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Dimension reduction for path signatures
Christian Bayer, Martin Redmann

Abstract

This paper focuses on the mathematical framework for reducing the complexity of models
using path signatures. The structure of these signatures, which can be interpreted as collections
of iterated integrals along paths, is discussed and their applications in areas such as stochastic
differential equations (SDEs) and financial modeling are pointed out. In particular, exploiting
the rough paths view, solutions of SDEs continuously depend on the lift of the driver. Such
continuous mappings can be approximated using (truncated) signatures, which are solutions of
high-dimensional linear systems. In order to lower the complexity of these models, this paper
presents methods for reducing the order of high-dimensional truncated signature models while
retaining essential characteristics. The derivation of reduced models and the universal approxi-
mation property of (truncated) signatures are treated in detail. Numerical examples, including
applications to the (rough) Bergomi model in financial markets, illustrate the proposed reduction
techniques and highlight their effectiveness.

1 Introduction

The path signature (Chen [Che57]) – i.e., the sequence of all iterated integrals of the components of
a path x : [0, T ]→ Rd – plays a fundamental rule in the analysis of (rough) paths and functions on
path space. On the theoretical side, the signature is the fundamental building block of Lyons’ theory
of rough paths [Lyo98], providing pathwise analysis of differential equations driven by rough paths
(i.e., Hölder continuous paths of arbitrary Hölder coefficient), see [FH20; FV10] for modern accounts
of the theory. Indeed, a rough path is nothing but a path together with a (properly truncated)
signature.

Some of the most important properties of path signatures include:

� The signature encodes the path up to so-called tree-like excursions, and it completely deter-
mines the path, provided that we add running time as a component.

� The signature is invariant under time re-parameterization.

� The linear functionals of the signature form an algebra of functionals on path space.

In applications, signatures play a fundamental role for approximations of functionals on (rough) path
space, comparable to polynomials on finite-dimensional spaces. Indeed, it is well-known that linear
functionals on signatures are universal approximators, i.e., that continuous functions mapping path-
space to the real numbers can be approximated by linear functionals of the signature when restricted
to compact sets. Several alternative formulations also exist, we refer to [LO23] for a recent review
article and [BPS23] for a version on approximation in an Lp-sense.

Of course, similar approximation results are also available in a probabilistic rather than pathwise
setting, i.e., when considering stochastic processes rather than single paths. A corresponding universal
approximation result in terms of signatures (of semi-martingales) can be found in [CPSF22], but we
also like to mention the classical stochastic Taylor expansion in terms of iterated integrals of the
Brownian motion.
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Ch. Bayer, M. Redmann 2

The path signature has been found to be a powerful feature map in machine learning, when dealing
with time series data, see T. Lyons’ ICM lecture [Lyo14], for instance, [PA+18; Bue+20; Mor+20;
LM22; Arr+24] for specific examples. Here, both the fact that signatures provide (efficient) en-
codings of paths (of arbitrary length) in a fixed vector space and the invariance under time re-
parameterizations are crucial.

Beyond machine learning, signatures can be used as a fundamental building block for modelling and
stochastic analysis of processes with memory – or, more generally, when we only want to impose
minimal assumptions on the model. An example for the use of signatures in modelling is [CGSF22],
where a diffusion-type model with coefficients given as linear functionals of the signature of the
underlying Brownian motion is fitted to market prices of options.

Beyond modelling, the signature can be a powerful tool for analysis and numerics of non-Markovian
processes. In particular, for BSDEs (see, for instance, [BFZ24]) or stochastic optimal control ([KLPA20;
BHR24]) we are often dealing with computations of conditional expectations w.r.t. the relevant sigma-
algebra Ft. In the Markovian case, this corresponds to a finite-dimensional regression problem. But
in the non-Markovian case (i.e., with memory), such conditionals expectations generally depend on
the whole history of the driving path up to time t. Such path-dependent conditional expectations can
be efficiently computed as (linear or non-linear) functions of the signature of the underlying path,
see [BPS23].

From a computational point of view, the signature poses severe challenges mainly due to its size.
Indeed, a priori, the signature – the collection of all iterated integrals – is an infinite-dimensional
object, and, hence, not directly computable. For some applications, the signature kernel (see [LO23])
can be used instead, which is actually computable as a solution of a PDE. Otherwise, the most natural
approach is to truncate the signature, i.e., to restrict the computations to iterated integrals up to
a given degree. Even so, the size of the (finite) sequence of iterated integrals of degree up to m
increases rapidly in terms of m as well as the dimension d of the underlying space: in fact, it is easy
to see that there are 1 + d+ · · ·+ dm such terms – including one trivial term of order 0, think of an
“intercept” in a linear model.

This work addresses these concerns by exploring model order reduction (MOR) techniques specifically
tailored for signature-based models. MOR has a long tradition in the field of deterministic control
systems [Moo81], where difficult to control and hard to observe states are neglected to receive a
low-dimensional approximation of a large-scale model. This work is the foundation for establishing
balancing-related MOR for controlled SDEs [BH19; BD11; BR15; BDRC17]. Complexity reduction
in such probabilistic frameworks has an enormous impact, e.g., when sampling methods are applied.
However, this work relies on certain stability assumptions that are not necessarily satisfied in practice.
A way to overcome this issue is to use the ansatz of [GJ90] established for controlled systems of
ordinary differential equations and extended to SDEs in [RJ22]. The control theory perspective on
MOR does no longer work when dimension reduction is applied to financial models. Let us refer
to [Red22; RBG21], where a bridge was built between the previously mentioned concepts and com-
plexity reduction for large-scale asset price models. Detached from control concepts and stability
assumptions, MOR for signatures is studied in this paper. We develop a robust mathematical frame-
work to reduce the complexity of these models while preserving their essential features, provide a
comprehensive method for deriving reduced order models of truncated signatures, with discussions
on their theoretical foundations and practical implications. The efficiency of the proposed techniques
is illustrated through numerical examples, including an application to the (rough) Bergomi model–a
widely used model in financial markets. The results demonstrate the effectiveness of MOR in reducing
the dimension without a significant loss of accuracy.

Indeed, we apply MOR to realistic signature-models of financial markets, as derived from popular
equity models (the classical Bergomi model [Ber15] and the rough Bergomi model [BFG16], respec-
tively). Starting from signature models of dimension n = 1365 in the Bergomi case, we find that a
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Dimension reduction for path signatures 3

reduced model of dimension ñ = 5 achieves a relative error of order 10−2 in the implied volatility of
option prices, ñ = 11 is sufficient for a relative error of 10−4, and ñ = 27 is exact up to machine
precision, see Figure 4.

In case of the rough Bergomi model, we choose an approximate signature model of dimension
n = 3280. A reduced dimension of ñ = 15 achieves a relative error of 10−2, and ñ = 55 achieves
machine precision in the rough case, see Figure 8.

These numerical illustrations show that MOR can alleviate one of the main drawbacks of signature
based models and methods, namely the fast explosion of the signature’s dimension in terms of the
dimension of the underlying process as well as the truncation level.

Outline We start by providing an introduction to path signatures in Section 2. The basic struc-
tures are introduced in the setting of smooth paths and later extended to signatures of continuous
semimartingales. We also provide the fundamental approximation results for signatures and minimal
necessary results from rough path theory. As a motivation, we summarize results on signature models
in finance by [CGSF22].

