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On non-autonomous parabolic equations with measure-valued
right hand sides and applications to optimal control

Karl Kunisch, Joachim Rehberg

Abstract

The main aim of this paper is to develop a theory for non-autonomous parabolic equations with
time-dependent measures on the spatial domain appearing as right hand sides. Restricting these
measures to ones which have their supports on ’curves’ or ’surfaces’ – the latter understood in the
sense of geometric measure theory – we succeed in interpreting them as distributional objects
from a (negatively indexed) Sobolev-Slobodetskii space W s,2(Ω) with s close to −1. For these
indices s a tailor suited parabolic theory is established, based on results of [19] and [27]. It is also
demonstrated that the proposed frame work is well-suited for optimal control with controls acting
on sub-manifolds.

1 Introduction

The investigation of generally non-autonomous parabolic equations

∂u

∂t
+A(·)u = %, u(0) = 0 (1)

with right hand sides including measures has been carried out in the pioneering paper [2]. In that work
the spatial geometry and the time-dependent coefficients are assumed to be smooth. Concerning
the measure, in the literature typically the case is considered where the measure on the space time
cylinder is of the kind

C0(]0, T [×Ω) 3 f 7→
∫ T

0

∫
Ω

f(t, x) dρt(x) dt, (2)

{ρt}t∈]0,T ] being a suitable family of Radon measures on Ω, which is – in its dependence of t –
weak∗ measurable. The procedure how to treat such parabolic equations is widely common: embed
M(Ω), the space of bounded Radon measures on Ω, into a spaceW−1,q

D (Ω) and identify the r.h.s. in
this manner with a function f ∈ Lr(]0, T [,W−1,q

D (Ω)) (W 1,q
D (Ω) denoting the usual Sobolev space

which includes a trace-zero condition on D ⊂ ∂Ω and W−1,q
D (Ω) being the space of continuous

antilinear forms on W 1,q′

D (Ω)). For such right hand sides one may – under mild conditions – apply
maximal parabolic regularity of the second order divergence operators involved to get a solution which
belongs to the maximal parabolic regularity space (see (26) below). It is almost clear that this is
widely optimal for the solution. Unfortunately, this has two serious drawbacks: In order to catch all
bounded Radon measures on Ω, one has to chose q’s which ly definitely below d

d−1
, d being the

space dimension. Therefore the domain of the elliptic second order divergence operator can be at
best W 1,q

D (Ω) – with this limitation of q. This is more irregular than W 1,2
D (Ω). But even worse: in

general it is extremely delicate – in view of pathologies which were discovered already by Serrin in
[45] – to give the divergence operators on W−1,q

D (Ω) a precise meaning at all, if q < 2 is far from 2.
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K. Kunisch, J. Rehberg 2

Secondly, one has for non-autonomous, second order parabolic equations no results on maximal
parabolic regularity in the W−1,q scale at hand if the geometry of the spatial domain is really non-
smooth and the time dependence of the coefficients is ’wild’ – as long as q is not close to 2.

Consequently, in this paper we go another way: We consider sets of codimension 1 or 2 in the spatial
domain Ω. If focused on dimensions 2 and 3 this results in measures which live on ’curves’ or ’sur-
faces’ and are absolutely continuous with respect to the induced Hausdorff measures. ’Curves ’ and
’surfaces’ are to be understood here in an extremely broad sense – based on the concept of l-sets
from geometric measure theory, developped by Jonsson and Wallin (see [29]) in the seventies. These
sets M are characterized by the condition

c• r
l ≤ Hl(M ∩B(x, r)) ≤ c• rl, x ∈M, r ∈]0, 1], (3)

where l ∈ {1, . . . , d− 1} andHl is the l-dimensional Hausdorff measure. So, M being an l-set, we
consider measures σHl|M , with σ a function from L2(M ;Hl). Fortunately, the pioneering results of
Jonsson/Wallin admit in our case embeddings

L2(M ;Hl) 3 σ 7→ σHl|M ∈ W−1±ε,2
D (Ω), (4)

where, in our context, ε > 0 may be taken arbitrarily small. Even more: one gets uniform boundedness
for norms of the mappings (4), if M runs through a class of subsets in Ω admitting a uniform upper l
estimate, i.e. in case the constant c• in (3) can be chosen uniformly for all sets under consideration.
All of this provides a constellation which is quite comfortable concerning the investigation of the
parabolic equation in the context of (non-autonomous) maximal parabolic regularity, namely: in [27]
an elliptic extrapolation theorem was established which asserts that the operator

−∇ · µ∇+ 1 : W 1±ε,2
D (Ω)→ W−1±ε,2

D (Ω), (5)

as a topological isomorphism for ε = 0 by Lax-Milgram, extends to a (consistent) isomorphism for
small ε > 0 under very general assumptions. Having this at hand, it is not too difficult to show that (the
negative of) these extrapolated operators indeed generate analytic semigroups on the corresponding
Hilbert spaces W 1±ε,2

D (Ω), see Thm. 2.6 below. The next step is easy: it has been established since
long that the negative of a generator of an analytic semigroup satisfies maximal parabolic regularity –
if the underlying Banach space is topologically a Hilbert space. Knowing this, we deduce from these
foregoing insights and the central result of [19], that the mapping

w 7→ w′ − div µ̂ gradw

from W 1,q
0 (J ;W−1±ε,2

D (Ω)) ∩ Lq(J ;W 1±ε,2
D (Ω)) to Lq(J ;W−1±ε,2

D (Ω)),
(6)

which is a topological isomorphism by the classical Lions’ result ([13, Section XVIII.3, Remark 9]) for
ε = 0 and q = 2, extrapolates to an isomorphism for q ∼ 2 and small ε. Fitting everything together:
the embedding (4) – including the control over the embedding constants – with the non-autonomous
parabolic regularity result, one gets as much regularity for the solution as one can realistically expect:
maximal parabolic regularity. Astonishingly, q and s = 1± ε in their inter-relation cleverly chosen, one
can achieve that the space of solutions, namely the left hand side of (6), even embeds compactly in
the usual trace space C(J ;L2(Ω)).
In recent years also the numerical analysis of such problems has been treated, see [30], [31], and
also [44], [36], [11]. In the first paper it is reflected that discontinuous diffusion coefficients allow the
treatment of moving interfaces – a property which is clearly required in applications. In [31] and [11]
discuss real world problems where the – time dependent – measures on the right hand side of the
parabolic equation are concentrated on hypersurfaces.
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On non-autonomous parabolic equations 3

In the last section of this paper our analysis of (1) will be used in the context of optimal control prob-
lems. The analysis for these problems is typically carried out for the cases where the control acts on
subdomains of Ω or ∂Ω. The situation where the support of the control has no interior in Ω or ∂Ω has
received surprisingly little attention. In [32] considers problems with point control in the interior of the
domain. Optimal control problems with controls as measures were extensively investigated, see eg.
[47, Chapter 4] and the literature cited there. It should, however, be noticed that formulating optimal
control problems over the whole space of measures favors minimizers which are pointwise source
functions, see eg. [9], [8], [42]. The optimal controls obtained in this manner are typically not concen-
trated on lower dimensional manifolds. The present paper aims at providing necessary prerequisites
for optimal control on possibly time-dependent lower dimensional manifolds of codimension 1 and 2,
and first steps towards exploiting these results are taken in section 4. There are only few other publica-
tions which also focus on such control problems. All of them consider the problem under investigation
in a Banach (Sobolev-) space setting, while in the present paper we favor a Hilbert space frame-work,
as much as this is possible. Our coefficient functions may depend discontinuously on space and time,
and in fact non-autonomous parabolic equations are one of the main subjects of this paper. Likely the
paper most closely related to ours is [39], where also a convection term is admitted in the equation.
The cost functional there includes a gradient term which leads to an adjoint equation which is much
less regular than in our case. In [34, 36] finite element approximation of the optimal control problems
with controls on manifolds are investigated. Let us also mention [11] where approximate controllability
of the heat equation by controls acting on a lower dimensional manifold is investigated.

Throughout this paper we denote by d the dimension of the domain Ω and by Hl the l-dimensional
Hausdorff measure, where l ∈ {1, . . . , d − 1}. We recall that on smooth and Lipschitzian subman-
ifolds of Rd the Hausdorff measure is identical with the measure defined by parametrizations on this
manifold, see [23, Ch. 3.3/3.4]. Moreover, if M ⊂ Ω ⊂ Rd then we abbreviate Lp(M ;Hl|M) by
Lp(M ;Hl) in all what follows. For Ω ⊂ Rd a bounded domain, then we denote byM(Ω) the space
of finite Radon measures on Ω.
Finally, for two Banach spaces X, Y , with Y continuously embedded into X , we denote by (X, Y )θ,r
the usual real interpolation space and by [X, Y ]θ the corresponding complex interpolation space (see
[48, Ch. I]).

We generally admit complex coefficients in this paper. In the sequel we need the following measure
theoretic notion of sets

Definition 1.1. For l ∈]1, . . . , d] the l-dimensional Hausdorff measure on Rd is denoted by Hl. Let
M ⊂ Rd be Borel set. We call M an l-set if (3) holds for positive constants c•, c•. In case l = d− 1,
it is said that M satisfies the Ahlfors-David condition.

In all what follows we assume that the following assumption is in power.

Assumption 1.2. Ω ⊂ Rd is a bounded domain d ≥ 2.

(a) D is a closed subset of ∂Ω which satisfies the Ahlfors–David condition.

(b) For every x ∈ ∂Ω \D there exists an open neighbourhood Ux of x and a bi-Lipschitz map Φx

from Ux onto the cube K := ]−1, 1[d, such that the following three conditions are satisfied:

Φx(x) = 0,

Φx(Ux ∩ Ω) = {x ∈ K : xd < 0},
Φx(Ux ∩ ∂Ω) = {x ∈ K : xd = 0}.

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025



K. Kunisch, J. Rehberg 4

(c)
|Ω ∩B(x, r)| ≥ c rd, x ∈ Ω, r ∈]0, 1] (7)

for some constant c.

Above and in the sequel B(x, r) denote the ball in Rd with centre x and radius r. Unless indicated
otherwise, the the integrability index p is always assumed to be in ]1,∞[.

Definition 1.3 (Sobolev-Slobodetskii spaces). W 1,p(Rd) is the usual Sobolev space. For s ∈]0, 1 +
1
p
[\{1} write s = k + σ with k ∈ {0, 1} and σ ∈]0, 1[. Then the space W s,p(Rd) is given by the

normed vector space of functions ψ ∈ L2(Rd) for which

‖ψ‖W s,p(Rd) := ‖ψ‖Wk,p(Rd) +

(
d∑
i=1

∫∫
Rd×Rd

|∂ki ψ(x)− ∂ki ψ(y)|p

|x− y|d+pσ
dxdy

)1/p

<∞.

For further purpose we also need Sobolev-Slobodetskii spaces on l-sets.

Definition 1.4 (Sobolev-Slobodetskii spaces on singular sets). Let M ⊂ Rd be an l-set, s ∈]0, 1[.
Define, for ψ ∈ Lp(M ;Hl)

‖ψ‖W s,p(M) := ‖ψ‖Lp(M ;Hl) +

(∫∫
M×M

|ψ(x)− ψ(y)|p

|x− y|d+ps
dHl(x) dHl(y)

)1/p

, (8)

finite or infinite. We introduce W s,p(M) as the space of functions on M , for which (8) is finite.

Proposition 1.5. Let E ⊂ Rd be an l-set, l ∈ {d− 2, d− 1}. Assume p ∈]1,∞[ and s ∈]1
p
, 1 + 1

p
[

such that β = s− d−l
p
> 0. Then, for ψ ∈ W s,p(Rd), the limit

(trE ψ)(x) := lim
r↘0

1

|B(x, r)|

∫
B(x,r)

ψ, x ∈ E (9)

exists forHl-almost all x ∈ E and the thus defined operator trE maps W s,p(Rd) continuously onto

W s− d−l
p
,p(E).

Conversely, for trE exists a continuous right inverse FE : W s− d−l
p
,p(E) → W s,p(Rd), such that

every function FEu is smooth on Rd \ E. Moreover, in case of l = d− 1, FE maps the Lipschitzian
functions on E into the set of Lipschitzian functions on Rd. Finally, the extension operators are con-
sistent for all s ∈]1

p
, 1 + 1

p
, [.

Proof. For the first two statements see [29, Thm. VI.1]. The assertion on Lipschitz continuity of the
extension is proved in [26].

Definition 1.6 (Function spaces with zero trace). Let E ⊂ Rd be a (d− 1)-set and let s ∈]1
p
, 1 + 1

p
[.

Then we define W s,p
E (Rd) := ker trE in W s,p(Rd).

The analogues of the spaces W s,p(Rd) and W s,p
E (Rd) on Ω are defined as quotient spaces corre-

sponding to restriction to Ω of their Rd versions as follows:

Definition 1.7 (Function spaces on Ω). Let p ∈]1,∞[ and s ∈]0, 1 + 1
p
[.

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025



On non-autonomous parabolic equations 5

(i) We define W s,p(Ω) to be the factor space of restrictions of W s,p(Rd) to Ω, equipped with the
natural quotient norm. Moreover, W−s,p(Ω) :=

(
W s,p′(Ω)

)?
.

(ii) Let E ⊆ Ω be a (d − 1)-set. Then, as before, we define W s,p
E (Ω) as the factor space of re-

strictions to Ω of W s,p
E (Rd), equipped with the natural quotient norm. Moreover, W−s,p

E (Ω) :=(
W s,p′

E (Ω)
)?

.

Remark 1.8. i) The definition of the spaces W s,p(Ω) as factor spaces of restrictions implies that
these spaces inherit the usual Sobolev-type embeddings between them from their full-space
analogues.

ii) Let s ∈]0, 1[. Then it is well-known that – since by assumption Ω satisfies (7) – the factor
space W s,p(Ω) agrees with the space W s,p

∗ (Ω) defined intrinsically by the set of all functions
u ∈ Lp(Ω) such that

‖ψ‖W s,p
∗ (Ω) := ‖ψ‖Lp(Ω) +

(∫∫
Ω×Ω

|ψ(x)− ψ(y)|p

|x− y|d+ps
dxdy

)1/p

<∞ (10)

up to equivalent norms (see [29, Thm. V.1]). Moreover, very recently it was shown in [6] that,
if E ⊆ ∂Ω is (d − 1)-regular and Ω satisfies the interior thickness condition (7) for x ∈
∂Ω \ E, then W s,p

E (Ω) coincides with the intrinsically given W s,p
∗ (Ω) ∩ Lp(Ω, dist−spE ), also

up to equivalent norms.

iii) The reader should carefully notice that, in case of p = 2 the so defined Sobolev-Slobodetskii
spaces on Rd are identical with the corresponding Bessel potential spaces, i.e. Hs,2(Rd), see
[48, Ch. 2.3.2]. We decided to maintain the notation W s,2/W s,2

D by the following reason: at
least for s ∈]0, 1[ one has, due to ii), an explicit description of the spaces also on Ω and hence
a more clear perception.

