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On the equilibrium solutions of
electro-energy-reaction-diffusion systems

Katharina Hopf, Michael Kniely, Alexander Mielke

Abstract

Electro-energy-reaction-diffusion systems are thermodynamically consistent continuum mod-
els for reaction-diffusion processes that account for temperature and electrostatic effects in a way
that total charge and energy are conserved. The question of the long-time asymptotic behavior in
electro-energy-reaction-diffusion systems and the characterization of their equilibrium solutions
leads to a maximization problem of the entropy on the manifold of states with fixed values for the
linear charge and the nonlinear convex energy functional. As the main result, we establish the ex-
istence, uniqueness, and regularity of solutions to this constrained optimization problem. We give
two conceptually different proofs, which are related to different perspectives on the constrained
maximization problem. The first one is based on the Lagrangian approach, whereas the second
one employs the direct method of the calculus of variations.

1 Introduction

Non-isothermal reaction–diffusion systems for electrically charged constituents appear in numerous
situations both in natural sciences and engineering applications. For instance, describing chemical
reactions of ions generally demands for a model taking also energetic effects into account. In particular,
this is necessary in the case of endothermic and exothermic reactions, which, respectively, “consume”
and “produce” heat during the reaction process. Another example, where reactive, diffusive, energetic,
and electrostatic effects are essential ingredients, are the dynamics of charge carriers in high-energy
semiconductor devices.

In this contribution, we establish the existence of a unique global equilibrium for a system of I ∈ N
electrically charged constituents, which are continuously distributed in a bounded Lipschitz domain
Ω ⊂ Rd with d ≥ 1. We use c = (ci)i ∈ [0,∞)I to denote the corresponding vector of concen-
trations, and we employ the internal energy density u ∈ [0,∞) as the main thermodynamic variable
of the system. One could also choose the temperature θ ∈ [0,∞) instead of the internal energy, but
this would lead to technical difficulties in our approach, which will be discussed below in more detail.
Thus, our theory starts essentially from the modeling paper [AGH02] for thermodynamically consis-
tent electro–energy–reaction–diffusion systems (EERDS), but similar to [Mie11, Mie13, MiM18], we
exploit the theory of gradient systems. The wording “thermodynamically consistent” refers to the fact
that fundamental laws of physics and especially thermodynamics are satisfied – in our situation, the
conservation of charge and energy as well as the production of entropy.

Using the state variable Z = Z(x), Z := (c, u) ∈ [0,∞)I+1 and the dual entropy-production
potential P∗(Z,W ) involving dual variables W = W (x), W := (y, v) ∈ RI+1 defined in (3.1),
the evolution equation reads

Ż = ∂WP∗
(
Z; DS(Z)

)
. (1.1)
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K. Hopf, M. Kniely, A. Mielke 2

Here, the entropy functional

S(Z) =

∫
Ω

S
(
c(x), u(x)

)
dx (1.2)

plays the role of the so-called driving functional for the gradient-flow system (1.1). Fundamental ther-
modynamics [LiY99] demand that the entropy density S : (0,∞)I+1 → R is concave (and, hence,
continuous); this concavity property is generally not satisfied if the entropy is defined as a function of
the concentrations c and the temperature θ.

For this introduction, it suffices to note that the dual entropy-production potential

P∗(Z,W ) = P∗diff(Z,W ) + P∗reac(Z,W )

is the sum of diffusive and reactive contributions, which are non-negative and consistent with the
conservation of total energy E and total chargeQ given by

E(c, u) :=

∫
Ω

(
u+

ε

2
|∇ψc|2

)
dx and Q(c) :=

∫
Ω

q·c dx,

where ψc is the solution of the Poisson equation (1.3). Hence, along sufficiently smooth solutions of
the time-dependent EERDS (1.1), one expects

d

dt
S(Z) ≥ 0,

d

dt
E(Z) = 0,

d

dt
Q(Z) = 0,

see [Mie11, Mie13, MiM18]. Thus, thermodynamic equilibria are expected to maximize the total en-
tropy Z 7→ S(Z) under the given constraints E(Z) = E0 and Q(Z) = Q0, where E0 and Q0

are determined by the initial conditions. This thermodynamic principle is called the maximum-entropy
principle, see [AGH02, Sec. 3]. In this paper, we make this principle rigorous and show, under suitable
technical assumptions, that for each suitable pair (E0, Q0) there exists a unique maximizer of S . It
turns out that the choice Z = (c, u) is crucial here, because S is concave in these variables but, in
general, not with respect to (c, θ).

In [GlH05, Thm. 5.2], the existence of thermodynamic equilibria was established for a more specific
two-dimensional model in a completely different way, namely by prescribing the (constant) temperature
θ0 and one of the two (constant) electrochemical potentials ζ1. These two constants correspond to our
η and κ used in Section 4 (see e.g. (4.7)), which are dual to E0 and Q0, respectively. See Remark
3.4 for more explanation. Starting from (θ0, ζ1) makes the construction of equilibria easier but does
not uncover the relation to the maximum-entropy principle. However, [GlH05] goes much further in
another direction, by showing existence of steady-state solutions out of thermodynamic equilibrium if
the boundary conditions are close to those of a thermodynamic equilibrium solution.

For a prescribed doping profile D ∈ LpΩ(Ω), pΩ > max{1, d/2}, we define the electrostatic poten-
tial Ψ : Ω→ R as the solution to Poisson’s equation

− div
(
ε∇Ψ

)
= q·c+D, (1.3)

where the charge distribution on the right-hand side involves the charge vector q ∈ RI . The function
ε ∈ L∞(Ω), ε ≥ ε > 0, models the (uniformly positive) permittivity of the material. We endow (1.3)
with mixed Dirichlet–Robin boundary conditions

Ψ = 0 on ΓD and εν·∇Ψ + ωΨ = gR on ΓR (1.4)
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On the equilibrium solutions of electro-energy-reaction-diffusion systems 3

with boundary data gR ∈ LpR(ΓR), pR > max{1, d − 1} modeling a given surface charge density.
We could also allow for inhomogeneous Dirichlet data, e.g., ψD ∈ H1/2(ΓD) or ψD ∈ C0,1(ΓD),
but as explained in Remark 2.4, this would not change our subsequent analysis up to an additional
notational effort. Here, the Dirichlet part of the boundary ΓD ⊂ ∂Ω is supposed to be a measurable
subset of ∂Ω and to either have a positive measureHd−1(ΓD) > 0 or to be empty. The complement
ΓR := ∂Ω\ΓD denotes the Robin part of the boundary, and the coefficient function ω ∈ L∞(ΓR),
ω ≥ 0 even allows us to include pure Neumann boundary conditions via ω ≡ 0. This kind of non-
homogeneous mixed boundary conditions has already been employed in [AGH02]. Finally, we suppose
that the following compatibility conditions hold:∫

Ω

q·c dx = 0 and

∫
Ω

D dx+

∫
∂Ω

gR da = 0 if ΓD = ∅ and ω ≡ 0. (1.5)

The identities (1.5) are necessary to guarantee the existence of solutions to (2.1) in the pure Neumann
case.

The interest in reaction–diffusion models taking temperature and electrostatic effects into account
increased over the last couple of years. The first contribution towards a rigorous non-isothermal
reaction–diffusion model for electrons and holes in a semiconductor device appeared in [Wac90];
both the stationary and the time-dependent case are discussed therein. The same model equations
were subsequently derived in [AGH02] from a free energy functional relying only on fundamental ther-
modynamical principles. The generalization to an arbitrary number of charged species was performed
in [Mie11] (see also [Mie15]). All these results focus on modeling issues and formal considerations.
To our knowledge, the first global existence result for weak solutions in this context was provided fairly
recently in [BPZ17]. In this paper, the authors consider a thermodynamically and mechanically con-
sistent fluid mixture of charged constituents subject to reaction, drift-diffusion, and heat conduction.
On the one hand, the result covers a remarkably large class of models and electro-thermal effects,
e.g., the Soret and Dufour effects. On the other hand, the existence analysis heavily assumes that the
constituents are dissolved in a solvent, which a priori leads to bounded concentrations and bounded
reaction terms. We also mention the recent note [KaK20] on a thermodynamically consistent general-
ization of the model in [AGH02] to arbitrary particle statistics.

Our motivation for studying EERDS originates from the previous work [FH∗22] on global solutions to
pure energy–reaction–diffusion systems and related publications [Mie11, HH∗18, MiM18, Hop22] on
the large-time behavior and weak–strong uniqueness of these systems. Moreover, reaction–diffusion
systems coupled to Poisson’s equation were investigated in [FeK18, FeK21], where exponential con-
vergence to the equilibrium was shown.

We approach our goal of proving the existence of a unique global equilibrium to (1.1) with two mostly
independent strategies. The first one relies on the technique of Lagrange multipliers proving that a
unique critical point (c∗, u∗) of S subject to the constraints (2.8) exists (cf. Definition 3.3) in the class
of continuous and uniformly positive functions. Using the structure of the constraints, we further show
that the critical point is globally optimal within this class. The second strategy builds on the direct
method of the calculus of variations, which allows us to work in a setting of low regularity. Assuming
that the set of states (c, u) satisfying the charge and energy constraints is non-empty, we establish
the existence (and uniqueness) of a constrained maximizer of S in a rather straightforward manner
by relying on the (strict) concavity of the entropy and its monotonicity with respect to the internal
energy component. The continuity and uniform positivity of this optimizer is subsequently deduced by
a regularization and limiting procedure.

A key functional appearing in both optimization approaches mentioned above is the Legendre trans-
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form

H∗(y, v) := sup
{
y·c+ vu+ S(c, u)

∣∣ (c, u) ∈ (0,∞)I+1
}

(1.6)

of the convex function (c, u) 7→ H(c, u) := −S(c, u). The functionH∗ is the so-called dual entropy
defined for y ∈ RI and v < 0. We will later see thatH∗(y, v) appears, for instance, when looking for
critical points of the Lagrange functional L related to the constrained maximization of S . The actual
quantity of interest, in this context, is the restriction of the dual entropy H∗ to a two-dimensional
subspace of RI+1 involving µ ∈ R and η > 0, the reduced dual entropy

H∗(µ, η) := H∗(−µq,−η). (1.7)

To make the discussion more concrete, we give two methods to derive admissible classes of entropy
densities S(c, u), which has been employed recently in studies of energy–reaction–diffusion systems.
Our main results in Sections 3.1 and 3.2, however, hold for general entropy functions subject to ap-
propriate hypotheses formulated therein. Typical entropy densities S(c, u) consist of Boltzmann-type
functions ci log ci modeling the concentration-based entropy. The purely thermal part σ(u) of the en-
tropy is usually taken to be a sublinear function of u to account for the desired concavity of S(c, ·).
Moreover, equilibrium concentrations w(u) = (w1(u), . . . , wI(u)) enter the definition of S(c, u) in
such a way that

w(u) = argmax
c∈(0,∞)I

S(·, u), i.e., DcS(w(u), u) = 0

by the concavity of S(·, u). The interaction part of the entropy coupling concentrations ci and the
internal energy u is chosen in such a way that the condition above is satisfied. The authors of [MiM18]
propose, for instance, the consistent choice

S(c, u) = σ(u)−
I∑
i=1

(
ci log ci − ci − ci logwi(u)

)
,

where the equilibrium densities wi : [0,∞) → (0,∞) are increasing and concave functions. This
class of entropy functions was subsequently employed in [FH∗22, Hop22] in the context of renormal-
ized solutions to energy–reaction–diffusion systems. We will give explicit representations for H∗ and
H∗ in a slightly simplified setting in Example 1.1. Let us first recall that θ = (DuS(c, u))−1 =:
Θ(c, u) gives an expression for the temperature in terms of c and u, which can be equivalently
converted into u = U(c, θ) because DuΘ(c, u) > 0 by the strict concavity of S. At the (local)
equilibrium, we expect

Θ(w(u), u) constant in Ω, i.e., DuS(w(u), u) constant in Ω.

This condition is obviously satisfied for any constant function u : Ω → (0,∞). But already in this
quite elementary situation, it is not clear whether one can fulfill the charge and energy constraints (2.8)
by adapting u appropriately.

Example 1.1 (Entropy functions S, H∗, and H
∗
) We consider a special case of the entropyS(c, u)

proposed in [MiM18] and considered above, namely

S(c, u) := β0w(u)−
I∑
i=1

(
ci log ci − ci − ci log

(
βi(w(u)+w0)

))
,

DOI 10.20347/WIAS.PREPRINT.3157 Berlin 2024



On the equilibrium solutions of electro-energy-reaction-diffusion systems 5

H(c, u) = −S(c, u) H∗(y, v) H∗(µ, η)

Figure 1.1: Relation between the different types of convex entropy functions: the negative entropy
−S = H : (0,∞)I × (0,∞) → R, the dual entropy H∗ : RI × (−∞, 0) → R, and the reduced
dual entropy H∗ : R × (0,∞) → R. See (1.6) and (1.7) for the consecutive definitions of H∗ and
H∗.

where β0, βi, w0 > 0 and w : [0,∞) → [0,∞) is increasing and concave. Hence, the equilibrium
concentrations are given by wi(u) = βi(w(u) + w0). From y = −DcS(c, u), we find

ci = (w(u)+w0)βie
yi .

Using this, we derive for v = −DuS(c, u) the relation

v = −β0w
′(u)−

I∑
i=1

ci
w(u)+w0

w′(u) = −w′(u)B(y) with B(y) := β0 +
I∑
i=1

βie
yi .

Because of
∑I

i=1 ci = (w(u) + w0)
(
B(y)−β0

)
, we also find for the temperature

θ = Θ(c, u) =
w(u) + w0

w′(u)
(
β0(w(u) + w0) +

∑I
i=1 ci

) =
1

w′(u)B(y)
.

The Legendre transform H∗ := L(−S) can be calculated explicitly by using w∗ := L(−w) in the
form

H∗(y, v) = B(y)w∗
( v

B(y)

)
+
(
B(y)−β0

)
w0 for v < 0

and H∗(y, v) =∞ for v ≥ 0. In the case w(u) = uα/α with α ∈ (0, 1), we find

w∗(v) =
1−α
α

(−v)−α/(1−α) and H∗(y, v) =
1−α
α

B(y)1/(1−α)

(−v)α/(1−α)
+
(
B(y)− β0

)
w0.

