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First contact percolation
Benedikt Jahnel, Lukas Lüchtrath, Anh Duc Vu

Abstract

We study a version of first passage percolation on Zd where the random passage
times on the edges are replaced by contact times represented by random closed sets on
R. Similarly to the contact process without recovery, an infection can spread into the
system along increasing sequences of contact times. In case of stationary contact times,
we can identify associated first passage percolation models, which in turn establish
shape theorems also for first contact percolation. In case of periodic contact times that
reflect some reoccurring daily pattern, we also present shape theorems with limiting
shapes that are universal with respect to the within-one-day contact distribution. In this
case, we also prove a Poisson approximation for increasing numbers of within-one-day
contacts. Finally, we present a comparison of the limiting speeds of three models – all
calibrated to have one expected contact per day – that suggests that less randomness is
beneficial for the speed of the infection. The proofs rest on coupling and subergodicity
arguments.

1 Introduction
In first passage percolation (FPP) edges of a graph are assigned random transition times and
one studies the minimal total time needed to connect two vertices, which can be seen as a
random metric [2, 25, 26, 27, 33]. In particular, one might be interested in the set of vertices
that are reached up to some fixed time t from a given vertex (say the origin o). This represents,
for example, the set of wet sites at time t if o is interpreted as a water source and edges are
pipes of random length, justifying the term percolation. Another common interpretation comes
from the modeling of epidemiological processes, where an initially infected network component
spreads a virus in a population with varying transition times between neighboring vertices.

However, one might argue that such a situation is represented more accurately by assigning
random contact times between any pair of vertices connected by an edge. In this case, the
time for an infection to reach another vertex is determined by the total time needed along an
optimal path of edges with an increasing sequence of contact times. We call this model first
contact percolation (FCP) and these notes are dedicated to the study of FCP with respect to
the asymptotic speed of infection spread.

It is important to note that the connection times between pairs of vertices x, y no longer form
a metric, since the time needed to spread from x to y may differ from the time needed to
spread from y to x. This asymmetry arises as the traversal time of an edge depends on the
time at which one arrives at its endpoint, which is unlike in FPP. The situation is perhaps
best illustrated by a graphical representation, see Figure 1, where each edge is equipped with
a point process of contact times and one follows increasing space-time paths.

An important special case arises when the point processes are i.i.d. (with respect to the edges)
Poisson point processes. In this case, FCP becomes a Markov process in time, which simply
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Figure 1: Graphical representation of an infection process. Vertical lines indicate vertices and their state.
Horizontal lines indicate contact times between neighboring vertices. The infection (red) then spreads across
the network along first contact times. In this realization, neighboring vertices have exactly one contact per
integer interval (colored background).

corresponds to the classical contact process without recovery [13, 14, 15], i.e., its pure-growth
version. In that sense, FCP can be seen as the pure-growth version of contact processes based
on general point processes. In fact, one does not have to restrict oneself to point processes
on the edges, instead more general random closed sets of times can be considered, which
represent the time and duration of a meeting, see Figure 2 for an illustration. In this context,
let us mention results on the contact process beyond exponential waiting times [6, 16, 17, 18,
19, 23, 30, 32], which primarily focus on either renewal processes or time-dependent processes
as alternatives to the classical Poisson point processes.

The main focus of this study of FCP is to derive and compare the asymptotic shape of the
infected vertices as time tends to infinity. More precisely, we consider FCP on the hypercubic
lattice Zd with d ≥ 1, where each edge e is independently equipped with a random closed
set of meeting times Xe ⊂ R following the same distribution. Note that each edge must only
be traversed once in order to accurately describe the distribution of the vertices reached up
to a given time. This allows us to draw a connection to FPP and ultimately to recover an
associated shape theorem when Xe is stationary. Such a direct connection is not possible for
non-stationary Xe. However, we establish a shape theorem also for specific models that obey
stationarity with respect to shifts in Z. Paradigmatically, we consider a situation in which
the time axis is split into days {[x, x + 1): x ∈ Z} and, n ∈ N i.i.d. meeting times are
assigned per day and edge. We observe that the limiting shape of infected vertices in this
model is independent of the underlying diffusive distribution of meeting times since only order
statistics are relevant, which allows for the restriction to uniformly distributed meeting times.
Furthermore, the properly rescaled limiting shape obeys a Poisson approximation, that is, it
converges to the limiting shape of the classical Richardson model as n tends to infinity.

We further investigate how the asymptotic speed of the infection in FCP depends on the
variability of the underlying contact-time distribution. For this, we compare the following three
models. Two models with precisely one, uniformly distributed, contact time per day and edge,
which is either fixed throughout the whole process or independently resampled for each day.
The third model is the pure-growth model based on an intensity-one Poisson point process.
Importantly, all models are calibrated to have one contact per day in expectation. It turns out
that rigidity accelerates infection spread: The most rigid model with one fixed meeting time per
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First contact percolation 3

Figure 2: Graphical representation of an infection process where contact times can be arbitrary random closed
sets, e.g., Boolean models with random radii based on simple point processes.

day and edge has the largest limiting set of infected vertices, while the Poisson process based
model has the smallest such set, with the resampled meeting time model lying in between the
two. In a nutshell, this is a consequence of the well-known waiting-time paradox. Hence, a
population should organize its contact times as random as possible in order to slow down an
infection. Let us mention that, for comparison, the speed of the infection in two-dimensional
FPP is increasing if the expected transition time is fixed but the underlying i.i.d. passage-time
distribution is made more variable, in the sense of convex ordering, see [4, 31]. In other words,
roughly for FPP, more randomness speeds up the infection, since, in the presence of multiple
possible paths, the larger variance provides also particularly fast paths.

The remainder of the paper is organized as follows. In Section 2 we present our setup and
state our main results about shape theorems for stationary and periodic contact distributions
as well as comparisons and connections between FPP and FCP. We conclude with a discussion
on further research directions. Section 3 contains all proofs.

2 Setting and main results

We consider the lattice Zd, with d ≥ 1, and identify it with the nearest-neighbor graph in
the usual way. That is, the vertices are given by the lattice sites and each lattice site is
connected to its 2d nearest neighbors. Let {Xe ⊂ R : e = {x, y} ⊂ Zd×Zd} be a collection of
independent, identically distributed random closed sets (under the Euclidean geometry) in R
indexed by the lattice edges. The interpretation is as follows. Each site represents an agent of
a network where two agents occasionally meet or contact each other if they share an edge. The
times and durations of these contacts are modeled by the random closed sets assigned to the
edges. Canonical examples are Poisson point processes or, more generally, renewal processes
and Boolean models thereof. We are interested in the speed of an infection spreading through
the network, where the infection is passed from an infected vertex to an uninfected one at the
next contact time. Initially, only the agent at the origin o is assumed to be infected. The time
it takes the infection to be passed from a vertex x, infected at time t0, to some vertex y is
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then given by

Dt0(x, y) := inf
{
t ≥ 0: ∃ path γ = (x = x0, x1, x2, . . . , xn−1, xn = y), such that

t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = t0 + t : ti ∈ X{xi−1,xi} for all 1 ≤ i ≤ n
}
.

