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Subdifferentials and penalty approximations of the obstacle
problem

Amal Alphonse, Gerd Wachsmuth

Abstract

We consider a framework for approximating the obstacle problem through a penalty approach by
nonlinear PDEs. By using tools from capacity theory, we show that derivatives of the solution maps
of the penalised problems converge in the weak operator topology to an element of the strong-weak
Bouligand subdifferential. We are able to treat smooth penalty terms as well as nonsmooth ones
involving for example the positive part function max(0, ·). Our abstract framework applies to
several specific choices of penalty functions which are omnipresent in the literature. We conclude
with consequences to the theory of optimal control of the obstacle problem.

1 Introduction

A ubiquitous method to approximate solutions of the classical obstacle problem

u ∈ H1
0 (Ω), u ≤ ψ : ⟨−∆u− f, u− v⟩ ≤ 0 ∀v ∈ H1

0 (Ω), v ≤ ψ (1)

is by penalisation through a nonlinear PDE

−∆uρ + Λρ(uρ − ψ) = fρ. (2)

The equation (2) approximates the variational inequality (1) in the sense that its solutions satisfy
uρ → u as ρ→ 0 provided fρ → f . If we define the source-to-solution map fρ 7→ uρ of (2) by

Sρ : H
−1(Ω) → H1

0 (Ω)

and consider its derivative at fρ in a direction d denoted by αρ := S ′
ρ(fρ)(d), then we know that it

satisfies the linearised equation

−∆αρ + Λ′
ρ(uρ − ψ)(αρ) = d. (3)

A natural question arises concerning the convergence of the derivatives αρ = S ′
ρ(fρ)(d) in the limit

ρ → 0, or more generally, the convergence of the operators S ′
ρ(fρ) : H

−1(Ω) → H1
0 (Ω). The

possibility that immediately comes to mind is that they converge to the directional derivative of the VI
solution map S : u 7→ f , i.e., to S ′(f). If this were to be the case, the limit α(d) would satisfy

α(d) ∈ K : ⟨−∆α(d)− d, α(d)− v⟩ ≤ 0 ∀v ∈ K

where K := {v ∈ H1
0 (Ω) : v ≤ 0 q.e. on {u = ψ}, ⟨−∆u− f, v⟩ = 0} is the critical cone at

u = S(f). In general, this cannot happen since d 7→ α(d) is nonlinear (unless K is a subspace),
whereas d 7→ αρ(d) is often linear for all ρ (e.g., if Λρ is Fréchet differentiable) and linearity would be
preserved in the limit.
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A. Alphonse, G. Wachsmuth 2

In this paper, we consider limits of the operator S ′
ρ(fρ) : d 7→ αρ for different choices of the penalty

function Λρ and prove that (under weak conditions) they converge in the weak operator topology to
elements of the strong-weak subdifferential of S, defined as

∂swB S(f) :=

{
L ∈ L(H−1(Ω), H1

0 (Ω)) : ∃{fn} ⊂ FS : fn → f ∈ H−1(Ω),

S ′(fn)
WOT→ L in L(H−1(Ω), H1

0 (Ω))

}
,

where FS is the set of all points in H−1(Ω) at which S is Gâteaux differentiable and
WOT→ refers to

convergence in the weak operator topology, which we recall now.

Definition 1.1. A sequence {Ln} ⊂ L(X, Y ) of bounded linear operators between Banach spaces
X and Y converges to a bounded linear operator L ∈ L(X, Y ) in the weak operator topology if and

only if Lnx ⇀ Lx in Y for all x ∈ X . We write this as Ln
WOT→ L.

Our method of proof relies on a recent characterisation of ∂swB S(f) from [18] (see (37) below) involving
so-called capacitary measures, which we will introduce in Section 4.2. In order to fulfil one of the
conditions to utilise that characterisation (see also Remark 1.4), we assume the following.

Assumption 1.2 (Standing assumption on regularity). Let Ω ⊂ Rn be a bounded open set in dimension
n ≥ 2. For the obstacle, we assume ψ ∈ C(Ω̄) ∩H1(Ω) with either ψ ∈ H1

0 (Ω) or ψ > 0 on ∂Ω.

Inspired by tradition and existing literature, we treat in particular the following specific examples1:

Λm
ρ (u) =

1

ρ
u+ and Λc

ρ(u) =
1

ρ
(ρλ̄+ u)+ (4)

where λ̄ ∈ L∞(Ω), λ̄ ≥ 0 is given, and the corresponding smooth versions

Λsm
ρ (u) =

1

ρ
mρ(u) and Λsc

ρ (u) =
1

ρ
mρ(ρλ̄+ u) (5)

where mρ is a regularisation (satisfying Assumption 2.4) that smooths out the positive part function
(·)+, see Lemma 2.7 for some concrete examples. In particular, we have in mind the commonly used
regularisations from [9] and [13] respectively, see (13) and (14) for their definitions. We will denote
solution maps as well as other maps that depend on the specific choice of Λ with the superscript
m, c, sm or sc as appropriate. Note that the choice λ̄ ≡ 0 yields Λm

ρ = Λc
ρ and Λsm

ρ = Λsc
ρ . A typical

choice of λ̄ is λ̄ := (f +∆ψ)+, see [10, Theorem 3.2].

Our penalty term Λsc
ρ covers also the penalisation

Λs̃c
ρ (u) = m̃ρ(λ̄+ (1/ρ)u), (6)

(given a regularisation m̃ρ) which is used frequently in the literature, see, e.g., [14, 13, 20, 12, 10].
Indeed, Λs̃c

ρ is of the form (5) using

mρ(r) := ρm̃ρ(r/ρ), (7)

see Remark 2.6 for more details.

Let us give the main results of this work. We start with the smooth case (5). Below, we use the notation
C0(Ω) for the set of functions v ∈ C(Ω̄) with v = 0 on ∂Ω.

1We have chosen the superscripts m and c in (4) to stand for max and complementarity respectively; the reason for the
former is clear and the latter is due to the fact that Λc

ρ is obtained from writing the VI as a complementarity system. The
superscripts sm and sc in (5) are supposed to denote that these are smoothed versions of m and c respectively.
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Subdifferentials and penalty approximations of the obstacle problem 3

Theorem 1.3. For every f ∈ H−1(Ω) with S(f) ∈ C0(Ω), if fρ → f in H−1(Ω), then there exist
maps Lsm, Lsc ∈ ∂swB S(f) such that for a subsequence (that we relabel),

(Ssm
ρ )′(fρ)

WOT→ Lsm, and (Ssc
ρ )

′(fρ)
WOT→ Lsc.

Theorem 1.3 is a special case of Theorem 4.6 below.

Remark 1.4 (On the assumption S(f) ∈ C0(Ω)). Note that asking for the solution u = S(f) of (1) to
satisfy u ∈ C0(Ω) (which is needed for the characterisation of [18, Lemma 4.3]) is not too restrictive.
For example, when Ω is Lipschitz, [19, Theorem 2.7, §5] guarantees u ∈ C(Ω̄)∩H1

0 (Ω) if ψ ∈ C(Ω̄)
and f ∈ W−1,p(Ω) for p > n. An alternative is if Ω satisfies a uniform exterior cone condition and
n ≤ 3, ψ ∈ H1(Ω) with ∆ψ ∈ L2(Ω) and f ∈ L2(Ω): then u is even Hölder continuous, see [16,
Theorem 2.7].