Defining the convex function b : R → R via b(µ) = B(−µq), we find the convex reduced dual
entropy

H∗(µ, η) = H∗(−µq,−η) =
1−α
α

b(µ)1/(1−α)

ηα/(1−α)
+
(
b(µ)− β0

)
w0.

The dependence of the various entropy functions on each other is depicted in Figure 1.1.

Example 1.2 (Second form of entropies) As in [AGH02], we can generate concave entropies (c, u) 7→
S(c, u) by starting from a free energy F (c, θ), where θ is the temperature. The main assumption is
that for fixed θ the function c 7→ F (c, θ) is convex and for fixed c the mapping θ 7→ F (c, θ) is strictly
concave, which is the same as saying that the heat capacity c(c, θ) := −θ∂2

θF (c, θ) is positive.

The free entropy −F (c, θ)/θ can be written in terms of the variable v = −1/θ < 0, which is
thermodynamically conjugate to the internal energy u. We see that the function

H̃(c, v) := −v F
(
c,−1

v

)
for v < 0

is still concave in v and convex in c. Doing a partial Legendre transform in c, we see that

H∗(y, v) = sup
{
y·c− H̃(c, v)

∣∣ c ∈ [0,∞)I
}
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is a convex functional by the standard fact that the Legendre transform of a convex–concave functional
is jointly convex. SettingH∗(y, v) :=∞ for v > 0, we find the corresponding entropy density function

S(c, u) = −H(c, u) with H(c, u) = sup
{
y·c+ vu−H∗(y, v)

∣∣ (y, v) ∈ RI+1
}
.

By doing suitable partial Legendre transforms, one sees that this definition is consistent with the stan-
dard definition S̃(c, θ) := −∂θF (c, θ).

In electrochemistry, it is often assumed that F has the form

F (c, θ) = F0(θ) +
I∑
i=1

Fi(ci, θ),

see also [AGH02]. In that case, our main function H∗(µ, η) = H∗(−µq,−η) again has an additive
form, namely

H∗(µ, η) = −ηF0

(1

η

)
+

I∑
i=1

ηF̂i

(
−µqi
η
,

1

η

)
, where F̂i(z, θ) := L

[
Fi(·, θ)

]
(z).

With this, it is easy to derive lower bounds for H∗(µ, η) from upper bounds for Fi.

The remainder of the paper is organized as follows. In Section 2, we rigorously introduce the electro-
static potential and the electrostatic energy, and we give some auxiliary results on the minimal value
of the electrostatic energy. More elaborate proofs are shifted to Section 7 at the end of the paper.
The main results on the existence, uniqueness, and regularity of equilibrium states are presented in
Section 3 – in Subsection 3.1 in the framework of the Lagrangian method, and in Subsection 3.2 in
the context of the direct method of the calculus of variations. The key proofs are carried out in Section
4 and 5, respectively. Some technical and more involved proofs are collected in Section 6.

2 Electrostatic and energetic principles

Electrostatic potential. Following [AGH02], we decompose the total electrostatic potential Ψ into
the internal (or unbiased) and external (or induced) potential Ψ = ψc + ψext, where the internal
potential ψc is determined by

− div
(
ε∇ψc

)
= q·c in Ω,

ψc = 0 on ΓD, (2.1a)

εν·∇ψc + ωψc = 0 on ΓR,

while the external potential ψext satisfies

− div
(
ε∇ψext

)
= D in Ω,

ψext = 0 on ΓD, (2.1b)

εν·∇ψext + ωψext = gR on ΓR.

Recall that Ω ⊂ Rd, d ≥ 1, is a bounded Lipschitz domain. In addition, the Dirichlet boundary
ΓD ⊂ ∂Ω is either empty or has a positive measure Hd−1(ΓD) > 0, while the Robin boundary
equals ΓR := ∂Ω\ΓD. We impose the following hypotheses on the coefficient functions:
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On the equilibrium solutions of electro-energy-reaction-diffusion systems 7

(D1) ε ∈ L∞(Ω), ε ≥ ε for some ε ∈ R>0.

(D2) ω ∈ L∞(ΓR) with ω ≥ 0.

The subsequent definition introduces the natural function space for the internal potential ψc and the
external potential ψext.

Definition 2.1 (Space H ) Assume (D1), (D2). We define H ⊆ H1(Ω) as the subspace

H :=


{
ψ ∈ H1(Ω)

∣∣ ψ|ΓD
= 0}, ifHd−1(ΓD) > 0,{

ψ ∈ H1(Ω)
∣∣ ∫

Ω
ψ dx = 0}, if ΓD = ∅ and ω ≡ 0,

H1(Ω), if ΓD = ∅ and ω 6≡ 0.

(2.2)

Note that the subspace H ⊆ H1(Ω) is closed and hence itself a Hilbert space.

Lemma 2.2 (Poisson: existence) Suppose (D1), (D2). For ψ, ϕ ∈H , we define

〈Lψ, ϕ〉 :=

∫
Ω

ε∇ψ · ∇ϕ dx+

∫
ΓR

ωψϕ da. (2.3)

Then, the induced bounded linear operator L : H →H ∗ is invertible.

Proof. This follows from the classical Riesz representation/Lax–Milgram theorem by observing that the
definition of the space H ensures that the continuous bilinear form 〈L·, ·〉 is coercive. More precisely,
there exists α0 > 0 such that for all H , we have

〈Lψ, ψ〉 ≥ α0‖ψ‖2
H1(Ω). (2.4)

The existence of such a constant α0 > 0 can be shown by a contradiction argument.

As a consequence of Lemma 2.2, whenever q·c ∈ H ∗, the linear Poisson problem (2.1a) for the
internal potential possesses a unique weak solution ψc ∈ H , i.e. there exists a unique ψc ∈ H
such that 〈Lψc, ϕ〉 = 〈q·c, ϕ〉 for all ϕ ∈H .

The external potential ψext will, for simplicity, be considered in a more regular setting.

(D3) D ∈ LpΩ(Ω) and gR ∈ LpR(ΓR) for certain pΩ > max{1, d/2}, pR > max{1, d − 1}. If
ΓD = ∅ and ω ≡ 0, then let further

∫
Ω
D dx+

∫
∂Ω
gR da = 0 hold.

Lemma 2.3 (Poisson: regularity) Suppose (D1)–(D3). Then, the Poisson equation (2.1b) possesses
a unique solution ψext ∈H ∩ C(Ω).

Proof. The assertions follow from the presentation in [Trö10, Chapter 4], which is carried out in the
pure Robin case but which also applies to our situation with mixed boundary conditions.

In the present paper, we focus on the existence of a unique equilibrium state for system (1.1). This
can be seen as a first step towards an existence result for the time-dependent model in (1.1) and as a
necessary ingredient to an (exponential) equilibration result. Our notion of an equilibrium builds on the
second law of thermodynamics stating that the total entropy of a closed system is non-decreasing as a
function of time. The desired equilibrium solution is then obtained by maximizing the entropy functional
S(c, u) under the constraints of prescribed values E0 > 0 and Q0 ∈ R for the energy and charge
functionals.

DOI 10.20347/WIAS.PREPRINT.3157 Berlin 2024
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Electrostatic energy. We define the bilinear form B : H ×H → R,

B(ψ, φ) :=

∫
Ω

ε∇ψ · ∇φ dx+

∫
ΓR

ωψφ da and set B(ψ) := B(ψ, ψ). (2.5)

Note that B : H ×H → R is coercive and related to the linear operator L : H →H ∗ via

B(ψ, φ) = 〈Lψ, φ〉H ,

where 〈 · , · 〉H is the duality pairing in H ∗×H . For a given charge distribution ρ ∈ L1(Ω) ∩H ∗,
the internal potential ψρ is the solution of the weak problem

B(ψρ, φ) =

∫
Ω

ρφ dx = 〈ρ, φ〉H for all φ ∈H . (2.6)

The electrostatic energy for the data (ρ, ψext) is then introduced as

E(ρ, ψext) :=
1

2
B(ψρ+ψext) =

1

2
B(ψρ) + 〈ρ, ψext〉H +

1

2
B(ψext) ≥ 0. (2.7)

The first two terms of the total electrostatic energy (2.7) account for the energy of the charge density
ρ in the self-consistent potential ψρ = L−1ρ and the ρ-independent potential ψext, where ψρ and
ψext are introduced in (2.6) and (2.1b). The last term in (2.7) can be interpreted as the “energy” of
the external potential ψext. Specifying ρ := q·c and adding the integral over u, i.e., the total internal
energy, leads to the total energy E(c, u). The energy and charge functionals are thus defined as

E(c, u) :=
1

2
B(ψc+ψext) +

∫
Ω

u dx = E0, (2.8a)

Q(c, u) :=

∫
Ω

q·c dx = Q0, (2.8b)

where we recall the identities ψc = ψq·c = L−1(q·c) according to (2.1a), (2.6), and (2.3). The total
charge Q(c, u) only depends on the dynamic charge density q·c. If there are further stoichiometric
constraints, additional conservation laws arise, which have to be included as well; for the sake of a
simplified presentation, we shall assume that no further conservation laws are present.

Invoking the homogeneous Dirichlet condition ψext = 0 on ΓD, the derivatives of E(c, u) andQ(c, u)
are easily seen to equal

DE(c, u) =

(
(ψc+ψext)q

1

)
and DQ(c, u) =

(
q

0

)
. (2.9)

Remark 2.4 (Inhomogeneous Dirichlet data) As already pointed out above, we can – in principle –
also deal with inhomogeneous Dirichlet data ψD ∈ H1/2(ΓD). In this case, we work with the adapted
electrostatic energy

E(ρ, ψext,0) =
1

2
B(ψρ + ψext,0),

where ψext,0 ∈ H is the solution to (2.1b). However, it is currently unclear whether an extension of
the electrostatic energy E(ρ, ψ) to potentials ψ with non-zero Dirichlet conditions is possible.
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Optimal charge distribution. In this part, we derive a sharp lower bound for the electrostatic energy
E(ρ, ψext) depending on the given external field ψext and the total charge Q0 as introduced in (2.7).

For finding the infimum of E(ρ, ψext) under the constraint
∫

Ω
ρ dx = Q0, it is helpful to relax the

problem by admitting all ρ ∈ H ∗. However, the latter charge constraint is only well defined on H ∗

if the constant function 1Ω lies in H , which is neither the case if we have a (homogeneous) Dirichlet
boundary condition on a nontrival part ΓD nor in the case of pure Neumann boundary conditions. But
we will see that the charge constraint is only relevant in the remaining pure Robin case. The following
lemma will turn out to be useful subsequently. For later usage, we provide a stronger version of the
density statement.

Lemma 2.5 Let H be the space introduced in Definition 2.1. Then, the following facts hold true.

(F1) C(Ω) is dense in H ∗, in particular, L1(Ω) ∩H ∗ is dense in H ∗.

(F2) IfHd−1(ΓD) > 0, then there exists a sequence ρn ∈ L1(Ω) ∩H ∗ with
∫

Ω
ρn dx = 1 for all

n ∈ N and ‖ρn‖H ∗ → 0 for n→∞.

A physical interpretation of the sequence ρn in (F2) is the accumulation of all charge near the Dirichlet
boundary. The point is that the relaxation allows for surface charges, whereas the original problem is
restricted to volume charges. More precisely, in the proof of (F2), we will show that the sequence can
be chosen such that

ρn(x) :=
1

|An|
1An(x) with |An| =

C

n
and dist(An,ΓD) ≤ 1

n
. (2.10)

Proposition 2.6 (Minimal electrostatic energy) For E given by (2.7), we define onR×H the func-
tional

V(Q0, ψext) := inf
{

E(ρ, ψext)
∣∣∣ ρ ∈ L1(Ω) ∩H ∗,

∫
Ω

ρ dx = Q0

}
. (2.11)

(A) (Some Dirichlet) ForHd−1(ΓD) > 0, we have V(Q0, ψext) = 0.

(B) (Pure Neumann) For ΓR = ∂Ω and ω ≡ 0, we have V(0, ψext) = 0.

(C) (Pure Robin) For ΓR = ∂Ω and
∫

Γ
ω da > 0, we have

V(Q0, ψext) =
1

2
∫

Γ
ω da

(
Q0 +

∫
Γ

ωψext da
)2

. (2.12)

Denote by N : L2(Ω)×L2(∂Ω)→H ∗ the mapping defined via〈
N(D, gR), φ

〉
H

:=

∫
Ω

Dφ dx+

∫
∂Ω

gRφ da for all φ ∈H

and let M := L−1N : L2(Ω)×L2(∂Ω) → H . Then, for ψext ∈ H and ψext = M(D, gR),
respectively, the minimum is attained at the relaxed ρ̃∗ ∈H ∗ given as follows:

(A) (Some Dirichlet) ρ̃∗ = −Lψext and ρ̃∗ = N(−D,−gR), respectively.

(B) (Pure Neumann) ρ̃∗ = −Lψext and ρ̃∗ = N(−D,−gR), respectively.

(C) (Pure Robin) ρ̃∗ = L(κ∗−ψext) and ρ̃∗ = N(−D, κ∗ω−gR), respectively,
where κ∗ =

(
Q0 +

∫
Γ
ωψext da

)
/
∫

Γ
ω da.
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Remark 2.7 (Surface charges and attainmment) The question of attainment of the infimum in the
definition of V(Q0, ψext) by a ρatt ∈ L1(Ω)∩H ∗ can be read off from the last attainment statements.

We have attainment if and only if ρ̃∗ = N(ρatt, 0) and
∫

Ω
ρatt dx = Q0. Hence, in the three cases

we have attainment if and only if:

(A) (Some Dirichlet) gR ≡ 0 and
∫

Ω
D dx = −Q0.

(B) (Pure Neumann) gR ≡ 0 and
∫

Ω
D dx = 0 = Q0.

(C) (Pure Robin)
∫
∂Ω
ω da gR =

(
Q0 +

∫
∂Ω
ωψext da

)
ω.

In all three cases, we have the necessary attainment condition that there are no surface charges, i.e.
ρ̃∗ = N(−D, 0). In (A), there is the additional condition that the total doping charge compensates
the given charge.