Section 3 provides a derivation of MOR for signatures. Note that (truncated) signatures of continuous
semi-martingales solve a linear system of SDEs with specific structure, to which general MOR for
SDEs is adapted. The reduced signature equation is introduced in Section 3.3.

Finally, we provide numerical examples showcasing the success of MOR for signature models in
finance in Section 4.

2 Signatures

2.1 Signatures of smooth paths

Consider a smooth (i.e., C1) path1 x : [0, T ] → V taking values in a Banach space V – for our
purposes, we assume d := dimV <∞. Given a multi-index I = (i1, . . . , in) ∈ { 1, . . . , d }n, n ≥ 1,
we denote the iterated integrals

(2.1) x
I
s,t :=

∫
s<t1<···<tn<t

ẋi1t1dt1 · · · ẋintndtn =:
∫
s<t1<···<tn<t

dxi1t1 · · · dx
in
tn ∈ R,

where 0 ≤ s ≤ t ≤ T . Here, xit denotes the ith coordinate of the path x evaluated at time t for
a fixed basis e1, . . . , ed of V . We prefer to use the notation “dxt” rather than “ẋtdt” because the
former corresponds to the standard notation in the non-smooth case to be considered later – think
of paths of Brownian motion.

Note that the collection of all iterated integrals xIs,t for I ∈ { 1, . . . , d }n with fixed n ≥ 1 takes
values in V ⊗n recursively defined by V ⊗0 := R, and V ⊗(n+1) := V ⊗n ⊗ V . Specifically, we write(

x
I
s,t

)
I∈{ 1,...,d }n

=:
∫
s<t1<···<tn<t

dxt1 ⊗ · · · ⊗ dxtn ∈ V ⊗n.

The signature is the collection of all such iterated integrals, formally

(2.2) x
<∞
s,t := 1 +

∞∑
n=1

∫
s<t1<···<tn<t

dxt1 ⊗ · · · ⊗ dxtn ∈ T ((V )),

1In fact, all results of this subsection remain valid for continuous bounded variation paths.
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Ch. Bayer, M. Redmann 4

with the extended tensor algebra T ((V )) being defined as

(2.3) T ((V )) :=
∞∏
n=0

V ⊗n.

Here, the initial term “1” is considered as the (sole) entry in V ⊗0 ' R. Note that elements of the
extended tensor algebra T ((V )) have infinitely many terms, and are, hence, comparable to formal
power series – in d non-commuting variables e1, . . . , ed. For numerical purposes, signatures need to
be truncated at a finite degree. Hence, we also define

(2.4) x
≤m
s,t := 1 +

m∑
n=1

∫
s<t1<···<tn<t

dxt1 ⊗ · · · ⊗ dxtn ∈ Tm(V ) :=
m⊕
n=0

V ⊗n.

Following our analogy from above, an element of the truncated tensor algebra Tm(V ) can be com-
pared with a polynomial of degree m – note, however, that the tensor product is not commutative.

Both T ((V )) and Tm(V ) are algebras under the tensor product ⊗ – the product of formal power
series in non-commuting variables. We refer to [Bay+23a] for more information. Using this product,
we see that the signature (formally) solves a controlled ODE, namely ẋ<∞0,t = x

<∞
0,t ⊗ ẋt or (in a

notation easier to adapt for non-smooth paths)

(2.5) dx<∞0,t = x
<∞
0,t ⊗ dxt =

d∑
i=1

x
<∞
0,t ⊗ eidxit, x

<∞
0,0 = 1 ∈ T ((V )),

where ei, i = 1, . . . d, denote the standard basis vectors of V as lifted to elements of T ((V )). The
truncated signature satisfies the same ODE, but interpreted on the truncated tensor algebra Tm(V ),
i.e., with a nilpotent tensor product, which will – abusing notation – still be denoted ⊗. That is, the
truncated signature satisfies

(2.6) dx≤m0,t = x
≤m
0,t ⊗ dxt =

d∑
i=1

x
≤m
0,t ⊗ eidxit, x

≤m
0,0 = 1 ∈ Tm(V ).

Remark 2.1. We do not endow T ((V )) with a topology, and, hence, the ODE (2.5) is only defined
in a formal way. Several topologies for T ((V )) have been considered in the rough path literature,
including natural Hilbert or Banach sub-spaces of T ((V )), see [CO22] for more details. In this paper,
we will only ever use the full signature defined on T ((V )) for motivation, the mathematical analysis
will take place on Tm(V ) for finite truncation m. As a finite dimensional vector space, Tm(V ) will
be equipped with the standard Euclidean metric.

The signature is invariant under re-parameterization of the path: I.e., if we consider a (smooth,
increasing) map, say, γ : [R,S] → [0, T ], and a path x̄ : [R,S] → V , u 7→ xγ(u), then x<∞γ(s),γ(t) =
x̄
<∞
s,t , R ≤ s ≤ t ≤ S. Up to re-parameterization and so-called tree-like excursions, the signature

x
<∞
0,T uniquely determines the path x, see [HL10]. Invariance under parameterization as well as the

possibility of tree-like excursions can be avoided by adding the component t to the path. We will
often prefer to work with time-extended paths – i.e., paths with a component x1

t ≡ t.

We will also need to consider the dual algebra Wd ' T (V ∗) :=
⊕∞

n=0(V ∗)⊗n of linear functionals
on T ((V )). Here, Wd denotes the linear span of all words w = i1 · · · ik, k ≥ 0, in the alpha-
bet { 1, . . . , d }, which is an algebra under the concatenation product on words, extended with the
distributive property. Consider a generic linear functional ` ∈ Wd applied to a generic element
a ∈ T ((V )). We can represent ` as a linear combination ` =

∑k
i=1 γiwi of words wj = ij1 · · · i

j
Kj

of
length Kj , j = 1, . . . , k, for some k ≥ 1, and

a =
∞∑
n=0

∑
I=(i1,...,in)∈{ 1,...,d }n

αIei1 ⊗ · · · ⊗ ein ∈ T ((V )),
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Dimension reduction for path signatures 5

owing to the fact that words ij1 · · · i
j
Kj

form a basis of Wd and tensor products ei1 ⊗ · · · ⊗ ein form
a basis of any truncated tensor algebra Tm(V ).2 We set

(2.7) 〈` , a〉 :=
k∑
j=1

γj 〈wj , a〉 :=
k∑
j=1

γjα(ij1,...,i
j
Kj

) ∈ R.

2.2 Signatures for Hölder continuous paths

Let x : [0, T ] → V be an α-Hölder continuous path, α ∈ (0, 1]. This means that the α-Hölder
seminorm

sup
s<t

‖xt − xs‖
|t− s|α

is finite. Then, we write x ∈ Cα. We briefly sketch the concepts of rough paths and (truncated)
signatures for x ∈ Cα – see [FH20] for more details. Formally, a rough path x is a two-parameter
function from the simplex { 0 ≤ s ≤ t ≤ T } taking values in the truncated tensor algebra Tm(V ).

