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State spaces of multifactor approximations of nonnegative Volterra processes

Eduardo Abi Jaber, Christian Bayer, Simon Breneis

Abstract

We show that the state spaces of multifactor Markovian processes, coming from approximations of
nonnegative Volterra processes, are given by explicit linear transformation of the nonnegative orthant. We
demonstrate the usefulness of this result for applications, including simulation schemes and PDE methods
for nonnegative Volterra processes.

1 Introduction

Multifactor Markovian approximations for fractional Brownian motion were initially introduced by Carmona and
Coutin [14] and revisited more recently by Abi Jaber and El Euch [3] in the context of nonnegative stochas-
tic Volterra equations, motivated by rough and Volterra Heston models of El Euch and Rosenbaum [19] and
Abi Jaber, Larsson, and Pulido [5]. Since then, substantial literature has emerged on such multifactor processes
for numerical approximation methods (Alfonsi and Kebaier [7], Bayer and Breneis [11, 10, 12], Chevalier, Pulido,
and Zúñiga [15], Harms [20]), deep learning approaches (Papapantoleon and Rou [22]), modeling (Abi Jaber
[1]), and optimal control (Abi Jaber, Miller, and Pham [6]). It should be noted that such approximations are also
heavily used in physics, chemistry and other fields, see, e.g., Baczewski and Bond [8], Bochud and Challet [13].

The starting point is a nonnegative solution to the stochastic Volterra equation

Yt = Y0 +

∫ t

0
K(t− s)b(Ys) ds+

∫ t

0
K(t− s)σ(Ys) dWs, (1)

where the kernel K is (approximated by) a weighted sum of exponentials of the form

K(t) =

N∑
i=1

wie
−xit (2)

with positive nodes x = (xi)i=1,...,N and weights w = (wi)i=1,...,N . Such series in terms of exponential
functions are sometimes known as Prony series. The coefficients b, σ : R→ R are continuous and satisfy the
boundary conditions

b(0) ≥ 0 and σ(0) = 0, (3)

to ensure that the process Y remains nonnegative for any Y0 ≥ 0.

Then, the nonnegative Volterra process Y can be written in the form Yt =
∑N

i=1wiY
(i)
t , where Y =

(Y (i))i=1,...,N is the solution to the N -dimensional stochastic differential equation

dY
(i)
t = −xi

(
Y

(i)
t − y

(i)
0

)
dt+ b(Yt) dt+ σ(Yt) dWt, (4)

with initial values Y
(i)
0 , which are often, but not necessarily chosen to coincide with y

(i)
0 , for i = 1, . . . , N .

The aim of the paper is to determine a state space of the multifactor Markovian process Y . That is, we want to
determine a set D ⊆ RN such that for every starting value Y0 ∈ D, there exists a D-valued solution Y to (4),
that is Yt ∈ D for all t ≥ 0 almost surely.

Beyond the mathematical importance of defining the state space of the Markovian process Y , the knowledge
of the state space is crucial for several practical applications, some of which have been considered so far:
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� Modeling and Calibration: The multifactor model (4) can serve as a model in its own right (and not
solely as an approximation of Volterra models), usually for stochastic volatility factors, as seen in the lifted
Heston model of Abi Jaber [1]. Here, the knowledge of the state space is crucial for calibrating the initial
values of Y0 directly to market data.

� Simulation accuracy: The identification of a valid state space allows for more precise simulation schemes
for Y . For instance, Bayer and Breneis [12] generalized a simulation scheme for the square-root process
of Lileika and Mackevičius [21] to simulate paths from the dynamics in (4) with σ(z) =

√
z. However, the

authors were not able to show that their simulation scheme is well-defined because they did not know the
state space. Indeed, when simulating from (4), great care has to be taken to ensure that the aggregated
process Y does not become negative, or if it does, one has to determine how to proceed with the square
root term

√
Y .

� Efficient Domain Meshing for PDE Solutions: In Papapantoleon and Rou [22], for example, the authors

use a rejection algorithm that discards simulations failing to satisfy the condition
∑

iwiY
(i)
0 ≥ 0, this

approach is not precise and becomes inefficient in high dimensions.

For all these reasons, the geometry of the state space for multifactor processes Y quickly became a central
focus in the associated literature for nonnegative Volterra processes. For the lifted Heston model of Abi Jaber
[1], simulations demonstrated that while individual processes Y (i) might take negative values, their aggregated
sum Y remains nonnegative. In this context, two key papers provided abstract characterizations of possible state
spaces: one based on the resolvent of the first kind of the kernel by Abi Jaber and El Euch [2], and the other using
the resolvent of the second kind of the kernel by Cuchiero and Teichmann [16] (we refer to Appendix B for further
details on these state spaces and their connections). While these spaces are valid for a wide range of kernels,
they remain somewhat abstract and challenging to make explicit, making it almost impossible to determine the
good conditions on the initial values Y ≥ 0 of the process Y . Finally, using the simulation algorithm for the
rough Heston model due to Bayer and Breneis [12], we visually represent the process’s support by a sample
plot, see Figure 1 – replicating a similar plot already presented in that paper. One can clearly recognize that the
sample paths do not only seem to lie in the half-plane Y = w1Y

(1) +w2Y
(2) ≥ 0 marked with the down-ward

oriented black line, but in an even smaller cone seemingly below the upward oriented line {y ∈ R2 : y1 ≥ y2}.

Main contributions. The main question we are interested in can be summarized as follows:

What constitutes a suitable state space for the multifactor Markovian process Y in (4)?

Our main results in Theorem 2.3 and Corollary 2.7 establish that this state space can be represented as a linear
transformation of RN+ , and we provide an explicit form for this transformation.

As a first application of this result, we prove that the weak simulation scheme for the rough Heston process
proposed by Bayer and Breneis [12] is well-defined in the sense that the variance process always stays non-
negative, see Section 3. In Section 4, we derive the corresponding pricing PDE on the transformed domain
RN+ , and solve it numerically by the finite element method after truncation of the domain. Naturally, knowing
the PDE’s precise domain is crucial for accurate numerical approximations. Finally, in Section B, we show how
the explicit formula for the domain compares with general, abstract characterizations given in the literature by
Abi Jaber and El Euch [2] and Cuchiero and Teichmann [16].