Remark 2.8 (Restriction to positive charge) We emphasize that the statements of Proposition 2.6
and Remark 2.7 on the minimal electrostatic energy heavily rely on ρ = q·c being allowed to take
positive and negative values. In other words, we suppose that positive and negative charge carriers
are present, i.e., there exist 1 ≤ i, j ≤ I such that qi < 0 < qj holds. If all species are non-
negatively charged, i.e., if qi ≥ 0 for all 1 ≤ i ≤ I , we have to replace L1(Ω) in (2.11) by L1

+(Ω),
and we conjecture that

V≥(Q0, ψext) := inf
{

E(ρ, ψext)
∣∣∣ ρ ∈ L1

+(Ω) ∩H ∗,

∫
Ω

ρ dx = Q0

}
	 V(Q0, ψext)

holds.

3 Main results

3.1 Local optimization via the Lagrangian method

Before stating our main results on the existence, uniqueness, and regularity of a (local) maximizer
of the total entropy S subject to (2.8) in Theorem 3.6 and Corollary 3.8, we introduce the underlying
hypotheses and the precise definitions of local equilibria and critical points.

The following conditions are the main properties, which are supposed to hold for the entropy function
S(c, u) and the dual entropy density H∗(y, v). Here and throughout the article, we use D to denote
the Gateaux resp. Fréchet derivative.

Hypotheses 3.1 Assume that the entropy density S : (0,∞)I+1 → R and the dual entropy density
H∗ : RI × (−∞, 0)→ R defined in (1.6) fulfil the subsequent requirements:

1 −S and H∗ are continuously differentiable and strictly convex functions.

2 −DS : (0,∞)I+1 → RI × (−∞, 0) is a homeomorphism.

Under Hypotheses 3.1, −DS generates a transformation between the primal variables (c, u) =
DH∗(y, v) ∈ (0,∞)I+1 and the dual variables

(y, v) = −DS(c, u) ∈ RI × (−∞, 0), (3.1)
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where −DS(c, u) and DH∗(y, v) are strictly monotone in each argument. The fact that DH∗ is the
inverse function to −DS = DH is a consequence of the Fenchel equivalences known from convex
analysis. The components of y = (y1, . . . , yI) are related to the chemical potentials ζi via yi =
−ζi/θ (cf. [AGH02, Def. 3.1]), whereas v = −DuS(c, u) < 0 is the negative inverse temperature.
Obviously, S(c, ·) is strictly increasing for all c ∈ (0,∞)I . Note that the class of entropy densities in
Example 1.1 satisfies the assumptions in Hypotheses 3.1.

The following hypothesis collects assumptions on the prescribed total energyE0 ≥ 0 and total charge
Q0 ∈ R according to necessary constraints stated in Proposition 2.6.

Hypotheses 3.2 Let Q0 ∈ R and E0 > V(Q0, ψext) as defined in Proposition 2.6. If ΓD = ∅ and
ω ≡ 0, i.e., in the pure Neumann case, we additionally set Q0 := 0.

In the present context of the Lagrangian method, we consider continuous and uniformly positive con-
centrations and internal energy densities

(c, u) ∈ F := C
(
Ω, (0,∞)I+1

)
. (3.2)

The main reason for this choice is that it ensures Fréchet differentiability of the entropy functional
S = S(c, u). At the same time, as we will show in Theorem 3.6, there exists a unique constrained
critical point of S in F . Let us also note that the constraints (2.8) are Fréchet differentiable in F .

We refer to [AGH02, Lemma 6.1] for the first mathematically precise formulation of the following equi-
librium principle.

Definition 3.3 (Local/global equilibria, critical points) Assume that (c∗, u∗) ∈ F satisfies (2.8).
We call (c∗, u∗) a local equilibrium of (1.1) compatible with total energy E0 > 0 and total charge
Q0 ∈ R if the entropy S attains its supremum in a C0 neighborhood of (c∗, u∗) in F under the
constraints (2.8) at (c∗, u∗). More precisely, we demand that a constant δ > 0 exists such that

S(c∗, u∗) = sup
{
S(c, u)

∣∣ E(c, u) = E0, Q(c, u) = Q0,

(c, u) ∈ F , ‖(c−c∗, u−u∗)‖C(Ω) < δ
}
.

We call (c∗, u∗) a global equilibrium of (1.1) compatible with total energy E0 > 0 and total charge
Q0 ∈ R if the entropy S attains its supremum in F under the constraints (2.8) at (c∗, u∗). More
precisely, we demand that

S(c∗, u∗) = sup
{
S(c, u)

∣∣ E(c, u) = E0, Q(c, u) = Q0, (c, u) ∈ F
}
.

We say that (c∗, u∗) is a critical point of the total entropy S subject to (2.8) if and only if there exist
constants η, κ ∈ R such that

DS(c∗, u∗) = ηDE(c∗, u∗) + κDQ(c∗, u∗). (3.3)

Recall that S(c, u) ∈ R is well-defined for all (c, u) ∈ F . Besides, since the energy constraint is
nonlinear (note the quadratic electrostatic energy term |∇ψc|2), it is not immediately clear whether a
unique constrained local maximizer of the total entropy S exists. Studying the large-time behavior of
(1.1) (which will be the subject of a future work), we are particularly interested in proving convergence
into a unique local equilibrium for time t → ∞. Indeed, we will show that there even exists a unique
critical point (c∗, u∗) ∈ F of S under the constraints (2.8).

DOI 10.20347/WIAS.PREPRINT.3157 Berlin 2024



K. Hopf, M. Kniely, A. Mielke 12

Remark 3.4 (Constant temperature and electrochemical potentials) In [GlH05, Thm. 5.2], thermo-
dynamical equilibria are defined by the assumption of constant temperature and constant electrochem-
ical potentials. This property is equivalent to our characterization in (3.3). Indeed using (2.9), the last
component of (3.3) gives

1

θ
= DuS(c, u) = η, namely θ ≡ 1

η
,

which means that the temperature is equal to the constant θ0 := 1/η.

The vector of electrochemical potentials ζ is defined as ζ := θDcS(c, u)− ψq, and (3.3) yields

ζ =
1

η
DcS(c, u)− ψq =

1

η

(
DcS(c, u)− ηψq

)
≡ κ

η
q.

This means that all electrochemical potentials ζi = θDciS(c, u)−qiψ are constant, and all constants
are the same up to a multiplication with the charge numbers qi, namely ζi = ζ1qi/q1.

Proposition 3.5 (Critical point vs. local maximizer) The following holds true:

1 Any local equilibrium solution of (1.1) with respect to fixed total energy E0 and total charge Q0

is a constrained critical point of S .

2 If S ∈ C2((0,∞)I+1) is locally strongly concave in the sense that −D2S(c, u) is positive
definite for all (c, u) ∈ (0,∞)I+1, then any constrained critical point of S , i.e. any solution
of (3.3), is a strict local maximizer of S with respect to the energy and charge constraint.

This result strongly relies on the structure and regularity of the constraints. In particular, we take
advantage of the fact that the set of admissible states satisfying the energy and charge constraints
forms a smooth manifold in the Banach space C(Ω)I+1 and that an extended version thereof, where
states are allowed to take values outside (0,∞)I+1, forms a smooth manifold in L2(Ω)I+1. Its proof
will be postponed to the end of this manuscript, see page 33.

We now state the key result of the paper on the existence, uniqueness, regularity, and positivity of
a constrained critical point (c∗, u∗) ∈ F of the entropy functional S under the charge and energy
constraints (2.8). A crucial ingredient to the subsequent existence proof is the estimate (3.4), which
requires at least a slightly superlinear growth of µ 7→ H∗(−µq,−η). Assumption (3.5) states that
the regularity of ψext is better than simply H1(Ω). This is certainly the case, if ψext ∈ H2(Ω) giving
D ∈ L2(Ω) and gR ∈ H1/2(ΓR).

Theorem 3.6 (Constrained critical points of S) Assume that Hypotheses 3.1 and 3.2 hold true.
Moreover, there shall exist positive constants c∗, p, q > 0 such that

H∗(µ, η) ≥ c∗
1 + |µ|q

ηp
and

q

1+p
> 1 (3.4)

holds for all µ ∈ R and η > 0. Finally, suppose that constants C > 0 and θ ∈ (0, 1) exist such that
for all φ ∈ H1(Ω), we have

|B(φ, ψext)| ≤ C‖φ‖1−θ
L1 ‖φ‖θH1 . (3.5)

Then, there exists a unique critical point (c∗, u∗) ∈ F of the total entropy S subject to (2.8).
The corresponding electrostatic potential, which is the solution to (1.3)–(1.4) with right-hand side
q·c∗ + D, satisfies Ψ∗ ∈ C(Ω) and the associated temperature is the positive constant θ∗ =
(DuS(c∗, u∗))−1 > 0.
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Remark 3.7 (Relaxed assumptions) The assertion of Theorem 3.6 on the uniqueness of critical
points (c∗, u∗) also holds for all E0 ≥ 0 and without the lower bound (3.4) on H∗. The uniqueness is
already a consequence of the strict convexity of H∗.

The lower bound (3.4) is trivially satisfied in the situation of Example 1.1 provided that positively and
negatively charged species are present, i.e., there exist 1 ≤ i, j ≤ I such that qi < 0 < qj holds.

If we have, for instance, qi ≥ 0 for all 1 ≤ i ≤ I , then the reduced dual entropy from Example 1.1
only satisfies

H∗(µ, η) ≥ c∗
1 + max{0,−µ}q

ηp
and

q

1+p
> 1 (3.6)

with positive constants c∗, p, q > 0. Proving Theorem 3.6 under the relaxed condition (3.6) is beyond
the scope of the present article. See Subsection 4.3 for further details.

The first main result of this article ensures that the unique constrained critical point of S from Theorem
3.6 is the unique constrained local maximizer of S and, thus, the unique local equilibrium of (1.1) in
the sense of Definition 3.3. We formulate this result as a corollary, which is obtained by combining
Theorem 3.6 and Proposition 3.5.

Corollary 3.8 (Existence and uniqueness of a local equilibrium) Let the hypotheses of Thm 3.6
be in place. Further suppose that S ∈ C2((0,∞)I+1) is locally strongly concave. Then, there exists
a unique local equilibrium of (1.1) with respect to fixed total energy E0 > V(Q0, ψext) and total
charge Q0 ∈ R.

Our second main result establishes the existence and uniqueness of a constrained global maximizer
of S and, hence, of a global equilibrium of (1.1) according to Definition 3.3. Important ingredients are
the concavity of the total entropy S , the quadratic nature of the nonlinear part of the energy E , and the
fact that the derivatives of S and E w.r.t. u are both positive, which allows us to turn local into global
statements.

Theorem 3.9 (Existence and uniqueness of a global equilibrium) Let the hypotheses of Thm 3.6
be in place. Further suppose that S ∈ C2((0,∞)I+1) is locally strongly concave. Then, the critical
point (c∗, u∗) obtained in Theorem 3.6 is the unique global maximizer of S subject to the constraints
of fixed total energy E0 > V(Q0, ψext) and total charge Q0 ∈ R, i.e.

S(c, u) ≤ S(c∗, u∗) for all (c, u) ∈ F with E(c, u) = E0 andQ(c, u) = Q0. (3.7)

3.2 Global optimization by the direct method

Let us now summarize our results on the existence, uniqueness, and regularity of a global optimizer
based on the direct method. We will mostly work with the negative entropy H(c, u) = −S(c, u),
which is convex. All results assume Hypotheses (D1)–(D3) to be in force.

The main advantage of the direct method is that it allows us to separate existence and uniqueness
results from regularity. In particular, it does not require differentiability of the entropy functional. A tech-
nical complication that arises in the direct method stems from the fact that the physically relevant en-
tropies are sublinear in u as u→∞. Thus, the primary control of the internal energy densities (uk)k
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of any optimizing sequence (ck, uk)k comes from the energy constraint E(ck, uk) = E0 leading to
a bound for (uk)k in the non-reflexive Banach space L1(Ω). It is therefore natural to first formulate
the optimization problem in a larger functional setting allowing for finite measures as internal energy
distribution. Let us anticipate that the monotonicity of the entropy in the internal energy component
enables us to show, in a separate step, that any optimizer must be absolutely continuous with respect
to the Lebesgue measure, so that concentrations can eventually be ruled out. Under additional mild
differentiability assumptions on the entropy function and some extra hypotheses on the data, the op-
timizer is shown to be continuous and uniformly positive on Ω componentwise, see Section 6.1. This
follows from a monotonicity argument and elliptic regularity, since at the optimizer the right-hand side
q·c of the Poisson equation (2.1a) can be expressed as a monotonic function of ψc.

In the subsequent results, negative entropy functionsH(c, u) = −S(c, u) are admissible if they fulfil
the following conditions:

Hypotheses. Let D := (0,∞)I+1.

(H1) H : RI+1 → R ∪ {∞} is proper, convex, and lower semicontinuous

(H2) domH := {H <∞} is given by D = [0,∞)I+1, and H : domH → R is strictly convex.

(H3) Monotonicity in u: the map (0,∞) 3 u 7→ H(c, u) is strictly decreasing for all c ∈ [0,∞)I

(H4) Behaviour at infinity:

� Sublinearity in u: for all (c, u) ∈ D: limt→∞ t
−1H(c, tu) = 0

� Superlinearity in c: there exists a continuous convex function γ : RI → R+ such that for
all c ∈ [0,∞)I \ {0}

lim
t→∞

t−1γ(tc) = +∞, (3.8)

a continuous function σ : R → R with limt→∞ t
−1σ(tu) = 0 for u > 0, and constants

K0, K1 ≥ 0 such that for all (c, u) ∈ RI+1

H(c, u) ≥ γ(c)−K1σ(u)−K0 + ιD(z). (3.9)

Here, ιD denotes the indicator function of the set D satisfying ιD(z) = 0 if z ∈ D and
ιD(z) = +∞ if z 6∈ D.

Remark 3.10 The entropy functions considered in [FH∗22, Hop22] satisfy these properties. For the
coercivity estimate, see [FH∗22, equation (2.7)] and [Hop22, equation (6.7)].

We denote by M+(Ω) the set of non-negative finite Radon measures ν on Ω and abbreviate U :=
L1

+(Ω)I ×M+(Ω). Every ν ∈ M+(Ω) can be uniquely decomposed in an absolutely continuous
part u dx and a singular part νs w.r.t. the Lebesgue measure. To extend the entropy functional to the
set U , we recall that, by (H4), H is sublinear in u as u → ∞. Therefore, the natural extension H̃ of
H := −S to U is given by (cf. [DeT84])

H̃(c, ν) := H(c, u), ν = u dx+ νs. (3.10)
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The extended functional H̃ is clearly convex, and its restriction to L1
+(Ω)I+1 is strictly convex. An

appropriate weak lower semicontinuity property of H̃ will be shown in Subsection 5.1.