(1)
Put differently, one may only traverse neighboring sites along increasing sequences of contact
times. Correspondingly, we define the set of reachable vertices from some starting vertex x
during the time interval [t0, t] as

It0(x, t) := {y ∈ Zd : Dt0(x, y) ≤ t}.

As we only assume the origin o to be infected at initial time 0, we abbreviate

D(x, y) := D0(x, y) as well as I(t) := I0(o, t) = {y ∈ Zd : D(o, y) ≤ t}.

We call this model first contact percolation (FCP) on Zd.

2.1 Stationary contact times
For comparison, we recall the basics of first passage percolation (FPP). Here, for µ being
some probability measure on [0,∞], we assign to each edge e = {x, y} ⊂ Zd an independent
random variable Xe distributed according to µ. In this case, the transition time between two
vertices is defined as the shortest path from x to y, i.e.,

D(µ)(x, y) := min
{∑
e∈γ

Xe : γ is a path connecting x and y
}
.

The set of vertices reached up to time t from the origin is given by

J (µ)(t) = {x ∈ Zd : D(µ)(o, x) ≤ t}. (2)

The most prominent example of an FPP model is the Richardson model, where the Xe are
i.i.d. exponentially distributed random variables. For an overview and extensive discussion on
FPP, we refer the reader to the book [2].

Let us note that while D(µ) defines a metric, this is not true for Dt0 (as used in FCP).
Particularly, the latter is not symmetric as the time it takes to pass the infection from x to y
may differ considerably from the time it would take the infection to pass from y to x. Still,
Dt0 fulfills a version of the triangle inequality as

Dt0(x, z) ≤ Dt0(x, y) +DDt0 (x,y)(y, z). (3)

Another crucial difference between FCP and FPP arises when processes are considered, in
which edges are crossed multiple times, for instance a contact process on the graph that
includes recoveries, see also the discussion in Section 2.4. In this work, we focus on the set
of reachable vertices I(t). In this regard, the link between FCP and FPP is more immanent:
For stationary random closed sets, I(t) corresponds to an FPP model as each edge is only
traversed once.

Proposition 2.1 (FCP with stationary contacts is FPP). Consider the FCP based on some
stationary random closed set X. Then, the process {I(t) : t ≥ 0} of reachable vertices in the
FCP model has the same distribution as {J (µ)(t) : t ≥ 0}, where

µ([0, s]) = P(X ∩ [0, s] 6= ∅) for all s ≥ 0. (4)
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First contact percolation 5

The proof (and all other proofs) is presented in Section 3. By now, it is a standard result
that the continuum version J̃ (µ) of J (µ) satisfies a shape theorem (of the form (7) below)
with limiting shape B(µ) under certain conditions on µ [2]. By Proposition 2.1, under those
conditions, also I satisfies the same shape theorem. Before we discuss the relation between X
and µ any further, let us give some examples.

Example 2.2. Let us mention some examples for which µ can be explicitly described.

(i) Poisson point processes: For X being the Poisson point process with intensity λ > 0, the
corresponding FPP model is the Richardson model based on exponential transition times
with parameter λ.

(ii) Renewal processes: If X is a stationary simple renewal process with inter-arrival distribu-
tion ν (with finite expectation), then µ is the distribution of the forward recurrence time
of ν, i.e.,

µ([0, s]) =
∫ s

0
ν((x,∞))dx

/∫ ∞
0

ν((x,∞))dx. (5)

In particular, µ has the non-increasing density f(s) = ν((s,∞))/
∫∞

0 ν((x,∞))dx.

(iii) Shifted lattices: Consider X being given by L(Z + U), L > 0, where U is a uniform
random variable on [0, 1]. Then, µ is the uniform distribution on [0, L].

(iv) Boolean models: Let X′ be a stationary random closed set with associated measure µ′,
given by Equation (4). Now, let X be the Boolean model based on X′ with parameter
r > 0, i.e., X := ⋃

x∈X′ [x−r, x+r]. Then, the corresponding FPP model has a transition-
time distribution given by

µ([0, s]) = µ′([0, s+ 2r]). (6)

Indeed, this can be seen after assuming that the balls of radius r are attached “to the
left” of X, which does not change the distribution due to stationarity.

(v) Cox processes: Consider the random closed set X where, with probability 1 − e−1, we
have X = R and otherwise X is sampled from a Poisson point process of unit intensity.
The corresponding FPP has the transmission-time distribution

µ([0, s]) = (1− e−1) + e−1(1− e−s) = 1− e−(s+1).

This also corresponds to the FCP given by the Boolean model of a Poisson point process of
intensity one and radius 1/2. In particular, this shows that different FCPs can correspond
to the same FPP, with respect to the process of reachable vertices.

In view of the examples just described, our next result describes general properties of µ defined
via (4) for given X.

Lemma 2.3 (µ is concave and absolutely continuous). Let X be a stationary random closed
set and µ its associated measure as given by Equation (4). Then, s 7→ µ((0, s]) is concave. In
particular, µ restricted to (0,∞) has a Lebesgue density f on (0,∞), which can be chosen to
be non-increasing and right-continuous.

What can be said about existence, uniqueness and other properties of stationary random closed
sets giving rise to a prescribed transition-time measure µ? In view of Example 2.2 Part (v),
we see that such X are not necessarily unique. Moreover, Lemma 2.3 requires concavity of
µ. The following result establishes that concavity is also sufficient. Furthermore, we present
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a construction of some X via randomly superposed translation-invariant lattices as well as
renewal processes.

Proposition 2.4 (FCP from FPP). Let µ be a distribution on [0,∞] whose restriction to
(0,∞) has a non-increasing, right-continuous Lebesgue density f . Then, the following holds:

(i) There exists a stationary point process X such that the FCP under X corresponds to
the FPP under µ. Furthermore, X can be chosen such that each realization is a shifted
lattice of the form L(Z + U) for some L ∈ [0,∞] and U ∈ [0, 1]. Here, we make the
convention that 0 · Z := R and ∞ · Z := ∅.

(ii) If µ has no atoms in {0,∞} and if f is bounded, then there exists a unique stationary
and ergodic renewal process X such that Equation (4) holds.

(iii) If µ has no atom in ∞, then X can be chosen as a Boolean model of a stationary and
ergodic renewal process.

Let us note that the stationary sets X in Part (i) above are not necessarily ergodic. Also,
we note that X in Part (iii) is not unique even within the set of Boolean models based on
stationary renewal processes.

So far, we have only discussed processes X that are stationary with respect to shifts in R, how-
ever those processes are not well suited to model the rather periodic behavior of a population
with periods of sleep.

2.2 Periodic contact times
In order to accommodate periodic behavior, we consider the process based on the following
perturbed lattice

X(n) =
⋃
k∈Z

n⋃
i=1
{k + U (k,i)}, (PL)

where the U (k,i) are i.i.d. random variables on [0, 1) with some Lebesgue density g. In other
words, X(n) models a situation in which every interval [k, k + 1) contains precisely n i.i.d.
contacts. We require a Lebesgue density simply to avoid multiple contact times to coincide.
Now, every edge is equipped with an independent copy of X(n) and we write {In(t) : t ≥ 0} for
its process of reachable vertices. Additionally, we write Ĩn(t) for its continuum version obtained
from In(t) by identifying each lattice site x with the unit box centered around x. The following
result establishes a shape theorem for Ĩn(t) in which the limiting shape does not depend on
g. We present some simulated realizations on Z2 in Figure 3.