Notation and Conventions. We denote by ei is the i-th unit vector, which has a 1 in the i-th component,
and 0 in every other component, 1 := (1, 1, . . . , 1)> is the vector with 1 in every component, Id is the identity
matrix, diag(a) for a vector a ∈ RN is the diagonal matrix with entries a in the diagonal, and w := 1>w =∑N

i=1wi. Throughout, italic letters a denote real numbers and bold letters a denote vectors, where we write
a = (ai)

N
i=1 for the components of a. An exception are stochastic processes, where components are denoted

by Yt = (Y
(i)
t )Ni=1 (due to the time variable in the subscript).
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State space 3

Figure 1: Samples of the two-dimensional process (Y (1), Y (2)) using 105 sample paths on a time grid with
M = 1000 time steps. Plotted are all the points Yti for every time step ti, i = 0, . . . , 1000, and all the 105

samples. The decreasing black line is the line where the aggregated process w1Y
(1) + w2Y

(2) = 0, and the
aggregated process is positive above that line. The nearly orthogonal second line cuts out a cone, which seems
to give the actual support of the process.

2 State spaces of the multifactor Markovian process

Fix N ≥ 1. We consider the N -dimensional stochastic differential equation

dYt = −diag(x) (Yt − y0) dt+ b(w>Yt)1dt+ σ(w>Yt)1dWt, (5)

where b, σ : R→ R are continuous, satisfy the linear growth condition

|b(y)| ∨ |σ(y)| ≤ C (1 + |y|) , y ∈ R, (6)

and the boundary conditions (3). The speeds of mean-reversion x = (xi)i=1,...,N are positive and ordered,
i.e. 0 < x1 ≤ x2 ≤ · · · ≤ xN , the weights w = (wi)i=1,...,N are positive, W is a one-dimensional Brownian
motion, and where Y0,y0 ∈ RN may be different. This corresponds to (4) written in vector form.

The aim of this section is to determine a state space of the multifactor process Y . That is, we want to determine
a set D ⊆ RN such that for every starting value Y0 ∈ D, there exists a D-valued weak solution Y to (5),
that is Yt ∈ D for all t ≥ 0 almost surely. In particular, the domain D should be a subset of the half-plane
{y ∈ RN : w>y ≥ 0} to ensure non-negativity of the aggregated weighted process Y := w>Y , which
for the specific case y0 = Y0 would correspond the Volterra process (1) for the weighted sum of exponential
kernel K given in (2). As illustrated in Figure 1, and following the abstract characterizations of domains of
(possibly infinite-dimensional) lifts of nonnegative Volterra processes in Abi Jaber and El Euch [2] and Cuchiero
and Teichmann [16], we suspect the domain D to be a cone.

2.1 Main result

We prove that the domain D is a cone characterized by the set Q of admissible matrices, which is defined as
follows.

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025
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Definition 2.1. A matrix Q ∈ RN×N is called admissible if it satisfies the following assumptions:

1 Q is invertible,

2 e>NQ = w>,

3 Q1 = weN , where w := w>1,

4 (Qdiag(x)Q−1)i,j ≤ 0 for i, j ∈ {1, . . . , N} with i 6= j.

We denote byQ the set of all admissible matrices.

Before stating our main theorem, we first show that the set of admissible matrices Q is nonempty by providing
an explicit example of an admissible matrix. However,Q is not reduced to a singleton as shown in Example 2.10
below.

Theorem 2.2. The matrix Q = (qi,j)i,j=1,...N ∈ RN×N given by

qi,j = wj , j ≤ i, qi,i+1 = −
i∑

j=1

wj , i = 1, . . . , N − 1,

and zeros elsewhere is admissible. In particular,Q is nonempty.

Proof. The proof is given in Appendix C.1.

We are now ready to state our main theorem that gives state spaces of the multifactor Markovian process (5).

Theorem 2.3. Let b, σ : R → R be continuous functions satisfying the linear growth condition (6) and the
boundary conditions (3). Let Q ∈ Q be an admissible matrix in the sense of Definition 2.1 and suppose that

y0 = µdiag(x)−11 for some µ ≥ 0. (7)

Set D = Q−1RN+ . Then, for each Y0 ∈ D, there exists a D-valued weak solution Y to (5).

Proof. The proof is given in Section 2.4.

Example 2.4. For the admissible matrix Q given in Theorem 2.2, the set D = Q−1RN+ corresponds to the set
of y ∈ RN such that w>y ≥ 0 and

i∑
j=1

wjyj ≥
i∑

j=1

wjyi+1 for i = 1, . . . , N − 1.

Remark 2.5. The domain Q−1RN+ is not unique, see Appendix A.

In practice, for instance for the multifactor approximations of Volterra processes, we often have Y0 = y0. Hence,
it may be interesting to know whether y0 as given in (7) is in Q−1RN+ . We treat this question in a slightly more
general context in the following lemma.

Lemma 2.6. Let Q be an admissible matrix and let y0 ∈ RN satisfy (7). Then y0 ∈ Q−1RN+ .

Proof. The proof is given in Appendix C.2.

We remark that condition (7) on y0 can easily be dropped by using affine transformations of RN+ instead of
linear ones. We give the specific details in the next corollary.

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025



State space 5

Corollary 2.7. Let b, σ : R → R be continuous functions satisfying the linear growth condition (6) and the
boundary conditions (3). Let Q ∈ Q be an admissible matrix in the sense of Definition 2.1, and assume that
w>y0 ≥ 0. Let ỹ0 be chosen according to (7) with w>ỹ0 = w>y0. Define the set

D = Q−1RN+ + (y0 − ỹ0). (8)

Then, for any Y0 ∈ D, there exists a D-valued weak solution Y to (5).