Since the domain Ω is fixed through the whole paper, we mostly omit the ′Ω′ from now on - writing e.g.
W 1,2

D instead of W 1,2
D (Ω).

Proposition 1.9. i) One has the interpolation equality

[L2,W 1,2
D ]s =

{
W s,2

D for s ∈]1
2
, 1[

W s,2 for s ∈]0, 1
2
[.

(11)

ii) Assume s0, s1 ∈]1
2
, 3

2
[ and put s = (1− θ)s0 + θs1, θ ∈]0, 1[. Then

(W s0,2
D ,W s1,2

D )θ,2 = [W s0,2
D ,W s1,2

D ]θ = W s,2
D . (12)

Proof. The results are proved as Thm. 7.1 in [21].

Lemma 1.10. Define, for s ∈]0, 1[\{1
2
}, Ws as the right hand side of (11). Then the embedding

Ws ↪→ L2 is compact.

Proof. Under Assumption 1.2 b) one knows the existence of a linear, continous extension operator
E : W 1,2

D → W 1,2(Rd), see [3, Lemma 3.2]. Hence, the embedding W 1,2
D ↪→ L2 is compact. So,

taking into account (11), the assertion follows from [48, Ch. 1.16.4 ].

For the following density result we require yet another definition.

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025
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Definition 1.11. The space of infinitely differentiable functions with bounded gradient on Ω is denoted
by C∞b (Ω).

Lemma 1.12. Let Ω ⊂ Rd be bounded and E ⊂ ∂Ω be a closed (d− 1)-set.

i) Assume s ∈]1
2
, 1]. Then C∞E (Ω) ⊆ W s,2

E (Ω) ∩ C∞(Ω) is dense in W s,2
E (Ω).

ii) Assume s ∈]1, 3
2
[. Then W s,2

E (Ω) ∩ C∞b (Ω) is dense in W s,2
E (Ω).

Proof. i) is proved in [21, Prop. 3.7]. ii) We first prove that the statement is correct if Ω is replaced by
Rd. Let ψ̃ ∈ W s,2

E (Rd) ⊂ W s,2(Rd). Then there is a sequence {ψn} inC∞0 (Rd) converging towards
ψ̃ in the W s,2 topology, see [48, Ch. 2.3.2]. Let trE and FE be the restriction/extension operators
from Proposition 1.5. Since trE is a left inverse of FE , the operator P := 1− FEtrE is a continuous
projection in W s,2(Rd), called the Jonsson/Wallin projection. Recall that, for φ ∈ C∞0 (Rd), Pφ is
smooth on Rd \ E. Moreover, it is also Lipschitzian on Rd, so that the gradient is globally bounded,
in particular bounded on Ω (cf. Proposition 1.5). Applying the projector P and taking into account
Pψ̃ = ψ̃, one gets limn 7→∞Pψn = Pψ̃ = ψ̃. But Pψn is C∞ in Rd \ E, and this is in particular
true in Ω. Now assume ψ ∈ W s,2

E (Ω). Take ψ̃ ∈ W s,2
E (Rd) as any extension of ψ. Then it is clear

that ψ −Pψn|Ω = (ψ̃ −Pψn)|Ω converges to zero in W s,2
E (Ω) in the factor topology.

2 Elliptic and parabolic regularity in the W−s,2
D scale

2.1 Elliptic operators

Definition 2.1. For µ ∈ L∞(Ω;Cd×d), we define the operator

−∇ · µ∇+ 1 : W 1,2
D → W−1,2

D (13)

by

〈−∇ · µ∇ψ + ψ, ϕ〉 =

∫
Ω

µ∇ψ · ∇ϕ+ ψϕ, ψ, ϕ ∈ W 1,2
D . (14)

If µ satisfies the strong ellipticity condition

<(µ(x)ξ, ξ)Cd ≥ m|ξ|2, ξ ∈ Cd (15)

uniformly for almost all x ∈ Ω, then (2.1) is a topological isomorphism by the Lax-Milgram theorem.

Definition 2.2 (Multiplier). Let X be a Banach space of functions Ω → C. A bounded function
ζ : Ω → C is a multiplier on X if the multiplication operator Mζ defined by (Mζf)(x) := ζ(x)f(x)
mapsX continuously into itself. We write ζ ∈M(X) and the multiplier norm is given by ‖ζ‖M(X) :=
‖Mζ‖X→X .

Assumption 2.3. There exits δ ∈]0, 1
2
[, such that all components µi,j are multipliers on the space

W s,2, s ∈]0, δ]

Remark 2.4. i) Trivially, any ω ∈ L∞ is a multiplier on L2. So, if ζ is multiplier on W ε,2 and,
additionally, ζ ∈ L∞(Ω), then one deduces from Prop. 1.9 and interpolation that ζ is a also
multiplier for all W s,2 for s ∈]0, ε[.

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025



On non-autonomous parabolic equations 7

ii) If s ∈]0, 1
2
[ and σ > s, then every ζ ∈ Cσ(Ω) is a multiplier on W s,2.

iii) The class of Hölder functions does not exhausts the set of multipliers. On the contrary, every
indicator function χΛ is a multiplier for each spaceW s,2, s ∈]0, 1

2
[ as long as Λ ⊂ Ω is a set of

locally finite perimeter ([43, p. 214ff]). An advanced criterion for ’set of finite perimeter’ is given
in [23, Thm. 5.23].

iv) Further remarks on the multipliers can be found in [27, Ch. 5] and references therein.

Proposition 2.5. Let the coefficient function µ be bounded and strongly elliptic, and let Assumption
2.3 hold. Then there is ι > 0 such that (13) consistently extrapolates for s ∈] − ι, ι[ to a topological
isomorphism

−∇ · µ∇+ 1 : W 1+s,2
D → W s−1,2

D . (16)

Further, both ι and the norms of the inverse operators (−∇·µ∇+1)−1 betweenW s−1,2
D andW 1+s,2

D

for s ∈]−ι, ι[ can be estimated uniformly in the norm of the multiplier norms ‖µi,j‖M and the ellipticity
constant m in (15).

Proof. see [27, Thm. 1]

In all what follows the letter ι has the meaning of characterizing the interval of numbers s, such that
(16) is a topological isomorphim.

In the context of this proposition we always use the same symbol −∇ · µ∇ irrespective what s is.
Unfortunately, one cannot expect in general that ι significantly differs from zero as is known since long
(see [38], compare also [22, Ch. 4]). The following result asserts that∇·µ∇−1 generates an analytic
semigroup on W−s

D for s ∈]− 3
2
,−1

2
[.

Theorem 2.6. i) For s ∈]1
2
, 1[ the part of

∇ · µ∇− 1 : W 1,2
D → W−1,2

D

in W−s,2
D generates an analytic semigroup on that space. In particular, −(∇ · µ∇ − 1) is a

positive operator in the sense of Triebel, see [48, Ch. 1.14].

ii) Assume s ∈]0, ι[. Then∇ · µ∇− 1 admits the following resolvent estimate

‖(−∇ · µ∇+ 1 + λ)−1‖L(W−1−s,2
D ) ≤

c

1 + |λ|
, <λ ≥ 0, (17)

and, hence, it generates an analytic semigroup on W−1−s,2
D (Ω). In particular,−∇ · µ∇+ 1 is

a positive operator on W−1−s,2
D in the sense of Triebel.

Proof. i) ∇ · µ∇− 1 generates analytic semigroups on both, L2 and W−1,2
D , see [40, Ch. 1.4.2]. In

particular, it satisfies resolvent estimates like

‖(−∇ · µ∇+ 1 + λ)−1‖L(L2) ≤
c

1 + |λ|
, <λ ≥ 0 (18)

and
‖(−∇ · µ∇+ 1 + λ)−1‖L(W−1,2

D ) ≤
c

1 + |λ|
, <λ ≥ 0. (19)

Applying the well-known characterization of an analytic generator property via the resolvent decay, it
is clear that∇·µ∇−1 generates an analytic semigroup also on every (real or complex) interpolation

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025
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space between L2 and W−1,2
D . Taking into account (11) and applying the duality formula for complex

interpolation (see [48, Ch. 1.11.3]) one gets [L2,W−1,2
D ]s = W−s,2 .

ii) It is well-known that the L2 realization of −∇ · µ∇ + 1 admits a bounded holomorphic calculus
(see [25, Cor. 7.1.17], compare also [14, Ch. 2.3]) and, hence, bounded purely imaginary powers (see
[14, Ch. 2.3]).
Secondly, the positive resolved Kato square root problem in [21] tells us

Dom
((

(−∇ · µ∇+ 1)|L2

) 1
2

)
= W 1,2

D . (20)

Together, this gives, according to [48, Ch. 1.15.3],

Dom
((

(−∇ · µ∇+ 1)|L2

) 1−s
2

)
=
[
L2,Dom

((
(−∇ · µ∇+ 1)|L2

) 1
2

)]
1−s =

= [L2,W 1,2
D ]1−s = W 1−s,2

D , (21)

thanks to (11). In other words, (
−∇ · µ∇+ 1

) 1−s
2 : W 1−s,2

D → L2

is a topological isomorphism. Combining this with (16) one also gets the isomorphism property(
−∇ · µ∇+ 1

) 1−s
2 (−∇ · µ∇+ 1)−1 : W−1−s,2

D → L2 (22)

Let us now prove that the – well-known – resolvent decay on L2 implies the asserted resolvent decay
on W−1−s,2

D : due to the consistency of −∇ · µ∇ + 1 on different spaces under consideration, one
has for ψ ∈ L2 and λ ∈ C with <λ ≥ 0

‖(−∇ · µ∇+ 1 + λ)−1ψ‖W−1−s,2
D

=

‖
(
−∇ · µ∇+ 1

) 1+s
2 (−∇ · µ∇+ 1 + λ)−1

(
−∇ · µ∇+ 1

)− 1+s
2 ψ‖W−1−s,2

D
≤

‖(−∇ · µ∇+ 1)
(
−∇ · µ∇+ 1

) s−1
2 ‖L(L2;W−1−s,2

D ) ‖(−∇ · µ∇+ 1 + λ)‖L(L2)

‖
(
−∇ · µ∇+ 1

) 1−s
2 (−∇ · µ∇+ 1)−1‖L(W−1−s,2

D ;L2)‖ψ‖W−1−s,2
D

.

Since L2 is dense in W−1−s,2
D this resolvent estimate extends to all ψ ∈ W−1−s,2

D , and the theorem
is proved.

Remark 2.7. The reader should carefully notice that now, knowing that −∇ · µ∇ + 1 in fact is a
positive operator on W−1−s,2

D , one indeed has the operator identity

(
−∇ · µ∇+ 1

) 1−s
2 (−∇ · µ∇+ 1)−1 =

(
−∇ · µ∇+ 1

)− 1+s
2 (23)

as an operator equality on W−1−s,2
D . So (22) can be read as

DomW−1−s,2
D

(
(−∇ · µ∇+ 1)

s+1
2

)
= L2. (24)
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On non-autonomous parabolic equations 9

2.2 Maximal parabolic regularity: Definition and results

Throughout the rest of this paper let T > 0 and set J =]0, T [. Let us start by recalling the following
(standard) definition.

Definition 2.8. If X is a Banach space and q ∈]1,∞[, then we denote by Lq(J ;X) the space of
X-valued functions f on J which are Bochner-measurable and for which

∫
J
‖f(t)‖q dt is finite. We

defineW 1,q(J ;X) := {u ∈ Lq(J ;X) : ∂u
∂t
∈ Lq(J ;X)}, where ∂u

∂t
is to be understood as the time

derivative of u in the sense ofX-valued distributions (cf. [1, Section III.1]). Moreover, we introduce the
subspace

W 1,q
0 (J ;X) := {u ∈ W 1,q(J ;X) : u(0) = 0}.

We equip this subspace always with the norm u 7→ ‖∂u
∂t
‖Lq(J ;X).

Definition 2.9. Let X , D be Banach spaces with D densely and continuously embedded in X . Let
J 3 t 7→ A(t) ∈ L(D;X) be a bounded and strongly measurable map and suppose that the
operator A(t) is closed in X for all t ∈ J . Let q ∈]1,∞[. Then we say that the family {A(t)}t∈J
satisfies (non-autonomous) maximal parabolic Lq(J ;X)-regularity, if for each f ∈ Lq(J ;X)
there is a unique function u ∈ Lq(J ;D) ∩W 1,q

0 (J ;X) which satisfies

∂u

∂t
+A(t)u(t) = f(t) (25)

for almost all t ∈ J . We write

MRq
0(J ;D,X) := Lq(J ;D) ∩W 1,q

0 (J ;X) (26)

for the space of maximal parabolic regularity. Introducing the norm

‖u‖MRq0(J ;D,X) = ‖u‖Lq(J ;D) + ‖∂u
∂t
‖Lq(J ;X),

makes MRq
0(J ;D,X) a Banach space.

We emphasize that Dom(A(t)) = D for all t ∈ J in Definition 2.9. In particular, all operators
A(t) have the same domain. If all operators A(t) are equal to one (fixed) operator A0, and there
exists an q0 ∈]1,∞[ such that {A(t)}t∈J satisfies maximal parabolic Lq0(J ;X)-regularity, then
{A(t)}t∈J satisfies maximal parabolic Lq(J ;X)-regularity for all q ∈]1,∞[ and we say that A0

satisfies maximal parabolic regularity on X .

Let us recall some abstract embedding properties of the space of maximal parabolic regularity which
we will need later.

Proposition 2.10. Let X, Y be Banach spaces with Y is continuously embedded into X . Let T > 0
and set J =]0, T [.

i) If q ∈]1,∞[, then

W 1,q(J ;X) ∩ Lq(J ;Y ) ↪→ C(J ; (X, Y )1− 1
q
,q), (27)

(see [1, Ch. III Thm. 4.10].
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ii) If q ∈]1,∞[ and θ ∈]0, 1− 1
q
[, then

W 1,q(J ;X) ∩ Lq(J ;Y ) ↪→ Cβ(J ; (X, Y )θ,1), (28)

where β = 1− 1
q
− θ, ( see [19, Lemma 2.11]).