Theorem 2.5 (Shape theorem). Consider the model based on (PL). For all n ∈ N, there
exists a convex and compact set Bn ⊂ Rd such that, for all Lebesgue-densities g determining
the distribution of the contact times and ε > 0, we have

P
(
∃ T <∞ : (1− ε)Bn ⊂ t−1Ĩn(t) ⊂ (1 + ε)Bn for all t ≥ T

)
= 1. (7)

The next statement establishes a Poisson-approximation result for the limiting shape. For this,
let JR(t) denote the set of infected vertices at time t in the Richardson model, i.e., the FPP
based on µ being the exponential distribution with parameter one, and BR the limiting shape
in the associated shape theorem.
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Figure 3: Realizations of t−1I(t) for n = 1 and t = 10, 50, 190. One can see the sets slowly converging to a
deterministic limit set B1.

Theorem 2.6 (Poisson approximation). Let In(t) denote the set of infected vertices at time
t and Bn the limit shape of the corresponding model. Then, there exists a coupling such that
almost surely

In(t/n) ⊃ JR(t).
In particular Bn/n ⊃ BR for every n ∈ N. Furthermore, with respect to the Hausdorff metric,

Bn/n→ BR as n→∞.

Finally, we present a case study that shows that additional randomness in the process X
decreases the set of infected vertices.

2.3 Comparison of infection speeds
Recall the model X = Z + U , with U being uniformly distributed in [0, 1) from Example 2.2
Part (iii). In this situation, neighboring vertices decide only once independently for a contact
time on the first day and then keep that time for all subsequent days. In order to compare this
process with the process X(n) defined in (PL), let us also consider the multi-contact version
of X = Z + U , given by the stationarized lattice

X′(n) =
⋃
k∈Z

n⋃
i=1
{k + U (i)} =

n⋃
i=1

(
Z + U (i)

)
, (SL)

where the U (i) are i.i.d. uniforms in [0, 1). We equip every edge independently with a copy of
X′(n) and write I ′n(t) for the associated process of reachable vertices. Clearly, X′(n) features
less randomness than X(n), which leads to more infections, as shown by the following result.

Proposition 2.7 (Randomness slows down). Consider, for fixed n ∈ N, the model based
on (SL). Then, there exists a coupling such that almost surely I ′n(t) ⊃ In(t).

Combining Theorem 2.6 and Proposition 2.7, we have the following ordering of infected sets,

I ′n(t/n) ⊃ In(t/n) ⊃ JR(t)

and thus also the inclusion
BR ⊂ Bn/n ⊂ B′n/n,
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where we used that X′(n) is stationary and well behaved and thus obeys a shape theorem with
limiting shape B′n. Meanwhile, setting n = 1, all three models have, in expectation, precisely
one contact in the interval [0, 1) and thus, we can conclude that in our situation, randomness
slows down the infection process. As an illustration, let us note that one can explicitly calculate
the asymptotic speeds in dimension one and for n = 1. In this case, one obtains the values 2
for the FCP model associated to X′(1), e− 1 for the FCP model associated to X(1), and 1 for
the Richardson model, underlining the observed ordering.

We conclude this section by mentioning that, as the shape theorem for FPP holds for I ′(t),
Proposition 2.7 also provides an alternative proof for the finiteness of the speed in the model
based on (PL), see Lemma 3.4 below.

2.4 Further discussion and outlook
Let us elaborate on some open questions and connections of FCP to other processes.

2.4.1 Correspondences and differences between FCP and FPP

We have seen in Proposition 2.4 that we can find one-to-one correspondences between transition-
time distributions µ in FPP and certain classes of stationary random closed sets X. In that
respect, we have considered super-positioned lattices L(Z+U), renewal processes and Boolean
models thereof. However, it should be interesting to see what other properties on µ are nec-
essary and sufficient to establish links to other classes of stationary random closed sets like,
for example, Gibbs point processes or perturbed lattices, in particular ergodic ones. Let us
mention that our model (PL) is indeed a perturbed lattice albeit not stationarized. On the
other hand, the model (SL) is a shifted lattice and fits well into the framework of stationarized
renewal processes.

Moreover, let us recall that many different stationary FCP models can lead to the same FPP
exploration process. The main difference between FCP and FPP becomes apparent when
we consider any characteristic that involves a revisiting of vertices. This begs the question:
What other quantities and processes can we look at to easily distinguish the several models?
Introducing recovery to consider contact processes is certainly one candidate.

2.5 Speed and rigidity
Theorem 2.6 and Proposition 2.7 have given us a nice ordering of the Richardson model and
the FCP models given by X as in (PL) and X′ in (SL) in terms of their time constants. We
have observed that this also matches their “randomness”. In what generality does this hold
and can we make this statement rigorous?

As a small sanity check, let us briefly return to the one-dimensional case d = 1. Consider the
stationarized version of X, that is, X + U for a uniform random variable on (0, 1). In a sense,
this model is more random than X, so we would expect its speed to be lower. Indeed, using
(4), we see that its FPP transition-time distribution µ is given by

µ([s,∞)) = (1− s) + s3/6 and µ([1 + s,∞)) = (1− s)3/6

for s ∈ [0, 1]. Therefore, its inverse speed is given by
∫∞

0 µ([s,∞))ds = 7/12. This underlines
our assumption on the speeds since 12/7 < e− 1.
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2.5.1 Beyond stationary and periodic processes X

Our main results only deal with contact-time processes X that are either stationary with respect
to R or with respect to some lattice LZ, L > 0. This has the advantage that the waiting
time until the next crossing opportunity of an edge does not depend on the time at which
we arrive at an endpoint of that edge. This is no longer the case if we abandon stationarity.
Particularly, a shape theorem may no longer hold true, if X, for example, is a renewal process
with heavy-tailed inter-arrival times; a case mentioned in [23, Proposition 1.3], in the context
of contact processes based on renewal processes replacing the usual Poisson processes in the
graphical representation. Let X be a renewal processes started at time 0 such that, for some
0 < ε < 1,

P(X ∩ [t, t+ tε] 6= ∅) ≤ t−ε, for all t ≥ t0,

whose existence is guaranteed by [17, Proposition 7]. In this case St := sup{|y| : y ∈ I(t)}
behaves sublinearly in the sense that, almost surely for all 0 < c < ε,

lim sup
t↑∞

tc−1St = 0.

However, in this example, no stationary version of X exists. If the inter-arrival times have a
finite expectation, then the renewal process will eventually equilibrate and we expect a shape
theorem to still hold.

2.5.2 Further directions of research

Natural further directions of research include the modeling and analysis of other interacting
particle systems via graphical representations not based on Poisson processes, see e.g. [8, 28]
in the context of the exclusion process, [6, 16, 17, 18, 19, 23, 30, 32] in the context of the
contact process, or [20] for hydrodynamic limits of more general processes. In view of the
related FPP, several properties can be investigated with respect to FCP, such as

� conditions under which we have continuity or monotonicity of the limiting shape with
respect to varying random closed set distributions, see [9, 31],

� large-deviation type results for the probability to reach far-away points atypically fast or
slow, see [3, 7],

� further properties of the geodesics in FCP such as their fluctuation around the straight
line, see [1, 12] or the number of geodesics, see [22, 24],

� properties of the limiting shape for FPP models derived from FCP models, or of periodic
FCP models, see [10, 21],

and many more.