Proof. Denote by Ỹ a weak solution to

dỸt = −diag(x)
(
Ỹt − ỹ0

)
dt+ b(w>Ỹt)1dt+ σ(w>Ỹt)1dWt

with initial condition Ỹ0 := Y0+ ỹ0−y0. Note that Ỹ0 ∈ Q−1RN+ , so Theorem 2.3 imply the existence of such

a solution Ỹ that stays in Q−1RN+ . Define the process R := Ỹ + y0 − ỹ0 and note that w>R = w>Ỹ .
Thus, R satisfies R0 = Y0 and

dRt = −diag(x) (Rt − y0) dt+ b(w>Rt)1dt+ σ(w>Rt)1dWt.

But this means that R is a solution to (5) that stays in D. The corollary follows immediately.

We now give the specific result for the multifactor square-root process.

Example 2.8. Consider the multifactor square-root model

dV N
t = −diag(x)

(
V N
t − v0

)
dt+

(
θ − λw>V N

t

)
1dt+ ν

√
w>V N

t 1dWt. (9)

Let Q be an admissible matrix, and assume that w>v0 ≥ 0. Then,

D = Q−1RN+ +

(
v0 −

w>v0
w>diag(x)−11

diag(x)−11

)
.

2.2 Link with nonnegative Volterra processes

As an application of our result, one can obtain the existence of nonnegative solutions to Volterra equations with
kernels of the form (1). We note that such existence can be obtained by working directly on the level of the
Volterra equation as done in Abi Jaber, Larsson, and Pulido [5, Theorem 3.6 and Example 3.7]. Here, our result
provides another alternative as illustrated in the following corollary.

Corollary 2.9. Let b, σ : R → R be continuous functions satisfying the linear growth condition (6) and the
boundary conditions (3). Let the kernel K be given by a weighted sum of exponentials as in (2). Then, for each
Y0 ≥ 0, the stochastic Volterra equation (1) admits a nonnegative weak solution Y .

Proof. Fix Y0 ≥ 0 and let y0 ∈ RN be such that w>y0 = Y0. Let ỹ0 be chosen according to (7) with
w>ỹ0 = w>y0. Let Q ∈ Q be an admissible matrix, for instance given by Theorem 2.2. Then, it follows from
Lemma 2.6 that ỹ0 ∈ Q−1R. Hence, y0 = ỹ0 + (y0 − ỹ0) ∈ D, with D given by (8). An application of
Corollary 2.7, with the starting value Y0 = y0 ∈ D, yields the existence of a D-valued weak solution Y to the
equation (5). Thanks to the variation of constants formula, we can re-write the equation in the form

Yt = y0 +

∫ t

0
exp(−diag(x)(t− s))1

(
b(w>Ys) ds+ σ(w>Ys) dWs

)
, (10)

so that the process Y defined by Y = w>Y solves the equation

Yt = Y0 +

∫ t

0

N∑
i=1

wie
−xi(t−s) (b(Ys) ds+ σ(Ys) dWs) ,

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025
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which is precisely the Volterra equation (1) with the kernel K given by (2). It remains to argue that, for all t ≥ 0,
Yt remains nonnegative by using the fact that Yt ∈ D. Indeed, using Condition 2 of Definition 2.1 and the fact
that w>ỹ0 = w>y0, we obtain that

w>D = e>NQQ
−1RN+ + (w>y0 −w>ỹ0) = e>NRN+ = R+.

Hence, for all t ≥ 0, Yt = w>Yt ∈ w>D = R+, which ends the proof.

2.3 On admissible matrices for N ∈ {2, 3}

In this section we give examples of admissible matrices.

Example 2.10. In the case N = 2, the Conditions 2 and 3 of Definition 2.1 imply that we are looking for a
matrix of the form

Q =

(
q −q
w1 w2

)
,

for some q 6= 0 to ensure invertibility. Then,

Qdiag(x)Q−1 =
1

w

(
w1x2 + w2x1 (x1 − x2)q

w1w2(x1 − x2)q−1 w1x1 + w2x2

)
.

Since x1 ≤ x2, the last condition in Definition 2.1 is satisfied for any q > 0, and indeed, the domain Q−1R2
+

is independently of the precise choice of q given by

D =
{
y ∈ R2

+ : w>y ≥ 0, y1 ≥ y2
}
. (11)

For the case of the multifactor square-root process (9), the resulting sample paths of V 2 and U := QV 2 are
illustrated in Figure 2. Note that we chose the large maturity T = 100 to give the process more time to explore
its domain. Thereby, it is more clearly visible that the domain of U is indeed R2

+, than if we had set T = 1.

Figure 2: Samples of V 2 (right) and U (left) using 103 sample paths on a time grid with M = 105 time steps.
The black lines correspond to the hyperplanes in (11). The parameters used are x = (1, 10),w = (1, 2), λ =
0.3, ν = 0.3, V0 = 0.02, θ = 0.02, T = 100, and v0 = V0/(2x)(w1/x1 +w2/x2), i.e. v0 is chosen to be
proportional to x−1.

For N = 3, a similar computation – relegated to the appendix due to its length – gives multiple choices of
domains. See Appendix A for details.

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025



State space 7

2.4 Proof of Theorem 2.3

Fix an admissible matrix Q ∈ Q. The main idea of the proof is to reduce the study to the process Z = QY
and prove that its associated stochastic differential equation admits an RN+ -valued solution.

We start by writing the stochastic differential equation for Z. For this we first observe that due to (7), Y satisfies

dYt = −diag(x)Yt dt+ bµ(w>Yt)1dt+ σ(w>Yt)1dWt

where bµ(z) = b(z) + µ. Using Q as a transformation of basis (in the sense Z = QY ), we get, thanks to the
invertibility of Q, the following stochastic differential equation

dZt = −Qdiag(x)Q−1Zt dt+ bµ(w>Q−1Zt)Q1dt+ σ(w>Q−1Zt)Q1dWt.

