality, where V0 =
{
x ∈ Zd : ξ(x, 0) = 0

}
denotes the initial set of the

vacancies in the exclusion process. Let τx and τQt denote the hitting time of the point x and
the set Qt, respectively, by a simple random walk with jump rate 2dρ, and write Py for the
probability with respect to this walk when starting in y. Then,

E [|HQt
t |] =

∑
x∈Zd
P(∃ path in G from (0, x) to [0, t]×Qt)

=
∑
x∈Zd

Px(τQt ≤ t) = |Qt|+
∑
x/∈Qt

Px(τQt ≤ t).

On the other hand, for every ε > 0 we have∑
x∈Zd

Px(τ0 ≤ t+ εt) ≥
∑
x∈Zd

Px(τ0 ≤ t+ εt, τQt ≤ t) ≥
∑
x/∈Qt

Px(τ0 ≤ t+ ε+ t, τQt ≤ t)

≥ inf
z∈∂Qt

Pz(τ0 ≤ εt)
∑
x/∈Qt

Px(τQt ≤ t),

where in the last step we used the Markov property. Hence,∑
x/∈Qt

Px(τQt ≤ t) ≤
∑

x∈Zd Px(τ0 ≤ t+ εt)

infz∈∂Qt Pz(τ0 ≤ εt)

and therefore

E [|HQt
t |] ≤ |Qt|+

∑
x∈Zd Px(τ0 ≤ t+ εt)

infz∈∂Qt Pz(τ0 ≤ εt)
. (3.6)

In the proof of [DGRS11, Lemma 2.1] it was shown that infz∈∂Qt Pz(τ0 ≤ εt) → 1 as
t → ∞ for both choices of rt ∈ {

√
t/ log(t), log(t)} in the respective dimension. Thus,

for t→∞ and ε→ 0 we can replace the right hand-side of (3.6) by

|Qt|+
∑
x∈Zd

Px(τ0 ≤ t) = |Qt|+
∑
x∈Zd

P0(τx ≤ t) = |Qt|+ E0[Rt], (3.7)

where we denote by Rt the range of a simple random walk with jump rate 2dρ, which is
known (cf. [A85]) to have the asymptotics

E0[Rt] =


4

√
ρ

π

√
t(1 + o(1)), d = 1,

4ρπ
t

log(t)
(1 + o(1)), d = 2,

(3.8)
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H. Shafigh 18

as t→∞. Combining (3.5), (3.7) and (3.8) we deduce that

logP(At) ≥ log(1− p)|Qt|+E0[Rt]

=


log(1− p)

(
1 + 2

√
t

log(t)
+ 4

√
ρ

π

√
t(1 + o(1))

)
, d = 1,

log(1− p)
(

1 + 2 log(t) + 4ρπ
t

log(t)
(1 + o(1))

)
, d = 2.

Hence,

lim
t→∞

1√
t

logP(At) ≥ 4 log(1− p)
√
ρ

π

for d = 1 and

lim
t→∞

log(t)

t
logP(At) ≥ 4 log(1− p)ρπ

for d = 2, which proves the lemma. �

4 Survival probability with Dormancy

In this section, we establish Theorem 1.2 under the assumption of the stochastic dormancy
mechanism. In particular, we assume that s0, s1 > 0. Similar to the proof of Theorem 1.1,
the argument is divided into two lemmas, which provide the upper and lower bounds, re-
spectively. While the proof ideas are analogous, they additionally account for the behaviour
of the switching mechanism α.

For sake of notation, we may abbreviate

E(t) := exp

(
γ

∫ t

0

α(s)ξ(X(s), s) ds

)
in the following.

Lemma 4.1 (Upper bound). For all γ ∈ (−∞, 0),

logE(X,α)
(0,1) E

ξ
ν [E(t)] ≤


−4p

√
s0ρ

(s0 + s1)π

√
t(1 + o(1)), d = 1,

−4p
s0ρπ

s0 + s1

t

log(t)
(1 + o(1)), d = 2,

−λ̃d,γ,ρ,p,s0,s1t(1 + o(1)), d ≥ 3,

(4.1)

as t→∞, for some constant λ̃d,γ,ρ,p,s0,s1 satisfying

λ̃d,γ,ρ,p,s0,s1 ≥ inf
a∈[0,1]