We next define the extended total energy functional: for (c, ν) ∈ U we let

Ẽ(c, ν) :=

{
1
2
B(ψc+ψext) + ν(Ω) if q·c ∈H ∗,

+∞ if q·c 6∈H ∗.
(3.11)

The original energy functional E = E(c, u) will be understood as a map E : L1
+(Ω)I+1 → R ∪

{+∞}, (resp. as E : L1(Ω)I+1 → R ∪ {+∞} in Section 6.1), where the value E(c, u) is defined
as in (2.8a).

Finally, we let Q̃(c, ν) = Q(c, u) =
∫

Ω
q·c dx for (c, ν) ∈ U , where as above ν = u dx+ νs.

Constrained sets. Given (E0, Q0) ∈ R2, we define

M̃E0,Q0 = {µ ∈ U : Ẽ(µ) = E0, Q̃(µ) = Q0}.

We further let

ME0,Q0 = {z ∈ L1
+(Ω)I+1 : E(z) = E0,Q(z) = Q0},

which can be identified with a subset of M̃E0,Q0 via z = (c, u) 7→ (c, u dx).

We recall the extended negative entropy functional H̃ : U → R ∪ {∞} and let S̃ := −H̃. In the
following, we show existence and uniqueness of a solution to the constrained entropy maximization
problem.

Theorem 3.11 (Existence and uniqueness) Let (E0, Q0) ∈ R2 satisfy M̃E0,Q0 6= ∅ and

sup
M̃E0,Q0

S̃ > −∞.

Then, there exists a unique solution µ∗ = (c∗, ν∗) ∈ M̃E0,Q0 of the optimization problem

S̃(µ∗) = sup
M̃E0,Q0

S̃.

The measure part ν∗ of the optimizer is absolutely continuous with respect to the Lebesgue measure,
i.e. it has the form ν∗ = u∗dx for some u∗ ∈ L1

+(Ω). In particular, it holds that

S(c∗, u∗) > S(c, u) for all (c, u) ∈ME0,Q0 \ {(c∗, u∗)}. (3.12)

Furthermore, any maximizing sequence in (ck, νk)k ⊆ M̃E0,Q0 converges (weakly, weakly-star) in U
to the optimizer µ∗, and the sequence of electrostatic potentials (ψck)k converges strongly in H to
the electrostatic potential ψc∗ of the optimizer.

Sufficient criteria for the conditions M̃E0,Q0 6= ∅ and supM̃E0,Q0
S̃ > −∞ to hold true are provided

in Lemma 5.3.

Uniform positivity and continuity of the global optimizers can be shown by means of a regularization of
the entropy. In addition to hypotheses (H1)–(H4), we now further impose differentiability of the entropy
function:
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(H5) H is continuously differentiable on (0,∞)I+1, i.e. H ∈ C1((0,∞)I+1).

Theorem 3.12 (Regularity) In addition to (H1)–(H4) assume hypothesis (H5). Let (E0, Q0) ∈ R2,
and suppose that the functionalK given by (4.7) satisfies the coercivity property (4.9). Then,ME0,Q0 6=
∅, supM̃E0,Q0

S̃ > −∞, and the unique optimizer z∗ ∈ L1
+(Ω)I+1 constructed in Theorem 3.11 sat-

isfies z∗ ∈ C(Ω, (0,∞)I+1).

4 Lagrangian analysis of critical points

In this section, we settle the existence, uniqueness, and regularity of critical points and local/global
maximizers of the total entropy S under the constraints (2.8) as stated in Theorem 3.6, Corollary 3.8,
and Theorem 3.9. We first introduce an appropriate Lagrange functional L related to the constrained
maximization of S . The critical points of L can be characterized as minimizers of a convex functional
K. We therefore arrive at a convex minimization problem, which admits a unique solution (cf. Proposi-
tion 4.3).

4.1 Lagrangian multiplier equations for critical points

According to Definition 3.3, we first look for a local maximizer of the entropy functional S(c, u) in F
under the constraints of charge and energy conservation. The standard approach for solving this kind
of constrained optimization problems is the Lagrangian method (see, e.g., [Trö10]), which, roughly
speaking, relies on the following principle: at the position of any constrained local extremum of the
objective functional, its derivative is a linear combination of the derivatives of the constraint functions.
The Lagrange function is constructed in such a way that the constrained local extrema coincide with
its critical points. The constrained maximization problem is the following:

maximize S(c, u) subject to
1

2
B(ψc+ψext) +

∫
Ω

u dx = E0 and

∫
Ω

q·c dx = Q0,

where the functional B is defined in (2.5), and where the electrostatic potential ψc is the solution to
(2.1a). All together, we have the constraints

E(u, ψ) :=
1

2
B(ψ+ψext) +

∫
Ω

u dx = E0, (4.1a)

Q(c) :=

∫
Ω

q·c dx = Q0, (4.1b)

ΠΩ(c, ψ) := div(ε∇ψ) + q·c = 0 in Ω, (4.1c)

ΠΓR
(c, ψ) := εν·∇ψ + ωψ = 0 on ΓR. (4.1d)

Note that we have expressed the charge and energy functionals from (2.8) in terms of a different
set of variables, and that Poisson’s equation in Ω and the boundary condition on ΓR are included as
separate constraints on the independent variables c and ψ. The four constraints on (c, u) ∈ F and
ψ ∈ H in (4.1) give rise to Lagrange multipliers η ∈ R for (4.1a), κ ∈ R for (4.1b), and λ ∈ H for
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(4.1c) and (4.1d). The Lagrange functional L : FL → R is now defined as

L(c, u, ψ, η, κ, λ) := S(c, u) +
(
E0 − E(u, ψ)

)
η +

(
Q0 −Q(c)

)
κ

+

∫
Ω

(
ε∇ψ · ∇λ− q·cλ

)
dx+

∫
ΓR

ωψλ da (4.2)

with

FL := F ×H × (0,∞)× R×H . (4.3)

The derivatives w.r.t. the Lagrange multipliers η and κ give rise to the energy and charge constraints,
respectively, whereas DλL = 0 leads to both Poisson’s equation and the related Robin boundary
condition:

DηL = 0 ⇔ E(u, ψ) = E0, (4.4a)

DκL = 0 ⇔ Q(c) = Q0, (4.4b)

DλL = 0 ⇔

{
ΠΩ(c, ψ) = 0,

ΠΓR
(c, ψ) = 0.

(4.4c)

Finally, the derivative of L w.r.t. (c, u) leads to the representation of DS(c, u) as a linear combination
of the derivatives of the constraints, while the previous arguments show the validity of the second
equivalence:

D(c,u)L = 0 ⇔ DS(c, u) =

(
(κ+λ)q

η

)
, (4.5)

DψL = 0 ⇔ λ = η(ψ + ψext). (4.6)

The equations represented by DL = 0 are called the Lagrange equations for maximizing the total
entropy S(c, u) among (c, u, ψ) ∈ F ×H satisfying the charge and energy constraints as well
as Poisson’s equation. We see that the positive constant η plays the role of the inverse of a positive
constant temperature, i.e., η = 1/θ > 0 because 1/θ = DuS(c, u) > 0 due to Hypotheses 3.1.

4.2 Nonrigorous derivation of K

We proceed with the formal derivation of an auxiliary functional K, which will be shown to be coercive
in Subsection 4.3. Exploiting the coercivity and the strict convexity of K, we will subsequently be able
to prove the existence of a unique minimizer of K.

We rewrite the Lagrange functional from (4.2) as

L(c, u, ψ, η, κ, λ) := S(c, u) + η
(
E0 −

∫
Ω

u dx− 1

2
B(ψ+ψext)

)
+ κ
(
Q0 −

∫
Ω

q·c dx
)

+ B(ψ, λ)−
∫

Ω

q·cλ dx.

Recall that η is the Lagrange parameter for the energy constraint, κ for the charge constraint, and
λ ∈H for guaranteeing the constraint ψ = ψc.

It is easy to see that L is concave in (c, u, ψ), while it is affine, and hence convex, in (η, κ, λ). Taking
the infimum over the latter variables, we obtain the value−∞ if one of the constraints is not satisfied.
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If the constraints are satisfied, then we can maximize over (c, u, ψ) and obtain exactly the desired
maximal value for S , namely

sup
{
S(c, u)

∣∣∣ ∫
Ω

u dx+
1

2
B(ψc+ψext) = E0,

∫
Ω

q·c dx = Q0

}
= sup

(c,u,ψ)

(
inf

(η,κ,λ)
L(c, u, ψ, η, κ, λ)

)
.

In qualified cases (see e.g. [EkT76, Chap. VI]), one can interchange the order of the supremum and the
infimum. Here, we do this without justification, because we will check a posteriori that the minimizers
(η, κ, λ) constructed in Subsection 4.4 lead to the desired solution of the original equilibrium problem
(cf. Corollary 3.8 and Theorem 3.9). Thus, we are led to look at

inf
(η,κ,λ)

K(η, κ, λ) with K(η, κ, λ) := sup
(c,u,ψ)

L(c, u, ψ, η, κ, λ).

The point is thatK can be calculated explicitly by using the Legendre transformH∗ of the convex func-
tion (c, u) 7→ H(c, u) = −S(c, u). Indeed, the supremum over (c, u) features H∗, and completely
independently one can maximize the quadratic functional in ψ ∈ H . This leads to the functional
K : FK → R ∪ {+∞},

K(η, κ, λ) :=

∫
Ω

H∗
(
−(κ+λ)q,−η

)
dx+ κQ0 + η E0 − B(λ, ψext) +

1

2η
B(λ) (4.7)

with

FK := (0,∞)× R×H . (4.8)

By showing that K admits a unique minimizer (η∗, κ∗, λ∗) with continuous λ∗ (cf. Proposition 4.3),
and by establishing a bijection between critical points of K and L (cf. Proposition 4.5), we arrive at a
unique solution of the Lagrange equations (4.4)–(4.6). Observe that K is convex, which follows from
the convexity of the dual entropy H∗ and the convexity of (ξ1, ξ2) 7→ |ξ1|2/ξ2 as a function from
Rm × (0,∞) into R.

4.3 Coercivity of K

Below, we will show that K is even coercive on FK and strictly convex, hence, there is a unique
critical point, which is the global minimizer of K. To simplify the notation, we introduce (resp. recall)
the convex and non-negative functions

H∗(µ, η) :=

∫
Ω

H∗(µ(x), η(x)) dx and H∗(µ, η) := H∗(−µq,−η).

The following elementary lemma will be useful for showing coercivity of K. It generalizes the often
used estimate |µ|2/η ≥ ε|µ| − 4ε2η.

Lemma 4.1 Fix positive p and q, then for each δ > 0 there exists some cδ > 0 such that

|µ|q

ηp
≥ cδ|µ|q/(1+p) − δη for all (µ, η) ∈ R×R>0 .
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Proof. We apply Young’s inequality in the form

|µ|q/(1+p) =
(
a
|µ|q
ηp

)1/(1+p) ( η
a1/p

)p/(1+p)

≤ a

1+p
|µ|q
ηp +

p

1+p
η
a1/p .

Thus, adjusting a according to δ, we find cδ = (1+p)
(
δ/p
)p/(1+p)

> 0.

Combining (3.4) and Lemma 4.1 will provide a bound for the superlinear term |µ|q/p where µ = λ+κ.

We are now ready to state the following coercivity result, where we use the bound V(Q0, ψext) ≥ 0
for E(q·c, ψext) derived in Proposition 2.6. Note that V(Q0, ψext) = 0 in the homogeneous Dirichlet
case as well as in the pure Neumann case, however, for the pure Robin case, V(Q0, ψext) is nontrivial.
We conjecture that K is coercive even in the case of purely non-negative charge carriers qi ≥ 0,
i = 1, . . . , I , where the reduced dual entropy H∗ only fulfills the relaxed hypothesis (3.6). In this
situation, the more stringent lower bounds on E0 > V≥(Q0, ψext) mentioned in Remark 2.8 and
Q0 ≥ 0 should still guarantee the coercivity of K.

Proposition 4.2 (Coercivity of K) Assume that (3.4) and (3.5) hold. Then, for all (Q0, E0) satisfying
E0 > V(Q0, ψext) (cf. Proposition 2.6), the functional K is coercive, namely there exist positive
constants c1 and C1 such that

K(η, κ, λ) ≥ c1

(
‖λ‖H1 +

1

ηp
+ η + |κ|

)
− C1 for all (η, κ, λ) ∈ R>0×R×H . (4.9)

Proof. We define the shifted functionalN viaN (η, κ, µ) := K(η, κ, µ−κ). Of course,K is coercive
if and only ifN is coercive. We find the explicit expression

N (η, κ, µ) = H∗(µ, η)− B(µ, ψext) + η E0 +
1

2η
B(µ)

+ κ
(
Q0 + B(1, ψext)−

1

η
B(1, µ)

)
+
κ2

2η
B(1)

= N2(η, µ) +
B(1)

2η

(
κ−κ∗(µ, η)

)2
with

κ∗(µ, η) =
1

B(1)

(
B(1, µ)− η

(
Q0 + B(1, ψext)

))
and

N2(η, λ) = H∗(µ, η)− B(µ, ψext) + ηE0 +
1

2η
B(µ)− B(1)

2η
κ∗(µ, η)2.

We note that B(1) =
∫

ΓR
ω da > 0 by assumption and that B(1, φ) =

∫
ΓR
ωφ da. Recalling the

term onN2 in terms of powers of η and using the definition of V(Q0, ψext) in Proposition 2.6, we have

N2(η, µ) = H∗(µ, η) +
(
Q0 + B(1, ψext)

)
B(1, µ)− B(µ, ψext)

+ η
(
E0 − V(Q0, ψext)

)
+

1

2η

(
B(µ)− 1

B(1)
B(1, µ)2

)
. (4.10)

We are now ready to show coercivity. First, we observe that
(
Q0+B(1, ψext)

)
B(1, µ) ≤ C

∣∣ ∫
ΓR
µ da

∣∣,
where subsequently C > 0 and c > 0 denote sufficiently large and small constants, respectively. For
a > 1, we can use that the trace mapping from W1/a,a(Ω) ↪→ La(∂Ω) ↪→ L1(ΓR) is continuous.
Together with the Gagliardo–Nirenberg estimate, we derive

‖µ‖L1(ΓR) ≤ C‖µ‖La(∂Ω) ≤ C‖µ‖W1/a,a(Ω) ≤ C‖µ‖1/a

W1,a‖µ‖1−1/a
La

≤ ε‖µ‖W1,a + Cε‖µ‖La ≤ ε‖∇µ‖La + Cε‖µ‖La , (4.11)
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where ε > 0 can be chosen arbitrarily, if Cε is adjusted accordingly. Choosing a := min{ q
1+p

, 2},
(4.11) immediately entails ∣∣∣ ∫

ΓR

µ da
∣∣∣ ≤ ε‖∇µ‖L2 + Cε‖µ‖

L
q

1+p
. (4.12)

By assumption, we have
Ξ :=

(
E0 − V(Q0, ψext)

)
/5 > 0.