Using the admissibility conditions 2 and 3 in Definition 2.1, we have that w>Q−1 = e>NQQ
−1 = e>N and

Q1 = weN , which simplifies the equation to

dZt = −Qdiag(x)Q−1Zt dt+ wbµ(Z
(N)
t )eN dt+ wσ(Z

(N)
t )eN dWt. (12)

Recall that Z(N) is the N -th component of Z.

In order to prove Theorem 2.3, it suffices to prove that for each Z0 ∈ RN+ , there exists an RN+ -valued Z weak
solution to (12). In particular, this would hold for any initial value of the form Z0 = QY0 with Y0 ∈ D = Q−1R+

N

and setting Y = QZ , one obtains a D-valued weak solution Y to (5) started at Y0.

Hence, this boils down to establish that the set RN+ is stochastically viable with respect to the equation (12).
Viability and invariance theory for stochastic differential equations have been extensively studied in the literature
in various contexts and with different assumptions on the domain and the coefficients, we refer to Abi Jaber,
Bouchard, and Illand [4], Da Prato and Frankowska [17, 18] and the references therein.

For the non-negative orthant RN+ the characterization in terms of the coefficients is very simple and means that,
at boundary points, the diffusive coefficient has to be tangential to the boundary and the drift inward pointing.
This is summarized in the following lemma.

Lemma 2.11. Let b̃, σ̃ : RN → RN be continuous satisfying the growth conditions

‖b̃(z)‖+ ‖σ̃(z)‖ ≤ L(1 + ‖y‖), z ∈ RN ,

and the boundary conditions, for all z ∈ RN+ ,

zi = 0 ⇒ e>i b̃(z) ≥ 0 and e>i σ̃(z) = 0, i = 1, . . . , N, (13)

then, for each Z̃0 ∈ RN+ , there exists a weak RN+ -valued solution to the following stochastic differential equation

dZ̃t = b̃
(
Z̃t

)
dt+ σ̃

(
Z̃t

)
dWt.

Proof. See for instance Da Prato and Frankowska [18, Example 2.7].

We now proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. It remains to apply Lemma 2.11 on the equation (12). For this, we define

b̃(z) = −Qdiag(x)Q−1z + wbµ(zN )eN and σ̃(z) = wσ(zN )eN , z ∈ RN .

Then, it readily follows from the continuity and growth conditions of b and σ that b̃, σ̃ are also continuous with at
most linear growth conditions. As for the boundary conditions (13), we fix z ∈ RN+ such that zi = 0 for some
i = 1, . . . , N .

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025
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• For the diffusion term, we have
e>i σ̃(z) = wσ(zN )e>i eN = 0,

since e>i eN = 0 if i < N and σ(zN ) = σ(0) = 0 if i = N , where we used the boundary condition on σ in
(3).

• For the drift term, we first observe that for the same reason bµ(zN )e>i eN = (b(zN ) + µ)e>i eN ≥ 0, since
b(0) + µ ≥ 0 thanks to the boundary condition on b in (3) and the fact that µ ≥ 0, so that we can write

e>i b̃(z) = −e>i Qdiag(x)Q−1z + wbµ(zN )e>i eN

≥ −
∑
j 6=i

(Qdiag(x)Q−1)ijzj

≥ 0,

where the first inequality follows from zi = 0 and the second inequality follows from the admissibility condition
4 in Definition 2.1 for the matrix Q and the fact that zj ≥ 0.

This shows that the boundary conditions (13) are satisfied by b̃, σ̃, so that an application of Lemma 2.11 yields
the existence of an RN+ -valued solution Z to (12) for any initial condition Z0 ∈ RN+ . In particular, it holds for the
initial value Z0 = QY0 with Y0 ∈ D = Q−1R+

N . Setting Y = QZ , one obtains a D-valued weak solution Y
to (5) started at Y0 and ends the proof of theorem.

3 The weak scheme is cone-preserving

In Section 2, we determined the state space D ⊆ RN of the multifactor square-root process V N given by (9).
Assume now that we approximate the process V N using the weak simulation scheme proposed in Bayer and
Breneis [12]. The goal of this section is to prove that the resulting approximation has the same viable domainD
as V N .

Let us first start by recalling the weak simulation scheme of Bayer and Breneis [12]. First, the SDE in (9) is split

into two parts, one containing the drift and the other the diffusion. Denote by D(z, h) := Zh := (Z
(i)
h )Ni=1 the

solution at time h of the ordinary differential equation (ODE)

dZit = −xi(Zit − vi0) dt+ (θ − λZt) dt, Zi0 = zi, i = 1, . . . , N, Zt = w>Zt, (14)

and by S(y, h) := Yh := Y i
h the solution at time h of the SDE

dY i
t = ν

√
Yt dWt, Y i

0 = yi, i = 1, . . . , N, Yt = w>Yt. (15)

Then, the ODE (14) is linear and can hence be solved exactly. Therefore, the simulation scheme D̂ for the ODE
is simply given by

D̂(z, h) := D(z, h) := eAhz +A−1(eAh − Id)b,

where
A := −λ1w> − diag(x), and b := θ1 + diag(x)v0.

We now recall the simulation scheme for the SDE (15). Note that the right-hand side of (15) is the same for all
i. Thus, after multiplying (15) with w, we get

dYt = νw
√
Yt dWt, Y0 = w>y,

where w := 1>w. This is now a one-dimensional SDE, which was already studied in Lileika and Macke-
vičius [21], where a second-order simulation scheme was given. This scheme is based on matching the first 5
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moments, while preserving the non-negativity of Y . Define the quantities

x := w>y, z := ν2w2h, (16)

m1 := x, m2 := x2 + xz, m3 := x3 + 3x2z +
3

2
xz2,

p1 :=
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)
,

p2 :=
m1x1x3 −m2(x1 + x3) +m3

x2(x3 − x2)(x1 − x2)
,

p3 :=
m1x1x2 −m2(x1 + x2) +m3

x3(x1 − x3)(x2 − x3)
,

x1 := x+

(
A+

3

4

)
z −

√√√√(3x+

(
A+

3

4

)2

z

)
z, (17)

x2 := x+Az, (18)

x3 := x+

(
A+

3

4

)
z +

√√√√(3x+

(
A+

3

4

)2

z

)
z, (19)

A :=
3 +
√

3

4
.