Our next aim is to show that the second order divergence operators indeed satisfy maximal parabolic
regularity on the spaces W−s,2

D – starting with the autonomous case. We recall that Assumptions 1.2
and 2.3 are supposed to hold throughout.

Theorem 2.11. i) For all s ∈ [−ι, ι], the domain of the operator−∇ ·µ∇+ 1, when considered
in W−1+s

D , is W 1+s
D .

ii) Put ε = min(ι, 1
2
). For s ∈ [−ε, 1

2
[, −∇ · µ∇ + 1 satisfies maximal parabolic regularity in

W−1+s
D .

iii) If a family of coefficient functions {µτ}τ admits a uniform in τ ellipticity constants and uniform
in τ multiplier norms, then ε may be taken uniformly in τ .

Proof. Property i) follows directly from Theorem 2.5. ii) It is well-known that every negative of a gen-
erator of an analytic semigroup on a Hilbert space satisfies maximal parabolic regularity there. So, for
s ∈ [0, 1

2
[ the claim follows from Thm. 2.6 1. For s ∈ [−ε, 0[ the result is obtained by Thm. 2.6 2.

iii) the uniformity in τ for i) is contained in Theorem 2.5. From this the uniformity in ii) follows by the
uniformity of i) and Theorem 2.6.

Now we pass to non-autonomous parabolic operators on the W−s,2
D scale.

Assumption 2.12. i) Let µ̂ : J × Ω→ Cd×d be a bounded mapping, such that

J ∈ t 7→ µ(t, ·) ∈ L1(Ω,Cd×d), (29)

is measurable.

ii) The coeffcient functions µ(t, ·) are elliptic, and the ellipticity constants may be taken uniform
with respect to t ∈ J , see (15).

iii) For every t ∈ J the coefficient function µ(t, ·) =: µ satisfies Assumption 2.3 The correspond-
ing norms as multipliers are uniformly (in t ∈ J and s ∈]0, δ]) bounded.

We consider the coefficient function µ̂ satisfying this assumption as fixed.

Note that the set of points in Ω where µ(t, ·) is discontinuous may depend on t. Consequently we
admit the situation that the mapping t 7→ µ(t, ·) from J into L∞(Ω;Cd×d) is discontinuous at every
time point t. In this case it cannot be measurable, see the example in [18, Ch. 7.1]. For this reason we
only demand L1-measurability in Assumption 2.12.

Lemma 2.13. Let q ∈]1,∞[ and s ∈] − δ, δ[, with δ as in Assumption 2.12. Then the following
properties hold.

i) For every ψ ∈ W 1+s,2
D , the mapping

t 7→ −∇ · µ̂(t, ·)∇ψ (30)

is (strongly) measurable from J into W−1+s,2
D .
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ii) Define the mappingA : Lq(J ;W 1+s,2
D )→ Lq(J,W−1+s,2

D ) by(
Au
)
(t) = −∇ · µ̂(t, ·)∇(u(t)), u ∈ Lq(J ;W 1+s,2

D ). (31)

Then

MRq
0(J ;W 1+s,2

D ,W−1+s,2
D ) 3 u 7→ ∂u

∂t
−Au

is a bounded linear map into Lq(J ;W−1+s,2
D ) with a norm which depends on the multiplier

norms of the coefficient functions µ̂(t, ·).

Proof. i) We start with the case s > 0. One first considers

J 3 t 7→ 〈−∇ · µ(t, ·)∇ψ, ϕ〉(W−1+s,2
D ;W 1−s,2

D ) = 〈µ(t, ·)∇ψ,∇ϕ〉(W s,2
D ;W−s,2D ). (32)

Taking ψ ∈ W 1+s,2
D ∩C∞b (see Definition 1.11) and ϕ from the set C∞D (Ω), the right hand side in (32)

equals
∫

Ω
µ(t, ·)∇ψ ·∇ϕ. Since∇ψ,∇ϕ ∈ L∞(Ω), the measurability in t follows from the asserted

measurability for µ̂. But W 1+s,2
D ∩ C∞b (Ω) is dense in W 1+s,2

D and C∞D (Ω) is dense in W 1−s,2
D by

Lemma 1.12. So the measurability for general ψ ∈ W 1+s
D and ϕ ∈ W 1−s,2

D follows by taking the
limit in (32). Thus, we have proved weak measurability of (30). But this implies strong measurability
since W 1−s,2

D is separable and reflexive – and so is W−1+s,2
D . The case s < 0 can be treated analo-

gously, identifying 〈−∇·µ(t, ·)∇ψ, ϕ〉(W−1+s,2
D ;W 1−s,2

D ) as 〈∇ψ,
(
µ(t, ·)

)∗∇ϕ〉(W s,2
D ;W−s,2D ) (see [27,

p. 1237] for more details) and then arguing as before.
Property ii) is easily deduced from Proposition 2.5.

Proposition 2.14. There is an open interval I 3 2, such that for each q ∈ I

∂

∂t
−A : MRq

0(J ;W 1,2
D ,W−1,2

D ) → Lq(J ;W−1,2
D ) (33)

is a topological isomorphism i.e.−A satisfies non-autonomous maximal parabolic regularity onLq(J,W−1,2
D ).

Proof. The result is proved in [18, Thm. 7.2]. The reader should notice that here no geometric suppo-
sitions on Ω are required and that for D (relative) closedness in ∂Ω suffices.

Theorem 2.15. For every q ∈ I, there is an open interval J(q) 3 0 so that for s ∈ J(q)

∂

∂t
−A : MRq

0(J ;W 1+s,2
D ,W s−1,2

D ) → Lq(J ;W s−1,2
D ) (34)

is a topological isomorphism. Thus −A satisfies non-autonomous maximal parabolic regularity on
Lq(J,W s−1,2

D ) .

Proof. Let q ∈ I. Assumption 2.12 implies the existence of an ε ∈]0, 1
2
[ such that, for every s ∈

[−ε, ε]
−∇ · µ(t, ·)∇+ 1 : W 1+s,2

D → W−1+s,2
D , t ∈ J

is a toplogical isomorphisms (see Theorem 2.5) and, additionally, each of these operators satisfies
maximal (autonomous) maximal parabolic regularity, see Theorem 2.15. Moreover, it is known that
(33) is a topological isomorphism, which is (34) for s = 0.
Thanks to (12), one may write, for ε ∈]− 1

2
, 1

2
[,

W 1,2
D = [W 1+ε,2

D ,W 1−ε,2
D ] 1

2
,
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and, by duality (see [48, Ch. 1.11.3])

W−1,2
D = [W−1−ε,2

D ,W−1+ε,2
D ] 1

2
= [W−1+ε,2

D ,W−1−ε,2
D ] 1

2

Hence, (33) can be interpreted in the sense that

∂

∂t
−A : MRq

0(J ; [W 1+ε,2
D ,W 1−ε,2

D ] 1
2
, [W−1+ε,2

D ,W−1−ε,2
D ] 1

2
) 7→

7→ Lq(J ; [W−1+ε,2
D ,W−1−ε,2

D ] 1
2
) (35)

provides a topological isomorphism. But then [18, Thm. 3.4] tells us that this remains a topological
isomorphism, if the interpolation index 1

2
is replaced by indices θ sufficiently close to 1

2
. Re-identifying,

by (12), [W 1+ε,2
D ,W 1−ε,2

D ]θ as W 1+ε(1−2θ),2
D and, by duality,

[W−1+ε,2
D ,W−1−ε,2

D ]θ = [W 1−ε,2
D ,W 1+ε,2

D ]∗θ =
(
W

1−ε(1−2θ),2
D

)∗
= W

−1+ε(1−2θ),2
D ,

one obtains the assertion.

Up to now we considered the initial value problem with initial value 0. We will now pass to initial values
u0 6= 0.

Lemma 2.16. Let X be a Banach space and B the generator of an analytic semigroup on X . Then
the following identity of sets holds

(X,D(B))1− 1
p
,p = {x ∈ X : Be−tBx ∈ Lp(]0, 1[;X)}. (36)

Moreover, both spaces in (36) also coincide topologically.

Proof. See [35, Prop. 2.2.2]

Theorem 2.17. Choose q ∈ I, and s ∈ J(q) as established in Theorem 2.15.Then for every u0 ∈
(W−1+s,2

D ,W 1+s,2
D )1− 1

q
,q and f ∈ Lq(J ;W−1+s,2

D ) there exists a unique solution to

∂u

∂t
−Au = f, u(0) = u0. (37)

This solution belongs to the maximal parabolic space

W 1,q(J ;W−1+s,2
D ) ∩ Lq(J ;W 1+s,2

D ) =: X

and admits the estimate

‖u‖X ≤ C(‖u0‖(W−1+s,2
D ,W 1+s,2

D )
1− 1

q ,q
+ ‖f‖L2(J ;W−1+s,2

D )), (38)

for a constant C independent of u0 and f .

Proof. Step 1 As in Theorem 2.15 we shall utilize that

−∇ · µ(t, ·)∇+ 1 : W 1+s,2
D → W−1+s,2

D
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are topological isomorphisms, uniformly in t ∈ J . Further A0 = −∇ · µ(0, ·)∇ + 1 generates an
analytic semigroup on W−1+s,2

D . Let us set ǔ = e−tA0u0, and argue that

∂ǔ

∂t
−A ǔ ∈ Lq(J ;W−1+s,2

D )

and

‖∂ǔ
∂t
−A ǔ‖Lq(J ;W−1+s,2

D ) ≤ c1‖u0‖(W−1+s,2
D ,W 1+s,2

D )
1− 1

q ,q
(39)

for a constant c1 independent of u0. Indeed, for almost every t ∈ J we have

∂ǔ
∂t
−∇ · µ(t, ·)∇ǔ(t) =

(
−1−∇ · µ(t, ·)∇A−1

0

)
A0ǔ(t).

Thanks to Lemma 2.16, we know thatA0ǔ(t) ∈ Lq(]0, 1];W−1+s,2
D ) and henceA0ǔ(t) ∈ Lq(J ;W−1+s,2

D ).
By supposition the operator family {1 −∇ · µ(t, ·)∇A−1

0 }t∈J is a bounded in L(W 1−s,2
D ) uniformly

in t ∈ J , thus also ∂ǔ
∂t
− A ǔ belongs to Lq(J ;W−1+s,2

D ). Estimate (39) again follows from Lemma
2.16.

Step 2 We make the ansatz u = ǔ+ v, v ∈ W 1,q(J ;W−1+s,2
D ) ∩ L2(J ;W 1+s,2

D ) for the solution of
(37). So we are looking for v as the solution of

∂v

∂t
−A v = f − ∂ǔ

∂t
+A ǔ, with v(0) = 0. (40)

Evidently, u then satisfies (37). By Theorem 2.15 equation (40) admits a unique solution satisfying

‖∂v
∂t
‖Lq(J ;W−1+s,2

D ) + ‖v‖Lq(J ;W 1+s,2
D )

≤ c2‖f‖Lq(J ;W−1+s,2
D ) + c2‖∂ǔ∂t −A ǔ‖Lq(J ;W−1+s,2

D ),
(41)

for a constant c2 independent of f and the expression containing ǔ. By (39) this implies that

‖∂v
∂t
‖Lq(J ;W−1+s,2

D ) +‖v‖Lq(J ;W 1+s,2
D ) ≤ c2(‖f‖Lq(J ;W−1+s,2

D ) +c1‖u0‖(W−1+s,2
D ,W 1+s,2

D )
1− 1

q ,q
). (42)

For ǔ we have ‖ǔ‖L2(J ;W 1+s,2
D ) ∼ ‖A0ǔ‖L2(J ;W−1+s,2

D ) ≤ c‖u0‖(W−1+s,2
D ,W 1+s,2

D ) 1
2 ,2

. The estimate

for ‖∂ǔ
∂t
‖Lq(J ;W−1+s,2

D ) follows from the latter and the equation ∂ǔ
∂t

= A0ǔ . Combined with (42) these
considerations imply (38).

Having now the inclusion of the solution in the maximal parabolic regularity space at hand, our next
aim are some embedding results for the space of maximal parabolic regularity in the W−s,2

D scale,
based on Proposition 2.10. For this we require interpolation results which we turn to next.

Proposition 2.18. Let V be a reflexive Banach space and H a Hilbert space with continuous, dense
injection V ↪→ H . Then one has the (complex) interpolation identity [V, V ∗] 1

2
= H .

Proof. The result goes back to [41], compare also [49] and [12].

Lemma 2.19. Assume that s ∈]0, 1
2
[. If θ ∈]1+s

2
, 1[, then one has the interpolation identity

[W−1−s,2
D ,W 1−s,2

D ]θ = W 2θ−1−s,2, (43)

and, hence, the embedding

(W−1−s,2
D ,W 1−s,2

D )θ,1 ↪→ W 2θ−1−s,2. (44)
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Proof. Proposition 2.18 implies that L2 = [W−1−s,2
D ,W 1+s,2

D ] 1
2
, from which we make repeated use.

By re-iteration we have

W 1−s,2
D = [L2,W 1+s,2

D ] 1−s
1+s

=
[
[W−1−s,2

D ,W 1+s,2
D ] 1

2
,W 1+s,2

D

]
1−s
1+s

=

= [W−1−s,2
D ,W 1+s,2

D ] 1
1+s
, (45)

and thus
[W−1−s,2

D ,W 1−s,2
D ]θ =

[
W−1−s,2

D , [W−1−s,2
D ,W 1+s,2

D ] 1
1+s

]
θ

=

= [W−1−s,2
D ,W 1+s,2

D ] θ
1+s
. (46)

Since θ
1+s

> 1
2
, (46) may be written by re-iteration as[

[W−1−s,2
D ,W 1+s,2

D ] 1
2
,W 1+s,2

D

]
2θ−1−s

1+s

= [L2,W 1+s,2
D ] 2θ−1−s

1+s
= W 2θ−1−s,2,

which provides the desired result.

Theorem 2.20. For s ∈]0, 1
2
[ the space L2(J ;W 1+s,2

D ) ∩W 1,2(J ;W−1+s,2
D ) =: X embeds com-

pactly into C(J ;L2).