In the nonsmooth case (4), we additionally have to assume Gâteaux differentiability of the approxima-
tions.

Theorem 1.5. For every sequence {fρ} ⊂ H−1(Ω) such that Sm
ρ (Sc

ρ) is Gâteaux differentiable at fρ
and fρ → f with S(f) ∈ C0(Ω), there exists a map Lm ∈ ∂swB S(f) (Lc ∈ ∂swB S(f)) such that for a
subsequence (that we relabel),

(Sm
ρ )

′(fρ)
WOT→ Lm, ((Sc

ρ)
′(fρ)

WOT→ Lc).

Theorem 1.5 is also a special case of Theorem 4.6 below.

The nonsmooth result Theorem 1.5 contains the assumption that each Sρ is Gâteaux differentiable
at fρ, which can be justified in the following sense. We rely on the key observation that there exists a
dense set F ⊂ H−1(Ω) such that Sm

ρ and Sc
ρ are Gâteaux differentiable from F into H1

0 (Ω) for every
ρ taken from a countable set (see Lemma 4.2). Then the above theorem can always be applied for
every constant sequence fρn ≡ f ∈ F such that S(f) ∈ C0(Ω).

In order to cover these cases without repetition and to generalise the structure of the penalty term as
much as possible, we consider an abstract problem formulation, as described in the next subsection.
In fact, as mentioned, Theorem 1.3 and Theorem 1.5 are consequences of our more general result
Theorem 4.6. Finally, we also mention Theorem 5.1 where we obtain a first-order stationarity condition
for an optimal control problem with a VI constraint.

Remark 1.6 (Generalisation to other elliptic operators). In this paper we consider the elliptic operator
in (1) and related problems to be the Laplacian because the characterisation of ∂swB S(f) from [18]
was shown for the Laplacian. Our results up to (but not including) the proof of Theorem 4.6 work
in a more general setting where −∆ is replaced by a linear, bounded, coercive and T-monotone
operator A : H1

0 (Ω) → H−1(Ω). The estimates below should be adjusted to include the coercivity
and boundedness constants.

2 Abstract setup and properties of the penalised problem

Throughout, we equip the Sobolev space H1
0 (Ω) with the inner product

(u, v)H1
0 (Ω) :=

∫
Ω

∇u · ∇v dx.

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025



A. Alphonse, G. Wachsmuth 4

2.1 Setup

For the results of this section, it suffices to take an obstacle ψ ∈ H1(Ω) with ψ|∂Ω ≥ 0 in the sense
that min(0, ψ) ∈ H1

0 (Ω).

Let us now formulate an abstract penalty term. For each ρ > 0, we work with a general mapping
Λρ : H

1
0 (Ω) → H−1(Ω) defined as a Nemytskii map of a function λρ : Ω× R → R, i.e.,

Λρ(u)(x) := λρ(x, u(x)).

We make the following standing assumption on λρ.

Assumption 2.1. We assume that

(i) for all ρ ∈ (0,∞), λρ : Ω× R → R is a Carathéodory function,

(ii) for all ρ ∈ (0,∞), λρ(x, ·) : R → R is increasing and convex for a.a. x ∈ Ω,

(iii) for all ρ ∈ (0,∞), there exist kρ, Kρ ∈ L∞(Ω) and jρ ∈ L2(Ω) with kρ ≤ Kρ such that

λρ(x, r) =

{
0 if r ≤ kρ(x),
r+jρ(x)

ρ
if r ≥ Kρ(x),

(8)

and, for some C > 0,

kρ → 0 in L∞(Ω) as ρ→ 0, (9)

∥kρ∥L2(Ω) + ∥Kρ∥L2(Ω) ≤ Cρ ∀ρ ∈ (0, 1], (10)

(iv) λρ(x, ·) ∈ C1(R) for all ρ ∈ (0,∞) and a.a. x ∈ Ω or kρ ≡ Kρ.

Throughout this work, bearing in mind Assumption 2.1 (iv), we refer to the case that λρ(x, ·) ∈ C1(R)
for a.a. x ∈ Ω as the “smooth case” and to kρ ≡ Kρ as the “nonsmooth case”.

Remark 2.2.

(i) The smoothness λρ(x, ·) ∈ C1(R) is equivalent to kρ(x) < Kρ(x).

(ii) Since we know that λρ(x, ·) ≥ 0, we have λρ(x,Kρ(x)) ≥ 0, which yields

Kρ + jρ ≥ 0. (11)

Lemma 2.3. Assumption 2.1 is satisfied for the nonsmooth choices in (4).

Proof. Observe that for λmρ (r) =
1
ρ
r+,

kρ = Kρ = jρ = 0,

whereas for λcρ(x, r) = (1/ρ)(ρλ̄(x) + r)+, we have

kρ(x) = Kρ(x) = −ρλ̄(x), jρ(x) = ρλ̄(x).

From this information we can verify the claim without difficulty.

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025



Subdifferentials and penalty approximations of the obstacle problem 5

Regarding the smooth cases, let us first give sufficient conditions on the structure of mρ that will enable
us to verify Assumption 2.1 more easily.

Assumption 2.4. Let mρ ∈ C1(R) be given for all ρ > 0, such that there exist θρ,Θρ, lρ ∈ R with

mρ(r) = 0 for all r ≤ θρ, mρ(r) = r + lρ for all r ≥ Θρ,

for all ρ > 0 and

|θρ|+ |Θρ| ≤ Cρ ∀ρ ∈ (0, 1] (12)

for some constant C > 0.

Lemma 2.5. If a function mρ satisfies Assumption 2.4, then Assumption 2.1 is satisfied by both Λsm
ρ

and Λsc
ρ defined as in (5).

Proof. The first part of Assumption 2.4 directly implies that Assumption 2.1 (i), (ii) and (iv) are satisfied.
The remaining part follows from observing that in the Λsm

ρ case, we have kρ = θρ, Kρ = Θρ and
jρ = lρ, and in the Λsc

ρ case, we have kρ = θρ − ρλ̄, Kρ = Θρ − ρλ̄ and jρ = ρλ̄+ lρ.

Remark 2.6. The penalisation Λs̃c
ρ from (6) can be handled too and in fact we can in this situation

weaken the last condition of Assumption 2.4: we would need the parameters of m̃ρ to satisfy only

|θρ|+ |Θρ| ≤ C ∀ρ ∈ (0, 1].

Indeed, if m̃ρ is a regularisation with the structure presented in Assumption 2.4 we find that mρ defined

as in (7) has associated parameters θ̂ρ := ρθρ, Θ̂ρ := ρΘρ and l̂ρ := ρlρ, which all contain a helpful
factor of ρ.

Let us now look at some examples of mρ that satisfy Assumption 2.4.

Lemma 2.7. The following choices of mρ satisfy Assumption 2.4.

(i) The global regularisation used, e.g., in [9]:

mρ(r) :=


0 if r ≤ 0,
r2

2ρ
if 0 < r < ρ,

r − ρ
2

if r ≥ ρ,

(13)

with θρ = 0, Θρ = ρ, lρ = −ρ/2.

(ii) The regularisation from [13]:

m̃ρ(r) :=


0 if r ≤ −ρ

2
,

1
2ρ3

(
r + ρ

2

)3 (3ρ
2
− r

)
if −ρ

2
< r < ρ

2
,

r if r ≥ ρ
2
,

(14)

with θρ = −ρ
2
, Θρ =

ρ
2
, lρ = 0.