3 Proofs
This section is devoted to the proofs of our main results regarding the model based on (PL)
but also the correspondences between FCP and FPP. We start by proving the Propositions 2.1
and 2.4 in Section 3.1 as well as the auxiliary Lemma 2.3. Together, they provide necessary
and sufficient requirements to compare FPP and certain FCP models. We prove the shape
theorem (Theorem 2.5) in Section 3.2. This follows mostly from established arguments. In
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Section 3.3, we prove the monotone coupling between monotonicity the models based on (PL)
and (SL) (Proposition 2.7). Additionally, we show convergence of the model based on (PL) to
the Richardson model (Theorem 2.6) as n tends to infinity.

3.1 Proofs of FCP-FPP correspondences
Proof of Proposition 2.1. Observe that {I(t) : t ≥ 0} can be seen as an exploration process
of Zd starting from the origin. Whenever the exploration discovers a new vertex that has not
yet been seen, its edges incident to unexplored vertices and their respective next contact time
are revealed. By assumption, the contact times on the edges are given by independent copies
of the stationary random closed set X. By the independence and stationarity, the next contact
time on said edge has the distribution function µ independently of all other contact times.
This concludes the proof.

Proof of Lemma 2.3. The proof is identical to the one in [5, Lemma 3.1.1] for stationary point
processes, which we recapitulate here for convenience. Let h > 0 and 0 < a < b < ∞. We
first observe that

µ((a, a+ h]) = P(X ∩ [0, a] = ∅ and X ∩ (a, a+ h] 6= ∅)
= P(X ∩ [b− a, b] = ∅ and X ∩ (b, b+ h] 6= ∅)
≥ P(X ∩ [0, b] = ∅ and X ∩ (b, b+ h] 6= ∅) = µ((b, b+ h]),

where the second equality follows from stationarity of X. Given arbitrary 0 < s < t <∞ and
choosing a = s, b = (s+ t)/2 and h = (t− s)/2 yields

µ
(
(s, (s+ t)/2]

)
≥ µ

(
((s+ t)/2, t]

)
⇐⇒ µ

(
(0, (s+ t)/2]

)
≥ 2−1

(
µ((0, s]) + µ((0, t])

)
,

which shows concavity of the function F : (0,∞) → [0, 1], s 7→ µ((0, s]). Hence, a right
derivative f(s) exists for all s > 0. Additionally, f is decreasing and F (c)−F (b) ≤ f(a)|c−b|
for all 0 < a < b < c. Thus, F is absolutely continuous on any interval [δ,∞), δ > 0 and
hence

F (b) = F (a) +
∫ b

a
f(s)ds,

concluding the proof by taking the limit a ↓ 0.

The following observation will be used in the proof of Proposition 2.4.

Lemma 3.1 (Limit behavior of f). Let f : (0,∞)→ (0,∞) be monotone with
∫∞

0 f(x)dx <
∞. Then,

lim
x↓0

xf(x) = lim
x↑∞

xf(x) = 0.

Proof. It follows immediately that f must be non-increasing. Next, assume lim supx↑∞ xf(x) =:
a > 0. Then, there exists an increasing sequence (xk)k∈N, xk ↑ ∞ such that xkf(xk) ≥ a,
i.e., f(xk) ≥ a/xk. By choosing a subsequence, we may assume, without loss of generality,
that xk−1/xk < 1/2. Then, due to monotonicity of f , we have that∫ ∞

0
f(x)dx ≥

∞∑
k=2

(xk − xk−1)f(xk) ≥
∞∑
k=2

(1− xk−1/xk)a ≥
∞∑
k=2

a/2 =∞,

which shows that lim supx↑∞ xf(x) = 0 whenever
∫∞

0 f(x)dx <∞. Showing lim supx↓0 xf(x) =
0 works analogously, which finishes the proof.
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Proof of Proposition 2.4. We prove the statements individually.

Part (i): Let us first additionally assume that µ({0,∞}) = 0. Take L to be distributed
according to a probability distribution ν on (0,∞) to be specified later and take U to be a
uniform random variable on (0, 1) independent of L. Our random closed set is going to be
X := L(Z + U), which is clearly stationary but not necessarily ergodic. Let us first define ν.
Since f is non-increasing on (0,∞), we may define a measure Q on (0,∞) via

Q((a, b]) := f(a)− f(b), for all 0 < a < b <∞.

Then, we define ν to be the measure that is absolutely continuous with respect to Q with
density x 7→ x, i.e.,

ν(dx) = xQ(dx).

Let us first check that ν is indeed a probability measure. For this, we first see that Lemma 3.1
below applies to f , i.e., limx↓0 xf(x) = limx↑∞ xf(x) = 0. Further, we obtain by the
integration-by-parts formula for Stieltjes integrals for 0 < a < b <∞,∫ b

a
xQ(dx) = −

∫ b

a
x df(x) = af(a)− bf(b) +

∫ b

a
f(x) dx = af(a)− bf(b) + µ([a, b]).

Hence,
ν((0,∞)) =

∫ ∞
0

xQ(dx) = lim
x↓0

xf(x)− lim
x↑∞

xf(x) + µ((0,∞)) = 1.

Let us verify Equation (4) next. The procedure is as follows: Given s > 0, the set X = L(Z+U)
will always have a point in [0, s) if s ≥ L. Otherwise, we need LU ≤ s. Using integration by
parts again, we infer

P(X ∩ [0, s) 6= ∅) = P(L(Z + U) ∩ [0, s) 6= ∅ and L > s) + P(L(Z + U) ∩ [0, s) 6= ∅ and L ≤ s)

=
∫ ∞
s

P(xU ≤ s) ν(dx) +
∫ s

0
ν(dx) =

∫ ∞
s

x
s

x
Q(dx) +

∫ s

0
xQ(dx)

= sQ((s,∞))−
∫ s

0
x df(x) = sf(s)− sf(s) + lim

x↓0
xf(x) +

∫ s

0
f(x) dx = µ([0, s]).

Now, let us consider the general case of µ({0,∞}) ≥ 0. In this case, we take

ν := µ({0})δ0 + µ({∞})δ∞ + (1− µ({0,∞}))ν ′

and interpret 0 ·Z = R and∞·Z := ∅. In the case that µ({0,∞}) < 1, we choose ν ′ as in the
case above for the measure µ′([a, b]) := (1−µ({0,∞}))−1µ([a, b]∩ (0,∞)), 0 ≤ a < b ≤ ∞,
where the latter is indeed a probability measure satisfying the conditions required in the above
first part. Thus, X = L(Z + U) satisfies Equation (4) since µ({0}) = P(0 ∈ X) = P(L = 0)
and analogously for µ({∞}).

Part (ii): Assume µ({0,∞}) = 0 and f(0) <∞ for the right-continuous, monotone Lebesgue
density of µ. We aim to finding a stationarized (simple) renewal process X with inter-arrival
distribution ν generating µ. Inverting Equation (5) yields

ν((s,∞)) := f(0)−1f(s).