Proof. According to Proposition 2.10 one has for θ ∈]0, 1
2
[ the embeddingX ↪→ Cβ(J ; (W−1+s,2

D ,W 1+s,2
D )θ,1),

where β = 1
2
− θ. Thus, by Arzela/Ascoli it is sufficient to show that, θ clever chosen, the space

(W−1+s,2
D ,W 1+s,2

D )θ,1 compactly embeds into L2. In this spirit, we take θ ∈]1−s
2
, 1

2
[. From (45) and

duality (see [48, Ch. 1.11.3]) we obtain

W−1+s,2
D =

(
W 1−s,2

D

)∗
= [W−1−s,2

D ,W 1+s,2
D ]∗ 1

1+s
= [W 1+s,2

D ,W−1−s,2
D ] 1

1+s
=

= [W−1−s,2
D ,W 1+s,2

D ] s
1+s
.

So we get, exploiting again re-iteration

(W−1+s,2
D ,W 1+s,2

D )θ,1 ↪→ [W−1+s,2
D ,W 1+s,2

D ]θ =
[
[W−1−s,2

D ,W 1+s,2
D ] s

1+s
,W 1+s,2

D

]
θ

= [W−1−s,2
D ,W 1+s,2

D ]κ with κ = (1− θ) s

1 + s
+ θ. (47)

Our choice of θ implies κ > 1
2
. So we may again apply re-iteration in order to write

[W−1−s,2
D ,W 1+s,2

D ]κ =
[
[W−1−s,2

D ,W 1+s,2
D ] 1

2
,W 1+s,2

D

]
2κ−1

= [L2,W 1+s,2
D

]
2κ−1

. (48)

The space W 1+s,2
D continuously embeds into W 1,2

D . Since W 1,2
D (Ω) admits a linear, continuous ex-

tension operator into W 1,2
D (Rd), the embedding W 1,2

D ↪→ L2(Ω) is compact. So the r.h.s. of (48)
compactly embeds into L2, see [48, Ch. 1.16.4]. The claim follows from these facts.

Theorem 2.21. Let q > 2, s ∈]0, 1
2
[ such that the interval ]1+s

2
, 1 − 1

q
[ is non-empty and θ ∈

]1+s
2
, 1− 1

q
[. Put β = 1− 1

q
− θ. Then one has the embedding

W 1,q(J ;W−1−s,2
D ) ∩ Lq(J ;W 1−s,2

D ) ↪→ Cβ(J ;W 2θ−1−s,2), (49)

and the maximal parabolic space MRq
0(J ;W 1−s,2

D ,W−1−s,2
D ) embeds compactly into C(J ;L2).

Proof. The first assertion is implied by a combination of (28) and (44). The second follows from Lemma
1.10, the compactness of the embedding W 2θ−1−s,2 ↪→ L2 and the Arzela/Ascoli theorem.
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3 Non-autonomous problems with measure-valued functions as
right hand sides

3.1 Generalities

In this chapter we investigate non-autonomous parabolic problems like

∂w

∂t
−Aw = %, w(0) = 0, (50)

with % a function on J , taking values as bounded Radon measures ρt on Ω at every t ∈ J .
It is important to consider mappings J 3 t 7→ ρt ∈ M, which are only weak* measurable, this
means: mappings for which

J 3 t 7→ 〈ρt, ψ〉, for all ψ ∈ C(Ω) (51)

are measurable (compare the discussion in [8, Ch. 2.1]). Otherwise one would exclude examples as
the following:
Let J 3 t 7→ x(t) be an injective curve in Ω. If one defines ρt := δx(t) (the Dirac measure in the point
x(t)), then the mapping J 3 t 7→ δx(t) is in every point discontinuous, if one equipps the space of
(bounded) measures with the strong topology. Hence, it is not measurable if one defines the structure
of measurability via this strong topology. On the contrary, if one considers the weak* topology and
the induced concept of measurability, then the mapping J 3 t 7→ δx(t) is at least measurable if the
mapping J 3 t 7→ x(t) is measurable itself.
If N is a space of measures for which one knows an embedding N ↪→ W−s,2

D , then the measur-
ability of (51) is in particular true for functions ψ ∈ C∞b (Ω) ∩W s,2

D , which are dense in W s,2
D (see

Lemma 1.12). Hence, the measurability carries over to all functions ψ ∈ W s,2
D by density. But this

means: the mapping J 3 t 7→ ρt ∈ W−s,2
D is weakly measurable in this case. Then the separability

of W−s,2
D implies, quite in contrast to the situation inM(Ω), even the strong measurability. Thus one

is, via embeddding, in a situation in which rather general mappings J 3 t 7→ ρt are admissable and,
additionally, suit in the context of maximal parabolic regularity – even in the non-autonomous case.
However, the reader should carefully notice: weak∗ limits of measures, these being possibly concen-
trated on sets of lower Hausdorff dimension, can be of entirely different nature. E.g. every Radon
measure on Ω is the weak∗ limit of linear combinations of Dirac measures on Ω. In other words: the
affiliation of a measure to a class of measures, concentrated on lower dimensional objects, is by no
means necessarily preserved for the weak∗ limit.

3.2 Interpretation of singular measures as elements from W−s,2
D

Up to now we have established a parabolic theory for second order operators in the W−s,2
D scale. In

order to treat parabolic second order equations with measure valued right hand side it is, in conse-
quence, necessary to allow an interpretation for these objects as elements from W−s,2

D . This will be
delivered next.

Lemma 3.1. Let Ω ⊂ R2, D be a closed subset of ∂Ω. Then the space of bounded Radon measures
on Ω continuously embeds into any space W−1−ε,2

D if ε > 0.

Proof. Let ε > 0 . For every u ∈ W 1+ε,2
D there is a ũ ∈ W 1+ε,2(Rd) the restriction of which is u and,

additionally, ‖ũ‖W 1+ε,2(Rd) ≤ 2‖u‖W 1+ε,2
D

. So, for every ε > 0 one has W 1+ε,2
D ↪→ C(Ω). Thus, one
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gets for every bounded Radon measure m on Ω

‖m‖W−1−ε,2
D

= sup
‖ψ‖

W
1+ε,2
D

=1

∣∣∣ ∫
Ω

ψ dm
∣∣∣ ≤ sup

‖ψ‖
W

1+ε,2
D

=1

sup
x∈Ω
|ψ(x)| ‖m‖ ≤ c ‖m‖.

So far, this affects general bounded Radon measures on Ω irrespective of their singularity – even
Dirac measures are admitted, compare e.g. [32], [44], [11].

In the sequel we restrict the class of measures which are admitted. The reason is twofold: first the
classes which we will consider are the most relevant ones in view of applications. Secondly, as we have
seen, optimal elliptic and parabolic regularity are only available for second order divergence operators
if the differentiability index s of the corresponding Hilbert space is close to−1, see Theorems 2.15 and
2.17. Thus, concerning parabolic equations, one is restricted to measures which can be considered
as elements of W−1±ε,2

D with ε ∼ 0. In two space dimensions it turns out that – besides the class
of all bounded Radon measures – the measures situated on sets of Hausdorff dimension 1 deserve
special attention. In three space dimensions this affects the measures concentrated on ’surfaces’ and
’curves’ – in fact: sets of Hausdorff dimensions 1 or 2. In order to make this precise, we need some
preparation. Recall first the definition of an l-set from the introduction.

Lemma 3.2. If the closed set M ⊂ Rd is an l-set satisfying (3), and one defines the measure $ on
Rd by $(N) = Hl(N ∩M) for every Borel set N ⊂ Rd, then $ satisfies $(B(x, r)) ≤ 2lc• rl for
r ≤ 1/2. Hence, $(M) is finite.

Proof. For all x ∈ Rd with dist(x,M) > 1/2 one has B(x, r) ∩ M = ∅ for r ≤ 1/2, so that
$(B(x, r)) = 0 for these r. If dist(x,M) = r ≤ 1/2, then exists a y ∈M with |x−y| = r ≤ 1/2.
But then B(x, r) ⊆ B(y, 2r) and the assertion follows.

Proposition 3.3. If M ⊂ Ω is a Borel set of finite Hausdorff measureHl, then the mapping

C0(Ω) 3 v 7→
∫
M

v dHl

is a bounded Radon measure on Ω.

Proof. SinceHl is a Borel measure on Rd (see [23, Ch. 2 Thm. 2.1]) andHl(M) is finite, the restric-
tion of Hl to M is a (bounded) Radon measure on Rd (see [23, Ch. 2 Thm. 2.1]). It is clear that the
restriction of this to Ω remains a (bounded) Radon measure.

From the previous two results we conclude that if M ⊂ Ω is a Borelian l-set, thenHl|M is a bounded
Radon measure on Ω. Moreover, the total mass of M ⊃ M with respect to Hl can be estimated by
c× τ , where τ is the number of (shifted) unit balls required for a covering of M .

Proposition 3.4. Let M ⊂ Rd be an l-set with 0 < l ∈ {d− 2, d− 1}. If l = d− 2, let α ∈]1, 3
2
[;

and if l = d− 1 let α ∈]1
2
, 1].

i) For f ∈ L2(Rd) and u = Gα ? f one has

‖u‖L2(M ;Hl) ≤ c‖f‖L2(Rd), (52)

Gα being the corresponding Bessel potential (see [46, Ch. V.3]). The constant c can be chosen
independent from f .
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ii) The constant c may be taken even uniform for sets M obeying the right estimate (3) with a
uniform c•.

Proof. i) is a special case of [29, Ch. VI. Lemma 6]. ii) follows by a careful inspection of that proof. For
the convenience of the reader we give some comments in the appendix how to read the proof of [29,
Ch. VI. Lemma 6] in the special case under consideration here.

Corollary 3.5. Let M ⊂ Rd be a closed l-set with 0 < l ∈ {d− 2, d− 1}. Let α be as in Prop. 3.4.
Then one has a continuous embedding Wα,2(Rd) = Hα

2 (Rd) into L2(M ;Hl), Hα
p (Rd) being the

well-known Bessel potential space (see [48, Ch. 2.3.3], compare also [46, Ch. V.3]).
The embedding constants are uniformly bounded for different sets M obeying the right estimate (3)
with a uniform c•.

Proof. As is well-known, the space Hα
2 (Rd) can be defined as the set {Gα ? f : f ∈ L2(Rd)},

equipped with the corresponding graph norm (see [48, Ch. 2.3.4]). So (52) can be interpreted as

‖u‖L2(M ;Hl) ≤ c‖u‖Hα(Rd), (53)

and the assertions follow.

Theorem 3.6. i) Suppose that M is a closed subset of Ω, which is a (d − 1)-set. Then, for
s ∈]1

2
, 1[, W s,2

D continuously embeds into L2(M ;Hd−1).

The embedding constants for the mapping W s,2
D ↪→ L2(M ;Hd−1) are uniformly bounded for

different sets M obeying the right estimate (3) with a uniform c•.

ii) Let now d = 3. Suppose that M is a closed subset of Ω, which is an 1-set. Then, for s ∈]1, 3
2
[,

W s,2
D continuously embeds into L2(M ;H1).

The embedding constants for the mapping W s,2
D ↪→ L2(M ;H1) are uniformly bounded for

different sets M obeying the right estimate (3) with a uniform c•.

Proof. Recall that W s,2
D is the space of restrictions of W s,2

D (Rd) functions, equipped with the factor
topology. i) In this spirit, let, for u ∈ W s,2

D , let ũ ∈ W s,2
D (Rd) be an extension of u with ‖ũ‖W s,2

D (Rd) ≤
2‖u‖W s,2

D
. Now one applies Corollary 3.5, which implies trM ũ ∈ L2(M ;Hd−1)– inclusively a corre-

sponding estimate. Evidently, then also

trM ũ = trM ũ|M ∈ L2(M ;Hd−1).

Finally, one takes into account that forming the trace on M is the same for the extended function ũ
and the function u on Ω since M ⊂ Ω and Ω is open. ii) The proof proceeds along the same lines,
again fundamentally resting on Cor. 3.5.

Having this at hand, our next aim is to show, by duality, that (suitable) measures σHl|M may be
considered in a natural manner as elements from (suitable) spaces W−s,2

D .

Lemma 3.7. Let Ω be a bounded domain in Rd . LetM be a closed subset of Ω of finiteHl measure,
l ∈ {1, . . . , d}. Suppose that W s,2

D continuously embeds into L2(M ;Hl) with embedding constant
e. Then, for all σ ∈ L2(M ;Hl), the measure σHl|M belongs to W−s,2

D and the mapping

L2(M ;Hl) 3 σ 7→ σHl|M =: Ψ ∈ W−s,2
D (54)

is well defined and has a norm not larger than e.
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Proof. One has

|〈σHl|M , ψ〉| ≤
∫
M

|ψ||σ|dHl ≤ ‖σ‖L2(M ;Hl)‖ψ‖L2(M ;Hl) ≤

e ‖σ‖L2(M ;Hl)‖ψ‖W s,2
D
, ψ ∈ W s,2

D . (55)

Theorem 3.8. i) Adopt the assumptions of Theorem 3.6 i). Then, for s ∈]1
2
, 1[, L2(M ;Hd−1)

continuously embeds into W−s,2
D .

ii) Adopt the assumptions of Theorem 3.6 ii). Then, for s ∈]1, 3
2
[, L2(M ;Hd−2) continuously em-

beds into W−s,2
D .

The embedding constants for the two previous mappings are uniformly bounded for different
sets M obeying the right estimate (3) with uniform c•.

Proof. The claims follow from Theorem 3.6 and Lemma 3.7.

Let us have a closer look at what kind of restriction the uniformity of the constant c means in a simple
example:
Consider a bounded domain Ω ⊂ R2 which includes 0 ∈ R2 and a closed ball B(0, r0) around it.
Take a sequence {αk}n from the interval [0, π], which converges to zero. From this we form the set

NN := ∪k≤N{x ∈ R2 : x = reiαk , r ∈ [0, r0]}.

Then condition (3), with l = 1, obviously gives a bound for the admissible N . In any case, the union
over all k is not admissible.
However: if one changes the above set to

∪k{x ∈ R2 : x = reiαk , r ∈ [0, rk]}

and chooses the rk suitably, then (3) can indeed be satisfied in this case. Very roughly speaking, one
can say: only finitely many ’curves’ of constant length are admissible, but if the lengths may shrink to
zero, then infinitely many may be admissible and still satisfy (3).
Let us now take a function η ∈ C∞0 (Ω) which is identical 1 on B(0, r0). Then ‖η‖L2(NN ) = Nr

1/2
0 .