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025



A. Alphonse, G. Wachsmuth 6

(iii) The local regularisation from [9]:

ml
ρ(r) :=


0 if r ≤ −ρ,
r2

4ρ
+ r

2
+ ρ

4
if − ρ < r < ρ,

r if r ≥ ρ,

with θρ = −ρ, Θρ = ρ, lρ = 0.

(iv) The regularisation from [14]:

m̂ρ(r) :=


0 if r ≤ −ρ

2
,

1
2ρ

(
r + ρ

2

)2
if −ρ

2
< r < ρ

2
,

r if r ≥ ρ
2
,

with θρ = −ρ
2
, Θρ =

ρ
2
, lρ = 0.

Hence Λsmρ and Λscρ as defined in (5) associated to each of the above regularisations satisfy Assump-
tion 2.1.

Proof. We can verify the claim using the information presented below each choice.

2.2 First properties

Lemma 2.8. For all ρ ∈ (0,∞) and a.a. x ∈ Ω the following holds.

(i) The map λρ(x, ·) is directionally differentiable. In the nonsmooth case (with kρ ≡ Kρ), the
directional derivative is given by

λ′ρ(x, r)(h) =
1

ρ
χ{r=kρ}(x)h

+ +
1

ρ
χ{r>kρ}(x)h ∀r, h ∈ R. (15)

(ii) In the smooth case we have

0 ≤ λ′ρ(x, r) ≤
1

ρ
∀r ∈ R. (16)

(iii) We have

λ′ρ(x, kρ(x))(α)α ≥ 0, λ′ρ(x, kρ(x))(α)α
+ ≥ 0 ∀α ∈ R, (17)

|λ′ρ(x, r)(h)| ≤
1

ρ
|h| ∀r, h ∈ R. (18)

(iv) The function λρ(x, ·) is Lipschitz continuous uniformly in x, i.e.,

|λρ(x, u)− λρ(x, v)| ≤
1

ρ
|u− v| ∀u, v ∈ R. (19)

(v) If ρ ∈ (0, 1], we have the growth condition (with the constant C from (10))

∥jρ∥L2(Ω) ≤ 2Cρ. (20)

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025



Subdifferentials and penalty approximations of the obstacle problem 7

(vi) The map Λρ : L
2(Ω) → L2(Ω) is well defined, Lipschitz continuous and directionally differen-

tiable with the derivative given by

Λ′
ρ(u)(h)(x) = λ′ρ(x, u(x))(h(x)). (21)

(vii) The map Λρ : L
2(Ω) → L2(Ω) is monotone.

(viii) For all r ∈ R we have

λρ(x, r)r
+ ≥ −Kρ(x)

ρ
r+ +

1

ρ
|r+|2. (22)

(ix) If ρ ∈ (0, 1], we have (with the constant C from (10))

∥Λρ(v − ψ)∥L2(Ω) ≤
1

ρ

∥∥(v − ψ)+
∥∥
L2(Ω)

+ C ∀v ∈ H1
0 (Ω). (23)

Proof. (i) In the nonsmooth case, we have kρ ≡ Kρ. Consequently, the formula for λρ(x, ·) yields
the differentiability everywhere on points other than at kρ, where it is directionally differentiable; it
is standard to see that (15) is the expression for the derivative.

(ii) The fact that λρ(x, ·) is convex and differentiable implies that its derivative is increasing, so this
follows from the structure of λρ given in Assumption 2.1 (iii).

(iii) Regarding (17), for the nonnegativity, this is clear in the smooth case due to the linearity with
respect to the direction and the nonnegativity of the derivative. In the nonsmooth case this follows
from the expression (15) for the derivative above.

For the upper bound (18), in the smooth case this follows again by (16). In the nonsmooth
case this follows by the expression for the directional derivative above and the fact that the sets
appearing in the expression are disjoint.

(iv) Using the mean value theorem for directional derivatives [17, Proposition 2.29] and (18), we
obtain the claim.

(v) We note that by (19),

1

ρ
|Kρ + jρ| = |λρ(·, Kρ)− λρ(·, kρ)| ≤

1

ρ
|Kρ − kρ|

which implies |jρ| ≤ |Kρ − kρ|+ |kρ| whence (20) follows by (10).

(vi) The above Lipschitz property implies

|λρ(x, u)| = |λρ(x, u)− λρ(x, kρ(x))| ≤
1

ρ
|u− kρ(x)| (24)

and thus Λρ maps L2(Ω) to L2(Ω). Lipschitz continuity also follows easily by the above.

Due to the directional differentiability of λρ(x, ·) and a simple dominated convergence theorem
argument, using the fact that the first derivative is bounded by (18), we obtain directional
differentiability.

(vii) This follows from the fact that λρ(x, ·) is increasing.

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025
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(viii) From the basic properties of λρ and (11) we get

λρ(x, r) ≥
r −Kρ(x)

ρ
.

Indeed, for r < Kρ, the right-hand side is negative and for r ≥ Kρ this follows from (8) and
(11). Now, (22) easily follows.

(ix) Using the monotonicity of λρ(x, ·), λρ(x, kρ(x)) = 0 and the Lipschitz estimate (19), we get

λρ(x, v(x)− ψ(x)) ≤ λρ(x, (v(x)− ψ(x))+) ≤ 1

ρ
(v(x)− ψ(x))+ +

1

ρ
|kρ(x)|.

Taking the L2(Ω)-norm and using (10), the inequality (23) follows.

Next, we address the well posedness of the PDE (2) satisfied by uρ.

Lemma 2.9. For all ρ > 0, the solution map Sρ : H−1(Ω) → H1
0 (Ω) of the PDE (2) is well defined. If

ρ ∈ (0, 1], we have

∥Sρ(fρ)∥H1
0 (Ω) ≤ ∥fρ∥H−1(Ω) + 2 ∥min(0, ψ)∥H1

0 (Ω) + CPC ∀fρ ∈ H−1(Ω),

where CP is the constant from Poincaré’s inequality and C is from (10). Furthermore, Sρ : H−1(Ω) →
H1

0 (Ω) is Lipschitz continuous with constant 1.

Proof. We define the operator Tρ : H1
0 (Ω) → H1

0 (Ω) via

Tρ(u) := (−∆)−1Λρ(u− ψ) ∀u ∈ H1
0 (Ω).

By applying (−∆)−1 : H−1(Ω) → H1
0 (Ω) to (2), we get

(Id+Tρ)(uρ) = (−∆)−1fρ.

Now, it is easy to check that the operator Tρ is continuous and monotone. Consequently, the operator
Tρ is maximally monotone, see [2, Proposition 20.27]. Thus, we can apply Minty’s theorem, see [2,
Theorem 21.1 and Proposition 23.8], to obtain that Id+Tρ bijective and the inverse has Lipschitz
constant 1. Since −∆: H1

0 (Ω) → H−1(Ω) is an isometric isomorphism, this shows that Sρ is well
defined and has Lipschitz constant 1.