{
s0 −

√
s0s1 +

(
s1 − s0 +

pρ
ρ
|γ| +Gd(0)

)
a− 2

√
s0s1a(1− a)

}
.
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Proof. The proof is similar to the proof of the upper bound without dormancy. Fix a realization
of (X,α) and let τ1, τ2, · · · , τNt be the jump times of the piecewise constant function X
(given α) up to time t and xk, k = 0, · · · , Nt the corresponding values on each intervall
[τk, τk+1) where we set x0 = 0 and τ0 = 0. Define the function K : Zd × [0, t]→ R as

K(z, s) = γα(s)δxk(z) for all s ∈ [τk, τk+1), k = 1, · · · , n.

Then we have K ≤ 0 and∑
z∈Zd

∫ t

0

|K(z, s)| ds = |γ|Lt(1) <∞

for all t ≥ 0. Thus, by Lemma 3.2,

Eξν
[
exp

(
γ

∫ t

0

α(s)ξ(X(s), s) ds

)]
≤ Eξ̂ν

[
exp

(
γ

∫ t

0

α(s)ξ̂(X(s), s) ds

)]
.

Using the same notation as in the proof of Lemma 3.1 and integrating over the Bernoulli
system of independent random walks again as well as the fact that ν is a Bernoulli product
measure, we obtain

Eξ̂ν
[
exp

(
γ

∫ t

0

α(s)ξ̂(X(s), s) ds

)]
=

∫
{0,1}Zd

∏
y∈Aη

v(X,α)(y, t)ν(dη)

=
∏
y∈Zd

pv(X,α)(y, t)

≤ ep
∑
y∈Zd (v(X,α)(y,t)−1), (4.2)

where we wrote

v(X,α)(y, t) := EYyy
[
exp

(
γ

∫ t

0

δ(X(s),α(s))(Yy(s), 1) ds

)]
for a fixed realization of (X,α). In [S24] it has been shown that the right hand-side of (4.2) is
nothing but the survival probability of the switching random walkX among a Poisson system
of moving traps, which is maximized for κ = 0 and follows the same asymptotics as the right
hand-side of (4.1). Since this bound holds for any realization of (X,α), the lemma follows.
�

We now prove the corresponding lower bound on the survival probability.

Lemma 4.2 (Lower bound). For all γ ∈ (−∞, 0) we have

logE(X,α)
(0,1) Eν [E(t)] ≥


4 log(1− p)

√
s0ρ

(s0 + s1)π

√
t(1 + o(1)), d = 1,

4 log(1− p) s0ρπ

s0 + s1

t

log(t)
(1 + o(1)), d = 2,

as t→∞.
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Proof. The proof follows a similar approach to that of Lemma 3.2. Define Qt := [−rt, rt]d,
where we set rt =

√
t

log(t)
for d = 1 and rt = log(t) for d = 2. For a switching random

walk, the strategy is to constrain the random walk X to stay in Qt up to time t and to
require the exclusion process to create a vacant region Qt around zero at time t = 0, while
maintaining this vacancy during all time intervals in which the random walk X is active,
i. e. , the switching component α takes the value 1. In other words, when the random walk
is dormant, exclusion particles may enter the vacant region, but they must leave before the
random walk becomes active again. More precisely, define At := {s ∈ [0, t] : α(s) = 1}
as well as

Bt := {X(s) ∈ Qt∀s ∈ [0, t]} and Ct := {ξ(x, s) = 0∀x ∈ Qt∀s ∈ At}

for a fixed realization of α . Then,

EX0 Eξν
[
exp

(
γ

∫ t

0

ξ(X(s), s) ds

)]
≥ P(X,α)

(0,1) (Bt)Pα1 ⊗ Pξν(Ct).