Remark 2.2. The different “levels” of a rough path increment xs,t, s ≤ t, have different interpreta-
tions. The V -valued component is the increment xs,t = xt − xs of the underlying Cα path x itself.
However, Hölder paths are not regular enough to allow us to solve controlled differential equations
of the form

dyt = U(yt)dxt.
However, a formal Taylor expansion shows that higher order Euler approximations of the differential
equation in terms of the iterated integral of x of order up to m = b1/αc would converge. Of course,
the catch is that – once again – Cα paths are not regular enough for the iterated integrals to make
sense in a classical way when α ≤ 1/2. On the flip side, if we enhance the path increments xs,t with
higher order terms xIs,t “behaving like iterated integrals” (see [FH20] for details), then we can solve
the corresponding controlled differential equations for smooth enough vector fields in a pathwise,
deterministic way.

It is well-known that such rough path lifts of Cα paths x are always possible, but not unique
when α ≤ 1/2 (think about Itô versus Stratonovich solutions of stochastic differential equations –
corresponding to two different rough path lifts of Brownian motion).

We introduce a metric for two parameter functions taking values in Tm(V ) by

%α(x, x̃) :=
m∑
n=1

sup
s<t

‖x(n)
s,t − x̃

(n)
s,t ‖

|t− s|nα
,

where xs,t := 1 +
∑m
n=1 x

(n)
s,t ∈ Tm(V ) and x̃ is defined accordingly – with x

(1)
s,t = xs,t ∈ V and

x
(n)
s,t ∈ V ⊗n, n = 2, . . . ,m. Now, we can define the desired concepts.

Definition 2.3. Let x ∈ Cα and choose N := b1/αc. A two-parameter function

xs,t = 1 +
N∑
n=1

x
(n)
s,t ∈ TN (V )

with x(1)
s,t = xs,t is called a (geometric α-Hölder) rough path associated to x if there exists a sequence

of smooth paths xε with truncated signature (xε)≤Ns,t , such that

%α(x, (xε)≤N )→ 0, as ε→ 0.
2The infinite sum defining a needs to be understood as a formal sum.
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Ch. Bayer, M. Redmann 6

We denote the set of all geometric α-Hölder rough paths by C α
g ([0, T ];V ). We also introduce

Ĉ α
g ([0, T ];V ) :=

{
x ∈ C α

g ([0, T ];V )
∣∣∣ ∀t ∈ [0, T ] : x1

0,t = t
}
, where xs,t denotes the level-1 com-

ponent of xs,t.

For general m, the (truncated) signature x≤m and x<∞ of a geometric α-Hölder rough path x can
be defined as the limit of (xε)≤m and (xε)<∞, respectively, as ε→ 0.

Definition 2.4. Suppose that W is another (finite-dimensional) Banach space, x ∈ C α
g ([0, T ];V )

and U : W → L(V,W ). An α-Hölder path y : [0, T ]→W is called a solution of the rough differential
equation

dy(t) = U(y(t)) dxt, y(0) = y0 ∈W,(2.8)

if y(0) = y0 and for a sequence (xε) of smooth paths with %α(x, (xε)≤N ) → 0 (as ε → 0), the
solutions yε of

dyε(t) = U(yε(t)) dxεt, yε(0) = y0,

exist and converge in the α-Hölder metric to y.

By construction of a solution of a rough differential equation, the truncated signature solves the
equation

(2.9) dx≤m0,t = x
≤m
0,t ⊗ dxt =

d∑
i=1

x
≤m
0,t ⊗ eidxit, x

≤m
0,0 = 1 ∈ Tm(V ).

Next, we formulate a result on existence and uniqueness of a solution of (2.8) as well as on properties
of the solution map.

Theorem 2.5. Given x ∈ C α([0, T ], V ) for α ∈
(
0, 1

2

]
and U ∈ CN+1

b (W,L(V,W )) or linear, where
N := b1/αc. Then, there is a unique solution y ∈ Cα([0, T ],W ) for (2.8). Moreover, the solution
map x 7→ g(x) = y of (2.8) is locally Lipschitz continuous.

Proof. We refer to [FH20] for the case α > 1/3. The more general (p-variation) framework can be
found in [FV10].

Remark 2.6. As evidenced by the difference between Itô and Stratonovich solutions to SDEs, it is,
in general, not possible to find solutions to controlled differential equations driven by rough signals
x such that the solution map (x 7→ y) is continuous in a pathwise sense. The rough path approach
factorizes this map into two parts:

1 the lift of x to a rough path x (discontinuous);

2 the solution map x 7→ y (locally Lipschitz continuous by Theorem 2.5).

This fact is sometimes called the “rough path principle”.

2.3 Signatures of semi-martingales

If, instead of a single deterministic path x, we are given a continuous semi-martingaleX : Ω×[0, T ]→
V , then the statements above remain true, mutatis mutandis, provided that iterated integrals are
defined as Stratonovich integrals rather than Itô integrals.
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Dimension reduction for path signatures 7

We define the (truncated) signatures X<∞s,t , X≤ms,t as in (2.2) and (2.4), but with the iterated integrals
(2.1) replaced by

(2.10) XIs,t :=
∫
s<t1<···<tn<t

◦dXi1
t1 ⊗ · · · ⊗ ◦dX

in
tn .

Indeed, we can see that the thus defined rough path lift X a.s. takes values in C α
g ([0, T ];V ) for

any 1/3 < α < 1/2 – we again refer to [FH20] for details. Moreover, the solution of a stochastic
differential equation, say

dYt = U(Yt) ◦ dXt, Y0 = y0 ∈W,

coincides a.s. with the (pathwise) solution of the rough differential equation

dYt = U(Yt)dXt, Y0 = y0 ∈W,

where U : W → L(V,W ) is sufficiently smooth.

Remark 2.7. From a modeling point, it may be advantageous to include the quadratic variation of
X in the construction of the signature, i.e., to consider the signature of (t,Xt, 〈X〉t). While it is
included in our framework, we will not require such an extension.

Remark 2.8. The setting can also incorporate semimartingales with jumps, see, for instance, [CPSF22]
for a precise statement and proof of universality of signatures in that case.

2.4 Universal approximation theorem

We will now formulate universality of signatures, a well known result in the literature (see, for
instance, [KLPA20; BPS23]). Recall that Ĉ α

g ([0, T ];V ) denotes the set of geometric α-Hölder rough
paths x such that the first component x1 of the underlying path x is equal to running time, see
Definition 2.3. As noted in the smooth case in Section 2.1, the signature x<∞0,T of a time-extended
rough path x ∈ Ĉ α

g ([0, T ];V ) characterizes x – and, hence, x up to the initial value x0. This, together
with the fact that linear functionals of the signature form an algebra – also already mentioned for
smooth paths in Section 2.1, but equally true for rough paths – allow us to apply the Stone-Weierstrass
theorem.

Theorem 2.9. For any compact subsetK ⊂ Ĉ α
g ([0, T ];V ), any continuous function f : Ĉ α

g ([0, T ];V )→
R, and any ε > 0, we can find a linear functional ` ∈ Wd such that

sup
x∈K

∣∣∣f(x)−
〈
` ,x<∞0,T

〉∣∣∣ < ε.