Then, we define Ŷh to be the random variable which is xi with probability pi, i = 1, 2, 3.

We can now reconstruct an approximation Ŷ from Ŷ . Indeed, since the right-hand side of (15) is the same for
all i = 1, . . . , N , the solution of (15) must be of the form

Y i
h = yi +R, i = 1, . . . , N, (20)

for some scalar random variable R. Taking the inner product of (20) with w, we get

Yh = w>y + wR, implying R =
Yh −w>y

w
.

Hence, we set

Ŝ(y, h) := Ŷh := y +
Ŷh −w>y

w
.

Finally, we use Strang splitting to get the scheme

ACIR(v, h) := D

(
Ŝ

(
D

(
v,
h

2

)
, h

)
,
h

2

)
for approximating Vh given v. Therefore, we get a simulation algorithm

V N,M
tj+1

:= ACIR(V N,M
tj

, tj+1 − tj), j = 0, . . . ,M − 1,

where 0 = t0 < t1 < · · · < tM = T. The only problem that could occur is that the square root in (17) or (19)
is not well-defined. However, note that if we can prove that V N,M does not leaveD, whereD is the same cone
as in Theorem 2.3, then in particular, x = w>y in (16) will always be non-negative, and hence the square roots
in (17) and (19) are always well-defined. Proving that V N,M stays in D is the aim of the following theorem.

Theorem 3.1. Let Q be an admissible matrix and let v0 be chosen according to (7). Then, for all v ∈ Q−1RN+
and h ≥ 0, the weak simulation algorithm ACIR described above satisfies ACIR(v, h) ∈ Q−1RN+ . In particular,
ACIR is well-defined.
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Proof. Given z,y ∈ Q−1RN+ and h ≥ 0, we want to show thatD(z, h) ∈ Q−1RN+ , and Ŝ(y, h) ∈ Q−1RN+ .
This will prove the theorem.

Consider first the algorithm Ŝ. Recall that Ŝ(y, h) = y +R1 for some scalar random variable R. We have to
verify that QŜ(y, h) = Qy +RQ1 ∈ RN+ . The last component of this vector is given by

(QŜ(y, h))N = w>y +Rw,

and we recall that this was given by the random variable Ŷh in Section 3, which by definition is non-negative, as
verified in Lileika and Mackevičius [21]. Conversely, for i = 1, . . . , N − 1, we have

(QŜ(y, h))i = (Qy)i + 0 ≥ 0

by the assumption that Qy ∈ R+
N . Hence, Ŝ leaves the domain Q−1RN+ invariant.

Next, consider the algorithm D. Recall that D(z, h) was given as the exact solution at time h of the ODE

dZt = −diag(x)(Zt − v0) dt+ (θ − λw>Zt)1dt, Z0 = z.

Note that due to (7), diag(x)v0 = µ1 for some µ ≥ 0. Defining Z̃ := QZ, we have

dZ̃t =
(
−Qdiag(x)Q−1Z̃t + (θ + µ− λZ̃Nt )Q1

)
dt, Z̃0 = Qz ∈ RN+ ,

and we have to show that Z̃t ∈ RN+ . We prove this by invoking Lemma 2.11, where we note that

b(z) = −Qdiag(x)Q−1z + (θ + µ− λzN )Q1, σ ≡ 0.

In particular, we have to show that bi(z) ≥ 0 for z ∈ RN+ with zi = 0.

We start with i = N . Here, we have

bN (z) = −(Qdiag(x)Q−1z)N + (θ + µ)w.

Of course, (θ + µ)w ≥ 0. Moreover, due to Definition 2.1, −(Qdiag(x)Q−1z)N is a linear combination of zi

where all the coefficients are non-negative, with the exception of the coefficient of zN . However, since zN = 0,
this implies that bN (z) ≥ 0.

Next, consider i = 1, . . . , N − 1. Then,

bi(z) = −(Qdiag(x)Q−1z)i.

As before,−(Qdiag(x)Q−1z)i is again a linear combination of the zj , where all coefficients are non-negative,
with the exception of the coefficient of zi. But since zi = 0, this implies that bi(z) ≥ 0, proving the theorem.

4 Solving PDEs

As an application of the domain, we want to solve PDEs. Recall that the multifactor square-root process V N is
given by

dV N
t = −diag(x)

(
V N
t − v0

)
dt+

(
θ − λw>V N

t

)
1dt+ ν

√
w>V N

t 1dWt,

see (9). After a transformation of variables using Z := QV N and z0 := Qv0, where Q is the matrix in
Theorem 2.2, we have

dZt = −Qdiag(x)Q−1 (Zt − z0) dt+ w
(
θ − λZ(N)

t

)
eN dt+ νw

√
Z

(N)
t eN dWt.
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N θ λ ν x w v0

2 0.8 1.2 0.7 (0.1, 3.5) (0.4, 1.8) (0.2, 0.3)

Table 1: Parameters of the stochastic volatility of the lifted rough Heston model used for the numerical example.

Let f : RN+ → R be a “nice” payoff function. Then, we define the value function u : RN+ × [0, T ]→ R,

u(z, t) := E
[
f(ZT )

∣∣Zt = z
]
.

Then, u satisfies the PDE

∂tu− (∇u)>Qdiag(x)Q−1(z − z0) + w (θ − λzN ) ∂zNu+
1

2
ν2w2zN∂

2
zN
u = 0 (21)

with the boundary condition u(z, T ) = f(z), z ∈ RN+ .

For numerical approximation, we then need to truncate the domain in space, and impose appropriate boundary
conditions. For simplicity, we will instead fabricate an appropriate source term such that the PDE has an explicit,
given solution, which we then also impose as Dirichlet boundary condition on the boundary of the truncated
domain.

Specifically, suppose that we want the exact solution to have the form

u(z, t) = ũ(z, t) := 1 +
N∑
i=1

αi(z
i)2 + βt, z ∈ RN+ , t ∈ [0, T ].