The validity of Equation (4) is easy to check.
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Part (iii): We allow for µ({0}) =: c > 0 and want to use a Boolean model of a stationary and
simple renewal process instead. If c = 1, simply take ν := δ1 and radius r = ∞. Otherwise,
µ has a Lebesgue density f on (0,∞). Consider the non-increasing, right-continuous function
f ∗ : [0,∞)→ [0,∞) as

f ∗(x) := f
(

max(0, x− c/f(0))
)
.

We see that f ∗ is a probability density as∫ ∞
0

f ∗(x)dx =
∫ ∞

0
f(x)dx+ c

f(0)f(0) = µ((0,∞)) + µ({0}) = 1.

Choosing ν as in Part (ii) but according to f ∗ and taking r = c/(2f(0)) proves the claim
by Equation (6). Note that many other candidates for f ∗ exist that yield a smaller radius r,
hence X is not unique.

3.2 Proof of shape theorem
During the whole section, we fix some n ∈ N for the number of contact times per day and
may drop it from the notation whenever convenient. Furthermore, we assume that the contact
times per day are independently and identically distributed according to some Lebesgue-density
g. However, we shall see that the particular choice of g has no influence on the result.

The proof of the shape theorem then follows established arguments, in which the first step is
to establish linear speed in a fixed direction. That is, for each fixed direction x ∈ Rd, there
exists some ϕ(x) such that the time it takes the infection to reach a site close to tx is roughly
tϕ(x). The quantity ϕ(x) is hence also called the inverse speed in direction x. For x ∈ Rd, let
us write [x] for its closest neighbor in Zd. In case of ambiguity, any tie-breaker will do.

Lemma 3.2 (Existence of inverse speed for lattice points). For all x ∈ Zd, there exists
ϕ(x) := ϕ(n)(x) ∈ [0,∞) such that almost surely

lim
t↑∞

t−1D(o, [tx]) = ϕ(x).

Furthermore,
ϕ(x) = lim

t↑∞
t−1ED(o, [tx]) = inf

t≥1
t−1ED(o, [tx]). (8)

Proof. In order to make use of the independence between days, it will be useful to consider
an integer-valued version of the travel duration D, defined as

D̃t0(y, z) := dDt0(y, z)e = inf{t ∈ N : z ∈ It0(y, t)},

for a time t0 ≥ 0. That is, the infection starting in x at time t0 reaches vertex y in D̃t0(y, z)
days or during the bt0c + D̃t0(y, z)-th day of the process respectively. Note that the limits
D(0, [tx])/t and D̃0(0, [tx])/t (as t ↑ ∞) coincide if they exist. Given 0 ≤ s ≤ t ∈ N, we
define the random variables

Xs,t := D̃
D̃0(o,[sx])([sx], [tx]),

representing the number of days required for the infection to spread from [sx] to [tx] when
started the first day after the infection has reached [sx] from the origin. In the remainder of
the proof, we shall identify sx and tx with [sx] and [tx] respectively to ease notation. The
proof is now concluded by applying the subadditive ergodic theorem [29, Theorem 2.6] in the
version of [11, Theorem 4.2]. For this, we have to verify the following conditions:

DOI 10.20347/WIAS.PREPRINT.3164 Berlin 2025



First contact percolation 13

(i) X0,t ≤ X0,s +Xs,t,

(ii) 0 ≤ EX0,t <∞ for every t,

(iii) the distribution of {Xs,s+k : k ∈ N} does not depend on s, and

(iv) lim supt↑∞X0,tk/t ≤ EX0,k for each k ∈ N.

Under the assumption that the Conditions (i)–(iv) are satisfied, we infer from [11, Theorem 4.2]

ϕ(x) := lim
t→∞

t−1EX0,t = inf
t≥1

t−1EX0,t,

implying (8), and ϕ(x) = limt→∞ t
−1X0,t almost surely. It hence remains to verify these

conditions.

On (i) This is a direct consequence of the triangle inequality (3).

On (ii) This is immediate from the trivial bounds 0 ≤ X0,t ≤ t|x|1.

On (iii) Note that we have for all measurable sets A ⊂ NN

P
(
Xs,s+1, Xs,s+2, · · · ∈ A

)
=
∑
j≥1

P
(
D̃k(sx, (s+ 1)x), D̃k(sx, (s+ 2)x), · · · ∈ A, D̃0(0, sx) = j

)
=
∑
j≥1

P
(
D̃k(sx, (s+ 1)x), D̃k(sx, (s+ 2)x), · · · ∈ A

)
P(D̃0(0, sx) = j)

=
∑
j≥1

P
(
D̃0(0, x), D̃0(0, 2x

)
, · · · ∈ A

)
P(D̃0(0, sx) = j)

= P
(
X0,1, X0,2, . . . ∈ A

)
,

where we used the independence of the contact times with respect to different days as
well as the lattice shift invariance of the system on every individual day in the penultimate
step.

On (iv) Define recursively

Y k
1 := D̃0(0, kx) = X0,k and Y k

i := D̃Y k
1 +···+Y k

i−1
((i− 1)kx, ikx)

and note that for every realization

X0,nk ≤
n∑
i=1

Y k
i .

As the Y k
i all depend on mutually disjoint days, they form an i.i.d. sequence. Thus, the

claim follows by the strong law of large numbers.

This concludes the proof.

Next, we extend the established inverse speed in Zd directions to all directions.

Lemma 3.3 (Existence of inverse speed for general directions). Under the assumptions and
definitions of Lemma 3.2, almost surely, for all x ∈ Rd, the limit ϕ(x) = ϕ(n)(x) exists.
Furthermore, ϕ : Rd → [0,∞) is almost surely continuous.

DOI 10.20347/WIAS.PREPRINT.3164 Berlin 2025



B. Jahnel, L. Lüchtrath, A.D. Vu 14

Proof. Since we travel at least one edge per day, the reverse triangle inequality implies
|D0(o, y) − D0(o, z)| ≤ |z − y|1 for every y, z ∈ Zd. In particular, this yields for arbitrary
reals y, z ∈ Rd,

|D0(o, [y])−D0(o, [z])| ≤ |z − y|1 + 2d. (9)
Let us first consider the case x ∈ Qd. Then, there exists some s ∈ N such that sx ∈ Zd. We
will show that ϕ(x) exists and

ϕ(x) = lim
t↑∞

t−1D0(o, [tx]) = lim
t↑∞

(st)−1D0(o, stx) = s−1ϕ(sx).

By Lemma 3.2, ϕ(x) exists almost surely. Furthermore, for each t > 0, we pick s = s(t) such
that t ∈ [(k − 1)s, ks). Then, using the triangle inequality (3) and (9), we infer

lim
t↑∞
|s−1ϕ(sx)− t−1D0(o, [tx])|

≤ lim
t↑∞

∣∣∣s−1ϕ(sx)− (ks)−1D0(o, ksx)
∣∣∣+ lim

t↑∞

∣∣∣(ks)−1D0(o, ksx)− t−1D0(o, [tx])
∣∣∣

≤ 0 + lim
t↑∞

(ks)−1
∣∣∣D0(o, ksx)−D0(o, [tx])

∣∣∣+ lim
t↑∞

∣∣∣(ks)−1 − t−1
∣∣∣D0(o, [tx])

≤ lim
t↑∞

(ks)−1
[
(ks− t)|x|1 + 2d

]
+ lim

t→∞

∣∣∣(ks)−1 − t−1
∣∣∣(|tx|1 + d

)
≤ lim

t↑∞
(ks)−1

[
s|x|1 + 2d

]
+ lim

t↑∞
( 1

(k−1)s −
1
ks

)
(
ks|x|1 + d

)
= 0,

using k → ∞ with n → ∞. This shows the claim for each rational direction x ∈ Qd. The
proof extends to real directions x ∈ Rd as

lim
t↑∞

t−1D0(o, [tx])

is continuous in x since (9) yields

t−1|D0(o, [tx])−D0(o, [ty])| ≤ |y − x|1 + 2d/t,

which concludes the proof.