Proof of Theorem 2.9. For completeness, we give a short proof of this well-known result, a direct
consequence of the Stone-Weierstrass theorem. Hence, we need to prove that

A :=
{

x 7→
〈
` ,x<∞0,T

〉 ∣∣∣ ` ∈ Wd, x ∈ Ĉ α
g ([0, T ];V )

}
is a subalgebra of C

(
Ĉ α
g ([0, T ];V );R

)
which is point-separating and contains a non-zero constant

function. First note that for any ` ∈ Wd, the map x 7→
〈
` ,x<∞0,T

〉
is continuous, see, for instance,

[FV10]. A is point-separating since the signature x<∞ uniquely determines the rough path x by the
discussion above. The constant function x 7→ 1 is obviously contained in A by simply choosing ` = ∅,
where ∅ denotes the empty word.

This leaves us to prove that A is an algebra. In addition to the concatenation product, Wd is also
equipped with a commutative shuffle product � : Wd ×Wd → Wd, see, e.g., [Bay+23a], and the
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Ch. Bayer, M. Redmann 8

following shuffle identity holds for signatures: For `1, `2 ∈ Wd and a geometric rough path x, we
have

(2.11)
〈
`1 ,x

<∞
s,t

〉〈
`2 ,x

<∞
s,t

〉
=
〈
`1 � `2 ,x

<∞
s,t

〉
.

Hence, A is an algebra and the proof is complete.

Example 2.10. Let g be the solution map of (2.8), i.e., y = g(x), mapping a rough path x to a
path y. Then, we know by Theorem 2.5 that this map is continuous. For that reason, a potential
continuous functional of interest in Theorem 2.9 can be the ith component yi of y evaluated at T
(e.g., think of W = Rd) meaning that f(x) = yi(T ).

As noted in Section 2.3, we can also lift semi-martingales X to the associated rough path X taking
values in Ĉ α

g ([0, T ];V )– assuming X1
t ≡ t –, and Theorem 2.9 applies:

Corollary 2.11. Given a continuous functional F : Ĉ α
g ([0, T ];V ) → R and a compact subset

K ⊂ Ĉ α
g ([0, T ];V ). Then, for every ε > 0, there is ` ∈ Wd, such that

sup
ω∈X−1(K)

∣∣∣F (X(ω))−
〈
` ,X<∞0,T (ω)

〉∣∣∣ ,
interpreting the rough path lift as a random variable X : Ω→ Ĉ α

g ([0, T ];V ).

We also refer to [CPSF22, Corollary 3.8] for a more general version applicable to jump-semimartingales.

2.5 Dynamic approximations with signatures

Theorem 2.9 shows that a function f(x|[0,T ]) of a path3 defined on [0, T ] can be approximated by
linear functionals of the path’s signature

〈
` ,x<∞0,T

〉
on the interval [0, T ]. Suppose that we are instead

given a path-valued functional, i.e., y(t) = f(t, x|[0,t]) – think of a stochastic process y adapted to
the filtration generated by x. Under the required regularity conditions, Theorem 2.9 immediately
implies that we can find approximations

y(t) = f(t, x|[0,t]) ≈
〈
`(t) ,x<∞0,t

〉
for suitable linear functionals `(t). Can we find uniform approximations in the sense that

y(t) = f(t, x|[0,t]) ≈
〈
` ,x<∞0,t

〉
with a linear functional ` independent of t? On a computational side, this seems plausible, since x<∞0,t
contains all monomials in t when x1

t ≡ t.

To formalise the problem, we introduce the space of stopped rough paths, going back to [Dup19],
see also, [KLPA20; Bay+23a], for a more didactic presentation we also refer to [BHR24].

Indeed, consider CT :=
⋃
t∈[0,T ]C([0, t];V ) understood as a disjoint union. Note that an element

x|[0,t] ∈ CT is the restriction of a continuous path defined on the interval [0, T ] to a sub-interval
[0, t], t ≤ T . A metric is defined on CT setting

dCT
(x|[0,t], y|[0,s]) := sup

u∈[0,T ]
|xt∧u − ys∧u|+ |t− s| ,

3For simplicity, we will consider a smooth path x for the time being, but the discussion is equally valid for the rough
case.
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and it turns out that CT equipped with this metric is a Polish space.

We will use this framework to study dynamic functional approximations, i.e., we want so approximate
time dependent functions of a path of the form f(t, x|[0,t]), 0 ≤ t ≤ T . Note that we can easily
understand such a function f as a function F : CT → R. The natural question is now whether such
functions of restrictions of paths can also be approximated by linear functionals of the signature.

Of course, the space CT is too large to allow for such approximations. As before, we will restrict
ourselves to a proper rough path version thereof. Let, for fixed α, denote

(2.12) ΛαT :=
⋃

t∈[0,T ]
Ĉ α
g ([0, t];V ).

(We restrict ourselves to the time-extended case from the beginning because any such universal
approximation result will anyway require us to add time as a component.) Using a similar definition
(see [BPS23]), we can define a rough path metric d on ΛαT , under which it is a Polish space. In this
framework, repeating the arguments used in the proof of Theorem 2.9 gives (see [BHR24] for more
details)

Corollary 2.12. Let K ⊂ ΛαT be compact and F ∈ C (ΛαT ;R), then for every ε > 0 there is an
` ∈ Wd such that

sup
x|[0,t]∈K

∣∣∣F (x|[0,t])−
〈
` ,x<∞0,t

〉∣∣∣ < ε.

The analogue result for lifts X of semimartingales also holds a.s.

Remark 2.13. The above universal approximation theorems – as typical in the area – are formulated
in terms of uniform convergence on compacts. We admit that this concept is problematic, especially
in infinite dimensions, as compact sets are often very small. Note that when we consider stochastic
processes, e.g., the lift X|[0,t] of a semimartingale taking values in ΛαT (a Polish space), tightness
implies that for every δ > 0 we can find a compact subset [K] ⊂ ΛαT such that P (X /∈ K) < δ,
which allows us to replace “ε-close on compact sets” by “ε-close with probability 1− δ”.

More general global universal approximation results can be formulated in terms of weighted spaces
(see [CST23]) or in terms of Lp-norms by using so-called “robust signatures” (see [CO22] for the
definition of robust signatures and [BPS23; SA23] for the universality in Lp.)

2.6 Example: Signature models in finance

As motivated by the universality of the signature, we consider the problem of approximating a fixed
linear functional ` of the signature x≤m0,T of a time-augmented smooth path, or, alternatively, a fixed
linear functional ` of the signature X≤m0,T of a (time-extended) continuous semimartingale, by a linear
functional of an alternative path x̃ or X̃ taking values in a space Rñ with ñ� dimTm(V ).