Now, if X̃ denotes a simple symmetric random walk without switching and with jump rate
2dκ, then end-point X(t) equals X̃(Lt(1)) in distribution, such that we can write

P(X,α)
(0,1) (Bt) = Pα1PX̃0 (X̃(Ls(1)) ∈ Qt∀s ∈ [0, t]) ≥ PX̃0 (X̃(s) ∈ Qt∀s ∈ [0, t])

and hence

P(X,α)
(0,1) (Bt) ≥

{
exp (log(β) log(t)) , d = 1,

exp
(

log(β) t
log(t)2

)
, d = 2.

as in (3.4). In order to determine Pα1Pξν(Ct), we once more make use of the graphical repre-
sentation of the exclusion process. Denote by

H̃Qt
t :=

{
x ∈ Zd : ∃ path in G from (0, x) to At ×Qt

}
the set of the starting point of all paths of the exclusion process which enter the set Qt at
some time point s ∈ At, and define H̃0

t analogously with Qt replaced by {0}. Note, that
H̃Qt
t ⊆ HQt

t . Then, as in the proof of Lemma 3.2, we see that

Pξν(Ct) = (P ⊗ Pξν)(H̃
Qt
t ⊆ V0),

since otherwise there would be some exclusion particle propagating into Qt at some time
point s ∈ At. Thus,

Pξν(Ct) = E [(1− p)|H̃
Qt
t |] ≥ (1− p)E[|H̃

Qt
t |]

using Jensen’s inequality again, where

E [|H̃Qt
t |] =

∑
x∈Zd
P(∃ path in G from (0, x) to At ×Qt). (4.3)
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For the fixed realization of α, let Nt denote the number of jumps of α till t and write
s1, s2, · · · , sNt for the jump times of α and τk := sk − sk−1 for the corresponding waiting
times, such that At = [0, s1) ∪ [s2, s3) ∪ · · · ∪ [sNt , t], where we w.l.o.g. assume that Nt

is even. We will show that

Ψ(t) : = P(∃ path in G from (0, x) to Qt × At)
= P(∃ path in G from (0, x) to Qt × [0, Lt(1)]).

To this end, note that, if τE denotes the hitting time of a set E by a simple random walk with
jump rate 2dρ, then

P(∃ path in G from (0, x) to Qt × [s2k, s2k+1)) = Px(τQt ∈ [s2k, s2k+1))

for k = 0, · · · , 1
2
Nt and hence

Ψ(t) =

∫ s1

0

Px(τQt = s) ds+

∫ s3

s2

Px(τQt = s) ds+ · · ·+
∫ t

sNt

Px(τQt = s) ds.

Now, we substitute the integration variable in a similar manner as in the proof of [S24, Lemma
2.8] to observe that

Ψ(t) = Px(τQt ∈ [0, Lt(1)]) = P(∃ path in G from (0, x) to Qt × [0, Lt(1)]).

Combining this with (4.3) we obtain

E [|H̃Qt
t |] =

∑
x∈Zd

Px(τQt ≤ Lt(1)) = E [|HQt
Lt(1)
|],

such that we can apply the results and details of the proof of Lemma 3.2 to deduce that

Pξν(Ct) ≥ (1− p)E[|H
Qt
Lt(1)

|]
= (1− p)|Qt|+E0[RLt(1)].

and therefore

Pα1 ⊗ Pξν(Ct) ≥ Eα1
[
elog(1−p)(|Qt|+E0[RLt(1)])

]
.

Note that

E0[RLt(1)] =


4

√
ρ

π

√
Lt(1)(1 + o(1)), d = 1,

4ρπ
Lt(1)

log(Lt(1))
(1 + o(1)), d = 2,

such that E0[Rt] grows on a slower scale than the large deviation scale t of the local times
of α. Applying [S24, Lemma 2.4] as stated in (2.6) to f(t) =

√
t for d = 1 and f(t) =

t/ log(t) in d = 2, we obtain

lim
t→∞

1√
t

logPα1Pξν(Ct) ≥ 4 log(1− p)
√
ρ

π

√
s0

s0 + s1
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for d = 1 and

lim
t→∞

log(t)

t
logPα1Pξν(Ct) ≥ 4 log(1− p)ρπ s0

s0 + s1

with the same argument regarding the term |Qt| as in the proof of Lemma 3.2. �

5 Growth with Dormancy

This section is devoted to the case γ > 0, where the exclusion particles are interpreted as
catalysts. We start with the proof of the variational formula (1.5):

Proof of Theorem 1.3
As stated in Section 2.4, our goal is to apply the Perron-Frobenius theory for self-adjoint
operators, even though the generator Q of α is not symmetric. To address this issue, we will
instead work with the symmetric version Q̃ defined (2.7), by employing the Radon-Nikodym
derivative (2.9). To this end, define

V (η, x, i) := −s0δ0(i)− s1δ1(i) + γδ(1,1)(i, η(x)) (5.1)

for (η, x, i, ) ∈ {0, 1}Zd × Zd × {0, 1}. Then,

E(ξ,X,α)
ν,(0,1) [E(t)] = e

√
s0s1tE(ξ̃,X̃,α̃)

ν,(0,1)

[
exp

(∫ t

0

V (ξ̃(s), X̃(s), α̃(s))ds

)]
.