This clearly shows that, in order to delimitate the embedding constant of W 1,2
D (Ω) ↪→ L2(NN) one

must delimitate N . So an inequality like (3) seems not to be too far from a necessary one for the
required embedding.
Clearly, one can construct analogous examples also in higher dimensions.

Lemma 3.9. Assume s ∈]1
2
, 3

2
[. For every t ∈ J , let ρt be a bounded Borel measure on Ω, such that

the mapping J 3 t 7→ ρt is weak∗ measurable. Suppose further that

sup
ψ∈W s,2

D ∩C∞(Ω),‖ψ‖
W
s,2
D

=1

∣∣ ∫
Ω

ψ dρt
∣∣ <∞ for every t ∈ J. (56)
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Then the mapping

W s,2
D ∩ C

∞(Ω) 3 ψ 7→
∫

Ω

ψ dρt (57)

extends by density to an element Ψt ∈ W−s,2
D . Moreover, the mapping J 3 t 7→ Ψt ∈ W−s,2

D is
strongly measurable.

Proof. First, recall Lemma 1.12. Assumption (56) implies that (57) is a continuous (anti)linear func-
tional on W s,2

D ∩ C∞(Ω) with respect to the induced W s,2
D topology. By density of W s,2

D ∩ C∞(Ω) in
W s,2

D this can be extended to a continuous antilinear functional on the whole space W s,2
D .

Secondly, from the supposed weak∗ measurability it follows that J 3 t 7→
∫

Ω
ψ dρt = 〈Ψt, ψ〉 is

measurable as long as ψ ∈ W s,2
D ∩C∞(Ω). But this latter set is dense in W s,2

D , so the measurability
for general ψ ∈ W s,2

D follows. This implies weak measurability of J 3 t 7→ Ψt ∈ W−s,2
D . Since W s,2

D

is separable and reflexive, the asserted strong measurability follows.

Remark 3.10. It is not by accident that we consider (57) first only on W s,2
D ∩ C∞(Ω) since it is not a

priori clear that all elements ofW s,2
D are measurable with respect to ρt – and, hence, that the mapping

(57) is well defined for all ψ ∈ W s,2
D .

Up to now we were primarly interested in individual measures σHl|M . Having parabolic equations
with varying in time measures as right hand sides in our general focus, we must find a concept
which allows to identify the time dependent, measure-valued function as one with values in the Bessel
potential space W−s,2

D – including suitable measurability and integrability properties. This is achieved
in the next

Theorem 3.11. Let Ω be a bounded domain in Rd and D be a closed portion of ∂Ω. Suppose 0 <
l ∈ {d − 2, d − 1}. For every t ∈ J , let Mt be a closed subset of Ω which is an l-set, with uniform
c• in (3).

Assume that for every t ∈ J there exists σt ∈ L2(Mt;Hl) such that
a) the mapping

J 3 t 7→ σtHl|Mt ∈M(Ω) (58)

is weak∗ measurable
and
b) the upper integral (see [17, Ch. 13.5])

∫ ∗
J
‖σt‖qL2(Mt,Hl) dt is finite.

Let s ∈]1
2
, 3

2
[ be as in Theorem 3.8 (adapted to the points i) and ii)) and Ψt ∈ W−s,2

D be the element
which is associated to the measure σtHl|Mt by Theorem 3.8 .

Then the mapping J 3 t 7→ Ψt ∈ W−s,2
D is strongly measurable and one has∫

J

‖Ψt‖qW−s,2D

dt ≤ k

∫ ∗
J

‖σt‖qL2(Mt,Hl) (59)

for some constant k. Moreover, the constant k is uniform with respect to all families {σt}t∈J for which∫ ∗
J
‖σt‖qL2(Mt,Hl) dt <∞.

Proof. Applying Lemma 3.9 – the assumptions of which are fulfilled according to Theorems 3.6 and
3.7 the asserted measurability follows. Moreover thanks to Theorems 3.6 and 3.7 the uniform upper
l-estimate implies ‖Ψt‖W−s,2D

≤ l‖σt‖L2(Mt,Hl) with a uniform in t constant l. This proves (59).
We come back to this point in Subsection 4.1, see Thm. 3.13 and Thm. 3.15.
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Remark 3.12. Reconsidering the assumptions of the previous theorem, the reader should carefully
notice that – besides the weak∗ measurablity of the function (58) – no measurability condition is sup-
posed for the function t 7→ σt and even not for t 7→ ‖σt‖L2(Mt,Hl) . To make such a measurability
precise would be a challing task – and not easy to control in examples. For the finiteness of the upper
integral a uniform boundedness condition for the functions σt, for example, is a sufficient one since
the function J 3 t 7→ Hl(Mt) is bounded by the (supposed) uniform (upper) l-property of the sets
Mt.

3.3 Regularity for non-autonomous parabolic equations with measure-valued
right hand sides

In this chapter we arrive at one of the final aims of this paper: namely to prove parabolic regularity
results for equations with measure valued right hand sides. The crucial point is two-fold: on one hand,
the results of the foregoing chapter allow to interpret suitable measures as elements fromW−s,2

D . Here
in the two dimensional case there are no restrictions concerning the measures under consideration:
all bounded Radon measures are admissable. In the higher dimensional cases one is restricted in this
concept to measures which live on sets with Hausdorff dimension one or two and are, additionally,
absolutely continuous with respect to the corresponding Hausdorff measure there. Subsequently we
are in the position to apply the results of maximal non-autonomous parabolic regularity from section
2.

Theorem 3.13. Let Ω ⊂ R2 and assume that % : J → M(Ω) is weakly* measurable with∫ ∗
J
‖ρt‖q0Mdt <∞ fo some q0 > 2.

Then, there exists a q > 2 such that, for sufficiently small ε > 0 the solution of the problem (50)
lies in the spaceW 1,q

0 (J ;W−1−ε,2
D )∩Lq(J ;W 1−ε,2

D ) = MRq
0(J,W 1−ε,2

D ,W−1−ε,2
D ) – inclusively the

appropriate estimate for the solution.

Proof. In case of two space dimensions, the space of bounded Radon measures on Ω continuously
embeds into every space W−1−ε,2

D with ε ∈]0, 1
2
[ – see Lemma 3.1. Associating therefore to the

measure ρt an element Ψ(t) ∈ W−1−ε
D , one can prove as in Theorem 3.11 the measurability of the

mapping J 3 t 7→ Ψ(t) ∈ W−1−s,q
D inclusively the estimate

∫
J
‖Ψ(t)‖q0dt ≤ c

∫ ∗
J
‖ρt‖q0Mdt. Now

the claim follows from Theorem 2.15.

Corollary 3.14. Under the assumptions of the previous theorem, the solution belongs toCβ(J ;W κ,2),
for some β > 0 and κ > 0.

Proof. Given q > 2, there existsε > 0 sufficiently small such that the interval ]1+ε
2
, 1 − 1

q
[ is non-

empty. The claim then follows with Theorem 2.21.

This result should not be far from optimal. Unfortunately, the range of admissable integrability expo-
nents q with respect to time is restricted to be close to 2.
The next result shows that the solution is more regular with respect to the spatial variable, if one re-
stricts the admissible measures to those living on lower dimensional sets. In particular, in dimension
2 the function u(t, ·) is Hölderian on Ω for almost all t ∈ J . This is as special case of the following
result which concentrates on subsets of codimension 1 in R2, respectively R3.

For the following theorems recall the definition of J from Proposition 2.14.
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Theorem 3.15. Let l = d− 1, and suppose the following:

(a) For every t ∈ J , let Mt ⊂ Ω be a closed subset of Ω, and assume that

Hd−1(M t ∩B(x, r)) ≤ c rd−1, x ∈M t, r ∈]0, 1] (60)

for a constant c independent of t ∈ J .

(b) For every t ∈ J there is a σt ∈ L2(Mt;Hd−1), such that the mapping

J 3 t 7→ σtHd−1|Mt =: ρ(t) ∈M(Ω) (61)

is weakly* continuous, and
∫ ∗
J
‖σt‖q0L2(Mt;Hd−1)dt <∞ holds for some q0 ≥ 2.

Then, for s ∈]0, 1
2
[, each ρ(t) can be understood as an element in W−1+s,2

D , and by Theorem 3.11

the function ρ is in Lq2(J ;W−1+s,2
D ). Further the solution u of

∂u

∂t
−Au = ρ1(·), u(0) = 0 (62)

belongs to the space of maximal parabolic regularity MRq
0(J ;W 1+s,2

D ,W−1+s,2
D ), for s > 0 suffi-

ciently small, and q = 2, if q0 = 2, else 2 < q ∈ I.

Proof. Thanks to Theorem 3.11, the function t 7→ ρ(t) can be interpreted as a measurable with values
in W−1+s,2

D with an integrability exponent q ≤ q0 in time, as long as s ∈]0, 1
2
[. Possibly diminishing s

and q, one may now apply Theorem 2.15.

We next address the situation of codimension 2 in Rd, d > 2.

Theorem 3.16. Let l = d− 2, and suppose the following:

(a) For every t ∈ J , let Mt ⊂ Ω be a closed subset of Ω and assume

H1(M t ∩B(x, r)) ≤ c1 r, x ∈M t, r ∈]0, 1] (63)

for a constant c1 independent of t ∈ J .

(b) For every t ∈ J there is a σt ∈ L2(Mt;H1), such that the mapping

J 3 t 7→ σtH1|Mt =: ρ1(t) ∈M(Ω) (64)

is weakly* continuous and
∫ ∗
J
‖σt‖q1L2(Mt;H1)dt <∞ holds for some q1 ≥ 2.

Then, for s ∈]0, 1
2
[ each ρ1(t) can be understood as an element in W−1−s,2

D and by Theorem 3.11

the function ρ1 is in Lq1(J ;W−1−s,2
D ). Further the solution u of

∂u

∂t
−Au = ρ1(·), u(0) = 0 (65)

belongs to the space of maximal parabolic regularity MRq
0(J ;W 1−s,2

D ,W−1−s,2
D ), for s > 0 suffi-

ciently small, and q = 2, if q1 = 2, else 2 < q ∈ I.

Proof. The proof again follows from Theorems 2.15 and 3.11.
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4 Optimal control

4.1 Measure theoretic preliminaries

Up to now we considered a parabolic equation with prescribed right hand side σtHl|Mt only demand-
ing the finiteness of the upper integral∫ ∗

J

‖σt‖qL2(Mt;Hl)dt <∞ (66)

and, secondly, the measurability of the mappings

J 3 t 7→ 〈σtHl, ψ〉W−s,2D ×W s,2
D

=

∫
Mt

σt ψ|Mt dHl, for all ψ ∈ W s,2
D . (67)

Within this subsection we will investigate this second condition, and describe a specific construction
for the choice of σ. In order to illustrate the problem, consider first the case where all sets Mt are
identical, i.e. Mt = M for a fixed l-set M . Then it is clear that the weak∗-measurability amounts to
the measurability of the function J 3 t 7→ σt. But, if the sets Mt evolve in time, then this aspect
becomes a non-trivial one. We investigate this in some particular setting by making the following
assumption which is supposed to hold throughout the rest of the paper.

Assumption 4.1. Let M be a closed subset of Rd and an l-set, such that, for all t ∈ J , there is
a bi-Lipschitz diffeomorphism φt from M onto Mt. The Lipschitz constants lt of the φt’s and their
inverses φ−1

t , l−t , are uniformly bounded in t ∈ J .

Proposition 4.2. Suppose M•,MN ⊂ Rd and let φ be bi-Lipschitzian from M• onto MN. Then

γHl(φ(M•)) ≤ Hl(M•)) ≤ γ−1Hl(φ(M•)), (68)

γ depending only on the Lipschitz constants of φ and φ−1.

Proof. The left hand side of (68) is proved in [23, Thm. 2.8] for the case when φ is defined on whole
Rd. In our case this is not fulfilled, but φ may be extended to Rd as a Lipschitzian function into Rd with
the same Lipschitz constant, see [23, Ch. 3.1.1]. To this extended function the above quoted theorem
applies. The right hand side of (68) is proved by the same arguments, this time applied to φ−1.

Lemma 4.3. If M is an l-set, then the Mt’s are l-sets as well. The corresponding constants c•t in (3)
may be taken uniform in t.

Proof. Note first, that every φt extends to a bi-Lipschitzian mapping from M onto Mt – under preser-
vation of the Lipschitz constants. The Lipschitz continuity of φt implies , for all x ∈Mt,

Mt ∩B(x; r)) = φt(M) ∩B(x; r) ⊆ φt
(
M ∩B(φ−1

t x, λr)
)
, (69)

where λ may be chosen uniform in t. Take now in particular M• = M ∩B(φ−1
t x, λr) for an x ∈Mt

and apply (68), to conclude the proof.

Lemma 4.4. Suppose that M is an l-set. Consider the image, named $t, of the Hausdorff measure
Hl on M under φt on Mt. Then $t is of the form $t = ςtHl, where ςt is Hl-measurable and is
bounded from above and below by constants, uniform in t.
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Proof. For each Hl-measurable subset M• ⊂ M inequality (68), with φ replaced by φt holds. The
constant γ may be taken uniform in t since the Lipschitz constants of φt, φ

−1
t are uniform by suppo-

sition. This implies that $t is absolutely continuous with respect to Hl on Mt and, hence, admits a
density ςt by the Radon-Nikodym theorem. It is clear that (68) implies the (uniform in t) boundedness
of the ςt’s from above and below by positive constants.

Lemma 4.5. Let ψ be uniformly continuous on Ω and assume that the mappings J 3 t 7→ φt(x) ∈ Ω
are measurable for everyx ∈M . Then

J 3 t 7→ ψ(φt(·)) =: ft ∈ L2(M ;Hl) (70)

is measurable.

Proof. First one observes that the system of functions {ft}t is equicontinuous on M according to
the uniform continuity of ψ and the (uniform) Lipschitz properties of the mappings φt. Let {xj}j be a
countable, dense subset of M . Standard arguments (see [17, Ch. 13.9, 13.9.6]) tell us that, for every
x ∈ M , the function J 3 t 7→ ft(x) is measurable. Let ε > 0 be arbitrary. So, by Lusin’s theorem,
for every j there is a compact set Kjε ⊂ J , such that |J \ Kjε | ≤ ε2−j−1 and the mapping

Kjε 3 t 7→ ft(xj)

is continuous (see [17, Ch. 13.9, 13.9.4]). Define K = ∩jKjε . We show:
For every x ∈M , the mapping

K 3 t 7→ ft(x) (71)

is continuous. One has

|ft(x)− fs(x)| ≤ |ft(x)− ft(xj)|+ |ft(xj)− fs(xj)|+ |fs(x)− fs(xj)|,

and all three addends can be made arbitrarily small by taking xj close enough to x. Let ϕ ∈
L2(M ;Hl).