As guiding example, we consider signature models for financial markets as introduced in [CGSF22].
Consider a d-dimensional underlying base process X, which is assumed to be a (time-extended)
continuous semimartingale. Given a linear functional ` ∈ Wd, we then consider an asset price process
given by

(2.13) St = S
(`)
t :=

〈
` ,X≤m0,t

〉
,

where the truncation degree m is chosen high enough that all words in ` of degree larger than m have
zero coefficient. Note that conditions on ` can be formulated such that the resulting price process
satisfies fundamental requirements of mathematical finance such as no-arbitrage.4 Universality of

4As such conditions are usually easier to formulate w.r.t. Itô rather than Stratonovich form, those conditions may
look simpler in terms of the associated Itô signature.
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signatures implies that signature models form a very flexible class of models, capable of approximating
many desirable properties of asset price models. In addition, even though the price process (2.13)
is not a Markov process, efficient numerical routines for option pricing exist in some cases.5 As
explained in [CGSF22], the model parameter ` can be efficiently estimated either from time series of
asset prices, or from option price data. However, the dimension of the “state space” Tm(V ) of (2.13)
is generally very large. Indeed, the dimension (in this sense) of the numerical examples in [CGSF22]
are generally of order 100, but more complex markets might easily lead to much higher dimensional
approximations.

In this paper, we assume that we are given a calibrated signature model S = S(`) for a fixed linear
functional ` of degree m. The purpose is to derive reduced order models, i.e., a linear SDE with
solution X̃ in Rñ and a linear functional ˜̀ : Rñ → R such that〈˜̀, X̃〉 ≈ S(`) and ñ� dimTm(V ).(2.14)

Note that the requirement of X̃ to solve a linear SDE is natural, given that already X≤m solves a
linear SDE, see (2.6).

2.7 Signature differential equation

In the following, we will concentrate on the semi-martingale setting, but note that many discussions
are equally valid in the (deterministic or stochastic) rough path framework (or even the bounded
variation setting). As seen in (2.6) above, the truncated signature of the semi-martingale X satisfies

(2.15) dX≤m0,t = X≤m0,t ⊗ ◦dXs =
d∑
i=1

X≤m0,t ⊗ ei ◦ dXi
t , X≤m0,0 = 1 ∈ Tm(V ),

where the tensor product ⊗ is truncated to Tm(V ). Since (2.15) is a linear SDE (driven by a semi-
martingale), it fits within the context of stochastic model order reduction, see, for instance, [Red22;
RBG21]. For concreteness, we will rewrite the SDE in terms of coordinates. We will use the canonical
coordinates

1︸︷︷︸
∈V ⊗0⊂Tm(V )

, e1, . . . , ed︸ ︷︷ ︸
∈V⊂Tm(V )

, e1 ⊗ e1, . . . ed ⊗ ed︸ ︷︷ ︸
∈V ⊗2⊂Tm(V )

, . . . , e⊗m1 , . . . , e⊗md︸ ︷︷ ︸
∈V ⊗m⊂Tm(V )

,

which we order by length first and lexicographically within elements of the same length. The linear
vector fields Vi : Tm(V )→ Tm(V ), a 7→ a⊗ ei (in the sense of the truncated tensor product), can
then be represented by matrices Ni ∈ Rn×n, where

n = n(d,m) =
m∑
i=0

di = dm+1 − 1
d− 1 = dimTm(V ).

The matrices N1, . . . , Nd can be given in closed form, see Box 1.

We end up with the SDE

(2.16) dX≤m0,t =
d∑
i=1

NiX≤m0,t ◦ dXi
t , X≤m0,0 = (1, 0, . . . , 0)> ∈ Rn,

where we use the same symbol X≤m0,t ∈ Rn for the version of the signature in coordinates.

5Essentially, when the payoff function can be efficiently approximated by a linear functional of the signature of S.
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Box 1 Matrices representing the vector fields driving the truncated signature.
1: Initialize matrices N1 = · · · = Nd = 0
2: for i = 1, . . . , d do
3: for k = 1, 2, . . . , (dm − 1)/(d− 1) do
4: Ni[1 + (k − 1)d+ i, k] = 1
5: end for
6: end for

Remark 2.14. Note that the matrices N1, . . . , Nd are nilpotent with order m + 1, i.e., for any
i1, . . . , im, im+1 ∈ { 1, . . . , d } and 1 ≤ k ≤ m we have

Ni1 ·Ni2 · · ·Nik 6= 0, but Ni1 ·Ni2 · · ·Nim ·Nim+1 = 0.

This is clear from the construction: applying the vector field Vi to an element a ∈ V ⊗n ⊂ Tm(V )
yields an element Vi(a) ∈ V ⊗(n+1) ⊂ Tm(V ), for any 0 ≤ n < m. Hence, iteratively applying the
vector fields m + 1 times always gives the zero element, as we are “pushed out” of the truncated
tensor algebra.

3 Dimension reduction

As the first step in the analysis, we rewrite (2.16) as an Itô stochastic differential equation. In order
to simplify the dimension reduction, we will impose assumptions assuring that the Itô version is still
linear.

Assumption 3.1. Xt is a time-extended Brownian motion, i.e., X1
t = t and Bt := (B2

t , . . . , B
d
t )> :=

(X2
t , . . . , X

d
t )> is a (d− 1)-dimensional Brownian motion with associated matrix K = (kij)i,j=2,...,d

that determines the covariance by E[BtB>t ] = Kt.

Remark 3.2. Alternatively, we can also consider a general semi-martingale, provided that the
quadratic variation processes are also part of X. The driving process X is a semi-martingale such
that all quadratic co-variations [Xi, Xj ]t are already (constant multiples) of coordinates of X. More
specifically, Xt = (X̄t, X̂t), where X̄ is a (proper) semimartingale and X̂ is a bounded variation
process such that for any i, j there is a constant kij and an index cij such that [X̄i, X̄j ] ≡ kijX̂cij .
Note that Assumption 3.1 is a special case of this semi-martingale setting. For simplicity, we will
concentrate on the former case in what follows and leave the situation of this remark for future work.

We aim to rewrite (2.16) in the Itô sense. The associated Itô-Stratonovic correction term is 0.5
∑d
i,j=2NiNjkij ,

where kij is the ij-th entry of the matrix K determining the covariance of the Brownian motion.
The drift coefficient is A = N1 + 0.5

∑d
i,j=2NiNjkij leading to

dXt = AXtdt+
d∑
i=2

NiXtdBi
t, X0 = z, Yt = LXt, t ∈ [0, T ],(3.1)

where z ∈ Rn is a generic initial state and the rows of L ∈ Rp×n represent linear functionals of
interest. Let us recall that we are particularly interested in z =

(
1 0 . . . 0

)> giving us Xt = X≤m0,t .
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3.1 Identifying less relevant signature information

We introduce the fundamental solution to the signature equation (3.1) as the process Φ(t, t0) satis-
fying

dΦ(t, t0) = AΦ(t, t0)dt+
d∑
i=2

NiΦ(t, t0)dBi
t, Φ(t0, t0) = I ∈ Rn×n,(3.2)

with t0 ∈ [0, T ). Therefore, we can write Xt = Φ(t, t0)Xt0 for all t ∈ [t0, T ]. Based on that, we set

P :=
∫ T

0
E
[
XuX>u

]
du =

∫ T

0
E
[
Φ(u, 0)zz>Φ(u, 0)>

]
du,(3.3)

Q :=
∫ T

0
E
[
Φ(u, 0)>L>LΦ(u, 0)

]
du.(3.4)

We can choose an orthonormal basis (ONB) consisting of eigenvectors of these time-averaged co-
variances to represent the truncated signature. Let (pk)k=1,...,n be an ONB for Rn of eigenvectors of
P and (qk)k=1,...,n the one associated to Q. This yields the following

(3.5)
Xt =

n∑
k=1
〈Xt, pk〉Rn pk, t ∈ [0, T ],

Yt = LΦ(t, t0)Xt0 =
n∑
k=1
〈Xt0 , qk〉Rn LΦ(t, t0)qk, t ∈ [t0, T ].