Let us start with the proof of the upper bound, which is done in a standard way. More precis-
ley, for Y (s) := (ξ̃(s), X̃(s), α̃(s)), we have

E(ξ̃,X̃,α̃)
ν,(0,1) [E(t)] = E(ξ̃,X̃,α̃)

ν,(0,1)

[
exp

(∫ t

0

V (Y (s))ds

)
1{X̃(t)∈Qr(t)}

]
+Rt

with r(t) := t log(t),Qr(t) = [−r(t), r(t)]d andRt some function with limt→∞
1
t

logRt =
−∞ by some standard large deviation estimates for the random walk. Moreover,

E(ξ,X̃,α̃)
ν,(0,1)

[
E(t)1{X̃(t)∈Qr(t)}

]
≤
∑

x∈Qr(t)

E(ξ,X̃,α̃)
ν,(x,1)

[
exp

(∫ t

0

V (Y (s))ds

)
1{X̃(t)∈Qr(t)}

]
= (1 + o(1))

(
e(L̃+V )t1Qr(t) ,1Qr(t)

)
≤ (1 + o(1))eλt‖Qr(t)‖2 ≤ (1 + o(1))eλt|Qr(t)|,

where

λ := sup Sp(L̃+ V )

DOI 10.20347/WIAS.PREPRINT.3166 Berlin 2025



Dormancy 23

denotes the largest eigenvalue of the bounded and self-adjoint operator L̃ + V . Since
|Qr(t)| = (2t log(t))d grows only polynomially, we obtain

lim
t→∞

1

t
logE(ξ̃,X̃,α̃)

ν,(0,1)

[
exp

(∫ t

0

V (Y (s))ds

)]
≤ λ.

The proof of the lower bound follows the same approach as the proof of [GdHM07, Propo-
sition 2.2.1]. More precisely, let (Eµ)µ∈R denote the spectral family of orthogonal projec-
tion operators associated with L̃ + V , and let δ > 0. Then we can find a function fδ ∈
`2
(
{0, 1}Zd × Zd × {0, 1}

)
such that (Eλ−Eλ−δ)fδ 6= 0. Approximating fδ by bounded

functions with finite support in the spatial component, we can w.l.o.g. assume that 0 ≤ fδ ≤
1Kδ for some finite Kδ ⊆ Zd. Then,

E(ξ̃,X̃,α̃)
ν,(0,1) [E(t)] ≥

∑
x∈Kδ

E(ξ̃,X̃,α̃)
ν,(0,1)

[
exp

(∫ t

1

V (Y (s))ds

)
1{X̃(1)=x}

]
≥
∑
x∈Kδ

E(ξ̃,X̃,α̃)
ν,(0,1)

[
E(ξ,X̃,α̃)
η(1),(x,α(1))

[
exp

(∫ t−1

0

V (Y (s))ds

)]
1{X̃(1)=x}

]
=
∑
x∈Kδ

∑
i∈{0,1}

p1(x, i)E(ξ̃,X̃,α̃)
ν,(x,i)

[
exp

(∫ t−1

0

V (Y (s))ds

)]

≥
∑
x∈Kδ

p1(x, 1)E(ξ̃,X̃,α̃)
ν,(x,1)

[
exp

(∫ t−1

0

V (Y (s))ds

)]

with pt(x, i) := P(X̃,α̃)
(0,1) ((X̃(t), α̃(t)) = (x, i)), where we used that ν is invariant under the

exclusion dynamics. Then, defining Cδ := minx∈Kδ p1(x, 1), we can lower-bound

E(ξ̃,X̃,α̃)
ν,(0,1) [E(t)] ≥ Cδ

∑
x∈Kδ

E(ξ,X̃,α̃)
ν,(x,1) [E(t− 1)]

≥ Cδ

∫
{0,1}Zd

ν(dη)
∑

(x,i)∈Zd×{0,1}

fδ(η, x, i)E(ξ,X̃,α̃)
η,(x,i) [E(t− 1)fδ(Y (t− 1))]

≥ Cδ

(
e(L̃+V )(t−1)fδ, fδ

)
≥ Cδe

(λ−δ)(t−1)‖(Eλ − Eλ−δ)fδ‖2.