Knowing the continuity of (71), Lebesgue dominance tells us that

K 3 t 7→
∫
M

ft ϕ dHl (72)

is continuous, see [17, Ch. 13.8, 13.8.6]. But the measure of J \ K is at most ε. So Lusin’s theorem
again applies and tells us that

J 3 t 7→
∫
M

ft ϕ dHl (73)

is measurable. So (70) is weakly, and, hence, strongly measurable.

Lastly, if one only aims at measurability of the mapping (67), then Assumption 4.1 can be relaxed as
follows: divide the interval into intervals J1, J2, . . . and demand for every subinterval J = Jk again
Assu. 4.1. Subsequently on each of the subintervals Jk the same calculus can be done as for J now,
and can subsequently be concatenated to again obtain functions on J .

Consider now, for every t, the mapping Vt : L2(M ;Hl)→ L2(Mt;Hl) defined by(
Vt(ϕ)

)
(x) = ςt(x)ϕ(φ−1

t x), ϕ ∈ L2(M ;Hl), x ∈Mt. (74)
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Then the definition of the image of a measure together with Lemma 4.4 show that, for every t ∈ J ,
Vt is a bounded linear mapping from L2(M ;Hl) onto L2(Mt;Hl), the norms of which together with
their inverses are uniformly bounded in t ∈ J . Our choice for σt in (67) will be

σt = Vt(ϕ), for ϕ ∈ L2(M ;Hl).

With reference to Theorem 3.8 we introduce the embedding operators

It : L2(Mt;Hl) 3 σ → σH ∈ W−1+τ,2
D , for σ ∈ L2(Mt;Hl),

with τ ∈ (0, 1
2
) if l = d− 1, and τ ∈ (−1

2
, 0) if l = d− 2.

(75)

Here and throughout the remainder the case l = d− 2 is only considered for d ≥ 3.

For v ∈ Lq(J ;L2(M ;Hl)) and l ∈ {d − 1, d − 2} the crucial point now is the measurability – or
not – of the mappings

J 3 t 7→ 〈ItVt(v(t)), ψ〉W−1+τ,2
D ×W 1−τ,2

D

= 〈Vt(v(t))Hl, ψ〉W−1+τ,2
D ×W 1−τ,2

D
=
∫
Mt
Vt(v(t))ψ|Mt dHl,

(76)

for every ψ ∈ W 1−τ,2. In this respect we have the following

Lemma 4.6. With Assumption 4.1 holding and V, I as defined in (74) and (75), the function

J 3 t 7→ ItVtv(t) ∈ W−1+τ,2
D (77)

is measurable for every v ∈ Lq(M ;Hl), with q ∈]1,∞[, l ∈ {d− 1, d− 2}, if and only if

J 3 t 7→ ψ(φt(·)) ∈ L2(M ;Hl) (78)

is measurable for every function ψ ∈ C∞b (Ω) ∩W 1−τ,2
D in case l = d − 2 and ψ ∈ C∞ ∩W 1−τ,2

D

in case l = d− 1.

Proof. We utilize that by a well-known theorem of Pettis the measurability of t 7→ ItVtv(t) follows
from its weak measurability, thus from (67) with s = 1 − τ . We now turn to the case l = d − 2.
According to Lemma 1.12 we may restrict ourselves to ψ ∈ C∞b (Ω) ∩W 1−τ,2

D . One calculates for
v ∈ Lq(J ;L2(M ;Hl))

〈ItVt(v(t)), ψ〉W−1+τ,2
D ×W 1+τ,2

D
=
∫
Mt
Vt(v(t))ψ|Mt dHl

=
∫
Mt
ςt vt(φ

−1
t (·))ψ|Mt dHl =

∫
Mt
vt(φ

−1
t (·))ψ|Mt d$t

=
∫
M
vt ψ(φt(·)) dHl,

(79)

where we used that $t was the image of the measureHl|M under φt.
The reader should notice that the function M 3 x 7→ ψ(φt(x)) → C is bounded and continuous –
hence measurable with respect to Hl. Since Hl(M) is finite, the function vt ψ(φt(·)), consequently,
belongs to L2(M ;Hl), and the last term in (79) is well defined – irrespective of the Hausdorff dimen-
sion of M .
Since the functions v run through the whole space Lq(J ;L2(M ;Hl)), it is straight forward that the
measurability of (79) is equivalent to the measurability of the function t 7→ ψ(φt(·)) ∈ L2(M ;Hl) for
every function ψ ∈ C∞b (Ω), which is (78). For the case l = d− 1 one chooses ψ ∈ C∞ ∩W 1−τ,2

D

and proceeds in the same manner.

This lemma guarantees the measurability of the right hand side of equation (84) below. The latter is
assured by the measurability of (78), which is addressed in Lemma 4.5 under a natural and extremely
general condition.
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4.2 An optimal control problem

We start the analysis of an optimal control problem. For this purpose it is convenient to summarize the
conditions which be assumed henceforth.

Assumption 4.7. We assume that Assumptions 1.2, 2.12 and 4.1 are satisfied and that for every
x ∈M , the mapping J 3 t 7→ φt(x) ∈ Rd is measurable.

Thus the prerequisites established in Section 4.1 are at our disposal. We further recall the definition of
the spaces X = W 1,q(J ;W−1+τ,2

D ) ∩ Lq(J ;W 1+τ,2
D ), where τ will be chosen positive respectively

negative as asked for in (80) – (82) below. We shall consider combinations of (d, l) corresponding to
the cases covered in Theorems 3.15 and 3.16, in particular

l = d− 1 with τ ∈]0, ε[, and q = 2, (80)

or
l = d− 2 with τ ∈]− ε, 0[, and q = 2, α = 0, (81)

or
l = d− 2 with τ ∈]− ε, 0[, and I 3 q > 2, (82)

with ε > 0 sufficiently small, α to be introduced below, and I from Proposition 2.14.

We proceed by setting the control-space to be L2(M ;Hl) and define the time dependent control
operators for a.e. t by

B(t) : L2(M ;Hl)→ W−1+τ,2
D with B(t) = ItVt,

with
Vt : L2(M ;Hl)→ L2(Mt;Hl), and It : L2(Mt;Hl)→ W−1+τ,2

D .

Here Vt is as defined in (74) and It as in (75). Recall that the Vt’s are uniformly (in t) bounded, Thus
there exists k1 > 0 such that for all t ∈ J :

‖Vt‖L(L2(M ;Hl),L2(Mt;Hl)) ≤ k1,

and there exist a constant a k2 such that for a.e. t

‖It‖L(L2(Mt;Hl)),W−1+τ,2
D

≤ k2,

for τ as in 75, see Theorem 3.8. Consequently ‖B(t)‖L(L2(M ;Hl),W−1+τ,2
D

≤ k1k2 for a.a. t ∈ J and

B(t) induces a mapping B ∈ L(Lq(J ;L2(M ;Hl)), L
q(J ;W−1+τ,2

D )), satisfying

‖B‖L(Lq(J ;L2(M ;Hl)),Lq(J ;W−1+τ,2
D ) ) ≤ k1k2. (83)

Let u0 ∈ (W−1+τ,2
D ,W 1+τ,2

D )1− 1
q
,q be fixed. By Theorem 2.17 and (83) for every ξ ∈ Lq(J ;L2(M ;Hl)

the control system
∂u

∂t
−Au = Bξ, u(0) = u0 (84)

has a unique solution u = u(ξ) ∈ X satisfying

‖u(ξ)‖X ≤ c(‖ξ‖Lq(J ;L2(M ;Hl)) + ‖u0‖(W−1+τ,2
D ,W 1+τ,2

D )
1− 1

q ,q
), (85)
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with c independent of u0 and ξ. Here ε is assumed to be sufficiently small so that Theorem 2.17 is
applicable for τ ∈]0, ε[, respectively τ ∈]− ε, 0[.

For ud ∈ L2(J ;L2) and uT ∈ L2(Ω) we consider the optimal control problem{
minξ∈Lq(J ;L2(M ;Hl)) J (ξ)

subject to (84),
(P)

where

J (ξ) =
1

2

∫ T

0

‖u(ξ)(t)− ud(t)‖2
L2 dt+

α

2
‖u(ξ)(T )− uT‖2

L2

+
β

q

∫ T

0

‖ξ‖qLq(M ;Hl) dt,

and α ≥ 0, β > 0.

Theorem 4.8. Let Assumption 4.7 hold and let ε be sufficiently small. Then for l and q as in cases
(80)-(82) problem (P) admits a unique solution ξ∗ ∈ L2(J ;L2(M ;Hl)).

Proof. We start by arguing the well-posedness of the cost-functional for each of the three cases. For
each of them existence of a solution u(ξ) ∈ X to (84) for all ξ ∈ L2(J ;Hl) is guaranteed, see
(85). For (80) moreover u(ξ) ∈ C(J̄ ;L2), see Theorem 2.20, and hence J is welldefined. For (81)
well-posedness of J already follows from u(ξ) ∈ X . Turning to (82) we utilize Theorem 2.21 with
q ∈ I, q > 2, and τ such that 0 < −τ < 1

2
− 1

q
, then θ = 1

2
− τ , to get β = 1

2
+ τ − 1

q
> 0,

and X ⊂ Cβ(J ;W−τ,2). In particular u(ξ) ∈ C(J̄ ;L2) and J is also well-defined for the case
described by (82).

Next, let {ξn} be a minimizing sequence for (P). Then J (ξn) ≤ J (0) + 1 for all sufficiently large
n. Hence {ξn} is bounded in Lq(J ;L2(M ;Hl)). Consequently {ξn} admits a weakly convergent
subsequence, which is denoted by the same symbols, and ξ∗ ∈ Lq(J ;L2(M ;Hl)) with ξn ⇀ ξ∗,
see e.g. [16, Ch. IV.1 Cor. 2]. By the uniform boundedness of B(t) with respect to t, it is simple to
argue that Bξn ⇀ Bξ∗ in L2(J ;W−1+τ,2

D ).

For each ξn the solution u(ξn) to (84) can be decomposed as u(ξn) = u1(ξn) + uh where u1(ξn) is
the solution to (84) with ξ = ξn, u0 = 0, and uh is the solution to (84) with ξ = 0, u(0) = u0. By (85)
the sequence u1(ξn) is bounded in X and thus there exists a subsequence, again denoted by the
same indices, and u∗1 ∈ X such that u1(ξn) ⇀ u∗1 in X . Lemma 2.13 implies thatAu∗1(ξn) ⇀ Au1

in Lq(J ;W−1+τ,2
D ). Thus we can take the weak limit in Lq(J ;W−1+τ,2

D ) in the equation

∂u1(ξn)

∂t
−Au1(ξn) = Bξn, u(0) = 0,

to arrive at
∂u∗1
∂t
−Au∗1 = Bξ∗, u(0) = 0.

Uniqueness of the solution to this equation imply that u∗1 = u1(ξ∗). It follows that u(ξn) ⇀ u(ξ∗) =
u1(ξ∗) + uh in X , with u(ξ∗), the solution to (84) setting ξ = ξ∗. Consequently ξ∗ is an admissible
control for (P).

To pass to the limit in the cost functional we use Theorems 2.20 and 2.21 to assert that limn→∞ u(ξn) =
u(ξ∗) inC(J̄ ;L2) for cases (80) and (82), and we use the compact embedding ofW 1,2(J ;W−1+τ,2

D )∩
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L2(J ;W 1+τ,2
D ) into L2(J ;L2) to obtain limn→∞ u(ξn) = u(ξ∗) in L2(J̄ ;L2) for case (81). These

convergence properties, and recalling that α = 0 in case (81) justify the following inequalities:

J (ξ∗) = 1
2

∫ T
0
‖u(ξ̄)(t)− ud(t)‖2

L2 dt+ α
2
‖u(ξ∗)(T )− uT‖2

L2

+β
2

∫ T
0
‖ξ∗‖2

L2(M ;Hl) dt

≤ limn→∞
1
2

∫ T
0
‖u(ξn)(t)− ud(t)‖2

L2 dt+ limn→∞
α
2
‖u(ξn)(T )− uT‖2

L2

+ lim infn→∞
β
2

∫ T
0
‖ξn‖2

L2(M ;Hl) dt

≤ lim infn→∞ J (ξn) = infξ∈L2(J ;L2(M ;Hl)) J (ξ),

and thus ξ∗ is an optimal solution. Uniqueness of this solution follows from the strict convexity of the
cost-functional.

4.3 Optimality condition

Now we present the optimality condition associated to the unique solution ξ∗ of (P). The analysis
builds upon the adjoint equation associated to ξ∗ which is given by

−∂ϕ
∂t

+ Âϕ(t) = −(u(ξ∗)(t)− ud(t)) on J, ϕ(T ) = −α(u(ξ∗)(T )− uT ) (86)

Â defined as in (31), with the coefficient function replaced by its adjoint. We have the following regu-
larity results for the adjoint state:

Lemma 4.9. Concerning the regularity of the adjoint state the following properties hold:ϕ ∈ W 1,2(J ;W−1,2
D )∩

L2(J ;W 1,2
D ) for (80),ϕ ∈ W 1,2(J ;W−1−τ,2

D )∩L2(J ;W 1−τ,2
D ) for (81), andϕ ∈ W 1,2(J ;W−1−τ,2

D )∩
L2(J ;W 1−τ,2

D ) for (82) provided that uT ∈ W−τ,2.

Proof. The solution to (86) can be decomposed as ϕ = ϕ1 + ϕ2 with ϕ1 the solution (86) with
ϕ1(T ) = 0 and ϕ2 the solution to the differential equation in (86) with right hand side equal 0.

For case (80) we have ϕ2 ∈ W 1,2(J ;W−1,2
D ) ∩ L2(J ;W 1,2

D ) and ϕ1 ∈ W 1,2(J ;W−1+τ,2
D ) ∩

L2(J ;W 1+τ,2
D ), and thus ϕ ∈ W 1,2(J ;W−1,2

D )∩L2(J ;W 1,2
D ). As a side remark we observe that by

Proposition 2.10 we have that X ⊂ C(J̄ ; (W−1+τ,2
D ,W 1+τ,2

D ) 1
2
,2), and consequently u(ξ∗)(T ) ∈

(W−1+τ,2
D ,W 1+τ,2

D ) 1
2
,2. Thus if uT ∈ (W−1+τ,2

D ,W 1+τ,2
D ) 1

2
,2, then ϕ2 ∈ W 1,2(J ;W−1+τ,2

D ) ∩
L2(J ;W 1+τ,2

D ) and subsequently ϕ ∈ W 1,2(J ;W−1+τ,2
D ) ∩ L2(J ;W 1+τ,2

D ).