The next proposition tells us which directions pk and qk are of minor relevance.

Proposition 3.3. Let (λk)k=1,...,n and (µk)k=1,...,n be the eigenvalues of the ONB (pk)k=1,...,n and
(qk)k=1,...,n, respectively. Then, we obtain for the k-th summands of (3.5) that

E
∫ T

0
〈Xu, pk〉2Rndu = λk,

E
∫ T

t0
〈Xt0 , qk〉2Rn ‖LΦ(u, t0)qk‖2Rp du ≤ µkE〈Xt0 , qk〉2Rn .

Proof. The first identity is trivial as E
∫ T

0 〈Xu, pk〉2Rndu = p>k
∫ T

0 E[XuX>u ]du pk = p>k Ppk = λk ex-
ploiting that pk has norm 1. We further note that Xt0 is Ft0-measurable and that u 7→ Φ(u, t0) only
depends on increments ofB after t0. Therefore, they are independent and hence E[〈Xt0 , qk〉2Rn ‖LΦ(u, t0)qk‖2Rp ] =
E〈Xt0 , qk〉2RnE ‖LΦ(u, t0)qk‖2Rp . Now, we obtain by substitution that

E
∫ T

t0
‖LΦ(u, t0)qk‖2Rp du = E

∫ T

t0
‖LΦ(u− t0, 0)qk‖2Rp du

=
∫ T−t0

0
E ‖LΦ(u, 0)qk‖2Rp du ≤ qkQqk = µk.

Above, we exploited that E
[
Φ(u, t0)qkq>k Φ(u, t0)>

]
= E

[
Φ(u − t0, 0)qkq>k Φ(u − t0, 0)>

]
as both

expressions satisfy (3.6) with M = qkq
>
k . This concludes the proof.

Proposition 3.3 tell us that pk has a low contribution to Xt if the associated eigenvalue λk is small.
Moreover, neglecting qk in Xt0 has a minor impact on the quantity of interest after t0 if µk is small
unless Xt0 is very large in the direction qk. Consequently, we know that we can remove directions pk
and qk that correspond to small eigenvalues. In order to be able to do this simultaneously, we construct
a coordinate transform below that ensures that pk = qk = ek. Here, ek is k-th canonical basis vector of
Rn. Therefore, unimportant direction can be identified with components of a transformed signature.
Before stressing this aspect further, a strategy for the computation of P and Q is provided in the
following section.
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3.2 Computation of P and Q

The later dimension reduction procedure relies on having P and Q available. For that reason, let us
briefly discuss how these matrices can be computed in practice.

Let us introduce the Lyapunov operator L(Z) = AZ + ZA> +
∑d
i,j=2NiZN

>
j kij , where Z is a

matrix of suitable dimension. This notion is used to recall the following well-known result.

Proposition 3.4. Given M ∈ Rn×n, the function t 7→ E
[
Φ(t, t0)MΦ(t, t0)>

]
solves

d
dtZt = L (Zt) , Zt0 = M, t ≥ t0.(3.6)

Proof. We define Φt := Φ(t, t0) and make use of Itô’s product rule yielding

d
(
ΦtMΦ>t

)
= d

(
Φt
)
MΦ>t + ΦtMd

(
Φ>t
)

+ d (Φt)Md
(
Φ>t
)

=
(
AΦtdt+

d∑
i=2

NiΦtdBi
t

)
MΦ>t + ΦtM

(
Φ>t A>dt+

d∑
i=2

Φ>t N>i dBi
t

)

+
d∑

i,j=2
NiΦtMΦ>t N>j kijdt.

Taking the expectation, we obtain d
dtE

[
ΦtMΦ>t

]
= L

(
E
[
ΦtMΦ>t

])
.

Let vec(·) be the vectorization of a matrix. Using its relation to the Kronecker product ⊗̃ between
two matrices, (3.6) becomes

d
dt vec(Zt) = K vec(Zt), vec(Zt0) = vec(M), t ≥ t0,(3.7)

where the matrix representation of the Lyapunov operator is

K = A ⊗̃ I + I ⊗̃A+
d∑

i,j=2
Ni ⊗̃Njkij .

As P defined in (3.3) is the integral of the solution of (3.6) with t0 = 0 and M = zz>, we therefore
have that

vec(P ) =
∫ T

0
vec(Zt)dt =

∫ T

0
eKt vec(zz>)dt

inserting the solution representation for (3.7). According to Remark 2.14, the matrices N1, . . . , Nd

are nilpotent with order m + 1 leading to Kj = 0 for j ≥ 2m + 1 and hence eKt =
∑2m
j=0

tj

j!K
j .

Exploiting this fact yields

vec(P ) =
2m∑
j=0

T j+1

(j + 1)!K
j vec(zz>).(3.8)

Although K potentially is a huge matrix, P can be computed from (3.8) since K is extremely sparse
making the matrix-vector multiplication cheap. In order to compute P for very large n, it is beneficial
to devectorize (3.8) leading to the explicit representation

P =
2m∑
j=0

T j+1

(j + 1)!L
j(zz>).(3.9)
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The computation of Q can be conducted using similar arguments. Vectorizing (3.4) yields

vec(Q) =
∫ T

0
E
[

vec
(
Φ(u, 0)>L>LΦ(u, 0)

)]
du

=
∫ T

0
E
[
Φ(u, 0)> ⊗̃Φ(u, 0)>

]
vec

(
L>L

)
du.

Based on Proposition 3.4 and (3.7), we know that

eK(t−t0) vec(M) = vec
(
E
[
Φ(t, t0)MΦ(t, t0)>

])
= E

[
Φ(t, t0) ⊗̃Φ(t, t0)

]
vec(M).

Since this identity is true for all matrices M , we find that E
[
Φ(t, t0) ⊗̃Φ(t, t0)

]
= eK(t−t0) and

consequently

vec(Q) =
∫ T

0
eK>u vec

(
L>L

)
du =

2m∑
j=0

T j+1

(j + 1)!(K
>)j vec(L>L)(3.10)

using once more that Kj = 0 for j ≥ 2m+ 1. Relation (3.10) now is the basis for the computation
of Q. Equivalently, we can write

Q =
2m∑
j=0

T j+1

(j + 1)!(L
∗)j(L>L),(3.11)

where the Lyapunov operator’s adjoint w.r.t. the Frobenius inner product is

L∗(Z) = A>Z + ZA+
d∑

i,j=2
N>i ZNjkij .

3.3 Reduced order signature approximation

We conduct a state space transformation via a nonsingular matrix T ∈ Rn×n. To do so, we define
X̂t = T Xt and and associated coefficients (Â, N̂i, L̂) = (T AT −1, T NiT −1, LT −1). The purpose of
this transformation is that an equivalent system (same quantity of interest) is supposed to be ob-
tained, in which the redundant information can be removed easily by truncation of state components.
In particular, T is chosen in a way that it simultaneously diagonalizes P and Q. Hence, the corre-
sponding eigenvectors (pk) and (qk) are the canonical basis (ek) of Rn at the same time. Exploiting
Proposition 3.3, we can then identify unimportant components 〈X̂·, ek〉Rn of X̂ and truncate those.
Let us refer to the discussion below this proposition once more and provide further details below.