Having established the inverse speed in all directions, we proceed by showing its positivity,
i.e., the infection has finite speed. Let us mention that, unlike before, the dependence on n
becomes relevant now, which we shall emphasize in the notation. In order to prove finite speed,
we require the notion of a path’s traveling time: Given a path γ = (x0, . . . , xk), we define its
traveling time from t0 ≥ 0 by

T
(n)
t0 (γ) := inf

{
t ≥ 0 : ∃t0 ≤ t1 ≤ · · · ≤ tk = t0+t such that ti ∈ X(n)

(xi−1,xi) for all 0 < i ≤ k
}

(10)
Clearly, the minimum in (10) is always realized.

Lemma 3.4 (Finite speed). For every n ∈ N and x ∈ Rd with |x|∞ ≥ 1, we have ϕ(n)(x) ≥
(2dne)−1. In particular, the speed is finite.

Proof. We aim to show that for all a < (2dne)−1, we have limt→∞ P(D(n)(o, [tx]) ≥ at) = 1.
First, a union bound over self-avoiding paths γ starting in the origin o yields

P(D(n)(o, [tx]) < at) ≤
∑
k≥t

∑
γ : |γ|=k

P(T (n)(γ) < at). (11)
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First contact percolation 15

In order to bound the probability on the right-hand side, let us introduce some fixed, infinite,
self-avoiding path γ∞ = (x0, x1, . . . ), for example γ∞ = (o, e1, e2, . . . ). Observe that the time
it takes to travel a given path only depends on the order statistics of the meeting times along
the edges but not on the path itself. Hence, for any |γ| = k, we have

P(T (n)(γ) < at) ≤ P(At least the first k edges of γ∞ are traversed in date days).

Let τ (n)
i be the (random) number of edges that γ∞ can travel during the i-th day. The

distribution of τ (n)
i depends on neither i nor on the choice of γ∞. As a result, {τ (n)

i : i ∈ N}
forms an i.i.d. sequence. Note that

P(τ (n)
1 ≥ j) ≤ nj/j! for all j ∈ N,

as there are n contact times on each of the j edges, yielding nj possibilities to choose one
contact time from each edge with each such choice forming an increasing sequence with
probability 1/j!. Note that τ (n)

1 has all exponential moments and in particular

Eτ (n)
1 ≤ en and Eesτ

(n)
1 ≤ exp(nes) <∞ for any s ∈ R.

Hence, by an exponential moment bound

P(T (n)(γ) ≤ at) ≤ P
( date∑
i=1

τ
(n)
i ≥ k

)
≤
date∏
i=1

E exp
(
sτ

(n)
i

)
· exp(−ks) ≤ exp (datenes − ks).

Note that there are no more than (2d)k paths of length k. Choosing s = log(2d) + 1 yields

P(D(0, [tx]) < at) ≤
∑
k≥t

∑
γ:|γ|=k

exp (datenes − ks)

≤
∑
k≥t

(2d)k exp(−k[log(2d) + 1] + datenelog(2d)+1)

≤
∑
k≥t

e−k exp(2de(at+ 1)n) ≤ e−t e
1+2den

e− 1 exp(2deatn),

which tends to zero as t→∞ for every a < 1/(2dne). This concludes the proof.

Corollary 3.5 (Exponential decay). For every a > 0 and n, t ∈ N, we have

P
(
I(t) 6⊂ t[−1/a, 1/a]d

)
≤ e−t e

1+2den

e− 1 exp(2deatn).

Proof. This follows from the exact same calculations as in Lemma 3.4.

Lemma 3.6 (Properties of the inverse speed). Let x, y ∈ Rd and c ∈ R. Then,

(i) ϕ is invariant under the symmetries of Zd that fix the origin,

(ii) ϕ(x+ y) ≤ ϕ(x) + ϕ(y) and particularly |ϕ(x)− ϕ(y)| ≤ ϕ(x− y),

(iii) ϕ is continuous,

(iv) ϕ(cx) = |c|ϕ(x),

(v) (2dne)−1|x|∞ ≤ ϕ(x) ≤ |x|1 ≤ d|x|∞,
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(vi) ϕ is Lipschitz continuous,

(vii) ϕ does not depend on the density g of the contact-time distribution.

Proof. Part (i) follows from the fact that the function ϕ inherits the symmetry of the under-
lying model on Zd.

In order to prove subadditivity in Part (ii), recall

ϕ(x) = lim
t↑∞

t−1D(0, [tx]) = lim
t↑∞

t−1D̃0(0, [tx]).

We further obtain

t−1D̃0(0, [t(x+ y)]) ≤ t−1D̃0(0, [tx]) + t−1D̃
D̃0(0,[tx])([tx], [t(x+ y)]).

Clearly, the left-hand side converges almost surely to ϕ(x + y) and the first term on the
right-hand side converges almost surely to ϕ(x). Therefore, it remains to show

lim inf
t↑∞

t−1D̃
D̃0(0,[tx])([tx], [t(x+ y)]) ≤ ϕ(y).

For the second term on the right-hand side, we use shift-invariance on the lattice and shift-
invariance over days to see that the term is equal in law to

t−1D̃0(0, [t(x+ y)]− [tx]).

We aim to compare this term to D̃0(0, [ty])/t, which converges to ϕ(y) almost surely. To this
end, observe that

t−1
∣∣∣D̃0(0, [t(x+ y)]− [tx])− D̃0(0, [ty])

∣∣∣ −→ 0,

in distribution, as t→∞, since |([t(x+ y)]− [tx])− [ty]| ≤ 3. In particular, this implies

D̃
D̃0(0,[tx])([tx], [t(x+ y)]) −→ ϕ(y),

in distribution. Since ϕ(y) is a deterministic limit, the established convergence also holds in
probability and we can therefore find a subsequence along which the convergence holds almost
surely. This finishes the proof of subadditivity. The second statement in Part (ii) simply follows
from symmetry and the reverse triangle inequality.

The continuity of ϕ is a result of Lemma 3.3, proving Part (iii).

In order to prove Part (iv), observe that we have, for all s ∈ N,

ϕ(sx) = lim
t↑∞

t−1D(0, tsx) = lim
t↑∞

st−1D(0, tx) = sϕ(x)

and by distributional symmetry clearly ϕ(−x) = ϕ(x). Further, for each rational c = p/m

mϕ(xp/m) = ϕ(px) = pϕ(x),

implying ϕ(cx) = cϕ(x). The claim for arbitrary c ∈ R then follows from the continuity in
Part (iii).