For case (81) we haveα = 0 and henceϕ2 = 0, and u(ξ∗) ∈ W 1,2(J ;W−1+τ,2
D )∩L2(J ;W 1+τ,2

D ) ⊂
L2(J ;W−1−τ,2

D ) and ϕ = ϕ2 ∈ W 1,2(J ;W−1−τ,2
D ) ∩ L2(J ;W 1−τ,2

D ).

For case (82) we have u(ξ∗) ∈ W 1,q(J ;W−1+τ,2
D ) ∩ Lq(J ;W 1+τ,2

D ) ⊂ Cβ(J̄ ;W−τ,2), for some
β > 0, see the proof of Theorem 4.8. Hence u(ξ∗)(T ) ∈ W−τ,2

D = (W−1−τ,2
D ,W 1−τ,2

D ) 1
2
,2, see

Lemma 4.10 below, and consequently α(u(ξ∗)(T )− uT ) ∈ W−τ,2
D . Moreover we have that u(ξ∗) ∈

Lq(J ;W 1+τ,2
D ) ⊂ L2(J ;W−1−τ,2

D ) and consequentlyϕ ∈ W 1,2(J ;W−1−τ,2
D )∩L2(J ;W 1−τ,2

D ).

Lemma 4.10. For τ ∈]0, 1
2
[ we have (W−1+τ,2

D ,W 1+τ,2
D ) 1

2
,2 = W τ,2

D .

Proof. One writes, by employing Prop.2.18 and re-iteration,

W−1+τ,2
D = [W−1−τ,2

D , L2] 2τ
1+τ

=
[
W−1−τ,2

D , [W−1−τ,2
D ,W 1+τ,2

D ] 1
2

]
2τ
1+τ

=
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= [W−1−τ,2
D ,W 1+τ,2

D ] τ
1+τ
.

Consequently, we get, again employing Prop.2.18 and re-iteration,

(W−1+τ,2
D ,W 1+τ,2

D ) 1
2
,2 = ([W−1−τ,2

D ,W 1+τ,2
D ] τ

1+τ
,W 1+τ,2

D ) 1
2
,2 =

(W−1−τ,2
D ,W 1+τ,2

D ) 2τ+1
2(1+τ)

,2 =
(
[W−1−τ,2

D ,W 1+τ,2
D ] 1

2
,W 1+τ,2

D

)
τ

1+τ
,2

=

=
(
L2,W 1+τ,2

D

)
τ

1+τ
,2

= W τ,2.

The optimality condition is presented next.

Theorem 4.11. Suppose that Assumption 4.7 holds and that uT ∈ W−τ,2 in case (82). Then the
necessary and sufficient optimality condition for ξ∗ to be a minimizer of (P) is given by

β‖ξ∗(t)‖q−2
L2(M ;Hl)ξ

∗(t) = B∗(t)ϕ(t) for a.a. t ∈ J, (87)

with ϕ given by (86).

Proof. Since ξ → u(ξ) is affine the linearization of this mapping in direction δξ ∈ Lq(J ; (M,Hl)) is
given as the solution u′ = u′(δξ) to

∂u′(t)

∂t
−Au′(t) = B(t)δξ(t) on J, u′(0) = 0.

Step 1 We first turn to the cases (80), for which τ > 0. In this situation u′ ∈ MR2
0(J ;W 1+τ,2

D ,W−1+τ,2
D ) ⊂

C(J̄ ;L2), by Theorem 2.15 with τ > 0. This will justify the following identities, where we use (86)
with q = 2:

d
dξ
J (ξ∗) δξ =

∫ T
0

(u(ξ̄)(t)− ud(t), u′(δξ)(t))L2dt

+α(u(ξ̄)(T )− uT , u′(δξ)(T ))L2 + β
∫ T

0
(ξ(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
( ∂
dt
ϕ(t)− Âϕ(t), u′(δξ)(t))W−1,2

D ,W 1,2
D
dt− (ϕ(T ), u′(δξ)(T ))L2

+β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),− δ

dt
u′(δξ)(t)−Au′(δξ)(t))W 1,2

D ,W−1,2
D

dt

+β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),−B(t)δξ(t))W 1−τ,2

D ,W−1+τ,2
D

dt+ β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt = 0.

The above identities hold for all δξ ∈ L2(J ;L2(M ;Hl)) and for a.a. t ∈ J , and consequently
B∗(t)ϕ(t) = βξ∗(t), as desired.

Step 2 Now we consider case (81) where τ < 0 andα = 0. In this case u′ ∈ MR2
0(J ;W 1+τ,2

D ,W−1+τ,2
D ) ⊂

C(J̄ ;W τ,2
D )), where we use Lemma 4.10, andϕ ∈ W 1,2(J ;W−1−τ,2

D )∩L2(J ;W 1−τ,2
D ) ⊂ C(J̄ ;W−τ,2

D )
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and ϕ ∈ W 1,2(J ;W−1−τ,2
D ) ∩ L2(J ; (J ;W−1−τ,2

D ) ⊂ C(J̄ ;W−τ,2). We can now follow the com-
putation of d

dξ
J (ξ∗) δξ as in Step 1, making appropriate changes in the duality pairings:

d
dξ
J (ξ∗) δξ =

∫ T
0

(u(ξ̄)(t)− ud(t), u′(δξ)(t))L2dt+ β
∫ T

0
(ξ(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
( ∂
dt
ϕ(t)− Âϕ(t), u′(δξ)(t))W−1−τ,2

D ,W 1+τ,2
D

dt

+β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),− δ

dt
u′(δξ)(t)−Au′(δξ)(t))W 1−τ,2

D ,W−1+τ,2
D

dt

+β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),−B(t)δξ(t))W 1−τ,2

D ,W−1+τ,2
D

dt+ β
∫ T

0
(ξ∗(t), δξ(t))L2(M ;Hl)dt = 0,

where the temporal integration by parts in third equality above can be verified with a density argument.
Again we obtain the desired equality (87).

Step 3 In this case we use that u(ξ∗) ∈ C(J̄ ;W−τ,2
D ), (see proof of Theorem 4.8,ϕ ∈ W 1,q(J ;W−1−τ,2

D )∩
Lq(J ;W 1−τ,2

D ) ⊂ C(J̄ ;W−τ,2
D ), (see Lemma 4.9 and Proposition 2.10), and u′ ∈ W 1,q(J ;W−1+τ,2

D )∩
Lq(J ;W 1+τ,2

D ) ⊂ C(J̄ ;W−τ,2
D ), (see Theorem 2.21). We now equate

d
dξ
J (ξ∗) δξ =

∫ T
0

(u(ξ̄)(t)− ud(t), u′(δξ)(t))L2dt

+α(u(ξ̄)(T )− uT , u′(δξ)(T ))L2 + β
∫ T

0
‖ξ∗(t)‖q−2

L2(M ;Hl)(ξ(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
( ∂
dt
ϕ(t)− Âϕ(t), u′(δξ)(t))W−1−τ,2

D ,W 1+τ,2
D

dt− (ϕ(T ), u′(δξ)(T ))L2

+β
∫ T

0
‖ξ∗(t)‖q−2

L2(M ;Hl)(ξ
∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),− δ

dt
u′(δξ)(t)−Au′(δξ)(t))W 1−τ,2

D ,W−1+τ,2
D

dt

+β
∫ T

0
‖ξ∗(t)‖q−2

L2(M ;Hl)(ξ
∗(t), δξ(t))L2(M ;Hl)dt

=
∫ T

0
(ϕ(t),−B(t)δξ(t))W 1−τ,2

D ,W−1+τ,2
D

dt

+β
∫ T

0
‖ξ∗(t)‖q−2

L2(M ;Hl)(ξ
∗(t), δξ(t))L2(M ;Hl)dt = 0,

and again (87) follows.

Step 4 Since the cost-functional ξ → J (ξ) is strictly convex, the necessary optimality condition is
also sufficient.

Utilizing the structure of the control operatorB(t) = VtIt it will be shown next that the optimal solution
ξ∗ exhibits extra regularity. This property of increased regularity of the minimizer arises frequently in
optimal control, see e.g. [33, pg. 52]

4.4 Extra regularity of the optimal control

To obtain extra regularity of the optimal control ξ∗ additional regularity properties of the problem data
are required. Throughout this section we restrict ourselves to the case d ∈ {2, 3}.

Assumption 4.12. (a) For some α > 1
2

the coefficient function satisfies

‖µ(t1, ·)− µ(t2, ·)‖L∞(Ω;Cd×d) ≤ c|t1 − t2|α for all t1, t2 ∈ J. (88)

DOI 10.20347/WIAS.PREPRINT.3165 Berlin 2025



K. Kunisch, J. Rehberg 30

(b) In case d = 3 the operator

−∇ · µ(t, ·)∇+ 1 : W 1,3
D → W−1,3

D (89)

is a topological isomorphism for each t ∈ J , and that the norms of their inverses are uniformly
in t bounded.
Moreover for every t ∈ J all components of the coefficient function µt = µ̂(t, ·) are multipliers
on the spaces W s,3 at least for small s ∈]0, δ•]. The corresponding norms as multipliers on
these spaces are uniformly in t bounded for s ∈]0, δ•] .
Finally, the set D ∩ ∂Ω \D – where the Dirichlet boundary part meets the Neumann part – is
a 1-set.

Remark 4.13. We are aware that the condition (88) restricts the class of admissable coefficients in
comparison to Ass. 2.12 considerably. Prototypically, in the latter a (scalar) coefficient function µ̂ is
allowed which is identically 1 up to a time point t0 ∈ J , and from t0 on it is identical 1 on a subdomain
Ω• and 2 on Ω\Ω•. Obviously, such a µ̂ does not satisfy (88). But the following is allowed: Let Ω• ⊂ Ω
be a subdomain and χ its indicator function. If one defines

µt =

{
1, if t ≤ t0

1 + (t− t0)χ,

then this coefficient function is admissible.

The following theorem, which is proved at the end of this section, refers to the equation with homoge-
nous initial condition:

∂u

∂t
−Au = f, u(0) = 0. (90)

Theorem 4.14. Let Assumptions 2.12, 2.3, and 4.12 be satisfied.

(a) For dimension d = 2, there exist β > 0 and r ∈]0, δ[ such that the solution u to (90) belongs
to Cβ(J,W 1+r,2

D ), provided that f ∈ Lq̃(J ;L2) for q̃ > 2 sufficiently large.

(b) For dimension d = 3, there exist β > 0 and r ∈]0, δ•[ such that the solution u to (90) belongs
to Cβ(J,W 1+r,3

D ) provided that f ∈ Lq̃(J ;L2) for q̃ > 2 sufficiently large.

This result allows us to draw conclusions on the regularity of the optimal control ξ∗. Henceforth all the
Assumptions 1.2, 2.3, 2.12, 4.1, 4.7, and 4.12 are supposed to hold.

Theorem 4.15. Let the assumptions just mentioned hold, let d ∈ {2, 3},α = 0, and ud ∈ L∞(J ;L2).
Then the optimal solution to (P), satisfies

(i) ξ∗ ∈ L∞(J ;W 1− 1
d+κ

,d+κ(M ;Hd−1)) for case (80),

(ii) ξ∗ ∈ L2(J ;W−τ,2(M ;H1)) for case (81),

(iii) ξ∗(t) ∈ W 1− 2
3+κ

,3+κ(M ;H1)) for a.e. t ∈ J and ξ∗ ∈ L∞(J ;L2(M ;H1)) for case (82),

for some κ > 0.
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Proof. Let us recall the adjoint equation (86). As established at the beginning of the proof of Theorem
4.8 we have that u(ξ∗) ∈ C(J ;L2) in the cases (80) and (82). In view of and the assumption on ud
we have that the right hand side of the adjoint equation satisfies u(ξ∗)(t)−ud(t) ∈ L∞(J ;L2). Next
we observe that after time reversal the adjoint equation is a special case of (90), and from Theorem
4.14 we deduce that ϕ ∈ Cβ(J,W 1+r,2

D ) ↪→ C(J,W 1,2+κ
D ) for d = 2 and ϕ ∈ Cβ(J,W 1+r,3

D ) ↪→
C(J,W 1,3+κ

D ) for d = 3, for some β > 0, r > 2 and κ > 0.

Now we recall from Theorem 4.11 that

β‖ξ∗(t)‖q−2
L2(M ;Hl)ξ

∗(t) = B∗(t)ϕ(t) = V ∗t I∗t ϕ(t) for a.a. t ∈ J. (91)

A straight forward computation shows that V ∗t : L2(Mt,Hl)→ L2(M,Hl) is given by

(V ∗t ψ)(x) = ψ(φt(x)), x ∈M. (92)

Now we continue with case (80) and obtain

β ξ∗(t) = V ∗t ϕ(t)|Mt = ϕ(t, φt(·))|M for a.a. t in J, (93)

where for the first equality we used (91) with q = 2, and Theorem 3.6 and (92) for the second. Let us
now temporarily fix t and denote the function ϕ(t, ·) by ψ. We point out that the right hand side of (93)
is to be read as

(
trMtϕ(t, ·)

)
(φt(x)) =

(
trMtψ

)
(φt(x)). Recall that ψ ∈ W 1,d+κ = W 1,d+κ(Ω)

and consider an extension operator E : W 1,d+κ(Ω) → W 1,d+κ(Rd) ⊂ C(Rd). Further, let φ̂t be
a Lipschitzian extension of φt : M → Mt, to Rd → Rd, having the same Lipschitz constant as
φt. Each function Eψ is continuous on Rd, so, for every x ∈ M ,

(
trMtψ

)
(φt(x) is obtained as the

pointwise evaluation of the function Eψ ◦ φ̂t in x, i.e. equals
(
trM(Eψ ◦ φ̂t)

)
(x). By construction, it

is not hard to see that the family F = {Eϕ(t, φ̂t(·))}t∈J is a bounded one in W 1,d+κ(Rd). Hence,

the family of traces, {βξ∗(t)}t∈J = trMF on M , is bounded in W 1− d−l
d+κ

,d+κ(M), thanks to Prop.