First, we can conclude that the modified signature X̂ fulfills

(3.12) dX̂t = ÂX̂tdt+
d∑
i=2

N̂iX̂tdBi
t, X̂0 = T z, Yt = L̂X̂t, t ∈ [0, T ],

meaning that Y is invariant under this transformation. Now, we see directly from (3.2) that the fun-
damental solution of (3.12) is Φ̂(t, t0) = T Φ(t, t0)T −1. Consequently, the time-averaged covariances
of (3.12) are

(3.13)
P̂ :=

∫ T

0
E
[
Φ̂(u, 0)T z(T z)>Φ̂(u, 0)>

]
du = T PT >,

Q̂ :=
∫ T

0
E
[
Φ̂(u, 0)>L̂>L̂Φ̂(u, 0)

]
du = T −>QT −1.

The following proposition states the particular transformation required for a simultaneous diagonal-
ization of the time-averaged covariances.
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Proposition 3.5. Given that P andQ are positive definite, we obtain P̂ = Q̂ = Σ = diag(σ1, . . . , σn)
using the balancing transformation

(3.14) T = Σ
1
2U>L−1

P ,

with the factorization P = LPL
>
P and the spectral decomposition L>PQLP = UΣ2U>, where U is

orthogonal. Moreover, σ2
i are the eigenvalues of PQ.

Proof. Inserting (3.14) in (3.13) yields P̂ = Σ
1
2U>L−1

P PL−>P UΣ
1
2 = Σ and Q̂ = Σ−

1
2U>L>PQLPUΣ−

1
2 =

Σ. By definition, σ2
i are the eigenvalues of L>PQLP . Exploiting that L>PQLP has the same spectrum

like LPL>PQ = PQ concludes the proof.

Given that we have used the balancing transformation (3.14) in (3.12), we can identify less relevant
directions with components of X̂ that are associated to small eigenvalues σ2

k of PQ. This is a
consequence of Proposition 3.3, where the transformation ensures that pk = qk is the k-th column
of the n × n identity matrix and λk = µk = σk. For that reason, the spectrum of PQ delivers a
good truncation criterion and therefore the intuition on how to fix the reduced dimension ñ � n.
In order to find the reduced equation, we partition the solution of (3.12) with T like in (3.14) as

follows X̂t =
[
X̂ 1
t

X̂ 2
t

]
. X̂ 1

t taking values in Rñ corresponds to the large values σ1, . . . , σñ and X̂ 2
t to

the small values σñ+1, . . . , σn in the sense that σñ+1 � σñ. The respective partition of the balanced
coefficients

(3.15) Â =
[
Ã ?
? ?

]
, T z =

[
z̃
?

]
, N̂i =

[
Ñi ?
? ?

]
, L̂ =

[
L̃ ?

]

with Ã, Ñi ∈ Rñ×ñ, z̃ ∈ Rñ and L̃ ∈ Rp×ñ leads to the reduced system

(3.16) dX̃t = ÃX̃tdt+
d∑
i=2

ÑiX̃tdBi
t, X̃0 = z̃, Ỹt = L̃X̃t, t ∈ [0, T ].

In detail, the reduced model (3.16) is obtained by removing the equation for X̂ 2
t in (3.12) and by

setting X̂ 2
t = 0 in the dynamics of X̂ 1

t . This is motivated by th minor relevance of X̂ 2
t leading to a

reduced output Ỹ ≈ Y. In particular, choosing p = 1 and z =
(
1 0 . . . 0

)>, the reduced variable
X̃ is a candidate for X̃ in (2.14).

4 Numerical examples

4.1 Bergomi model

In the first example, we use a standard stochastic volatility model, namely the Bergomi model
[Ber15], as our starting point. The Bergomi model is highly praised for its flexibility, and the ability
to accurately fit equity markets, even with relatively few parameters. More concretely, the n-factor
Bergomi model is given by

dSt =
√
ξttStdZt,(4.1a)

dtξTt = ω√∑n
i,j=1wiwjρij

ξTt

n∑
i=1

wie−ki(T−t)dW i
t ,(4.1b)
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with initial values S0 for the stock price and an initial forward variance curve ξ·0. Here, Z,W 1, . . . ,Wn

are correlated standard Brownian motions, where ρ denotes the correlation matrix of (W 1, . . . ,Wn)
and – following [Guy22] – we denote the correlation between the Brownian motion Z driving the
stock price and the Brownian motion W i by ρSi.

Remark 4.1. As indicated above, the Bergomi model is a forward variance model, i.e., it models
the whole forward variance curve ξTt := E[vT | Ft], T ≥ t ≥ 0, not just the instantaneous variance
vt = ξtt . This yields great flexibility for calibration, noting that the initial forward variance curve ξ·0 –
an essential parameter of the model – can be read out from market data (variance swaps or vanilla
option prices using the log-strip formula), and, hence, does not need to be calibrated in principle.
The specific dynamics of the forward variance in (4.1b) corresponds to taking the exponential of a
weighted sum of Ornstein-Uhlenbeck processes.

In the first numerical example, we take a two-factor Bergomi model, following the parameterization
of [Guy22, Section 3], which is a variant of the parameter Set I in [Ber15, p. 229] with constant
initial forward variance curve. Specifically, we choose the parameters presented in Table 1. We here
use the notation θ1 = w1, and the convention w2 = 1− θ1.

ω k1 k2 θ1 ρ12 ρS1 ρS2 S0 ξ·0
3 2.63 0.42 0.69 0.7 −0.9 −0.9 1 0.04

Table 1: Parameters for the Bergomi model used in our numerical example following [Guy22, Section
3].

In our first numerical example, we take the Bergomi model as ground-truth, and proceed to

1 train a signature model in the sense of [CGSF22] with different truncation levels m, i.e., a
model for the asset price of the form St ≈ S(`)

t =
〈
` ,X≤m0,t

〉
, see Section 2.6;

2 vectorize the truncated signature X≤m0,t and formulate Itô-SDE (3.1) with respective initial
state, so that S(`)

t = Yt = LXt;

3 approximate the truncated signature by the method described in Section 3.3; obtain a reduced
order signature approximation S(`)

t ≈ Ỹt = L̃X̃t from (3.16).