To derive a lower bound for (4.10), we can combine assumption (3.4) and Lemma 4.1 for H∗, assump-
tion (3.5) for the third term in (4.10), and estimate (4.12) to obtain

N2(η, µ) ≥ c∗|Ω|η−p + c∗CΞ‖µ‖q/(1+p)

Lq/(1+p) − Ξη − C‖µ‖1−θ
L1 ‖µ‖θH1

+ 5Ξη +
ε

2η
‖∇µ‖2

L2 − c‖∇µ‖L2 − C‖µ‖
L

q
1+p

,

where we used
∫

ΓR
ω da

∫
ΓR
ωµ2 da ≥

( ∫
ΓR
ωµ da

)2
for the last term in (4.10). Invoking Young’s

inequality to estimate ‖µ‖1−θ
L1 ‖µ‖θH1 . Ξ‖µ‖H1 + CΞ‖µ‖L1 and applying Lemma 4.1 (now with

q̃ = 2 and p̃ = 1) to ε
2η
‖∇µ‖2

L2 gives

N2(η, µ) ≥ c∗|Ω|η−p + c∗C∆‖µ‖q/(1+p)

Lq/(1+p) − C‖µ‖Lq/(1+p) + 3Ξη + c3‖µ‖H1 .

The crucial ingredient to the previous estimate is a bound of the form

‖µ‖H1 ≤ C
(
‖∇µ‖L2 + ‖µ‖L1

)
. (4.13)

Such a bound follows, e.g., from the Gagliardo–Nirenberg inequality. Moreover, we can estimate

(κ−κ∗)2

2η
≥ c4

∣∣κ−κ∗(µ, η)
∣∣− Ξη

≥ c4|κ| − c4C
(
‖µ‖H1 + η

)
− Ξη ≥ c4|κ| −

c3

2
‖µ‖H1 − 2Ξη,

if c4 is chosen sufficiently small. Adding this to the lower bound for N2 gives a lower bound for N .
The condition q > 1+p gives a superlinear coercive term that compensates the negative linear term
in ‖µ‖Lq/(1+p) , and thus the coercivity estimate (4.9) is established by recalling µ = λ+κ.

4.4 Existence and uniqueness of critical points of L

Having established the coercivity of K on FK, we are in a position to study the minimization problem
for K.

Proposition 4.3 (Existence, uniqueness, and regularity of minimizers of K)
Suppose that Hypotheses 3.1 and the assumptions of Proposition 4.2 are in place. Then, there exists
a unique minimizer (η∗, κ∗, λ∗) of K on FK. It has the regularity λ∗ ∈ C(Ω).

Proof. First, we note that

K(η, κ, λ) =

∫
Ω

H
∗(
κ+λ, η

)
dx+ κQ0 + η E0 − B(λ, ψext) +

1

2η
B(λ)
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is the sum of convex functionals and therefore convex itself. We show the asserted properties in three
steps. The uniqueness of minimizers immediately follows from the strict convexity of K, which we
establish in the first step.

Step 1: Strict convexity of K. We assert that K is strictly convex on its domain FK \ {K =∞}. Let
zi = (ηi, κi, λi) ∈ FK \ {K = ∞}, i = 1, 2, with z1 6= z2, and let τ ∈ (0, 1). We need to show
the strict inequality

K(τz1 + (1−τ)z2) < τK(z1) + (1−τ)K(z2). (4.14)

If η1 6= η2, inequality (4.14) follows from the strict joint convexity ofH∗. If η1 = η2 =: η and λ1 6= λ2,
we deduce (4.14) from the strict convexity of

H 3 λ 7→ 1

2η
B(λ) =

∫
Ω

ε

2η
|∇λ|2 dx+

∫
ΓR

ω

2η
λ2 da.

IfHd−1(ΓD) > 0 or if ΓD = ∅ and ω ≡ 0, the strict convexity of this map follows from the properties
of the space H . In the case ΓD = ∅ and ω 6≡ 0, strict convexity is ensured by the quadratic boundary
integral.

In the remaining case that η1 = η2, λ1 = λ2, κ1 6= κ2, inequality (4.14) follows by invoking the strict
convexity of H∗ with respect to its first argument.

Step 2: Existence. The convex functional K : FK → R ∪ {∞} is easily seen to be proper, bounded
below, and lower semicontinuous. Thus, the coercivity property in Proposition 4.2 guarantees that
minimizing sequences {(ηj, κj, λj)}j ⊂ FK for K have subsequences that weakly converge in FK
to a minimizer (η∗, κ∗, λ∗) of K.

Step 3: Regularity. We first present the formal argument on how to deduce the continuity of λ∗, where
(η∗, κ∗, λ∗) ∈ FK denotes the unique minimizer of K. From the minimizing property, we formally
deduce that DλK(η∗, κ∗, λ∗) = 0, meaning that the overall potential Ψ∗ := λ∗

η∗
∈ H satisfies the

elliptic equation

− div(ε∇Ψ∗) + D1H∗
(
η∗Ψ∗ + κ∗, η∗

)
= D in Ω, (4.15)

Ψ∗ = 0 on ΓD, εν · ∇Ψ∗ + ωΨ∗ = gR on ΓR.

The idea is now to use monotonicity and elliptic regularity in order to infer the boundedness and
continuity of Ψ∗ and thus of λ∗. To this end, we aim to apply [Trö10, Theorem 4.8], which guarantees
the existence of a unique weak solution Φ ∈ H1(Ω) ∩ C(Ω) to

− div(ε∇Φ) + f(Φ) = D in Ω, (4.16)

εν · ∇Φ + ωΦ = gR on ∂Ω

provided f : R → R is continuous and monotonically non-decreasing. We note that the statement
of [Trö10, Theorem 4.8] (and also all preceding ones used in the proof therein) carry over one-to-one
to our situation with mixed boundary data. In particular, the necessary coercivity of the bilinear form
a : H ×H → R,

a[Φ,Ψ] :=

∫
Ω

∇Φ · ∇Ψ dx+

∫
ΓD

ωΦΨ da

follows in our situation directly from the properties of the function space H without an additional
source term in Ω; see also Lemma 2.2 and estimate (2.4). Equation (4.15) obviously fits to the setting
of equation (4.16) by letting f : R→ R,

f(Φ) := D1H∗
(
η∗Φ + κ∗, η∗

)
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and noting that the monotone increase of f is a consequence of the convexity of H∗.

In the above reasoning, we tacitly assumed the minimizer z∗ := (η∗, κ∗, λ∗) to be sufficiently regular
to guarantee the differentiability of K at z∗ and the applicability of [Trö10, Theorem 4.8]. To make
our reasoning rigorous, we first apply the elliptic regularity argument to minimizers of an equicoercive
sequence of approximate functionals Kδ that are Fréchet differentiable. The sequence {Kδ}δ is con-
structed in such a way that it converges toK in the sense of Γ-convergence in FK with respect to the
weak topology. Consequently, by classical Γ-convergence theory (see e.g., [Bra02, Theorem 1.21]),
the sequence of minimizers zδ = (ηδ, κδ, λδ) ofKδ converges to the unique minimizer z∗ ofK, weakly
in FK, so that any δ-independent uniform bound for λδ is inherited by λ∗. A convenient regularization
can be obtained by inf-convolution. Let

H∗δ (µ, η) := inf
ν∈R

(
H∗(µ−ν, η) +

1

2δ
|ν|2
)
, δ ∈ (0, 1].

The definition implies that H∗δ is convex. Furthermore, we assert that the lower bound (3.4) implies
H∗δ (µ, η) ≥ c̃1 min{(1 + |µ|)qη−p, |µ|2 + η−p} for a constant c̃1 > 0 that can be chosen to be
independent of 0 < δ � 1. This can be seen by a case distinction:

(
1 + |µ−ν|

)q
η−p +

1

2δ
|ν|2 ≥ c2

(
1 + |µ|

)q
η−p if |ν| ≤ |µ|

2
or |ν| ≥ 2|µ|,(

1 + |µ−ν|
)q
η−p +

1

2δ
|ν|2 ≥ c3

(
|µ|2 + η−p

)
if
|µ|
2
< |ν| < 2|µ|, (4.17)

where we estimated |µ − ν| & |µ| in the first case. In the second case, we used |ν| & |µ| in the
second term on the left-hand side of (4.17). We then letKδ : FK → R denote the functional obtained
by substitutingH∗δ (µ, η) forH∗(µ, η) in the definition (4.7) ofK. Adjusting the proof of Proposition 4.2,
it is not difficult to see that Kδ enjoys the coercivity property in Proposition 4.2 uniformly in 0 <
δ � 1. Furthermore, the properties of H∗δ (µ, η) imply that Kδ is convex and lower-semicontinuous.
Consequently, Kδ possesses at least one minimizer zδ ∈ FK. The regularized functional Kδ is
Fréchet differentiable and DλKδ(η, κ, ·) is globally Lipschitz continuous (see e.g. [BaC17]). For this
reason the nonlinearity in the elliptic equation DλKδ(ηδ, κδ, λ) = 0 has (at most) linear growth
in λ as |λ| → ∞. We may therefore follow the argument of [Trö10, Theorem 4.5] to deduce the
estimate ‖λδ‖L∞(Ω) ≤ R, where R is independent of 0 < δ � 1. Using the compact embedding
H ↪→ L2(Ω) and the fact that H∗ ≥ H∗δ , one easily verifies that Kδ converges to K in the sense
of Γ-convergence weakly in FK. Hence, recalling the uniqueness of the minimizer z∗ of K, we infer
that zδ ⇀ z∗ in FK (with λδ

∗
⇀ λ∗ in L∞(Ω)) and consequently ‖λ∗‖L∞(Ω) ≤ R. The continuity

λ∗ ∈ C(Ω) now follows from [Trö10, Theorem 4.8] by noting that the uniqueness of solutions to the
elliptic equation already holds in L∞(Ω) ∩ H1(Ω).

By the strict convexity of K, any critical point must be a minimizer. Thus, Proposition 4.3 immediately
entails the uniqueness and regularity of critical points of K.

Corollary 4.4 (Existence, uniqueness, and regularity of critical points of K)
Let the hypotheses of Proposition 4.3 be in place. Then, there exists a unique critical point (η∗, κ∗, λ∗)
of K on FK. It satisfies λ∗ ∈ C(Ω).

The next result establishes the announced bijection between critical points of the Lagrange functional
L and the strictly convex functional K.
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Proposition 4.5 (Critical points of K and L) Consider the Lagrange functionalL from (4.2) and the
convex functional K from (4.7) together with the corresponding domains FL and FK defined in (4.3)
and (4.8), respectively. Every critical point (η, κ, λ) ∈ FK of K generates via

(c(x), u(x)) = DH∗
(
−(λ(x)+κ)q,−η

)
and ψ(x) =

λ(x)

η
− ψext(x) (4.18)

a critical point (c, u, ψ, η, κ, λ) ∈ FL of L. Every critical point (c, u, ψ, η, κ, λ) ∈ FL of L gives
rise to a critical point (η, κ, λ) ∈ FK of K and (4.18) holds. In particular, there exists a bijection
between critical points of L in FL and critical points of K in FK.

Proof. Let (η, κ, λ) ∈ FK be a critical point of K. Thanks to the strict convexity of K, we know that
(η, κ, λ) is the unique minimizer of K, which by the arguments above fulfils λ ∈ C(Ω). Hence, the
relations in (4.18) give rise to continuous and uniformly positive (c, u) ∈ F , which ensures that the
subsequent derivatives of K are well-defined. By the definition of H∗ from H∗ and (4.18), we have
DH∗(λ+κ, η) = (−q·c,−u). Simple calculations and ψ = λ/η − ψext show that

DηK(η, κ, λ) = −1

2
B
(λ
η

)
−
∫

Ω

u dx+ E0,

DκK(η, κ, λ) = −
∫

Ω

q·c dx+Q0,

DλK(η, κ, λ)h =

∫
Ω

(
ε∇
(λ
η
− ψext

)
· ∇h− q·ch

)
dx+

∫
ΓR

ω
(λ
η
− ψext

)
h da

with h ∈ H . Furthermore, X := (c, u, ψ, η, κ, λ) ∈ FL and the algebraic conditions (4.5)–
(4.6), i.e., D(c,u,ψ)L(X) = 0, hold true due to the identities (4.18) and the well-known Fenchel
equivalences. Finally, DK(η, κ, λ) = 0 implies (4.4), i.e., D(η,κ,λ)L(X) = 0.

Vice versa, given a critical point (c, u, ψ, η, κ, λ) ∈ FL ofL, the previous identities on DK(η, κ, λ) =
0 and (4.18) follow from (4.4), (4.5), and (4.6).

We are now in a position to prove the existence of a unique critical point (c∗, u∗) ∈ F of the total
entropy S under the charge and energy constraints (2.8).

Proof of Theorem 3.6. By Proposition 4.5, there is a one-to-one correspondence between critical
points of L in FL, i.e., solutions to the Lagrange equations (4.4)–(4.6), and critical points of K in
FK. Hence, by Corollary 4.4, there exists a unique solution (c, u, ψ, η, κ, λ) ∈ FL to (4.4)–(4.6).
Recalling the expressions for the derivatives of E(c, u) and Q(c, u) from (2.9) and demanding λ =
η(ψ+ψext), we see that (4.5) is equivalent to the functional derivative

DS(c, u) = ηDE(c, u) + κDQ(c, u),

and we observe that (4.4) is equivalent to E(c, u) = E0, Q(c, u) = Q0, and Poisson’s equation
(1.3)–(1.4). This shows that (c∗, u∗) ∈ F as defined in (4.18) is the unique critical point of S under
the constraints (2.8). The continuity of the associated potential Ψ∗ = ψ∗+ψext = λ∗/η∗ follows from
Corollary 4.4. Finally, (4.5) entails that 1/θ∗ = DuS(c∗, u∗) = η∗ > 0 is constant.