It remains to provide an estimate for Sρ(fρ). We define ψ0 := min(0, ψ) and recall that ψ0 ∈ H1
0 (Ω)

by our assumption on ψ. We observe Sρ(gρ) = ψ0 for gρ := −∆ψ0 + Λρ(ψ0 − ψ). Consequently,
the Lipschitzness of Sρ yields

∥Sρ(fρ)∥H1
0 (Ω) ≤ ∥Sρ(fρ)− Sρ(gρ)∥H1

0 (Ω) + ∥Sρ(gρ)∥H1
0 (Ω)

≤ ∥fρ +∆ψ0 − Λρ(ψ0 − ψ)∥H−1(Ω) + ∥ψ0∥H1
0 (Ω)

≤ ∥fρ∥H−1(Ω) + 2 ∥ψ0∥H1
0 (Ω) + CP ∥Λρ(ψ0 − ψ)∥L2(Ω) .

The last addend is estimated via (23) by using (ψ0 − ψ)+ = 0.

Let us now address the differentiability of Sρ.

DOI 10.20347/WIAS.PREPRINT.3159 Berlin 2025



Subdifferentials and penalty approximations of the obstacle problem 9

Lemma 2.10. Given fρ, d ∈ H−1(Ω), the directional derivative αρ = S ′
ρ(fρ)(d) exists and is the

unique solution of the PDE (3), i.e.,

−∆αρ + Λ′
ρ(uρ − ψ)(αρ) = d

and satisfies the bound

∥αρ∥H1
0 (Ω) ≤ ∥d∥H−1(Ω) .

Proof. The directional differentiability and satisfaction of (3) follows by the directional differentiability
and monotonicity of Λρ, see e.g. [1, Lemma 6.1] or [4, Theorem 2.2].

For the estimate, we test (3) with αρ and obtain

∥αρ∥2H1
0 (Ω) +

∫
Ω

λ′ρ(·, uρ − ψ)(αρ)αρ dx = ⟨d, αρ⟩.

Using the nonnegativity by (17) we get the result.

Uniqueness follows by the monotonicity of Λ′
ρ(uρ − ψ) : H1

0 (Ω) → H−1(Ω), which is a consequence
of the fact that the derivative derivative of a monotone map at a particular point is also monotone.

In what follows, we show that Λ′
ρ(uρ − ψ) can be represented by a function in L∞(Ω) under the

assumption that the directional derivative S ′
ρ(fρ) is linear.

Lemma 2.11. If fρ ∈ H−1(Ω) is given such that S ′
ρ(fρ) is linear, i.e., S ′

ρ(fρ) ∈ L(H−1(Ω), H1
0 (Ω)),

then for a.a. x ∈ Ω, λ′ρ(x, ·) is differentiable at the point Sρ(fρ)(x)−ψ(x) and the derivative belongs
to [0, 1/ρ]. Consequently, the operator Λ′

ρ(Sρ(fρ) − ψ) : L2(Ω) → L2(Ω) is linear and can be
identified with a function in L∞(Ω).

Proof. The operator

S ′
ρ(fρ) : H

−1(Ω) → H1
0 (Ω)

is the inverse of

−∆+ Λ′
ρ(Sρ(fρ)− ψ) : H1

0 (Ω) → H−1(Ω).

Since the former operator is linear by assumption, the latter operator is linear as well. Consequently,
Λ′
ρ(Sρ(fρ)− ψ) is a linear operator. From (21) we infer the differentiability of λ′ρ(x, ·) at Sρ(fρ)(x)−
ψ(x) and then (15), (16) imply λ′ρ(·, Sρ(fρ)− ψ) ∈ L∞(Ω).

In this linear case, we can define a measure µρ via

µρ(B) :=

∫
B

Λ′
ρ(Sρ(fρ)− ψ) dx (25)

and (3) becomes

−∆αρ + αρµρ = d, (26)

with an appropriate interpretation of the term αρµρ. We will use the notion of capacitary measures to
pass to the limit in this equation, see Section 4.2.
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2.3 Convergence results

We now consider the limit ρ→ 0. The convergence result

uρ → u := S(f) in H1
0 (Ω)

has been shown for various choices of the penalty function in, e.g., [1, Lemma 3.3 and Lemma 3.5],
[12, Theorem 3.1], [10, Theorem 4.1], [11, Theorem 2.1] and [20, Theorem 2.10]. We demonstrate that
this convergence already holds under our general setting. In particular, our results are more general
than currently available in the literature and are phrased in the natural function spaces for the problem
(e.g., the source terms are only assumed to converge in the dual space). We begin with a preparatory
lemma.

Lemma 2.12. For all fρ ∈ H−1(Ω) and ρ ∈ (0, 1], we have

∥∥(Sρ(fρ)− ψ)+
∥∥
L2(Ω)

≤
√
ρ

2

(
∥fρ +∆ψ∥H−1(Ω) + CPC

)
, (27)

∥Λρ(Sρ(fρ)− ψ)∥L2(Ω) ≤
1

2
√
ρ

(
∥fρ +∆ψ∥H−1(Ω) + CPC

)
+ C, (28)

where C is the constant from (10).

Proof. Denoting uρ := Sρ(fρ), we test the equation

−∆(uρ − ψ) + Λρ(uρ − ψ) = fρ +∆ψ

with (uρ − ψ)+ ∈ H1
0 (Ω). One has (by T-monotonicity of the Laplacian)

⟨−∆(uρ − ψ), (uρ − ψ)+⟩ ≥
∥∥(uρ − ψ)+

∥∥2

H1(Ω)

and using (22) we obtain∫
Ω

Λρ(uρ − ψ)(uρ − ψ)+ dx ≥ 1

ρ

∥∥(uρ − ψ)+
∥∥2

L2(Ω)
− 1

ρ

∫
Ω

Kρ(uρ − ψ)+ dx,

which leads to∥∥(uρ − ψ)+
∥∥2

H1
0 (Ω)

+
1

ρ

∥∥(uρ − ψ)+
∥∥2

L2(Ω)
≤

〈
fρ +∆ψ +

Kρ

ρ
, (uρ − ψ)+

〉
(29)

≤ 1

4

∥∥∥∥fρ +∆ψ +
Kρ

ρ

∥∥∥∥2

H−1(Ω)

+
∥∥(uρ − ψ)+

∥∥2

H1
0 (Ω)

,

where we used Young’s inequality. This yields

∥∥(uρ − ψ)+
∥∥
L2(Ω)

≤
√
ρ

2

∥∥∥∥fρ +∆ψ +
Kρ

ρ

∥∥∥∥
H−1(Ω)

and (27) follows from Poincaré’s inequality. Inequality (28) follows with (23).
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Remark 2.13. By arguing as in the proof of [20, Lemma 2.3] we can obtain a better rate than above if
we have additional regularity. Indeed, we can show that if fρ +∆ψ +Kρ/ρ ∈ L2(Ω) and ρ ∈ (0, 1],
we have that ∥∥(Sρ(fρ)− ψ)+

∥∥
L2(Ω)

≤ ρ

∥∥∥∥fρ +∆ψ +
Kρ

ρ

∥∥∥∥
L2(Ω)

(30)

∥Λρ(Sρ(fρ)− ψ)∥L2(Ω) ≤
∥∥∥∥fρ +∆ψ +

Kρ

ρ

∥∥∥∥
L2(Ω)

+ C (31)

where C is the constant from (10). To see this, we can adapt (29) as follows, making use of the
assumed L2 regularity:∥∥(uρ − ψ)+

∥∥2

H1
0 (Ω)

+
1

ρ

∥∥(uρ − ψ)+
∥∥2

L2(Ω)
≤

〈
fρ +∆ψ +

Kρ

ρ
, (uρ − ψ)+

〉
≤

∥∥∥∥fρ +∆ψ +
Kρ

ρ

∥∥∥∥
L2(Ω)

∥∥(uρ − ψ)+
∥∥
L2(Ω)

,

whence (30). The second estimate (31) follows as before.