The upper bound in Part (v) is trivial since at least one edge per day is traversed. Furthermore,
the shortest path from the origin o to any [kx] has length at most |[kx]|1 ≤ d(k|x|∞+ 1) and
the lower bound is thus a consequence of Lemma 3.4 and Part (iii).
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For the Lipschitz-continuity, observe that we have for any x 6= y by (ii) and (iv),
∣∣∣ϕ(x)− ϕ(y)

∣∣∣ ≤ ϕ(x− y) ≤ |x− y|1ϕ
(
x− y
|x− y|1

)
≤ |x− y|1 · ϕ(e1),

using sup|v|1=1 ϕ(v) = ϕ(e1) and thus proving Part (vi).

Finally, the independence of ϕ of f follows from the observation that ϕ only depends on
the order statistics of the contact times, which is the same for all absolutely continuous
distributions w.r.t. the Lebesgue measure. This concludes the proof.

We have now collected all the results required to prove Theorem 2.5. Let us first define the
limiting shape B = Bn via

B := {x ∈ Rd : ϕ(x) ≤ 1}, (12)
and note that, due to Lemma 3.6, B is indeed closed and convex, B ⊂ [−b, b]d for b = 2dne,
and B does not depend on the distribution of the contact times.

Proof of Theorem 2.5. We argue by contradiction. Assume that the theorem does not hold.
That is, there exists some ε > 0 and an event Ωε of positive probability, on which for infinitely
many t ∈ N, there exists a zt ∈ Zd such that either

zt ∈ I(t) and zt /∈ (1 + ε)tB (13)

or
zt /∈ I(t) and zt ∈ (1− ε)tB . (14)

Let us focus on the case that (14) happens for infinitely many t. The case (13) is handled
similarly as explained below.

As B is bounded, we find some x ∈ Rd and a subsequence (tk)k∈N ⊂ N such that

ztk ∈ (1− ε)tB and lim
k↑∞

ztk/tk = x.

Furthermore, since B is closed, we have x ∈ (1 − ε)B. In particular, by Lemma 3.3 and
Definition (12), we have

lim
t↑∞

t−1D0(0, [tx]) = ϕ(x) < 1− ε.

However, ztk /∈ Ĩ(tk) is equivalent to D0(0, ztk) > tk, i.e.,

D0(0, ztk)/tk > 1,

which yields, by use of the reverse triangle inequality (9) for ztk and tkx,

1 < D0(0, ztk)/tk ≤ |ztk/tk − x|1 + 2d/tk +D0(0, [tkx])/tk k→∞−−−→ ϕ(x) ≤ 1− ε,

providing a contradiction. Let us briefly discuss the remaining case, and assume that (13) hap-
pens infinitely often. For some fixed a < 2dne, Corollary 3.5 together with the Borel–Cantelli
Lemma implies Ĩ(t)/t ⊂ [−1/a, 1/a]d almost surely for large t. We infer the existence of a
convergent subsequence ztk/tk −→ x, as k →∞. Analogous calculations yield the contradiction

1 ≥ D0(0, ztk)/tk ≥ D0(0, [tkx])/tk −
(
|ztk/tk − x|1 + 2d/tk

)
k→∞−−−→ ϕ(x) ≥ 1 + ε.

This concludes the proof.
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3.3 Proof of couplings
We provide various couplings of the model based on (PL) in this section. This will ultimately
result in showing Proposition 2.7 and Theorem 2.6, i.e., verifying that the rescaled shape Bn/n
converges w.r.t. the Hausdorff metric towards the limiting shape BR of the Richardson model.

We start with the proof of Proposition 2.7, which enables a simpler proof of Theorem 2.6
later. Loosely speaking, the rigid model (SL) is faster since not being able to traverse an edge
in a given day will give a bias to traverse said edge earlier the next day.

Proof of Proposition 2.7. Let (U (1)
e )e∈E and (U (2)

e )e∈E be two independent sequences of in-
dependent uniformly on (0, 1) distributed random variables. We start by describing the explo-
ration processes corresponding to the models (18) and (SL) respectively, thus coupling the
two explorations. To this end, denote by

Fn,p(·) =
b·c∑
i=0

(
n

i

)
pi(1− p)n−i

the distribution function of a binomially distributed random variable. For each edge e, we
define the function Ke : [0, 1]→ {0, . . . , n} via

Ke(t) = max
{
k ∈ {0, . . . , n} : U (1)

e ≤ Fn,(1−t)(k)
}
,

and extend Ke to the whole real line by way of Ke(t) := Ke(t−btc). The quantity Ke(t) thus
models the number of contacts left on the edge e during [t, dte), where dte = btc + 1. Put
differently, if the infection arrives at an edge for the first time on the btc-th day at time t−btc,
then there are Ke(t) many contacts still happening until the end of that day. By definition, it
is easy to see that for 0 < s < t < 1, we have Ke(s) ≥ Ke(t) since 1− t < 1− s.

For τ > 0 and K ∈ N, we additionally define the random variable

Te(τ,K) = τ
(

1− K
√
U

(2)
e

)
,

noting that it equals, in distribution, the minimum of K independent random variables dis-
tributed uniformly on [0, τ ].

We proceed by describing the exploration process I associated to (PL) in terms of Ke and Te.
Recall that, whenever the exploration discovers a new vertex that has not yet be seen at some
time s, its edges incident to yet unexplored vertices are revealed. Consider such a fixed edge
e. If there is at least one more contact happening during [s, dse], then the other end-vertex
becomes revealed at the minimum of the remaining contact times. If there is no more contact
happening, the other end-vertex becomes revealed at the minimum of the n newly sampled
contact times within [dse, dse + 1]. However, by the above, the probability of seeing at least
one more contact during the day of discovery coincides with the probability of {Ke(s) ≥ 1}.
Moreover, conditionally on {Ke(s) ≥ 1}, the next contact has the same distribution as

s+ Te
(
dse − s,Ke(s)

)
= dse −

(
dse − s

)
Ke(s)
√
U

(2)
e . (15)

Similarly, if there is no more contact happening on the same day, meaning Ke(s) = 0, the first
contact on the dse-th day has the same distribution as

dse+ Te(1, n) = dse+ 1− n
√
U

(2)
e . (16)
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Analogously, we describe I ′, the exploration process associated to (SL). First of all, if an edge
e is considered for the first time at time s and there is still a contact left during [dse, dse+ 1],
the situation is precisely as in (15). However, conditionally on Ke(s) = 0, the information
that no contact falls into [s, dse] yields that the first contact time on the next day equals in
distribution

dse+ Te
(
s− bsc, n

)
= s+ 1−

(
s− bsc

)
n
√
U

(2)
e . (17)

Having established the coupling, it remains to prove its monotonicity in the sense that I(t) ⊂
I ′(t) for all t ≥ 0. We work on the probability space where I and I ′ are jointly defined by the
previous coupling. Let (u(1)

e )e and (u(2)
e ) be realizations of the used sequences of independent

random variables. Let (sv)v∈Zd and (s′v)v∈Zd be the collection of first times each vertex is
explored by the processes I and I ′ respectively. Let 0 = σ′0 < σ′1, . . . be the elements of (s′v)v
sorted from smallest to largest value. We now show inductively that for all times σ′n, we have
I(σ′n) ⊂ I ′(σ′n), and all edges that have been revealed but not yet been traversed in I ′ are
traversed in I ′ no later than in I. This particularly implies I(t) ⊂ I ′(t) for all t ≥ 0. We start
with the base case σ′0 = 0. At time 0, we have I(0) = I ′(0) = {o}, i.e., only the origin has
been discovered yet. Moreover, all incident edges and their next contact time become revealed.
By the coupling, the next contact time on each of these edges coincide.