5 Global optimization by the direct method

In this section, we establish the existence, uniqueness, and regularity of a global optimizer as asserted
in Subsection 3.2. Throughout this section, we assume Hypotheses (H1)–(H4).
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5.1 Lower semicontinuity of the extended negative entropy

Recall the negative entropy densityH = −S and the extended negative entropy functional H̃ : U →
R ∪ {∞} defined in (3.10).

Definition 5.1 (Legendre transform) The Legendre transform H∗ : RI+1 → R ∪ {∞} of H is
given by

H∗(ζ) = sup
z∈RI+1

{ζ · z −H(z)}.

Property (H1) implies that the restriction H to domH is continuous. Furthermore, H∗ is proper, con-
vex, and lower semicontinuous, so that likewise H∗ : domH∗ → R is continuous. Finally, note that
due to the Fenchel–Moreau theorem and (H1), it holds that (H∗)∗ = H .

In the following lemma we show the crucial lower semicontinuity with respect to (weak, weak-star)
convergence in U .

Lemma 5.2 The extended negative entropy H̃ : U → R∪{∞} is lower semicontinuous with respect
to (weak, weak-star) convergence in L1(Ω)I×M(Ω). More precisely, whenever (cj, νj), (c, ν) ⊂ U

with cj ⇀ c in L1(Ω) and νj
∗
⇀ ν in M+(Ω), then

H̃(c, ν) ≤ lim inf
j→∞

H̃(cj, νj). (5.1)

Proof. The proof is based on ideas from convex duality as appearing in [DeT84]. First, we recall the
well-known fact that the properties (H1) of H allow us to express the functional H : L1

+(Ω)I+1 →
R ∪ {∞} in terms of its convex conjugate (cf. e.g. [Bré72, DeT84]): for all z ∈ L1

+(Ω)I+1,

H(z) = sup
ζ∈DH(X)

(∫
Ω

z · ζ dx−
∫

Ω

H∗(ζ) dx

)
, (5.2)

where DH(X) := {ζ ∈ X : H∗ ◦ ζ ∈ L1(Ω)} and X := C(Ω)I+1 for the rest of this proof, which
is composed of two steps. The main ingredient is an extension of formula (5.2) to the measure setting,
which will be established in the first step.

Step 1: Duality formula for measure. We assert that, for every ν = u dx + νs ∈ M+(Ω) and
c ∈ L1

+(Ω)I ,

H̃(c, ν) = sup
ζ=(ζI ,ζ0)∈DH(X)

(
〈ν, ζ0〉+

∫
Ω

c · ζI dx−
∫

Ω

H∗(ζ) dx

)
, (5.3)

where here X = C(Ω)I+1, and 〈ν, ζ0〉 =
∫

Ω
ζ0 dν, which equals

∫
Ω
ζ0u dx+

∫
Ω
ζ0 dνs.

Proof of Step 1: Since H̃(c, ν) = H(c, u), it suffices to show that the right-hand side of the asserted
identity agrees with that of formula (5.2) for z = (c, u).

(a) ‘RHS (5.3)≤RHS (5.2)’: Since u 7→ H(c, u) is sublinear as u ↑ ∞, it follows that H∗(ζI , ζ0) =
+∞ whenever ζ0 > 0. Indeed, the definition of the Legendre transform implies, for (ζI , ζ0) ∈ RI ×
R>0,

H∗(ζI , ζ0) ≥ sup
u≥0

(
ζ0u−H(0, u)

)
≥ lim sup

u→∞
u(ζ0 + o(1)) = +∞.
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Therefore, ζ0 ≤ 0 in Ω for all ζ = (ζI , ζ0) ∈ DH(X). Hence, 〈νs, ζ0〉 ≤ 0 for all ζ = (ζI , ζ0) ∈
DH(X), showing the inequality asserted in (a).

(b) ‘RHS (5.3)≥RHS (5.2)’: Let ζ = (ζI , ζ0) ∈ DH(X) be given. Since νs ⊥ Ld, there exists for
every δ > 0 a relatively open set Ω̂δ ⊂ Ω with Ld(Ω̂δ) ≤ δ/2 such that νs(Ω \ Ω̂δ) = 0. Choose a
relatively open set Ωδ ⊂ Ω with Ωδ ⊃⊃ Ω̂δ and Ld(Ωδ) ≤ δ, and a function ηδ ∈ C(Ω, [0, 1−ε])
with ηδ = 1−ε on Ω̂δ for suitable ε = ε(δ) ∈ (0, 1) and with supp ηδ ⊂ Ωδ. Then consider
ζ̂ = (ζ̂I , ζ̂0) := (ζI , (1− ηδ) min{ζ0,−χΩδ}) ∈ DH(X) as a competitor in (5.3). Since ζ0 ≤ 0, it
holds that ζ̂ ≡ ζ on Ω \ Ωδ and hence

〈ν, ζ̂0〉+

∫
Ω

c · ζ̂I dx−
∫

Ω

H∗(ζ̂) dx =

∫
Ω

z · ζ dx−
∫

Ω

H∗(ζ) dx+Rδ,

where

Rδ :=

∫
Ωδ

u · (ζ̂0 − ζ0) dx+

∫
Ωδ

(H∗(ζ)−H∗(ζ̂)) dx+

∫
Ω

ζ̂0 dνs.

It remains to show that lim supδ→0Rδ ≥ 0. Once established, this implies that for every ζ ∈ DH(X)
there exists a sequence ζ̂(N), N →∞ as δ ↓ 0, such that

lim sup
N→∞

(
〈ν, ζ(N)

0 〉+

∫
Ω

c · ζ(N)
I dx−

∫
Ω

H∗(ζ(N)) dx

)
≥
∫

Ω

z · ζ dx−
∫

Ω

H∗(ζ) dx,

which implies the asserted inequality in (b) by means of a diagonal argument.

The first term in Rδ is easily handled, because

|
∫

Ωδ

u · (ζ̂0 − ζ0) dx| ≤ (‖ζ̂0‖C(Ω) + ‖ζ0‖C(Ω))‖u‖L1(Ωδ)
δ↓0→ 0.

For the second term, we note that the increase of the function (−∞, 0) 3 s 7→ H∗(ζI , s) ∈ R
implies H∗(ζI ,−‖ζ̂0‖C(Ω)−1) ≤ H∗(ζ̂) ≤ H∗(ζI ,−ε) in Ωδ, so that choosing the parameter

ε = ε(δ) = o(1) to decrease sufficiently slowly as δ ↓ 0, we can ensure that the sequence χδH∗(ζ̂)
is uniformly integrable as δ → 0, and therefore also the sequence gδ = χδ(H

∗(ζ)−H∗(ζ̂)). Thus,∫
Ω
gδ dx → 0, since gδ → 0 pointwise a.e. in Ω. Observe that in this argument, ε can be chosen

independently of x ∈ Ω, since Ω is compact and ζI is continuous. Finally, we note that thanks to
limδ↓0 ε = 0 and the fact that ζ̂0 ≡ −ε on supp νs, the third integral term in Rδ clearly converges to
0 in the limit δ → 0. In conclusion, we infer limδ↓Rδ = 0 and thus (b).

Combining (a) and (b) yields the identity (5.3).

Step 2: Proof of (5.1) by duality formula. Owing to (5.3), there exists a sequence ζ(N)=(ζ
(N)
I , ζ

(N)
0 ) ∈

DH(X), N ∈ N, such that

H̃(c, ν) = lim
N→∞

(
〈ν, ζ(N)

0 〉+

∫
Ω

c · ζ(N)
I dx−

∫
Ω

H∗(ζ(N)) dx

)
. (5.4)

Furthermore, for every N ∈ N,

〈ν, ζ(N)
0 〉+

∫
Ω

c · ζ(N)
I dx−

∫
Ω

H∗(ζ(N))ϕ dx

= lim
j→∞

(
〈νj, ζ(N)

0 〉+

∫
Ω

cj · ζ(N)
I dx−

∫
Ω

H∗(ζ(N)) dx

)
≤ lim inf

j→∞
H̃(cj, νj),
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where in the second step we used once more formula (5.3). The right-hand side of this inequality is
independent of N . Hence, sending N →∞ and using (5.4) gives (5.1).

In order to carry out the direct method, we need to ensure that the feasible set ME0,Q0 resp. M̃E0,Q0

is non-empty. In the following, we provide sufficient criteria by elaborating on Proposition 2.6. For sim-
plicity, we only consider the case mini qi < 0 < maxj qj , which allows us to invoke Proposition 2.6.

Lemma 5.3 (Non-emptiness of feasible set) Assume that mini qi < 0 < maxj qj , and let E0 >

V(Q0, ψext). Then, ME0,Q0 6= ∅ and infM̃E0,Q0
H̃ < +∞.

Proof. It follows from (F1) in Lemma 2.5 and the proof of Proposition 2.6 that the infimum in V(Q0, ψext)
can equivalently be taken over ρ ∈ C(Ω), i.e.

V(Q0, ψext) = inf
{

E(ρ, ψext)
∣∣∣ ρ ∈ C(Ω),

∫
Ω

ρ dx = Q0

}
.

(Note that we employ the identification C(Ω) ⊂ H ∗ in this context.) Thus, given E0 > V(Q0, ψext),
there exists ρ̂ ∈ C(Ω) with

∫
Ω
ρ̂ dx = Q0 such that E(ρ̂, ψext) ≤ E0. By the compatibility of (q, Q0),

there exists c ∈ C(Ω, [0,∞)I) with q·c = ρ̂. As E(ρ̂, ψext) ≤ E0, there exists u ∈ C(Ω, [0,∞))
such that E(c, u) = E0. Then, z = (c, u) ∈ ME0,Q0 , and the boundedness of z guarantees that∫

Ω
H(z) dx <∞. Consequently, infM̃E0,Q0

H̃ <∞.

In the borderline caseE0 = V(Q0, ψext), there may be surface concentrations, and the non-emptiness
of ME0,Q0 hinges upon the choice of the data, see Remark 2.7.

5.2 Existence and uniqueness of optimizer

Proof of Theorem 3.11. Let s∗ := supM̃E0,Q0
S̃ . We proceed in three steps:

Step 1: Absolute continuity of optimizer. Suppose that (c, ν) ∈ M̃E0,Q0 satisfies S̃(c, ν) = s∗,
and let ν = u dx + νs denote the Lebesgue decomposition of ν. We argue by contradiction and
assume that νs(Ω) > 0. Then û := u + |Ω|−1νs(Ω) > u a.e. in Ω, and since u 7→ S(c, u) is
strictly increasing, we deduce S(c, û) > S(c, u) = s∗. This contradicts the definition of s∗, since by

construction (c, û dx) ∈ M̃E0,Q0 .

Step 2: Uniqueness. As shown in Step 1, any solution µ ∈ M̃E0,Q0 of the optimization problem
must be absolutely continuous with respect to the Lebesgue measure. Thus, it suffices to establish
uniqueness in ME0,Q0 .

We argue by contradiction. Suppose that there exist zi = (ci, ui) ∈ ME0,Q0 , i = 0, 1, z0 6≡ z1,
with S(zi) = s∗ for i = 0, 1. Then consider zθ = (cθ, uθ) = θz1 + (1−θ)z0, so that ψcθ =
θψc1 + (1−θ)ψc0 . The strict concavity of S implies that for all θ ∈ (0, 1),

S(zθ) > s∗.

On the other hand, since z 7→ E(z) is convex, it holds that

E(zθ) ≤ E0.
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Fix any θ ∈ (0, 1), e.g. θ = 1/2. Next, choose L1
+ 3 ûθ ≥ uθ such that E(cθ, ûθ) = E0 : for

instance, take ûθ = uθ + 1
|Ω|(E0 − E(zθ)). Then, (cθ, ûθ) ∈ L1

+(Ω)I+1 with E(cθ, ûθ) = E0,

Q(cθ, ûθ) = Q0. Since ûθ ≥ uθ pointwise a.e., we must have S(cθ, ûθ) ≥ S(cθ, uθ) > s∗, which
contradicts the definition of s∗.

Step 3: Convergence and existence. Let (µk)k ⊂ M̃E0,Q0 be such that S̃(µk)→ s∗. Denote µk =:

(ck, νk). Using the coercivity (3.9) of S and the definition (3.11) of Ẽ , it is easy to see that the sequence
(ck)k is uniformly integrable (as γ in (3.9) is superlinear) and that the sequence (νk(Ω))k ⊂ R is
bounded. Hence, there exists µ∗ = (c∗, ν∗) ∈ U with Q̃(µ∗) = Q0 such that, after passing to a
subsequence, ck ⇀ c∗ in L1(Ω), νk

∗
⇀ ν∗ in M+(Ω). The (weak, weak-star) upper semicontinuity

of S̃ , see Lemma 5.2, then yields S̃(µ∗) ≥ s∗. Since Ẽ(µk) = E0 for all k, there exists ψ̃ ∈ H
such that along another subsequence

ψck ⇀ ψ̃ in H ,

and thus, in view of the Poisson equation (2.1a), Lemma 2.2, and the weak continuity of the operator
L, also

q·ck = Lψck ⇀ Lψ̃ in H ∗.

On the other hand, q·ck ⇀ q·c∗ in L1(Ω), which by the uniqueness of the weak limit (in the sense
of distributions) implies that q·c∗ = Lψ̃ ∈H ∗ ∩ L1(Ω). Consequently, µ∗ ∈ dom Ẽ := {Ẽ <∞},
ψ̃ = ψc∗ , and Ẽ(µ∗) ≤ E0.

We now assert that Ẽ(µ∗) = E0. To show this, we argue indirecty and assume that the energy gap
is non-trivial, i.e. Ẽ(µ∗) < E0. Then, as before, we can find a finite measure ν̂∗ ≥ ν∗ such that
Ẽ(c∗, ν̂∗) = E0 and S̃(c∗, ν̂∗) > s∗, where the strict inequality can be achieved due to the strict
monotonicity of u 7→ S(c, u). This, however, contradicts the definition of s∗, and we conclude that

Ẽ(µ∗) = E0. Hence, µ∗ = (c∗, ν∗) ∈ M̃E0,Q0 is an optimizer and we obtain the asserted (weak,
weak-star) convergence of the optimizing sequence µk to µ∗. The strong convergence ψck → ψc∗ in

H follows from the weak convergence ψck ⇀ ψc∗ in H combined with the fact that Ẽ(µk) = E0 →
Ẽ(µ∗), which implies the convergence of the norm ‖ψck‖H → ‖ψc∗‖H . By the uniqueness of the
optimizer (see Step 2), the convergence results established above are true for the entire sequence
(µk)k.