Plugging this formula into (21), we obtain a source term

φ(z) = β − 2

N∑
i=1

αiz
i
N∑
j=1

gij(z
j − zj0) + 2αNw(θ − λzN )zN + ν2w2αNz

N ,

i.e., u satisfies

∂tu− (∇u)>Qdiag(x)Q−1(z − z0) + w (θ − λzN ) ∂zNu+
1

2
ν2w2zN∂

2
zN
u = φ,

now with the terminal condition u(z, T ) = ũ(z, T ). The precise parameters chosen are summarized in Table 1,
with a dimension N = 2 and an admissible matrix Q given by Example 2.10. We furthermore choose α =
(3, 4), β = 1.6, and the terminal time T = 2.

After truncation of the domain, we solve the PDE by the finite element method, using the package FEniCSx, see
Baratta et al. [9], and compare against the exact solution ũ. In Table 2 we present theL2-errors on the truncated
domain for three choices of truncated domains, each of side-length 4:

1 D = [0, 4]2, corresponding to a truncation in v-space which respects the cone-shaped actual domain of
the process;

2 D = [−0.5, 3.5]2 corresponding to a truncation in v-space, which neither respects the cone-shaped
actual domain, nor the non-negativity condition;

3 D = [−0.5, 3.5]×[0, 4] corresponding to a domain truncation, which does not respect the cone-shaped
actual domain in v-space, but does respect the non-negativity.

We use first order Lagrange-type finite elements, with nt time-steps as well as mesh-size nx = nt in each space
dimension. (We refer to https://github.com/bayerc2/domain_multifactor_volterra
for more details.)
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L2-error over the domain D

n D = [0, 4]2 D = [−0.5, 3.5]2 D = [−0.5, 3.5]× [0, 4]

4 7.3× 101 3.0× 103 5.5× 101

8 1.4× 101 7.7× 101 1.5× 101

16 3.2× 100 2.2× 1010 3.3× 100

32 7.5× 10−1 1.5× 1080 8.0× 10−1

64 1.8× 10−1 1.4× 1050 2.0× 10−1

128 4.6× 10−2 inf 4.9× 10−2

256 1.1× 10−2 inf 1.2× 10−2

512 2.9× 10−3 inf 3.0× 10−3

1024 7.2× 10−4 inf 7.6× 10−4

Table 2: L2 errors over the truncated domain for the approximate FEM solution to the PDE for nt = nx = n.

We would like to emphasize that, while it might seem trivial to choose [0, 4]2 as the domain instead of, say,
[−0.5, 3.5] × [0, 4], this choice is based on correctly identifying the matrix Q and the domain D = Q−1R2

+,
which is appropriately truncated here to Q−1[0, 4]2. Without knowledge of Q, one would need to guess D to
truncate the domain, a task that becomes increasingly nontrivial in higher dimensions.

When non-negativity of the variance process is preserved (cases 1 and 3), the numerical method empirically
exhibits second order convergence, with slightly smaller error when the computational domain is a subset of
the support of the process (case 1). On the other hand, when non-negativity of the variance process is not
preserved on the computational domain (case 2) the error explodes due to the instability of the heat equation
backward in time.

A Invariant domains in dimension N = 3

We extend the calculations presented forN = 2 in Example 2.10 to the three-dimensional case. We are looking
for a matrix of the form

Q =

a1 a2 −a1 − a2
b1 b2 −b1 − b2
w1 w2 w3

 . (22)

Note that there are some scaling invariances in the equation Qx ∈ RN+ . We may multiply rows of Q with
positive (!) constants without changing this condition. Hence, we restrict ourselves to

Q =

 1 −a −1 + a
1 b −1− b
w1 w2 w3

 .

Note that this corresponds to the assumption that a1 and b1 in (22) are both positive. Indeed, if we chose one
of these entries to be 0 or −1, we would fail to find an appropriate matrix Q.

Define the matrix R := −wQdiag(x)Q−1, where we denote R = (ri,j)
N
i,j=1, and set y1 := x2 − x1 and

DOI 10.20347/WIAS.PREPRINT.3162 Berlin 2025
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y2 := x3 − x2. Then,

r1,3 = y1 + y2 − ay2,
r2,3 = y1 + y2 + by2,

r3,2 =
(w1w2y1 + w1w3(y1 + y2))a− w1w2y1 + w2w3y2

a+ b
,

r3,1 =
(w1w2y1 + w1w3(y1 + y2))b+ w1w2y1 − w2w3y2

a+ b
,

r1,2 =
w1y2a

2 + (w3y1 + w2(y1 + y2)− w1y2)a− w2(y1 + y2)

a+ b
,

r2,1 =
−w1y2b

2 + (w3y1 + w2(y1 + y2)− w1y2)b+ w2(y1 + y2)

a+ b
,

and all these quantities have to be non-negative. Assume now further that a, b ≥ 0. Then, r2,3 ≥ 0 is trivially
satisfied, and r1,3, r3,2, r3,1, r1,2, r2,1 ≥ 0 simplify to

a ≤ y1 + y2
y2

,

a ≥ w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

,

b ≥ w2

w1

−w1y1 + w3y2
w2y1 + w3(y1 + y2)

,

0 ≤ w1y2a
2 + ca− w2(y1 + y2),

0 ≥ w1y2b
2 − cb− w2(y1 + y2),

where c := w3y1 + w2(y1 + y2)− w1y2.

This further implies for a that

−c+
√
c2 + 4w1w2y2(y1 + y2)

2w1y2
∨ w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

≤ a ≤ y1 + y2
y2

.