This yields

lim inf
t→∞

1

t
logE(ξ,X̃,α̃)

ν,(0,1)

[
exp

(∫ t

0

V (Y (s))ds

)]
≥ λ− δ

and hence, letting δ → 0 completes the proof of the lower bound. Moreover, the Rayleigh-
Ritz formula asserts that

sup Sp(L̃+ V ) = sup
f∈`2

(
{0,1}Zd×Zd×{0,1}

)
,

‖f‖2=1

〈
(L̃+ V )f, f

〉
.
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Let us calculate the inner product. We have

〈V f, f〉 =

∫
{0,1}Zd

ν(dη)
∑
x∈Zd

(γη(x)− s1)f(η, x, 1)2 − s0f(η, x, 0)2,

and 〈
L̃f, f

〉
= −A2(f)− A3(f)− A4(f),

where

A2(f) : = −
∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

ρ
∑
x∈Zd

∑
y∈Zd
x∼y

(f(ηx,y, z, i)− f(η, z, i))f(η, z, i)

=
1

2
ρ

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

∑
x,y∈Zd
x∼y

(f(ηx,y, z, i)− f(η, z, i))2,

and, writing ej ∈ Zd for the j-th unit vector,

A3(f) : = −
∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

iκ
∑
y∼z

iκ(f(η, y, i)− f(η, z, i))f(η, z, i)

= −
∫
{0,1}Zd

ν(dη)
∑
z∈Zd

d∑
j=1

κ(f(η, z + ej, 1)− f(η, z, 1))f(η, z, 1)

−
∫
{0,1}Zd

ν(dη)
∑
z∈Zd

d∑
j=1

κ(f(η, z, 1)− f(η, z + ej, 1))f(η, z + ej, 1)

=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

1

2

∑
y∈Zd,y∼z

κ(f(η, y, 1)− f(η, z, 1))2.

Finally, we have

A4(f) : = −
∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

√
s0s1(f(η, z, 1− i)− f(η, z, i))f(η, z, i)

=

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

2
√
s0s1(f(η, z, 1)− f(η, z, 0))2,

which finishes the proof. �

Next, we proceed to prove Theorem 1.4, addressing the recurrent case d ∈ {1, 2} and the
transient case d ≥ 3 separately, as each requires a distinct approach.

Proof of Theorem 1.4(a) For the upper bound, note that

E(X,α)
(0,1) E

ξ
ν

[
exp

(
γ

∫ t

0

α(s)ξ(X(s), s) ds

)]
≤ E(X,α)

(0,1)

[
exp

(
γ

∫ t

0

α(s) ds

)]
= Eα1 [exp (γLt(1))]
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and hence

lim
t→∞

1

t
logE(X,α)

(0,1) E
ξ
ν

[
exp

(
γ

∫ t

0

α(s)ξ(X(s), s) ds

)]
≤ sup

a∈[0,1]
{aγ − I(a)}

using Varadhan’s lemma and the large deviation principle for α. The lower bound relies on
a similar idea to the proof of the lower bound in [GdHM07, Theorem 1.3.2(i)] in the case
without switching. Specifically, we constrain the random walk to stay within a finite set Q
around zero up to time t and require the exclusion process to build an area full of particles
in Q up to time t. More precisely,

E(X,α)
(0,1) E

ξ
ν [E(t)] ≥ Eα1 [exp(γLt(1))]P(X,α)

(0,1) (X(s) ∈ Q∀s ∈ [0, t])φ(t)

≥ Eα1 [exp(γLt(1))]PX̃0 (X̃(s) ∈ Q∀x ∈ [0, t])φ(t)

for a simple symmetric random walk X̃ with jump rate 2dκ without switching and where we
recall φ(t) = Pξν(ξ(0, s) = 0∀s ∈ [0, t]). Now, [GdHM07, Lemma 3.1.1] asserts that

lim
t→∞

1

t
log φ(t) = 0.