This completes the proof of Theorem 3.11.

Remark 5.4 (Relaxed hypotheses for existence) The proofs of the weak-star lower semicontinuity
in Lemma 5.2 and of Theorem 3.11 above show that for the mere existence of an absolutely continuous
optimizer the strict convexity hypothesis of H = −S on D can be relaxed to non-strict convexity, and
the assumption of a strict decrease of u 7→ H(c, u) can be weakened to u 7→ H(c, u) being
non-increasing.

6 Completing the picture

The main purpose of this section is to close the gap between the results obtained by the dual and the
primal approach in Sections 4 and 5. There are different ways to complete the picture. Here, we collect
two strategies.
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First, we show that under the additional assumptions of the dual approach in Subsection 3.1, the
unique global optimizers constructed in Section 5 are uniformly positive and continuous. Hence, they
coincide with the unique (continuous) critical points in Theorem 3.6. Furthermore, without any ex-
tra hypotheses beyond C2 regularity of H , we show by a Taylor argument, that the structure of the
constraints and the convexity of H generally imply local optimality of any critical points.

6.1 Regularity of global optimizers

6.1.1 A regularized problem

We introduce the δ-Moreau envelope Hδ of H

Hδ(z) := inf
z′∈RI+1

(
H(z−z′) +

1

2δ
|z′|2

)
, z = (c, u) ∈ RI+1, (6.1)

which is a convex and lower semicontinuous function from RI+1 to R. Owing to (H1), the Moreau
envelope of H is exact (cf. [BaC17, Proposition 12.14]), i.e. for all z ∈ RI+1 the infimum on the
right-hand side is attained at some z̄ ∈ RI+1: H(z − z̄) + 1

2δ
|z̄|2 = Hδ(z). Using (H3), it is then

easy to see that u 7→ Hδ(c, u) is strictly decreasing. Indeed, for c ∈ [0,∞)I and 0 ≤ u1 < u2, let
z̄(i) ∈ RI+1 be such that

H
(
(c, ui)−z̄(i)

)
+

1

2δ

∣∣z̄(i)
∣∣2 = Hδ(c, ui).

Then, Hδ(c, u1) = H
(
(c, u1)−z̄(1)

)
+ 1

2δ
|z̄(1)|2 > H

(
(c, u2)−z̄(1)

)
+ 1

2δ
|z̄(1)|2 ≥ Hδ(c, u2).

Since Hδ is C1 and convex, we conclude that

∂uHδ(c, u) < 0 for all (c, u) ∈ RI+1. (6.2)

An equally elementary argument using the exactness of the infimal convolution (6.1) and the 1-
convexity of 1

2
| · |2 shows that the strict convexity of H is inherited by Hδ.

We next discuss the behavior of Hδ at infinity. Using (3.9) and the identity ιD(c, u) = ι[0,∞)I (c) +
ι[0,∞)(u), we estimate for z ∈ RI+1,

H(z) ≥ Hδ(z) ≥ inf
z′∈RI+1

(
γ(c−c′)−K1σ((u−u′)+)−K0 +

1

2δ
|z′|2 + ιD(z−z′)

)
= γ̂δ(c) + λδ(u)−K0,

(6.3)

where γ̂δ, λ̂δ denote the Moreau envelopes of γ̂ := γ + ι[0,∞)I resp. of λ = −K1σ + ι[0,∞). The

right-hand side can be estimated below by γ̂δ(c) + λ(u)−K̃0, showing the sublinearity at infinity of
Hδ(c, u) in u, i.e. limt→∞ t

−1Hδ(c, tu) = 0. From (6.3) we can further read off the superlinearity of
Hδ(c, u) as |c| → ∞ resp. as u→ −∞.

Finally, we note that the behavior of the infimal convolution under Legendre transformation (cf. [BaC17,
Proposition 13.21]) allows us to express the Legendre transform of the Moreau envelope in terms of
H∗ :

(Hδ)
∗(ξ) = H∗(ξ) +

δ

2
|ξ|2, ξ ∈ RI+1. (6.4)
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Existence of optimizer. We introduce the regularized functional Hδ : L1(Ω)I+1 → R ∪ {∞},
Hδ(z) =

∫
Ω
Hδ(z) dx. Following Subsection 5.1, we extendHδ to a convex functional on

Û := L1(Ω)I ×M,

where M denotes the cone of signed Radon measures on Ω whose singular part with respect to the
Lebesgue measure is non-negative, that is,

M := {ν ∈M(Ω) : ν = u dx+ νs with u ∈ L1(Ω), νs ∈M+(Ω)}. (6.5)

The extension is then defined as Ĥδ : Û → R ∪ {∞}, (c, u dx + νs) 7→ Hδ(c, u). We also let
Ĥ : Û → R∪{∞}, (c, u dx+ νs) 7→

∫
Ω
H(c, u) dx. The extended energy functional Ê is defined

by the same formulas as in (3.11), and the extension of the total charge functional is Q̂(c, ν) =∫
Ω
q·c dx. Let us note that both E andQ can be defined on the entire space L1(Ω)I+1, not only the

positive cone L1
+(Ω)I+1, and in the present section we understand E : L1(Ω)I+1 → R ∪ {∞},

Q : L1(Ω)I+1 → R. Arguments similar to those in the proof of Lemma 5.2 (see also [FoL07])
show that Ĥδ is lower semicontinuous with respect to weak/weak-star convergence. More precisely,
if cj ⇀ c in L1(Ω)I and ν̂j = uj dx + νj with uj ⇀ u in L1(Ω) and νj

∗
⇀ ν in M+(Ω), then for

ν̂ := u dx+ ν it holds that

Ĥδ(c, ν̂) ≤ lim inf
j→∞

Ĥδ(cj, ν̂j). (6.6)

Define the constrained set M̂E0,Q0
:= {(c, ν) ∈ Û : Ê(c, ν) = E0, Q̂(c, ν) = Q0}. It is easy to

see that M̂E0,Q0 6= ∅ for all (E0, Q0) ∈ R2, since Û does not involve the positivity constraint. Since

Hδ : RI+1 → R is continuous and thus locally bounded, we further observe that supM̂E0,Q0
Ŝδ >

−∞ for all δ ∈ (0, 1] and any (E0, Q0) ∈ R2. We can thus solve the optimization problem for
Ŝδ = −Ĥδ by adapting the proof of Theorem 3.11 and obtain an optimizer zδ = (cδ, uδ) ∈ L1(Ω)I+1

so that E(zδ) = E0,Q(zδ) = Q0. In order to deal with non-vanishing negative parts of the u-
component, one needs to use the superlinearity of Hδ(c, u) as u→ −∞.

Lagrange multiplier rule. We first note that the fact thatHδ is C1 and convex with at most quadratic
growth at infinity implies the bound

|DHδ(z)| ≤ A1,δ + A2,δ|z| for all z ∈ RI+1. (6.7)

Since zδ := (cδ, uδ) is an optimizer, any curve of the form z(t) = zδ + tz̃ with z̃ ∈ C∞(Ω)I+1 and

z̃ ⊥L2

span {DE(zδ),DQ(zδ)} (6.8)

must obey the stationarity condition d
dt

∣∣
t=0
Hδ(z) = 0. Differentiating under the integral by virtue

of (6.7) and the dominated convergence theorem then yields∫
Ω

DHδ(zδ) · z̃ dx = 0. (6.9)

Let PV : L2(Ω)I+1 → V denote the orthogonal projection onto the closed subspace

V := span {DE(zδ),DQ(zδ)}⊥ ⊂ L2(Ω)I+1.
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Then, given ϕ ∈ C∞(Ω)I+1, z̃ := PVϕ satisfies (6.8). Insertion into (6.9) yields for ζ := DHδ(zδ)
the orthogonality condition (PVζ,ϕ)L2 = (ζ, PVϕ)L2 = 0. Since ϕ ∈ C∞(Ω)I+1 was arbitrary, we
infer PVζ = 0, meaning that there exist ηδ, κδ ∈ R such that

DHδ(zδ) + ηδDE(zδ) + κδDQ(zδ) = 0. (6.10)

Notice that if q ≡ 0, then DQ(zδ) ≡ 0, and the choice of κδ can be arbitrary in this case. For
definiteness, we set κδ = 0 in this case. Further note that the (I+1)st component of the vectorial
identity (6.10) implies that ηδ = −∂uHδ > 0, where the second step follows from (6.2). Let

ξδ := DHδ(zδ) =
(
−(ηδΨδ + κδ)q,−ηδ

)T
, where Ψδ := ψcδ + ψext.

Then, by the Fenchel equivalences,

cδ = DIH
∗
δ (ξδ), uδ = DI+1H

∗
δ (ξδ) (6.11)

where H∗δ denotes the Legendre transform of Hδ.

Uniform control. We recall that L−1 denotes the solution operator of the Poisson problem (2.1a),
see Lemma 2.2.

Lemma 6.1 The electrostatic potential ψcδ = L−1(q·cδ) of the optimizer zδ satisfies ψcδ ∈ C(Ω)∩
H , and there exists a continuous function C = C(η, κ), η ∈ (0,∞), κ ∈ R such that for all
δ ∈ (0, 1],

‖ψcδ‖L∞(Ω) ≤ C(ηδ, κδ). (6.12)

Proof. The idea of the proof is similar to that in Step 3 of the proof of Proposition 4.3. Recall from the
proof of Theorem 3.11 that Lψcδ − q · cδ = 0 in H ∗ ∩ L1(Ω), and define the convex functional

Fδ(ψ) :=
1

ηδ
H∗δ
(
−ηδq ψ−(ηδψext+κδ)q,−ηδ

)
=

1

ηδ
H∗
(
−ηδq ψ−(ηδψext+κδ)q,−ηδ

)
+

1

ηδ

δ

2

(
‖ηδq ψ+(ηδψext+κδ)q‖2

L2 + ‖ηδ‖2
L2

)
.

Owing to (6.11), ψ := ψcδ satisfies the monotonic equation

Lψ + fδ(·, ψ) = 0 in H ∗, (6.13)

where

fδ(·, ψ) =
δ

δψ
Fδ.

Under the present hypotheses, classical monotonicity and elliptic regularity, cf. [Trö10, Chapter 4] (in
particular Theorem 4.10 therein), yield the existence of a (unique) continuous weak solution ψ̃ ∈
C(Ω) ∩H of equation (6.13). We assert that ψcδ coincides with ψ̃. This is a consequence of the
strong monotonicity of the operator underlying (6.13): taking the difference of the equations for ψcδ
and ψ̃, which both hold in H ∗, and testing it with ψcδ − ψ̃ ∈H , we find for some α0 > 0 (cf. (2.4))

0 = 〈L(ψcδ−ψ̃), ψcδ−ψ̃〉+ 〈fδ(·, ψcδ)−fδ(·, ψ̃), ψcδ−ψ̃〉 ≥ 〈L(ψcδ−ψ̃), ψcδ−ψ̃〉
≥ α0‖ψcδ−ψ̃‖2

H1 .

DOI 10.20347/WIAS.PREPRINT.3157 Berlin 2024



On the equilibrium solutions of electro-energy-reaction-diffusion systems 31

Hence, ψcδ ≡ ψ̃ ∈ C(Ω) ∩H . The bound (6.12) with

C(ηδ, κδ) = C̃‖fδ(·, 0)‖L∞ = C̃‖q ·DIH∗δ(−(ηδψext+κδ)q,−ηδ)‖L∞

can be obtained as in [Trö10, Theorem 4.8, 4.10], see the proof of [Trö10, Theorem 7.6], by invoking
once more the strong monotonicity of the operator ψ 7→ Lψ + fδ(·, ψ). We note that the constant
C̃ ∈ [1,∞) will in general depend on the coercivity constant α0 > 0 in Lemma 2.2.

6.1.2 Convergence to the original problem

Lemma 6.2 (Lim-inf estimate) Let µδ = (cδ, ν̂δ),µ = (c, ν) ∈ Û and suppose that µδ ⇀ µ in Û
in the sense that cδ ⇀ c in L1(Ω)I and νδ

∗
⇀ ν in M(Ω). Then,

Ĥ(µ) ≤ lim inf
δ↓0

Ĥδ(µδ).

Proof. We first show for all µ ∈ Û the pointwise convergence

lim
δ↓0
Ĥδ(µ) = Ĥ(µ). (6.14)

To this end note that Hδ(z) ↑ H(z) for all z ∈ RI+1. We split Hδ(z) = H+
δ (z) +H−δ (z) into posi-

tive and negative part. Then, for any z ∈ L1(Ω)I+1, the monotone convergence theorem implies that
limδ↓0

∫
Ω
H+
δ (z) dx =

∫
Ω
H+(z) dx. The negative part is δ-uniformly integrable due to the strict

sublinearity of Hδ(c, u) as u → ∞ (cf. (6.3)) ensuring the convergence limδ↓0
∫

Ω
H−δ (z) dx =∫

Ω
H−(z) dx. In combination, limδ↓0Hδ(z) = H(z) for all z ∈ L1(Ω)I+1, and recalling the defini-

tion of the extended negative entropies Ĥ, Ĥδ, we deduce (6.14).

To show the asserted liminf inequality, let 0 < δ < ε ≤ 1. Then Ĥδ ≥ Ĥε, and hence

lim inf
δ↓0

Ĥδ(µδ) ≥ lim sup
ε↓0

lim inf
δ↓0

Ĥε(µδ) ≥ lim sup
ε↓0

Ĥε(µ) = Ĥ(µ),

where the second inequality uses (6.6), and the last step follows from (6.14).

Proposition 6.3 (Convergence of optimizers) Let zδ = (cδ, uδ) ∈ L1(Ω)I+1 denote the optimizer
of the regularized problem, and suppose that infM̃E0,Q0

H̃ < +∞. Then zδ ⇀ z∗ in L1(Ω)I+1,

where z∗ ∈ L1
+(Ω)I+1 denotes the unique optimizer constructed in Theorem 3.11. Moreover, ψcδ →

ψc∗ in H in the strong sense.