In the specific example of the two-dimensional Bergomi model, we choose the underlying state process
Xt = (t, Zt,W 1

t ,W
2
t ), i.e., we consider the truncated signature X≤m0,t at level m of a d-dimensional

process with d = 4 and m = 5. This results in an Itô-SDE (3.1) with state dimension n = 1365
with quantity of interest Yt. We apply the dimension reduction scheme of Section 3 to (3.1) in
order to obtain a reduced system (3.16) of order ñ � n with quantity of interest Ỹt. The values
σk :=

√
eigk(PQ) introduced in Proposition 3.5 provide an algebraic criterion for a good choice of

ñ. According to Section 3.3, the smaller σk, the less important the associated state component in
the balanced system (3.12) is. Figure 1 shows σk for k ∈ {1, . . . , 50}. We observe a strong decay
in k and notice that σ28 < 10−8 which is below the machine precision. Consequently, (3.1) has a
high reduction potential and allows for an exact approximation in case of choosing ñ = 27. The

corresponding reduction errors
√
E
∫ T

0

∥∥∥Yt − Ỹt∥∥∥2

Rp
dt can be found in Figure 2. We have a true

approximation error for ñ < 27. If ñ ≥ 27, the error is numerically zero. In addition to the L2-
error, the quality of the reduced signature system is tested in a finance context. First, we determine
the fair price E

[
max{S(`)

T −KT , 0}
]
of a European option, where the values of the strike price

KT = (0.8 + j · 0.02)
√
T (j = 0, 1, . . . , 20) are chosen depending on the maturity T . The computed

prices are then treated as prices from a Black-Scholes model and the associated volatilities are
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Figure 1: Square root of first 50 out of n =
1365 eigenvalues of PQ for signature model
associated to (4.1).
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Ỹ t
∥ ∥ ∥2 Rp

dt
(l
og

sc
al
e)

Figure 2: L2-error between output of the sig-
nature model of (4.1) (n = 1365) and re-
duced system output for ñ = 1, . . . , 26.
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Figure 3: Implied volatilities of (4.1) for T = 1/12, 1/2, 1 and strike prices KT = (0.8 + j · 0.02)
√
T

with j = 0, 1, . . . , 20.

derived (while the interest rate is zero). These quantities are called implied volatilities (IV). The IV
are depicted in Figure 3 for T = 1/12, 1/2, 1. We repeat this procedure in the reduced setting and
obtain approximating IV. The relative error between the IV in the full and the reduced dynamics can
be found in Figure 4 with reduced dimensions ñ = 5, 11, 27 and terminal times T = 1/12, 1/2, 1.
We can see that the error is around one percent for T = 1/12, 1/2 if we set ñ = 5. However, the
same reduced dimension shows errors of up to six percent for T = 1, since relatively small IV come
with a higher relative approximation error. Therefore, it can be reasonable to enlarge the reduced
dimension to ñ = 11. This yields relative deviations in the IV of around 10−4 only and is hence a
very good approximation regardless of the maturity T . As expected, we obtain IV errors that can be
totally neglected when fixing ñ = 27, see Figure 4 once more. This is a very significant reduction in
comparison to the original dimension n = 1365.

4.2 Rough Bergomi model

Our second example is the rough Bergomi model introduced in [BFG16], a work-horse model within
the class of rough volatility models, see [Bay+23b] for an exposition. Intuitively, the rough Bergomi
model is a variant of the Bergomi model, where the exponential memory kernel in the variance process
is replaced by a fractional kernel, in essence leading to the variance process being an exponential
of a fractional Brownian motion. While seemingly innocuous, this change destroys the Markovian
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0.95 1 1.05

10−2

10−4

10−7

10−10

10−12

Strike price KT

R
el
.
er
ro
r
im

pl
ie
d
vo
la
til
iti
es

T = 1/12

0.9 1 1.1

10−2

10−4

10−7

10−10

10−13

10−15

Strike price KT

R
el
.
er
ro
r
im

pl
ie
d
vo
la
til
iti
es

T = 1/2

0.8 0.9 1 1.1 1.2

10−2

10−4

10−7

10−10

10−13

Strike price KT

R
el
.
er
ro
r
im

pl
ie
d
vo
la
til
iti
es

T = 1

Figure 4: Relative error between volatilities of signature model associated to (4.1) and reduced
systems with ñ = 5, 11, 27, strike prices KT = (0.8 + j · 0.02)

√
T and T = 1/12, 1/2, 1.

structure of the resulting model. More precisely, we consider the model

dSt =
√
vtStdZt,(4.2a)

vt = ξ0(t) exp
(
ηŴH

t −
1
2η

2t2H
)
,(4.2b)

where ŴH
t :=

√
2H

∫ t
0(t − s)H−1/2dWs denotes a Riemann–Liouville fractional Brownian motion,

andW and Z are standard Brownian motions with correlation ρ. Note that the rough Bergomi model
is – like the Bergomi model – a forward variance model, (depending on the initial forward variance
curve ξ0).

H η ρ S0 ξ0(·)
0.3 2.3 −0.9 1 0.04

Table 2: Parameters for the rough Bergomi model used in our numerical example.

The term “rough” in the rough Bergomi model reflects the empirical observation that the Hurst index
H should be chosen less than 1

2 – leading to a power law explosion of the ATM implied volatility
skew. In fact, empirical studies show that H is often chosen very close to 0, e.g., H = 0.07 reported
in [BFG16] based on a calibration on SPX option prices as of February 4, 2010.

We again fit a signature model with underlying state process Xt = (t, Zt,Wt) (i.e. d = 3) to a rough
Bergomi model, taking model parameters reported in Table 2. The parameters are realistic, with the
possible exception of our choice of H = 0.3. While clearly within the range of Hurst parameters
observed in the large scale study [BLP22], it is comparatively large for rough volatility models. In
our experience, fitting a signature model to a rough volatility model with very small H is, however,
hard, especially while keeping the truncation degree manageable. Therefore, we choose H = 0.3 as
a compromise of a clearly fractional, non-Markovian model which is still easily fitable by a signature
model. Note that we again use a constant initial forward variance curve. In particular, we choose
m = 7 as the level of the truncated signature X≤m0,t leading to an equation in (3.1) with state
dimension n = 3280. The reduction technique of Section 3 provides a reduced system (3.16) with
state dimension ñ� n with the aim of having an accurate approximation of the quantity of interest,
i.e., Ỹt ≈ Yt. The algebraic values σk :=

√
eigk(PQ) in Figure 5 tell us about the significance of

state variables and hence the right reduced dimension ñ. We observe that σk is numerically zero
for k > 55. Therefore, a reduced system of order ñ = 55 is an exact model. However, choosing
ñ much smaller than this can go along with a little approximation error as well. We illustrate the
L2-performance for all case with a true error in Figure 6. We, e.g., observe that the L2-error between
Ỹ with ñ > 10 and Y (linear functional of the signature) is below 0.01.
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Figure 5: Square root of first 80 out of n =
3280 eigenvalues of PQ for signature model
associated to (4.2).
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√
E
∫ T 0

∥ ∥ ∥Y
t
−
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Figure 6: L2-error between output of the sig-
nature model of (4.2) (n = 3280) and re-
duced system output for ñ = 1, . . . , 54.

Moreover, we are interested in the quality of the signature approximation (3.16) when IV are aimed
to be reproduced. First of all, let us note the true IV of the signature model in Figure 7 for T =
1/12, 1/2, 1. We approximated these values by the IV of reduced system for ñ = 55 and, as expected,
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Figure 7: Implied volatilities of (4.2) for T = 1/12, 1/2, 1 and strike prices KT = (0.8 + j · 0.02)
√
T

with j = 0, 1, . . . , 20.

we obtain an error that can be fully neglected, see Figure 8. We demonstrate the case of ñ = 15
in the same figure to illustrate that even a reduction to such a small dimension (in comparison to
n = 3280) a relative error of less that 0.01 can be guaranteed that is often around 10−3.
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