One can verify that the lower bound is always smaller than the upper bound, proving that such an a exists.
However, it is slightly simpler and perhaps more illustrative to prove that a = 1 satisfies these inequalities. For
the upper bound, this is trivial. For the lower bound, note that

w2

w1

w1y1 − w3y2
w2y1 + w3(y1 + y2)

≤ w2

w1

w1y1
w2y1

= 1,

and

−c+
√
c2 + 4w1w2y2(y1 + y2)

2w1y2
≤ 1

⇐⇒
√
c2 + 4w1w2y2(y1 + y2) ≤ 2w1y2 + c

⇐⇒ c2 + 4w1w2y2(y1 + y2) ≤ c2 + 4w2
1y

2
2 + 4w1y2c

⇐⇒ w2(y1 + y2) ≤ w1y2 + c.

which follows immediately from the definition of c.

Next, for b we get the conditions

0 ∨ w2

w1

−w1y1 + w3y2
w2y1 + w3(y1 + y2)

≤ b ≤
c+

√
c2 + 4w1w2y2(y1 + y2)

2w1y2
.
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This time, we verify that b = w2
w1

is admissible. For the lower bound, this is clear. For the upper bound, note that

w2

w1
≤
c+

√
c2 + 4w1w2y2(y1 + y2)

2w1y2

⇐⇒ 2w2y2 − c ≤
√
c2 + 4w1w2y2(y1 + y2)

⇐= c2 + 4w2
2y

2
2 − 4w2y2c ≤ c2 + 4w1w2y2(y1 + y2)

⇐⇒ w2y2 − c ≤ w1(y1 + y2).

This again follows from the definition of c.

Hence, we have shown that we can choose a = 1 and b = w2
w1

, yielding

Q =

 1 −1 0
1 w2

w1
−1− w2

w1

w1 w2 w3

 .

Note that due to scaling invariance, the matrix

Q =

w1 −w1 0
w1 w2 −w1 − w2

w1 w2 w3


would be equivalent.

Consider now the specific example x := (1, 5, 25) and w := (1, 2, 3). Then, we get the conditions

0.84 ≈ −5 +
√

85

5
≤ a ≤ 6

5
= 1.2,

1.4 =
7

5
≤ b ≤ 5 +

√
85

5
≈ 2.84.

Comparing to the previous discussion, we see that indeed, a = 1 and b = w2
w1

= 2 are admissible.

The corresponding plots for the multifactor square-root process are shown in Figure 3. We give projections to
two-dimensional planes, as this makes it easier to visually verify that the samples lie in R3

+. Furthermore, we
give three different choices of (a, b), the first two being admissible, and the third not. Indeed, we see for the first
two choices that the samples lie in R3

+, while this is not the case for the third choice.

B Remark on the link between the sets E and G

In this section, we argue that the two abstract ‘invariance’ sets that appeared in the literature in Abi Jaber and
El Euch [2], Cuchiero and Teichmann [16] are equal. This part is valid for more general locally square-integrable
kernels K beyond the weighted sum of exponential case.

We introduce the following notations. For suitable functions f, g and measure L we denote their convolution by
∗:

(f ∗ g)(t) =

∫ t

0
f(t− s)g(s)ds =

∫ t

0
f(s)g(t− s)ds, (f ∗ L)(t) :=

∫ t

0
f(t− s)L(ds).

The shift operator ∆h with h ≥ 0, maps any function f on R+ to the function ∆hf given by

∆hf(t) = f(t+ h).

If the function f on R+ is right-continuous and of locally bounded variation, the measure induced by its distri-
butional derivative is denoted df , so that f(t) = f(0) +

∫
[0,t] df(s) for all t ≥ 0. By convention, df does not
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Figure 3: Samples of projections of U using 103 sample paths on a time grid with M = 105 time steps. The
parameters used are x = (1, 5, 25),w = (1, 2, 3), λ = 0.3, ν = 0.3, V0 = 0.02, θ = 0.02, T = 100, and
v0 is chosen to be proportional to x−1.

charge {0}.

Two sets appeared so far in the literature to characterize the non-negativity of solutions to stochastic Volterra
equations:

1 Set of Cuchiero and Teichmann [16, Equation (4.7), Definition 4.12 and Theorem 4.17(i)]:

E =
⋂
w>0

Eη with Eη := {g0 : [0, T ]→ R such that g0 −Rη ∗ g0 ≥ 0} .

Here Rη(t) is the resolvent of the second kind of the kernel (ηK) defined by

Rη = ηK − ηK ∗Rη = ηK −Rη ∗ ηK.

2 Set of Abi Jaber and El Euch [2, Equations (2.4)-(2.5) and Theorem 2.1]:

G =
{
g0 :[0, T ]→ R such that

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0 and g0(0) ≥ 0.
}

where L(dt) is the resolvent of the first kind of the kernel1

K ∗ L = 1 = L ∗K.
1Under some suitable assumptions on the kernel, see [2, Assumption (H1)], one can show that K admits a resolvent of the first kind

such that ∆hK∗L is right-continuous and of locally bounded variation, see [2, Remark B.3], thus the associated measure d(∆hK∗L)
that appears in the set G is well defined.
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One can argue that the two sets are equal:
E = G

since both conditions that appear in the set are necessary and sufficient conditions for the non-negativity of the
linear Volterra equation

fη = g0 − ηK ∗ fη, (23)

forw > 0. Indeed, on the one hand the solution of (23) can be expressed in terms of the resolvent of the second
kind in the form

fη = g0 −Rη ∗ g0,

which is exactly the form that appears in E . On the other hand, by relying on the properties of the resolvent of
the first kind, see for instance Abi Jaber and El Euch [2, the proof of Theorem A.2], one can write that

fη(t+ h) = ∆hg0(t)− (∆hK ∗ L)(0)g0(t)− (d(∆hK ∗ L) ∗ g0)(t)
+ (∆hK ∗ L)(0)fη(t) + (d(∆hK ∗ L) ∗ fη)(t)

− w
∫ t+h

t
K(t− s)fη(s)ds.

We note that the first line is exactly the condition that appears in the set G. Using the two above expressions
one can show that the non-negativity of the linear Volterra equation (23), for any w > 0, is equivalent to the
condition that appear in E as well as the one that appears in G, which shows that the two sets are equal.