1.5. It remains to assertain the measurability of ξ∗ with values in W 1− d−l
d+κ

,d+κ(M ;Hl). This follows

from the fact that t → ξ∗(t) ∈ L2(M ;Hl) is measurable, that W 1− d−l
d+κ

,d+κ(M) is reflexive and
separable, and the Pettis measurability theorem.

The case (82) can be treated with the same techniques as (80) except that now (91) needs to be
considered with q > 2. Consequently we obtain β‖ξ∗‖q−2

L2(M ;H1)ξ
∗ ∈ L∞(J ;W 1− 2

3+κ
,3+κ(M ;H1))

and thus ξ∗(t) ∈ W 1− 2
3+κ

,3+κ(M ;H1) for a.e. t ∈ J . Moreover from (91) we deduce that ξ∗ ∈
L∞(J ;L2(M ;H1)).

Finally we turn to case (81). In this situation the adjoint variable satisfies ϕ ∈ L2(J ;W 1−τ,2
D ), see

the proof of Lemma 4.9, and recall that τ < 0. We now follow the steps of case(80) above. Equa-
tion 93 is satisfied with q = 2. The existence of a continuous extension operator E : W 1−τ,2(Ω) →
W 1−τ,2(R3) is guaranteed by [29, Ch. V.1]. The trace mapping trM : W 1−τ,2(R3)→ W−τ,2(M ;H1)
is bounded by Proposition 1.5 in the pointwiseH1 a.a. sense.

We thus have βξ∗(t) = trMEϕ(t, φ̂t(·)) ∈ W−τ,2(M ;H1) for a.a. t ∈ J in case (81). The mea-
surability of J 3 t → ξ∗(t) ∈ W−τ,2(M ;H1) again follows from the measurability of that mapping
with range in L2(M ;H1). Finally ξ∗ ∈ L2(J ;W−τ,2(M ;H1)) is implied by the boundedness of E
and the trace operator.

Now we turn to the proof of Thm. 4.14 and start with two preparatory lemmata.
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Lemma 4.16. Assume d = 2 and let s ∈]0, 1
2
[. Then [L2,W 1+s,2

D ]θ continuously embeds intoW 1+r,2
D

for some r > 0 if θ is sufficiently close to 1.

Proof. Take 1
2
< κ ∼ 1

2
, and write

[L2,W 1+s,2
D ]θ =

[
[L2,W 1+s,2

D ]κ,W
1+s,2
D ]

]
θ−κ
1−κ

↪→
[
[L2,W 1,2

D ]κ,W
1+s,2
D ]

]
θ−κ
1−κ

=

= [W κ,2
D ,W 1+s,2

D ]
]
θ−κ
1−κ

= W τ,2
D , with τ = θ + s

θ − κ
1− κ

.

Obviously, τ exceeds 1 if θ is sufficiently close to 1.

Lemma 4.17. Assume d = 3, and let s ∈]0, 1
3
[. Then [L2,W 1+s,3

D ]θ continuously embeds into

W 1+r,3
D for some r > 0, if θ is sufficiently close to 1.

Proof. First of all, let us state that, under the additional Assu. 4.12 (b), one has [W−1,q
D ,W 1,q

D ] 1
2

= Lq

(q ∈]1,∞[), see [4].

We fix a ζ such thatL2 continuously embeds intoW−ζ,3
D . Clearly, then [L2,W 1+s,3

D ]θ ↪→ [W−ζ,3
D ,W 1+s,3

D ]θ.
We may write

W−ζ,3
D = [L3,W−1,3

D ]ζ = [W−1,3
D , L3]1−ζ =

=
[
W−1,3

D , [W−1,3
D ,W 1,3

D ] 1
2

]
1−ζ = [W−1,3

D ,W 1,3
D ] 1−ζ

2
(94)

Let κ be a fixed number from ]
1
3

+ζ

1+ζ
, θ[. Now using (94), we may continue

[W−ζ,3
D ,W 1+s,3

D ]θ =
[
[W−ζ,3

D ,W 1+s,3
D ]κ,W

1+s,3
D

]
θ−κ
1−κ

↪→
[
[W−ζ,3

D ,W 1,3
D ]κ,W

1+s,3
D

]
θ−κ
1−κ

=
[[

[W−1,3
D ,W 1,3

D ] 1−ζ
2
,W 1,3

D

]
κ
,W 1+s,3

D

]
θ−κ
1−κ

=
[
[W−1,3

D ,W 1,3
D ]τ ,W

1+s,3
D

]
θ−κ
1−κ

with τ = 1
2
(1− ζ) + κ

2
(1 + ζ). Observe that our condition on κ implies τ > 1

2
. So we may continue

=
[[

[W−1,3
D ,W 1,3

D ] 1
2
,W 1,3

D

]
2τ−1

,W 1+s,3
D

]
θ−κ
1−κ

=
[
[L3,W 1,3

D

]
2τ−1

,W 1+s,3
D

]
θ−κ
1−κ

=

= [W 2τ−1,3
D ,W 1+s,3

D ] θ−κ
1−κ

. (95)

Observe that, due to our supposition on κ, we have 2τ − 1 > 1
3
. So the results in [4] allow to identify

(95) with a space W 1+r,3
D , (r > 0), if θ is close to 1.

Theorem 4.18. (see [24]) Let V ↪→ H ↪→ V ∗ be a Gelfand triple of Hilbert spaces with dense
embeddings. Assume that we are given, for each t ∈ J , a continuous, coercive sesquilinear form st
on V which altogether admit a common coercivity constant. Moreover, suppose that

sup
‖ϕ‖V =‖ψ‖V =1

∣∣st(ϕ, ψ)− ss(ϕ, ψ)| ≤ c|s− t|α, s, t ∈ J (96)

for an α > 1
2
.

Let At be the sectorial operator which is induced by st on H and q ∈]1,∞[.
Then, for every f ∈ Lq(J,H) ↪→ Lq(J ;V ∗) the solution of the equation

∂u

∂t
+ A(·)u = f, u(0) = 0 (97)
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exists, is unique and satisfies u ∈ W 1,q(J,H), and, consequently,

J 3 t 7→ Atu(t) ∈ Lq(J,H). (98)

Theorem 4.19. Let V = W 1,2
D , µ̂ is a – time dependent – coefficient function, bounded and elliptic

with a uniform in t ellipticity constant. Additionally, concerning the dependence on t, we suppose the
condition st is as in (2.1), there µ taken as a the coefficient function µ(t, ·). LetAt denote the operator
which is induced by the form st on L2. Finally, suppose the existence of a reflexive, separable Banach
space with dense embedding X ↪→ L2 such that the X,X∗ duality extends the L2-self duality and

‖ψ‖X ≤ c‖Atψ‖L2 , ψ ∈ dom(At), t ∈ J (99)

c being independt from t. Then, for every Lq(J, L2), the solution u of

∂u

∂t
+ A(·)u = f, u(0) = 0 (100)

exists and is unique. It belongs to the space MRq
0(J ;X,L2).

Proof. First of all, it is straight forward that condition (88) implies condition (96) in Theorem 4.18.
So existence and uniqueness follow immediately from Theorem 4.18. Moreover, condition (99) shows
that, for almost every t, u(t) indeed belongs toX . Let us show that the function u is measurable when
considered as X-valued. Since it is measurable in L2 also the function J 3 t 7→ (u(t), v))L2 =
〈u(t), v〉X×X∗ is measurable for every v ∈ L2. But L2 is dense in X∗ so J 3 t 7→ 〈u(t), v〉X×X∗ is
measurable even for all v ∈ X∗. Hence, u is weakly measurable when considered in X what implies
also strong measurability in our case. Knowing this, (99) shows in combination with Theorem 4.18 that
the assertion is true.

Having this at hand, we may apply Prop. 2.10. This, in combination with the Lemmata 4.16/4.17 fin-
ishes the proof of Thm. 4.14.

Remark 4.20. It is not trivial to single out geometries of Ω and D and/or coefficient functions µ such
that (89) indeed is a topological isomorphism. Fortunately, a broad zoo of geometries and coefficient
functions µ which implies this isomorphism property is established in [20] and discussed there in great
detail.

5 Concluding remarks

(a) The assignment

C0(J × Ω) 3 f 7→
∫
J

∫
Ω

f(t, x)dρt(x)dt (101)

defines a measure % on J × Ω if the mapping t 7→ ρt ∈ M is weakly measurable and some
integrability condition ∫

J

‖ρt‖qM dt <∞, q ≥ 1 (102)

holds.
Conversely, if % is a measure on J × Ω, then it always admits a disintegration of type

C0(J × Ω) 3 f 7→
∫
J

∫
Ω

f(t, x)dρt(x)d$(t), (103)
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with ρt a measure on Ω and $ a measure on J , see [28].
Thus, our result is proved for measures % on J × Ω for which the measure $ is the Lebesgue
measure on J and the measures ρt are of the form σtHl|Mt , satisfying the integrability condi-
tion (102).

(b) Condition (102) appears to be reasonable for applications, see [8] and [44].

(c) For the central embedding results Corollary 3.5 and Theorem 3.8 the lower estimate in (3)
is in fact not necessary. In this paper we focussed on l sets in the sense of Jonsson/Wallin,
thus demanding also this lower estimate, for the following reason: if only demanding the upper
estimate, one includes pathological cases like this: consider in 3d a subinterval I of the x-
axis. This is negligible with respect to the two-dimensional Hausdorff measure H2. Thus it,
trivially, satisfies the upper estimate in (3) for l = 2. Then Corollary 3.5 tells us that the trace

operator is well defined and continuous as operator from W
3
4
,2

D to L2(I,H2). But: since I is
negligible with respect to the Hausdorff measureH2, the space L2(I,H2) only contains zero,
and, consequently, the trace operator is the zero operator. This we consider as ’pathological’
and excluded it by also demanding the lower estimate in (3).

(d) We restricted to the case where the measures live on subsets of integer dimension only for
technical simplicity. The basis in geometric measure theory on which our results rest is estab-
lished in [29] for the general case as well. Everything can then be proved quite analogously.
Since we are not aware of any applications of this we did not carry out this here but restricted
to integral dimensions.

(e) The elliptic result in Proposition 2.5, borrowed from [27], is proved even for systems in that
paper. Also in the case of systems the Kato square root problem is solved in the affirmative in
an extremely wide range of geometries, see [5]. Moreover, the (elliptic) system operator has
a bounded holomorphic calculus on L2, since it is an accretive one. So the above arguments
should also work for systems.

(f) As the title of [31] suggests, it can happen that distributional objects are of interest which are not
necessarily measures. Consider the following situation: Take Ω ⊂ R2 as a Lipschitz domain
which contains a subinterval ] − a, a[ of the x-axis. Define the distribution Ψ on Ω as the PV
distribution on ]− a, a[ as follows:

〈Ψ, v〉 = lim
ε7→0

∫ −ε
−a

v(x)

x
dx+

∫ −ε
−a

v(x)

x
dx, v ∈ W 1,q

D , q > 2. (104)

It is not hard to see that the mapping in (104) is well-defined and continuous on Hölder spaces,
hence on W 1+ε,2

D with ε > 0 arbitrary. Consequently, the so defined Ψ – not being a measure
– belongs to any W−1−ε,2

D and lives on a one-dimensional manifold. We expect that such dis-
tributional objects, entering in the parabolic equations as right hand sides, can be treated to a
large degree in the same manner as the measures that we have considered above.
We suspect that similar constructions can be found also in higher dimensions, but do not expa-
tiate this further here.
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6 Appendix

As announced we give some explanations to the proof of Prop. 3.4.
The expression in question which one has to estimate is

‖Gα ? f‖2
L2(M ;Hl) =

∫
M

∣∣∣ ∫
Rd
Gα(x− y)f(y) dy

∣∣∣2 dHl(x) (105)

We follow widely Jonsson/Wallin with the exception to determine the constant a explicitly here – what
should allow an easier reading.
We define the number a via(

d− d− l
2

)
(1− a)2 =

d+ l

2
(1− a)2 = d. (106)

Re-arranging terms, one obtains

(
d+ l

)
a =

(
d− d− l

2

)
a 2 = l. (107)

Clearly, this gives a = l
d+l
∈]0, 1[. Evidently, (106) yields

(
d− α

)
(1− a)2 =

(
d− d− l

2

)
(1− a)2− (α− d− l

2

)
(1− a)2 =

= d− (α− d− l
2

)
(1− a)2 < d (108)

and (107) provides

(d− α)2a = (d− d− l
2

)2a+ (
d− l

2
− α)2a = l − (α− d− l

2
)2a < l, (109)

thanks to the supposition α > d−l
2

.

One estimates the r.h.s of (105) by∫
M

(∫
Rd

∣∣Gα(x− y)
∣∣1−a∣∣Gα(x− y)

∣∣af(y) dy
)2

dHl(x).

Applying Hölder’s inequality, one further estimates

≤
∫
M

(∫
Rd

∣∣Gα(x− y)
∣∣2a|f(y)|2dy ·

(∫
Rd
|Gα(x− y)|2(1−a)dy

))
dHl(x).

The crucial point is to show that the terms

∫
Rd
|Gα(x− y)|2(1−a)dy =

∫
Rd
|Gα(y)|2(1−a)dy, (110)

and ∫
M

|Gα(x− y)|2adHl(x), y ∈ Rd, (111)
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may be estimated uniformly for sets M admitting the same constant c•. Investing the exponential
decay of the Bessel kernel at∞ (see [46, Ch. V.3]) one can observe that (110) makes no difficulties
at∞. In a neighborhood of zero (110) also converges, thanks to

|Gα(z)| ≤ γ |z|α−d, (112)

(see [46, Ch. V.3]) in combination with (108).

Finally (111) can be written as∫
M∩{x:|x−y|>1}

|Gα(x− y)|2adHl(x) +

∫
M∩{x:|x−y|≤1}

|Gα(x− y)|2adHl(x).

According to (112), the first integral is not larger than γ2a Hl(M), and Hl(M) is not larger than
c• × τ – τ being the number of( shifted) unit balls B(z, 1) required for a covering of M . The second
integral is estimated by again employing (112) in combination with (109). This yields |Gα(x−y)|2a ≤
γ2a|x − y|−σ with σ < l. Afterwards one applies [29, Ch. V.1.2 Lemma 1]. This shows, first, that
(111) is indeed finite – and may be estimated uniformly with respect to y ∈ Rd. But even more, one
observes that the constant c• enters linearly in this estimate.
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