Now assume for the induction step that our assumption holds for σ′n−1. We note that I(σ′n−1) ⊂
I ′(σ′n−1) implies that all edges revealed but not traversed in I are either already traversed or
at least revealed in I ′ as well. The second assumption then guarantees that the edge traversed
at time σ′n by I ′ has not been traversed earlier by I and thus I(σ′n) ⊂ I ′(σ′n) still. Let v be the
vertex explored at time σ′n, i.e., s′v = σ′n and therefore sv ≥ s′v. Consider the edges incident
to v that have not yet been revealed and we denote by te, t′e the time of the first contact
on e after being revealed by the respective explorations. To finish the proof of the induction
step, we have to show that te ≥ t′e for all newly revealed edges. To this end, we make use
of (15), (16), and (17) and distinguish the following cases:

(i) If dsve = ds′ve and Ke(sv) ≥ 1, then

t′e = ds′ve −
(
ds′ve − s′v

)
Ke(s′v)

√
u

(2)
e ≤ dsve −

(
dsve − sv

)
Ke(sv)

√
u

(2)
e = te,

using Ke(s′v) ≥ Ke(sv) here, as outlined above.

(ii) If dsve = ds′ve and Ke(s′v) > Ke(sv) = 0, then t′e ≤ dsve ≤ te.

(iii) If dsve = ds′ve and Ke(s′v) = Ke(sv) = 0, then

t′e = dsve+ Te(s′v − ds′ve, n) ≤ dsve+ Te(1, n) = te.

(iv) In all remaining cases, we have ds′ve < sv. If additionally either sv ≥ ds′ve + 1 or
Ke(sv) = 0, then t′e ≤ ds′ve+ 1 ≤ te. Similarly, if Ke(s′v) > 0, then t′e ≤ ds′ve ≤ sv ≤ te.
Finally, if Ke(s′v) = 0, Ke(sv) > 0, and ds′ve = bsvc, then ds′ve+ 1 = dsve and thus

t′e = s′v + 1−
(
s′v − bs′vc

)
n
√
u

(2)
e ≤ ds′ve+ 1−

(
s′v − bs′vc

)
Ke(sv)

√
u

(2)
e − (ds′ve − s′v)

Ke(sv)
√
u

(2)
e

= dsve −
(
ds′ve − bs′vc

)
Ke(sv)

√
u

(2)
e ≤ dsve −

(
dsve − sv

)
Ke(sv)

√
u

(2)
e = te.

Summarizing, we have t′e ≤ te for all newly revealed edges, which finishes the induction and
thus the proof of Proposition 2.7.
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Now, let us move towards the proof of Theorem 2.6. We begin with the following observations.
First, we may restrict ourselves without loss of generality to the special case of the model based
on (PL), in which the contact times are distributed uniformly on [0, 1) as this does not influence
the limiting shape Bn. Put differently, the random variables {U (k,i)

e : k ∈ N0, i = 1, . . . , n} on
each edge form i.i.d. sequences of Uniform(0, 1) random variables. Secondly, we want to slow
down time by a factor of n. Instead of assigning each edge n contact times per day (an interval
of unit length), we assign the n contact times to a period of n days represented by an interval
of the form [kn, (k + 1)n). Formally, assign independently to each edge e the independent
random variables {U (k,i)

e : k ∈ N0, i = 1, . . . , n} distributed uniformly on [kn, (k+1)n). Then,
the corresponding FCP is defined via the point processes

X(n)
e :=

∞⋃
k=0

n⋃
i=1

{
U

(k,i)
e

}
. (18)

Let us denote the corresponding process of reachable vertices and the limiting shape by I(t),
respectively Bn, which are equal to I(t/n), respectively Bn/n.

In order to prove Theorem 2.6, we rely on the following continuity result [9, Theorem 3].

Theorem 3.7 (Continuity of the time constant in FPP, Theorem 3 [9]). Let µn and µ be
distributions supported on [0,∞) such that µn w−→ µ. Then, for all x ∈ Zd

lim
n↑∞

ψ(µn)(x) = ψ(µ)(x),

where ψ(µ)(x) denotes the time constant in direction x ∈ Rd, meaning

ψ(µ)(x) = lim
t↑∞

t−1D(µ)(o, [kx]).

Remark 3.8. The analogous continuity of the inverse speed as established for FPP in The-
orem 3.7 does not hold in general for FCP: Consider a version of the FCP model in which
the contact times are distributed uniformly on [0, 1/k]. By Theorem 2.5 we observe the same
inverse speed and the same limiting shape for each fixed k. However, as k →∞, the limiting
distribution has an atom at zero, which results in instant transmission across all of Zd.

Proof of Theorem 2.6. Let us first construct the coupling between the time-rescaled model of
the model based on (PL) (i.e., having n contacts in n days) and the Richardson model. For
an edge e and time t ≥ 0, let X(n)

e,t be the time duration until the next contact from t on the
edge e. That is,

X
(n)
e,t = min

{
s ≥ 0: t+ s ∈ X(n)

e

}
.

Given some t ∈ [0, n), we have for any s ∈ [0, n) with s+ t ≤ n,

P(X(n)
e,t > s) = P

(
X(n)
e ∩ [t, t+ s] = ∅

)
= (1− s/n)n , (19)

while we have for s ∈ [0, 2n] with 2n ≥ t+ s ≥ n, by the independence of the contact times
in the intervals [0, n) and [n, 2n],

P(X(n)
e,t > s) = P(X(n)

e ∩ [t, t+ s] = ∅)

= P
(
X(n)
e ∩ [t, n) = ∅

)
P
(
X(n)
e ∩ [n, t+ s) = ∅

)
=
(
t

n

)n(2n− (t+ s)
n

)n
.

(20)
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Note that this is true for any t ∈ [kn, (k + 1)n) for some k by shift invariance. Furthermore,
note that (19) is included in (20) by choosing t = n. We observe from Equation (20) that

P
(
X

(n)
e,t > s

)
=
(
t

n

)n(2n− (t+ s)
n

)n
=
(

1 + t− n
n

)n(
1 + n− (t+ s)

n

)n
≤ et−n+n−(t+s) = e−s,

which shows the claim I(t) ⊃ JR(t) via a standard coupling in the exploration process.

Next, we show the convergence of Bn/n. Using, Proposition 2.7, it suffices to show B′n/n→
BR. As the latter is a FCP model given by an underlying stationary random closed set, Propo-
sition 2.1 allows us to equivalently consider an FPP model with waiting time distribution
µ(n)given by (4). We see that for arbitrary s ≥ 0 (and n ≥ s), we have

µ(n)([s,∞)) = (1− s/n)n n→∞−−−→ e−s.

Since the (deterministic) limiting shapes are solely defined via the (deterministic) time con-
stants, Theorem 3.7 finishes the proof.
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