Moreover,

lim
t→∞

1

t
logPX̃0 (X̃(s) ∈ Q∀x ∈ [0, t]) = −λ(Q)

for λ the Dirichlet eigenvalue of −κ∆ on Q. Letting Q → Zd and therefore λ → 0, we
deduce that

lim
t→∞

1

t
logE(X,α)

(0,1) E
ξ
ν

[
exp

(
γ

∫ t

0

α(s)ξ(X(s), s) ds

)]
≥ sup

a∈[0,1]
{aγ − I(a)}

using Varadhan’s lemma again. Calculating the maximal value in the brackets yields the
assertion. �

The following proof is based on the variational formula (1.5) and follows a similar idea as in
the proof of [GdHM07, Proposition 3.2.1]:

Proof of Theorem 1.4(b)
Let ε > 0, and a0, a1 ∈ [0, 1] be constants to be determined later, such that a0 + a1 = 1.
Choose a function φε : Zd × {0, 1} → R which satisfies the conditions∑

x∈Zd
φε(x, i)

2 = ai, i ∈ {0, 1}, (5.2)

and

max


∑
i∈{0,1}

∑
x,y
x∼y

(φε(x, i)− φε(y, i))2,
∑
x∈Zd

(φε(x, i)− φε(x, 1− i))2

 ≤ ε2. (5.3)

DOI 10.20347/WIAS.PREPRINT.3166 Berlin 2025



H. Shafigh 26

Then, for fε : {0, 1}Zd × Zd × {0, 1} → R defined as

fε(η, x, i) :=
1 + εη(x)√

1 + (2ε+ ε2)p
φε(x, i),

we have

‖fε‖ =

∫
{0,1}Zd

ν(dη)
∑
x∈Zd

∑
i∈{0,1}

fε(η, x, i)
2

=

∫
x∈Zd

∑
i∈{0,1}

(
p

(1 + ε)2

1 + (2ε+ ε2)p
+ (1− p) 1

1 + (2ε+ ε2)p

)
φε(x, i)

2 = 1.

Hence, fε can serve as a test function for (1.5). Note that

I : =

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

(iγν(dη)− si)fε(η, z, i)2

=

(
γ(p+ (2ε+ ε2)p)

1 + (2ε+ ε2)p
− s1

)∑
x∈Zd

φε(x, 1)2 − s0
∑
x∈Zd

φε(x, 0)2

= a1

(
p
γ + 2ε+ ε2

1 + (2ε+ ε2)p
− s1 + s0

)
− s0.

and analogously

II : =

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

∑
i∈{0,1}

1

2

∑
x,y∈Zd,x∼y

ρ(fε(η
x,y, z, i)− fε(η, z, i))2

=
1

1 + (2ε+ ε2)p

∫
{0,1}Zd

ν(dη)
1

2

∑
x,y∈Zd

∑
i∈{0,1}

ρε2(η(x)− η(y))2φε(x, i)
2

=
ε2p(1− p)

1 + (2ε+ ε2)p

∑
x∈Zd

∑
i∈{0,1}

ρφε(x, i)
2

≤ ε2p(1− p)ρ
1 + (2ε+ ε2)p

=
o(ε2)

1 + o(ε) + o(ε2)
, ε→ 0.

Using the relation

φε(y, 1)φε(z, 1) ≤ 1

2
φε(y, 1)2 +

1

2
φε(z, 1)2

we can further estimate

III : =

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

1

2

∑
y∈Zd,y∼z

κ(fε(η, y, 1)− fε(η, z, 1))2

= κ
∑
z,y∈Zd
y∼z

1

2
(1 + (2ε+ ε2)p)(φε(y, 1)− φε(z, 1))2 + p(1− p)ε2φε(y, 1)φε(z, 1)

≤ 1

2
κ(1 + (2ε+ ε2)p)ε2 + 2dκε2p(1− p) = o(ε2).
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Moreover,

IV : =

∫
{0,1}Zd

ν(dη)
∑
z∈Zd

2
√
s0s1(fε(η, z, 1)− fε(η, z, 0))2

=
2
√
s0s1

1 + (2ε+ ε2)p

∑
z∈Zd

(p(1 + ε)2 + (1− p))(φε(z, 1)− φε(z, 0))2

= 2
√
s0s1

∑
z∈Zd

(φε(z, 1)− φε(z, 0))2 ≤ 2
√
s0s1ε

2 = o(ε2), ε→ 0

such that, altogether, we can deduce that

lim
t→∞

1

t
log 〈U(t)〉 ≥

√
s0s1 + a1

(
p
γ + 2ε+ ε2

1 + (2ε+ ε2)p
− s1 + s0

)
− s0 + o(ε)