Proposition 2.14. Let fρ → f in H−1(Ω). We have uρ = Sρ(fρ) → S(f) =: u in H1
0 (Ω), i.e., the

limit u solves the VI (1).

Proof. The estimate in Lemma 2.9 implies that {uρ} is uniformly bounded in H1
0 (Ω), hence there

exists a v ∈ H1
0 (Ω) such that for a subsequence (that we relabel), we have

uρ ⇀ v in H1
0 (Ω).

In what follows, we argue that the convergence is strong and that the limit v equals u. Hence, the entire
sequence converges towards u := S(f) in H1

0 (Ω).

We first note that (27) implies the feasibility of v, i.e., v ≤ ψ. Consequently, we can use v in the VI (1)
and test the PDE for uρ with uρ − u. Adding the resulting expressions gives

∥u− uρ∥2H1
0 (Ω) ≤ ⟨f − fρ, u− uρ⟩+ ⟨−∆u− f, v − uρ⟩ − ⟨Λρ(uρ − ψ), uρ − u⟩.

It remains to check that the last addend on the right-hand side converges to 0. From v − ψ + kρ ≤ kρ
we get Λρ(v − ψ + kρ) = 0, see (8). Together with the monotonicity of Λρ, we obtain

⟨Λρ(uρ − ψ), uρ − v⟩ = ⟨Λρ(uρ − ψ)− Λρ(v − ψ + kρ), uρ − (v + kρ) + kρ⟩
≥ ⟨Λρ(uρ − ψ), kρ⟩.

Combining (28) with (10) yields that the right-hand side converges to 0. This can be used in the above
estimate and the claim follows.

Now, we can revisit the estimate in Lemma 2.12 and improve the rate implied by (27). This will be
crucial later on.

Lemma 2.15. Let fρ → f in H−1(Ω). Then,

ρ−1/2
∥∥(Sρ(fρ)− ψ)+

∥∥
L2(Ω)

→ 0.

Proof. Thanks to Proposition 2.14, we have (uρ − ψ)+ → 0 in H1
0 (Ω) with uρ := Sρ(fρ). In the

inequality (29), i.e.,∥∥(uρ − ψ)+
∥∥2

H1
0 (Ω)

+
1

ρ

∥∥(uρ − ψ)+
∥∥2

L2(Ω)
≤

〈
fρ +∆ψ +

Kρ

ρ
, (uρ − ψ)+

〉
,

the duality product on the right-hand side clearly goes to zero, see (10). This shows the assertion.
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3 Pointwise characterisation of the limit of the derivatives

In this section, we study the convergence of the (directional) derivatives from Lemma 2.10 and provide
properties for the limits.

Proposition 3.1. There exists an α ∈ H1
0 (Ω) such that, for a subsequence (that we relabel) the

derivative satisfies
S ′
ρ(fρ)(d)⇀ α in H1

0 (Ω).

Proof. This follows directly from the bound in Lemma 2.10.

We want to know what properties the limit α satisfies.

3.1 A complementarity condition on α

We start with a simple lemma.

Lemma 3.2. If σ : R → R is C1 and convex, and satisfies σ = 0 on (−∞, r0], we have

σ(r) ≤ (r − r0)σ
′(r) ∀r ∈ R.

Proof. As σ is a differentiable convex function, it satisfies σ(r) ≤ σ(s)+ (r− s)σ′(r) for all r, s ∈ R.
The result follows from the fact that σ(r0) = 0.

In the smooth setting where λρ(x, ·) is C1, we can take in Lemma 3.2 σ(·) = λρ(x, ·) for fixed x and
obtain

λρ(x, r) ≤ (r − kρ(x, ρ))λ
′
ρ(x, r) ∀r ∈ [kρ(x), Kρ(x)]. (32)

Note that this inequality also holds in the nonsmooth case, since this implies kρ ≡ Kρ.

Proposition 3.3. Let fρ → f in H−1(Ω). With ξ := f + ∆u and α denoting the weak limit of (a
subsequence of) S ′

ρ(fρ)(d) from Proposition 3.1, we have

⟨ξ, α⟩ = ⟨ξ, α+⟩ = ⟨ξ, α−⟩ = 0.

For a characterisation of this result in terms of the strictly active set, see (39).

Proof. Set uρ := Sρ(fρ) and define the sets

M0 = {uρ − ψ ≤ kρ}, M1 = {kρ < uρ − ψ ≤ Kρ}, M2 = {Kρ ≤ uρ − ψ}.

Note that M1 = ∅ in the nonsmooth case. Further, (11) implies

uρ − ψ + jρ ≥ 0 on M2. (33)

Define ξρ := fρ +∆uρ. We have

⟨ξρ, αρ⟩ =
∫
Ω

Λρ(uρ − ψ)αρ dx

=

∫
M1

Λρ(uρ − ψ)αρ dx+

∫
M2

uρ − ψ + jρ
ρ

αρ dx

=

∫
M1

Λρ(uρ − ψ)αρ dx+

∫
M2

(uρ − ψ + jρ)
+

ρ
αρ dx
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Subdifferentials and penalty approximations of the obstacle problem 13

with no integral overM0 because λρ(x, ·) vanishes on (−∞, kρ(x)] and the positive part is introduced
due to (33).

Regarding the first term, using the estimate (32), we have∣∣∣∣∫
M1

Λρ(uρ − ψ)αρ

∣∣∣∣ dx ≤
∫
M1

λρ(·, uρ − ψ)|αρ| dx

≤
∫
M1

(uρ − ψ − kρ)λ
′
ρ(·, uρ − ψ)|αρ| dx

≤
∥Kρ − kρ∥L2(Ω)√

ρ

∥∥∥√λ′ρ(·, uρ − ψ)αρχM1

∥∥∥
L2(Ω)

where we used the bounds on λ′ρ given in (16) to justify the last estimate. As for the second integral,
we obtain ∣∣∣∣∫

M2

(uρ − ψ + jρ)
+

ρ
αρ dx

∣∣∣∣ ≤ ∥(uρ − ψ + jρ)
+χM2∥L2(Ω)√
ρ

∥αρχM2∥L2(Ω)√
ρ

.

Thus

|⟨ξρ, αρ⟩| ≤
∥Kρ − kρ∥L2(Ω)√

ρ

∥∥∥√λ′ρ(·, uρ − ψ)αρχM1

∥∥∥
L2(Ω)

+
∥(uρ − ψ + jρ)

+χM2∥L2(Ω)√
ρ

∥αρχM2∥L2(Ω)√
ρ

. (34)

By (10), the first multiplicand in the first term above vanishes as ρ → 0. Let us show that the first
multiplicand in the second term also vanishes. By using the triangle inequality and the fact that
(a+ b)+ ≤ a+ + b+ for all a, b ∈ R,

∥(uρ − ψ + jρ)
+χM2∥L2(Ω)√
ρ

≤
∥(uρ − ψ)+∥L2(Ω)√

ρ
+

∥jρ∥L2(Ω)√
ρ

and both terms on the right-hand side vanish by Lemma 2.15 and (20) respectively.