In principle, to establish a link with our cone D, one should restrict to kernels that are weighted sums of expo-
nentials of the form

K(t) =

N∑
i=1

wie
−xit,

and input curves of the form

g0(t) =

n∑
i=1

wie
−xitY i

0 .

Then, the resolvents of the second kind and first kind for such kernels must be computed and plugged into the
conditions defining the sets E and G. Even in dimensionN = 2, this leads to highly cumbersome and non-trivial
computations, and it is not clear how to explicitly determine a suitable domain, as for instance our cone D, for
Y i
0 from E and G. This makes the approach in the current paper particularly crucial.

C Some proofs

C.1 Proof of Theorem 2.2

In preparation for the proof, we introduce the matrix R = (ri,j)i,j=1,...,N defined by

ri,N =
1

w
, i = 1, . . . , N,

ri,j =
wj+1∑j

`=1w`
∑j+1

`=1 w`
, i ≤ j < N,

ri+1,i =
−1∑i+1
`=1w`

, i = 1, . . . , N − 1,

ri,j = 0, i ≥ j + 2,

(24)
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that will turn out to be the inverse of Q. For example, for N = 4 we have

R =


w2

w1(w1+w2)
w3

(w1+w2)(w1+w2+w3)
w4

(w1+w2+w3)(w1+w2+w3+w4)
1

w1+w2+w3+w4
−1

w1+w2

w3
(w1+w2)(w1+w2+w3)

w4
(w1+w2+w3)(w1+w2+w3+w4)

1
w1+w2+w3+w4

0 −1
w1+w2+w3

w4
(w1+w2+w3)(w1+w2+w3+w4)

1
w1+w2+w3+w4

0 0 −1
w1+w2+w3+w4

1
w1+w2+w3+w4


Proof of Theorem 2.2. Conditions 2 and 3 of Definition 2.1 are readily satisfied by construction. To argue Con-
dition 1, we will prove that R given in (24) is actually the inverse of Q, i.e. QR = Id. Indeed, consider first the
diagonal elements. Here, we have

(QR)NN =
N∑
k=1

qNkrkN =
N∑
k=1

wk
1

w
= 1,

(QR)ii =

N∑
k=1

qikrki =

i∑
k=1

wk
wi+1∑i

`=1w`
∑i+1

`=1w`
+

(
−

i∑
`=1

w`

)
−1∑i+1
`=1w`

= 1,

for i = 1, . . . , N − 1. Next, consider off-diagonal elements. We have

(QR)Nj =

N∑
k=1

qNkrkj =

j∑
k=1

wk
wj+1∑j

`=1w`
∑j+1

`=1 w`
+ wj+1

−1∑j+1
`=1 w`

= 0,

for j ≤ N − 1,

(QR)iN =
N∑
k=1

qikrkN =
i∑

k=1

wk
1

w
+

(
−

i∑
`=1

w`

)
1

w
= 0,

for i ≤ N − 1,

(QR)ij =
N∑
k=1

qikrkj =
i∑

k=1

wk
wj+1∑j

`=1w`
∑j+1

`=1 w`
+

(
−

i∑
`=1

w`

)
wj+1∑j

`=1w`
∑j+1

`=1 w`
= 0,

for i < j ≤ N − 1, and

(QR)ij =
N∑
k=1

qikrkj =

j∑
k=1

wk
wj+1∑j

`=1w`
∑j+1

`=1 w`
+ wj+1

−1∑j+1
`=1 w`

= 0,

for j < i ≤ N − 1. In particular, this proves that R = Q−1.

Finally, we verify Condition 4 of Definition 2.1 by direct computations. First, it is easily verified that we have
Qdiag(x) = S := (si,j)i,j=1,...,N with

sij = qijxj = wjxj , j ≤ i, si,i+1 = −xi+1

i∑
`=1

w`, i = 1, . . . , N − 1.

Now, let us compute Qdiag(x)Q−1 = T := (ti,j)i,j=1,...,N .

We have

ti,N =

N∑
k=1

si,krk,N =
1

w

(
i∑

k=1

wkxk − xi+1

i∑
`=1

w`

)
≤ 0

for i = 1, . . . , N − 1, since the xi are ordered increasingly. Similarly,

tN,j =

N∑
k=1

sN,krk,j =

j∑
k=1

xkwk
wj+1∑j

`=1w`
∑j+1

`=1 w`
+ xj+1wj+1

−1∑j+1
`=1 w`

≤ 0
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for j = 1, . . . , N − 1. Next,

ti,j =

N∑
k=1

si,krk,j =

(
i∑

k=1

wkxk − xi+1

i∑
`=1

w`

)
wj+1∑j

`=1w`
∑j+1

`=1 w`
≤ 0

for i < j ≤ N − 1. Finally,

ti,j =
N∑
k=1

si,krk,j =

j∑
k=1

wkxk
wj+1∑j

`=1w`
∑j+1

`=1 w`
+ wj+1xj+1

−1∑j+1
`=1 w`

≤ 0

for j < i ≤ N − 1. This verifies Condition 4 of Definition 2.1 and proves the theorem.

C.2 The mean-reversion level is in the domain

Proof of Lemma 2.6. We prove the equivalent statement Qy0 ∈ RN+ . First, note that

Qy0 = µQdiag(x)−11 = µQdiag(x)−1Q−1Q1 = µwQdiag(x)−1Q−1eN .

Recall that in linear algebra, an M-matrix is a square matrix with non-positive off-diagonal entries and with
eigenvalues whose real parts are non-negative. Clearly, the matrix Qdiag(x)Q−1 is an M-matrix: The non-
positivity of the off-diagonal entries holds by assumption, and its eigenvalues are (real and) positive, since it
is just the matrix diag(x) written in a different basis. Now it is well-known that the inverse of an M-matrix has
non-negative entries (in fact, this property characterizes M-matrices). Therefore,(

Qdiag(x)Q−1
)−1

= Qdiag(x)−1Q−1

has only non-negative entries. In particular,

Qy0 = µwQdiag(x)−1Q−1eN ∈ RN+ ,

proving the lemma.
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