>
√
s0s1 + a1(γp− s1 + s0)− s0, ε→ 0, (5.4)

since p ∈ (0, 1). If s0 = s1, then the right hand-side of (5.4) reduces to a1γ, which can
be maximized by choosing a1 = 1. In case where s1 > s0, the right hand-side of (5.4) is
strictly larger than a1(γp− s1 + s0). If γp− s1 + s0 ≥ 0, the optimal choice is a1 = 1, and
a0 = 0 otherwise. For the case where s1 < s0, the right hand-side of (5.4) is strictly larger
than s1 − s0 + a1(γp− s1 + s0). Since γp− s1 + s0 > 0, the optimal choice is a1 = 1 in
this condition. Thus, the following bounds can be established:

lim
t→∞

1

t
log 〈U(t)〉 >


γp, s1 ≤ s0,
γp− s1 + s0, s1 > s0 and γp− s1 + s0 ≥ 0,
0, s1 > s0 and γp− s1 + s0 < 0.

For the upper bound, we use the representation (2.4) of the exclusion process as an envi-
ronment seen from the walker. Let

Φ(η, i) := −s0δ0(i)− s1δ1(i) + iγη(0)

and τy the usual shift operator as defined in (2.3). Recall the operator V defined in (5.1) for
which

V (η, x, i) = Φ(τxη, i)

hold. Therefore, in a manner analogous to the proof of Theorem 1.3,

E(ξ̃,X̃,α̃)
ν,(0,1)

[
exp

(∫ t

0

V (ξ(s), X̃(s), α̃(s))ds

)]
= Eζ̃,α̃ν,1

[
exp

(∫ t

0

Φ((τXs ξ̃)(·, s), α̃(s))ds

)]
≤ λ̃,
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where λ̃ is the largest eigenvalue of the self-adjoint operator Φ + L̃EP. The Rayleigh-Ritz
formula yields

λ̃ = sup
f∈`2

(
{0,1}Zd×{0,1}

)
‖f‖2=1

−
∫
{0,1}Zd

ν(dη)
∑
y∼0

κ(f(τyη, 1)− f(η, 1))2

+
〈
f, (Φ + Q̃+ L̃SE)f

〉
≤ sup

f∈`2
(
{0,1}Zd×{0,1}

)
‖f‖2=1

〈
f, (L̃SE + Q̃)f

〉
+

∫
{0,1}Zd

ν(dη)
∑
i∈{0,1}

Φ(η, i)f(η, i)2

= Eξ̃,α̃ν,1
[
exp

(∫ t

0

Φ(ξ)(·, s), α(s))ds

)]
,

where we used the fact that

−
∫
{0,1}Zd

ν(dη)
∑
y∼0

κ(f(τyη, 1)− f(η, 1))2 ≤ 0

in dimensions d ≥ 3 (cf. [R94]). At this point, the random walker X̃ does not appear in the
formulas any more, and by applying a change of measure for α once again,

Eζ̃,α̃ν,1
[
exp

(∫ t

0

Φ(ξ)(·, s), α(s))ds

)]
= Eζ̃,α̃ν,1

[
exp

(
−s0L̃t(0)− s1L̃t(1) + γ

∫ t

0

α̃(s)ξ̃(0, s)ds

)]
= e−

√
s0s1E(ξ,α)

ν,1

[
exp

(
γ

∫ t

0

α(s)ξ(0, s)ds

)]
≤ e−

√
s0s1Eξν

[
exp

(
γ

∫ t

0

ξ(0, s)ds

)]
.

Altogether and using Varadhan’s lemma, we can deduce

lim
t→∞

1

t
logE(ξ,X,α)

ν,(0,1) [E(t)] ≤ lim
t→∞

1

t
logEξν

[
exp

(
γ

∫ t

0

ξ(0, s)ds

)]
= sup

x∈[0,1]
{γx− Iξ(x)}

= γ − inf
x∈[0,1]

{Iξ(x) + γ(1− x)}.

Recalling Iξ defined in (2.1), we observe that Iξ(x) + γ(1− x) > 0 for all x ∈ [0, 1], and
thus the upper bound follows.
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