Now we simply need to show that second multiplicand in the two terms on the right-hand side of (34)
are bounded. Since αρ is bounded, so is d+∆αρ. Hence,

C ≥ |⟨d+∆αρ, αρ⟩| =
∫
Ω

Λ′
ρ(uρ − ψ)(αρ)αρ dx

≥
∫
M1

λ′ρ(·, uρ − ψ)(αρ)αρ dx+

∫
M2

λ′ρ(·, uρ − ψ)(αρ)αρ dx,

where we used that the integral over M0 is nonnegative due to (17). Now, on M1, the derivative is
linear w.r.t. the direction and on M2, the derivative is 1/ρ. Thus, we continue with

C ≥
∫
M1

λ′ρ(·, uρ − ψ)α2
ρ +

1

ρ

∫
M2

α2
ρ dx

=
∥∥∥√λ′ρ(·, uρ − ψ)αρχM1

∥∥∥2

L2(Ω)
+

1

ρ
∥αρχM2∥

2
L2(Ω) .

Plugging this information back into (34), we find that ⟨ξρ, αρ⟩ → 0 and hence, since αρ ⇀ α inH1
0 (Ω)

and ξρ → ξ in H−1(Ω),
⟨ξ, α⟩ = 0.

In order to produce the same identity for α+, one can repeat exactly the same calculation with α+
ρ

instead of αρ. In the final step, we can use that αρ ⇀ α in H1
0 (Ω) implies α+

ρ ⇀ α+ in H1
0 (Ω). This

yields the claim.
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3.2 An orthogonality condition on −∆α− d

In this section we will show that −∆α− d satisfies an orthogonality condition involving the coincidence
set.

Lemma 3.4. We have

⟨−∆αρ − d, v⟩ = 0 ∀v ∈ H1
0 (Ω), v = 0 q.e. on {(uρ − ψ + ∥kρ∥L∞(Ω))

− = 0}.

Note that the set {(uρ − ψ + ∥kρ∥L∞(Ω))
− = 0} is defined up to sets of capacity zero, since

uρ − ψ + ∥kρ∥L∞(Ω) ∈ H1(Ω) is quasicontinuous, see [7, Theorem 6.1, §8].

Proof. Taking v ∈ H1
0 (Ω) such that v = 0 q.e. on {(uρ − ψ + ∥kρ∥L∞(Ω))

− = 0}, we have

⟨−∆αρ − d, v⟩ = −
∫
{uρ−ψ≥kρ}

Λ′
ρ(uρ − ψ)(αρ)v dx (35)

because Λ′
ρ(uρ − ψ) vanishes when uρ − ψ ≤ kρ. By definition, we have that v = 0 q.e. on the set

{uρ − ψ + ∥kρ∥L∞(Ω) ≥ 0}. Note that uρ − ψ + ∥kρ∥L∞(Ω) ≥ uρ − ψ − kρ a.e. and so we have
the inclusion

{uρ − ψ − kρ ≥ 0} ⊂ {uρ − ψ + ∥kρ∥L∞(Ω) ≥ 0}.
It follows that v = 0 a.e. on {uρ − ψ − kρ ≥ 0} too. Using this in (35) we obtain the desired
statement.

Proposition 3.5. We have

⟨−∆α− d, v⟩ = 0 ∀v ∈ H1
0 (Ω) : v = 0 q.e. on {u = ψ}.

Proof. By (9) it follows that uρ − ψ + ∥kρ∥L∞(Ω) → u − ψ in H1(Ω). We want to show that

sρ := (uρ − ψ + ∥kρ∥L∞(Ω))
− converges to s := (u− ψ)− = ψ − u in capacity.

From Proposition 2.14 and [21, Lemma 2.2], we get that uρ converges towards u in capacity, i.e.,

cap({|uρ − u| ≥ ε}) → 0 as ρ→ 0

for all ε > 0. Let ε > 0 be arbitrary. By (9), there exists ρ0 > 0 such that ρ ≤ ρ0 implies ∥kρ∥L∞(Ω) ≤
ε
2
. Restricting to such sufficiently small ρ, we have

|sρ − s| ≤ |uρ + ∥kρ∥L∞(Ω) − u| ≤ |uρ − u|+ ε

2
.

Consequently,

cap({|sρ − s| ≥ ε}) ≤ cap({|uρ − u| ≥ ε/2}) → 0 as ρ→ 0.

So we have shown that sρ → s in capacity as desired.

Now, the result of Lemma 3.4 implies

±(−∆αρ − d) ∈ {v ∈ H1
0 (Ω) : v ≥ 0 q.e. on Ω and v = 0 q.e. on {sρ = 0}}◦

with sρ = (uρ − ψ + ∥kρ∥L∞(Ω))
− as above. Applying [21, Lemma 2.6] we find

±(−∆α− d) ∈ {v ∈ H1
0 (Ω) : v ≥ 0 q.e. on Ω and v = 0 q.e. on {s = 0}}◦

where s = (u−ψ)− = ψ− u is the limit (w.r.t. convergence in capacity) of sρ. This yields the desired
statement after using the decomposition v = v+ − v−.
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Remark 3.6. The proof of Lemma 3.4 even shows

⟨−∆αρ − d, v⟩ = 0 ∀v ∈ H1
0 (Ω), v = 0 a.e. on {(uρ − ψ + ∥kρ∥L∞(Ω))

− = 0}.

However, one cannot generalise (the proof of) Proposition 3.5 to obtain

⟨−∆α− d, v⟩ = 0 ∀v ∈ H1
0 (Ω) : v = 0 a.e. on {u = ψ}.

The problem is the following. The set {u = ψ} could have measure zero but positive capacity. In
this case, the assumption v = 0 a.e. on {u = ψ} is void. Consequently, v could be constant 1 in a
neighbourhood of {u = ψ}. If further vρ → v in H1

0 (Ω) is given (this is needed for passing to the limit
with ⟨−∆αρ − d, v⟩), we have vρ → v in capacity. Further, {uρ − ψ + ∥kρ∥L∞ ≥ 0} could contain
an open neighbourhood of {u = ψ}. Therefore, vρ = 0 a.e. on {uρ − ψ + ∥kρ∥L∞ ≥ 0} implies
vρ = 0 q.e. on {u = ψ}. This contradicts vρ → v in capacity.

If ψ ∈ H1
0 (Ω), the argument above can be simplified and we could also alternatively have argued in a

similar way to [1, §7].

4 Generalised derivatives as limits

In the convergence results of the previous section, the direction d was fixed. We need something
stronger than this: we would like limiting statements for the derivative when seen as a linear operator,
and furthermore, we would like the subsequence that converges to be independent of d.

4.1 Existence of limiting elements

First, we prove that the Gâteaux derivatives converge in the weak operator topology.

Proposition 4.1. Let a sequence {fρ} ⊂ H−1(Ω) be given such that fρ → f in H−1(Ω) and such
that Sρ is Gâteaux differentiable at fρ for all ρ > 0. Then, there exists a map L ∈ L(H−1(Ω), H1

0 (Ω))
such that for a subsequence (that we relabel),

S ′
ρ(fρ)

WOT→ L.

Proof. The bound of Lemma 2.10 shows that∥∥S ′
ρ(fρ)

∥∥
L(H−1(Ω),H1

0 (Ω))
≤ 1

for all ρ > 0. By the separability of H1
0 (Ω), one can show that the unit ball is sequentially compact in

the WOT, see also [4, Remark 3.1]. The result follows.

Note that the Gâteaux differentiability assumption of the previous result holds automatically in the
smooth case; this follows from (21). The question remains whether it can also hold in the nonsmooth
case. We can in fact use the generalised Rademacher’s theorem of Mignot [15, Theorem 1.2], which
tells us that for each ρ, there exists a dense set on which Sρ is Gâteaux differentiable. However, this
dense set depends on ρ, and because we wish to consider limits it would be ideal to have one dense
set on which Sρ is Gâteaux for all ρ (or at least for a sequence {ρn}). We cannot simply take the
intersection because an intersection of dense sets may not be dense. Thus we need another argument
where we essentially embed {Sρ} into an infinite dimensional space, which we give next.
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Lemma 4.2. Let a sequence {ρn} ⊂ (0, 1] with ρn → 0 be given and, for brevity, set Sn := Sρn .
Then, there exists a dense set F ⊂ H−1(Ω) such that Sn is Gâteaux differentiable on F for all n ∈ N.

We remark that this result also follows from the theory of Aronszajn null sets. Indeed, because Sρ
is Lipschitz, Sρ is Gâteaux differentiable outside an Aronszajn null set [3, Theorem 6.42] and the
countable union of Aronszajn null sets remains Aronszajn null (see the paragraph after Definition 6.23
of [3]). This implies the result. For convenience, however, we give a different and direct proof.

Proof. We denote by V := ℓ2(N;H1
0 (Ω)) the set of ℓ2-summableH1

0 (Ω)-valued sequences. Consider
the map H : H−1(Ω) → V defined by

H(f) :=
(
2−1/2S1(f), 2

−2/2S2(f), . . .
)
,

i.e., the nth component is [H(f)]n = 2−n/2Sn(f). Note that

∥H(f)∥2V =
∞∑
n=1

∥∥2−n/2Sn(f)∥∥2

H1
0 (Ω)

≤ C2

∞∑
n=1

2−n = C2 <∞,

using the fact that ∥Sn(f)∥H1
0 (Ω) ≤ C for a constant C independent of n, see Lemma 2.9. Further, H

is Lipschitz, since

∥H(f)−H(g)∥2V ≤
∞∑
n=1

2−n ∥(Sn(f)− Sn(g))∥2H1
0 (Ω) ≤ ∥f − g∥2H−1(Ω) ,

where we used the fact that each Sn is Lipschitz with constant 1, see Lemma 2.9. Since V is a Hilbert
space and H−1(Ω) is a separable Hilbert space, it follows [15, Theorem 1.2] that H is Gâteaux
differentiable on a dense set F ⊂ H−1(Ω). Now, it is straightforward to check that the Gâteaux
differentiability of H on F implies that Sn is Gâteaux differentiable on F for all n ∈ N.

Observe that this result holds for a countable sequence and does not and cannot hold for the original
uncountable family {Sρ}. This is because the differentiability holds up to a set of measure zero and
countable unions (of the exceptional sets) still have measure zero, which of course, does not apply
for the uncountable case. A simple real-valued example is Sρ(x) := |x − ρ|. This function is not
differentiable at ρ, so if one considers all of these functions, the common differentiability set is just the
empty set.

4.2 Capacitary measures and characterisation of limits

In what follows, we assume that the reader is familiar with the notions of capacity, quasi-open and
quasi-closed sets and quasicontinuous representatives. For an introduction tailored to optimal control,
we refer to [8, Section 3].

The measure µρ defined in (25) has some additional regularity that we can exploit. We begin with
recalling the notion of capacitary measures, see, e.g., [18, Definition 3.1].

Definition 4.3 (Capacitary measure). A capacitary measure is a Borel measure µ such that

(i) µ(B) = 0 for every Borel set B ⊂ Ω with cap(B) = 0
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(ii) µ is regular in the sense that every Borel set B ⊂ Ω satisfies

µ(B) = inf{µ(O) : O quasi-open and cap(B \O) = 0}.

We denote by M0(Ω) the set of all capacitary measures on Ω.

Note that a measure which is absolutely continuous w.r.t. the Lebesgue measure is a capacitary
measure, see also [5, Remark 3.2 and Definition 2.1]. In particular, (25) defines a capacitary measure
in the setting of Lemma 2.11.

From now on, given (an equivalence class) v ∈ H1
0 (Ω), we will always work with a Borel measurable

and quasicontinuous representative. Note that such a representative is uniquely determined up to
subsets of capacity zero which are µ-nullsets for every µ ∈ M0(Ω).

We denote by L2
µ(Ω) the usual Lebesgue space w.r.t. a measure µ ∈ M0(Ω).

For µ ∈ M0(Ω) and f ∈ H−1(Ω), one can check that there is a unique solution y ∈ H1
0 (Ω)∩L2

µ(Ω)
of

⟨−∆y, v⟩+
∫
Ω

yv dµ = ⟨f, v⟩ ∀v ∈ H1
0 (Ω) ∩ L2

µ(Ω). (36)

The solution map of this weak formulation is denoted by Lµ : H−1(Ω) → H1
0 (Ω), i.e., Lµf = y.

Associated to the VI (1), define the inactive set (or non-coincidence set) I := {u < ψ} and the active
set (or coincidence set) A := {u = ψ}. We denote by As ⊂ A the strictly active set which can be
defined via the quasi-support (or fine support) of the measure ξ = f + ∆u; this is a quasi-closed
subset. Note that all these sets are defined up to subsets of capacity zero.

Under Assumption 1.2 and if S(f) ∈ C0(Ω), the strong-weak generalised derivative ∂swB S(f) ⊂
L(H−1(Ω), H1

0 (Ω)) of S at f was characterised in [18, Theorem 5.6] and we have

∂swB S(f) = {Lµ : µ ∈ M0(Ω), µ(I) = 0, µ = ∞ on As}, (37)

where µ = ∞ on As is to be understood in the sense that

v = 0 q.e. on As for all v ∈ H1
0 (Ω) ∩ L2

µ(Ω)

(see [18, Lemma 5.2] for some equivalent characterisations). We will show that the limits of the
derivatives from Proposition 4.1 belong to this set.

In the linear setting of Lemma 2.11, µρ is a measure and the equation (26) for αρ is to be understood
in the weak form

⟨−∆αρ, z⟩+
∫
Ω

αρz dµρ = ⟨d, z⟩ ∀z ∈ H1
0 (Ω).

Note that (25) implies ∫
Ω

αρz dµρ =

∫
Ω

Λ′
ρ(uρ − ψ)αρz dx.

Since Λ′
ρ(uρ − ψ) belongs to L∞(Ω), see Lemma 2.11, we have H1

0 (Ω) ⊂ L2
µρ(Ω). Consequently,

the above equation is equivalent to Lµρ(d) = αρ and this implies

Lµρ ≡ S ′
ρ(fρ). (38)

To summarise, if the directional derivative S ′
ρ(fρ) is linear, we can find a capacitary measure µρ such

that (38) holds.

We now define a notion of convergence for measures related to convergence in the weak operator
topology (see Definition 1.1) of the associated solution operators Lµ defined in (36).
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Definition 4.4. Let {µn} and µ be capacitary measures. We say that µn
γ→ µ if and only if Lµn

WOT→
Lµ.

The sequential compactness of the space M0(Ω), see, e.g., [6, Theorem 4.14], is a crucial property
which implies the next result.

Proposition 4.5. Let a sequence {fρ} be given such that S ′
ρ(fρ) is linear for all ρ. We denote by µρ

the associated capacitary measure, see (25). Then, there exists a capacitary measure µ ∈ M0(Ω)

such that µρ
γ→ µ (for a subsequence that we have relabelled). Equivalently, the derivatives satisfy

S ′
ρ(fρ)

WOT→ Lµ.

The key observation that allows us to prove the next theorem, which is the main result, is the following.
Proposition 4.5 implies, under the stated assumptions, that there is a subsequence (which we shall
relabel) such that for every d ∈ H−1(Ω), αρ := S ′

ρ(fρ)d ⇀ Lµd =: α. We emphasise that
the subsequence is independent of d. Thus, all of the results of Section 3 can be applied to obtain
information on α and, consequently, on the limiting operator Lµ.

We come now to our main result, which concatenates the above results and characterises the limiting
elements obtained in Proposition 4.1. We will use the fact that the result of Proposition 3.3 is equivalent
[8, Lemma 3.7] to

α = 0 q.e. on As. (39)

Theorem 4.6. Let fρ → f in H−1(Ω) with S(f) ∈ C0(Ω) be given. We further assume that Sρ is
Gâteaux differentiable at fρ for all ρ > 0. Then there exists a map L ∈ ∂swB S(f) such that, for a
subsequence (that we relabel),

S ′
ρ(fρ)

WOT→ L.

Proof. Recalling the characterisation

∂swB S(f) = {Lµ : µ ∈ M0(Ω), µ(I) = 0, µ = ∞ on As},

we will show that the operator Lµ from Proposition 4.5 belongs to the set on the right-hand side.

We choose a nonnegative v ∈ H1
0 (Ω) such that {v > 0} = I . Further, set d := −∆v and α := Lµd,

i.e.,
−∆α + µα = −∆v.

Testing with α we get ∥∇α∥L2 ≤ ∥∇v∥L2 . Consequently,

⟨−∆(α− v), α− v⟩ ≤ 2⟨−∆v, v⟩+ 2⟨∆α, v⟩ = 2⟨d, v⟩+ 2⟨∆α, v⟩ = 0

with the final equality by Proposition 3.5. Thus, α = v. Testing the equation for α by v, we get∫
Ω

v2 dµ = 0

and this means µ(I) = 0.

Now, we choose d := 1 and α := Lµd. Note that this α coincides with wµ := Lµ(1) defined below
Theorem 3.8 of [18]. From the characterisation (39) of the result of Proposition 3.3, we get α = wµ = 0
q.e. on As and by [18, Lemma 5.2] we get µ = +∞ on As.
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In the nonsmooth case, Theorem 4.6 and Lemma 4.2 imply that there exists a dense subset F ⊂
H−1(Ω) such that if f ∈ F and S(f) ∈ C0(Ω), there exists a map L ∈ ∂swB S(f) such that, for a
subsequence (that we relabel),

S ′
n(f)

WOT→ L.

5 Optimal control of the obstacle problem

We apply our findings to the optimal control of the obstacle problem. Let Fad ⊂ L2(Ω) be a nonempty,
closed and convex set satisfying

S(f) ∈ C0(Ω) ∀f ∈ Fad

(see Remark 1.4) and let J : H1
0 (Ω)× L2(Ω) → R be a given objective function satisfying

(i) J is continuously Fréchet differentiable with partial derivatives Jy and Jf ,

(ii) If yn → y in H1
0 (Ω) and fn ⇀ f in L2(Ω), then

J(y, f) ≤ lim inf
n→∞

J(yn, fn).

An example of J satisfying the above conditions is

J(y, f) :=
1

2
∥y − yd∥2L2(Ω) +

ν

2
∥f∥2L2(Ω) ,

where yd ∈ L2(Ω) is a given desired state and ν ≥ 0 is a constant.

Consider the optimal control problem

min
f∈Fad

J(y, f) such that y = S(f). (40)

In the next result, we will derive a first-order optimality condition for this control problem. This rigorously
shows the satisfaction of [18, (19)], which was derived only formally there.

Theorem 5.1. For any local minimiser (ȳ, f̄) ∈ H1
0 (Ω)×Fad of (40), there exists L ∈ ∂swB S(f̄) such

that
0 ∈ L∗Jy(ȳ, f̄) + Jf (ȳ, f̄) +NFad

(f̄)

is satisfied where NFad
(f̄) is the normal cone to Fad at f̄ .

Proof. We denote by ε > 0 the radius of optimality, i.e.,

J(S(f), f) ≥ J(ȳ, f̄) ∀f ∈ Fad ∩Bε(f̄),

where Bε(f̄) is a closed ball in L2(Ω).

We regularise the problem (40) and consider

min
f∈Fad∩Bε(f̄)

J(Sρ(f), f) +
1

2

∥∥f − f̄
∥∥2

L2(Ω)
,
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where we take Sρ to be Ssm
ρ or Ssc

ρ . Denote by fρ a global minimiser of this problem and set yρ :=
Sρ(fρ).

Using standard arguments, one can show fρ → f̄ in L2(Ω). Consequently, the constraint fρ ∈ Bε(f̄)
is not binding for small enough ρ. By the standard minimisation principle, we get

0 ∈ J̄ ′(fρ) + (fρ − f̄) +NFad
(fρ)

where J̄(f) := J(Sρ(f), f) defines the reduced functional. Using the chain rule and the fact that J is
Fréchet, we can write this as

0 ∈ S ′
ρ(fρ)

∗Jy(yρ, fρ) + Jf (yρ, fρ) + (fρ − f̄) +NFad
(fρ) in L2(Ω).

Note that Jy(yρ, fρ) ∈ H−1(Ω) and S ′
ρ(fρ)

∗ : H−1(Ω) → H1
0 (Ω) ⊂ L2(Ω).

It remains to pass to the limit with this optimality condition. From Proposition 2.14 we get yρ → ȳ
in H1

0 (Ω). Further, Theorem 4.6 enables us to select a subsequence (which we relabel) such that

S ′
ρ(fρ)

WOT→ L for some L ∈ ∂swB S(f̄). Further, we note that S ′
ρ(fρ) and L are self-adjoint, which

yields S ′
ρ(fρ)

∗ WOT→ L∗ Together with the product rule [18, Lemma 2.9 (ii)] we get

S ′
ρ(fρ)

∗Jy(yρ, fρ) + Jf (yρ, fρ) + (fρ − f̄)⇀ L∗Jy(ȳ, f̄) + Jf (ȳ, f̄)

in H1
0 (Ω) and, consequently, strongly in L2(Ω). Since the graph of the normal cone map is closed,

this implies
0 ∈ L∗Jy(ȳ, f̄) + Jf (ȳ, f̄) +NFad

(f̄)

as claimed.

Thanks to this result, [18, Lemma 7.2] implies the existence of

p ∈ H1
0 (Ω \ As), ν ∈ H−1(Ω), λ ∈ NFad

(f̄),

such that

p+ Jf (ȳ, f̄) + λ = 0, ⟨ν, v⟩ = 0 ∀v ∈ H1
0 (Ω \ A),

Jy(ȳ, f̄) + ∆p− ν = 0, ⟨ν, pφ⟩ ≥ 0 ∀φ ∈ W 1,∞(Ω)+,

which is a necessary condition satisfied by every local minimiser as shown in [20]. Here, As and A
denote the strictly active set and the active set associated with (ȳ, f̄), respectively.
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