Proof. Since E(zδ) = E0, there exists ψ̃ ∈ H and a subsequence δ ↓ 0 such that ψcδ ⇀ ψ̃
in H . Furthermore, owing to (6.3), we can extract another subsequence such that, cδ ⇀ c0 in L1,
uδ,1 ⇀ u0 in L1, uδ,2dx

∗
⇀ νs0 inM+(Ω), for suitable c0 ∈ L1(Ω)I , u0 ∈ L1(Ω), and νs0 ∈M+(Ω),

and certain uδ,1 ∈ L1, uδ,1 ∈ L1
+ with uδ,1 + uδ,2 = uδ. Let ν0 := u0dx + νs0 and µ0 := (c0, ν0).

Then, Q̂(µ0) = Q0 and Ê(µ0) ≤ E0. We want to show thatµ0 ∈ M̃E0,Q0 with H̃(µ0) = α0, where

α0 := infM̃E0,Q0
H̃. Note that α0 < ∞ by hypothesis. We now let αδ := infM̂E0,Q0

Ĥδ = Ĥδ(zδ).

SinceHδ ≤ H , it holds that αδ ≤ α0. The convergence (cδ, uδ dx) ⇀ µ0 in Û and Lemma 6.2 thus
imply that

Ĥ(µ0) ≤ lim inf
δ↓0

αδ ≤ α0.
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In particular, Ĥ(µ0) < ∞, which shows that µ0 ∈ Ũ and Ĥ(µ0) = H̃(µ0). As in the proof of
Theorem 3.11 we can now use the strict decrease of u 7→ H(c, u) to deduce that the energy gap is

trivial, i.e., Ê(µ0) = Ẽ(µ0) = E0. Therefore, µ0 ∈ M̃E0,Q0 and H̃(µ0) = α0. Thus, µ0 coincides
with the unique optimizer µ∗ constructed in Theorem 3.11, and must hence be absolutely continuous,
i.e. µ0 = (c∗, u∗dx) for some z∗ := (c∗, u∗) ∈ L1

+(Ω)I+1. The strong convergence ψcδ → ψc∗ in
H follows as in the proof of Theorem 3.11.

6.1.3 Regularity of the global optimizer

We are now in a position to establish the main result of this subsection on the regularity of the opti-
mizer. The analysis below is based on the functional K (cf. (4.7)) introduced in Section 4.2, and its
generalizations to δ ∈ [0, 1] given by Kδ : (0,∞)× R×H → R ∪ {∞} with

Kδ(η, κ, λ) :=

∫
Ω

H∗δ
(
−(κ+λ)q,−η

)
dx+ κQ0 + η E0 − B(λ, ψext) +

1

2η
B(λ), (6.15)

where H∗δ (ξ) = H∗(ξ) + δ
2
|ξ|2 for δ ∈ [0, 1]. Notice that the functionals Kδ are convex for all

δ ∈ [0, 1] (cf. Section 4.4 for details) and that K = K0.

From Lemma 6.1, we recall that ψcδ ∈ C(Ω), and hence, λδ := ηδ(ψcδ + ψext) ∈ C(Ω). The
stationarity condition for any (regular) critical point of Kδ is satisfied by (ηδ, κδ, λδ) due to (6.10) and
the Poisson equation. Hence, (ηδ, κδ, λδ) is a minimizer.

Proof of Theorem 3.12. Since H∗δ ≥ H∗ and thus Kδ ≥ K, the coercivity (4.9) of K implies that
of Kδ uniformly in δ ∈ (0, 1]. Hence, the sequence (ηδ, κδ, λδ)δ of minimizers of Kδ is uniformly
bounded in (0,∞) × R ×H , and (ηδ)δ is bounded away from zero. Thus, along a subsequence,
ηδ → η0 for some η0 ∈ (0,∞), κδ → κ0 for some κ0 ∈ R, and λδ ⇀ λ0 in H and λδ → λ0

a.e. in Ω for some λ0 ∈ H . It follows that ψcδ ⇀ ψ0 in H , where ψ0 := η−1
0 λ0 − ψext. Owing to

Lemma 6.1, we infer the regularity ψ0, λ0 ∈ L∞(Ω). Consequently,

ξ0 := (−η0(ψ0 + ψext)q − κ0q,−η0)T ∈ L∞(Ω,C)

for a closed convex set C b dom(DH∗) = RI × (−∞, 0), and we have the pointwise convergence
zδ = DH∗δ (ξδ) → DH∗(ξ0). Thanks to formula (6.10) and the boundedness of (ηδ, 1/ηδ), (κδ),
and of (ψδ) ⊂ C(Ω), the sequence (zδ) ⊂ C(Ω)I+1 must be bounded. We therefore conclude that
z0 := DH∗(ξ0) ∈ L∞(Ω; DH∗(C)). Since DH∗(C) b (0,∞)I+1, this implies the control of the
values z0(Ω) b (0,∞)I+1. Further note that the definition of z0 implies that

DH(z0) + η0DE(z0) + κ0DQ(z0) = 0.

The continuity of z0 is deduced by applying [Trö10, Theorem 4.8, 4.9] to the Poisson equation for ψ0.

It is easy to see that Kδ converges to K in the sense of Γ-convergence on (0,∞) × R × H ,
using the weak lower semicontinuity of K, the inequality Kδ ≥ K, and the pointwise convergence
Kδ → K on (0,∞) × R × H . Hence, the limit (η0, κ0, λ0) is a minimizer of K. It follows that
∂ηK|(η0,κ0,λ0) = 0, meaning that E(z0) = E0. At the same time, z0 ∈ L1

+(Ω)I+1 andQ(z0) = Q0.
Thus, z0 ∈ ME0,Q0 . Furthermore, the regularity of z0 implies that S(z0) = −H(z0) > −∞.
Combining the observations above with Proposition 6.3, we conclude that z0 = z∗ ∈ ME0,Q0 is the
unique solution of the optimization problem S(z∗) = supME0,Q0

S .
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6.2 Global optimality of critical points

We first establish the equivalence between constrained critical points of S and constrained local equi-
librium solutions to (1.1). The proof of Theorem 3.9 on the existence of a unique global equilibrium is
given subsequently.

Proof of Proposition 3.5. The proof is based on an adaptation of [Zei85, Chapter 43]. To simplify
notation, we only present the argument in the case H = H1(Ω). First, let us note that F ⊂
C(Ω)I+1 is open and that S, E ,Q : F ⊂ C(Ω)I+1 → R are continuously Fréchet differentiable. The
formulas (2.9) show that the Fréchet derivatives DE(z) : C(Ω)I+1 → R, DQ(z) : C(Ω)I+1 → R
are surjective for all z ∈ F provided q 6≡ 0 (which we assume throughout the proof). If q ≡ 0,
all arguments of the subsequent proof hold if the charge constraint Q(z) = Q0 is skipped. The
statement of the proposition (including the charge constraint) then trivially follows. In terms of

G(z) := (E(z)−E0,Q(z)−Q0) : F → R2,

the constraint becomes G = 0. It is easy to verify that G is a submersion in the sense of [Zei85,
Definition 43.15]. Therefore, the constraint set M := {z ∈ F : G(z) = 0} forms a C1 manifold
in C(Ω)I+1, and the basic hypotheses of [Zei85, Theorem 43.D] are fulfilled. We now prove the two
directions separately. The first is a direct application of [Zei85, Theorem 43.D (1)], while the second
requires several adjustments due to discrepancies in the functional setting linked to the singularity of
DS(c, u) as mini ci → 0.

Re 1: Let z∗ ∈ F be a local equilibrium solution of S with respect to the side condition G = 0.
Then, invoking [Zei85, Theorem 43.D (1)], there exists (η, κ) ∈ R2 such that DS(z∗) = ηDE(z∗) +
κDQ(z∗). Hence, z∗ is a constrained critical point in the sense of Definition 3.3.

Re 2: For this direction, we will use the fact that, under the present hypotheses on S , the functionals
S, E ,Q : F ⊂ C(Ω)I+1 → R are twice continuously Fréchet differentiable. Let z∗ be a critical
point of S with respect to the constraints E = E0,Q = Q0, i.e. a solution to the equation DS(z∗) =
ηDE(z∗)+κDQ(z∗) for suitable (η, κ) ∈ R2. For later usage, we note that η must be positive since
the equation implies that η = DuS(z∗) > 0 as a consequence of (2.9) and Hypotheses 3.1.

We wish to show that S(z∗) > S(z) for all z, z 6= z∗, in a C0 neighborhood of z∗ within M . Since
S ∈ C2((0,∞)I+1), the Taylor theorem ensures that, as z → z0 ∈ (0,∞)I+1,

S(z)− S(z0) = DS(z0)(z − z0) +
1

2
(z − z0)TD2S(z0)(z − z0) + o|z−z0|(1)|z − z0|2.

For z ∈ C(Ω, (0,∞)I+1), we thus infer for all x ∈ Ω,

S(z(x))− S(z∗(x)) = DS(z∗)(z − z∗) +
1

2
(z − z∗)TD2S(z∗)(z − z∗)

+ o‖z−z∗‖C(Ω)
(1)|z(x)− z∗(x)|2.

Here, o can be chosen uniformly in z, z∗ if z(Ω), z∗(Ω) ⊂ K for some fixed K ⊂⊂ (0,∞)I+1.
Integration over x ∈ Ω thus yields

S(z)− S(z∗) = DS(z∗)(z − z∗) +
1

2
〈(z − z∗),D2S(z∗)(z − z∗)〉 (6.16)

+ f(r)‖z − z∗‖2
L2(Ω) (6.17)
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for all z ∈ F with z(Ω) ⊂ K and ‖z−z∗‖C(Ω) ≤ r, where f ∈ C([0,∞)) satisfies limr→0 f(r) =
0.

As in the proof of [Zei85, Theorem 43.D (2)], we consider the functional

F(z) := S(z)− ηE(z)− κQ(z), z ∈ F .

By hypothesis, DF(z∗)h = 0 for all h ∈ C(Ω)I+1, where as aboveM = {z ∈ F : G(z) = 0}. To
proceed, we note that G can be extended naturally to a Fréchet differentiable map G̃ : L2(Ω)I+1 →
R2 (the solvability theory for the Poisson equation determining ψc does not require the components of
c to be positive). Hence, the set M̃ := {z ∈ L2(Ω)I+1 : G̃(z) = 0} is a C1 manifold in L2(Ω)I+1.

Thus, there exist open neighborhoods Ṽ ⊂ Tz∗M̃ of zero and Ñ ⊂ M̃ of z∗, and a (homeomorphic)

C1 parametrization ϕ : Ṽ ⊂ Tz∗M̃ → Ñ satisfying (cf. [Zei85, Theorem 43.C])

ϕ(h) = z∗ + h+ o(‖h‖L2(Ω)) as h→ 0 in Ṽ .

Since the topology of L2(Ω) is coarser than that of C(Ω), there exists a C0 neighborhood N ⊂M of
z∗ satisfying N ⊂ Ñ . Upon extension of DS(z∗) to a linear continuous functional on L2(Ω)I+1, the
identity DS(z∗) = ηDE(z∗) + κDQ(z∗) also holds as an equality in (L2(Ω)I+1)∗. Furthermore,
we note that the bilinear forms D2S(z∗),D

2E(z∗),D
2Q(z∗) : C(Ω)I+1 × C(Ω)I+1 → R can be

continuously extended to L2(Ω)I+1 × L2(Ω)I+1. Using (6.16) and the Taylor theorem for the smooth

functional ηE + κQ : L2(Ω)I+1 → R, we infer that for all h ∈ ϕ−1(N) ⊂ Tz∗M̃ ,

F(ϕ(h))−F(z∗) ≤ 〈h,D2F(z∗)h〉+ o(1)‖h‖2
L2 ,

where o(1) → 0 as z → z∗ in C(Ω). Note that the left-hand side equals S(ϕ(h)) − S(z∗) since
ϕ(h), z∗ ∈M .

To conclude, we assert that the positivity of η > 0, the strong concavity of S, and the structure of
the nonlinearity in E imply the bound 〈h,D2F(z∗)h〉 ≤ −c‖h‖2

L2 for some c > 0. It holds that
D2F(z∗) = D2S(z∗) − ηD2E(z∗). Thus, in order to establish the asserted inequality, it suffices to
show that 〈h,D2E(z∗)h〉 ≥ 0 for all h ∈ L2(Ω)I+1. But this is a consequence of the positivity of
the quadratic form B. Indeed, for all h = (h′, hI+1) ∈ L2(Ω)I+1 and all z = (c, u) ∈ L2(Ω)I+1, it
holds that

〈h,D2E(c, u)h〉 = 〈h′,DccE(c, u)h′〉 =
1

2
〈q · h′, L−1(q · h′)〉H =

1

2
B(ψh′) ≥ 0.

We conclude that S(z∗) > S(z) for all z ∈ N ′ with z 6= z∗ for a sufficiently small C0 neighborhood
N ′ ⊆ N ⊂M of z∗.

Proof of Theorem 3.9. We argue by contradiction. Assume that (c, u) satisfies

S(c, u) ≥ S(c∗, u∗), E(c, u) = E(c∗, u∗) = E0 and Q(c, u) = Q(c∗, u∗) = Q0.

For θ ∈ [0, 1], we define a straight connection and a continuous curve(
cθ, uθ

)
= (1−θ)

(
c∗, u∗

)
+ θ
(
c, u
)

and
(
c̃θ, ũθ

)
=
(
cθ, uθ

)
+
(
0, θ(1−θ)Ẽ),

where Ẽ is given by Ẽ(x) = ε
2
|∇ψc∗(x)−∇ψc(x)|2 ≥ 0. Using the quadratic nature of E and the

linearity ofQ, we easily find

E(c̃θ, ũθ) = E0 and Q(c̃θ, ũθ) = Q0 for all θ ∈ [0, 1],
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which means that (c̃θ, ũθ) are admissible competitors.

By the assumption S(c, u) = S(c1, u1) ≥ S(c∗, u∗) = S(c0, u0) and the concavity of S , we have
S(cθ, uθ) ≥ S(c∗, u∗) for all θ ∈ [0, 1]. Now using Ẽ(x) ≥ 0 and DuS(c, u) > 0, we obtain

S(c̃θ, ũθ) ≥ S(c∗, u∗) for all θ ∈ (0, 1).

Since θ can be taken arbitrarily small, this contradicts the fact that (c∗, u∗) is a strict local maximizer,
which was established in Proposition 3.5.

Thus, the assumption S(c, u) ≥ S(c∗, u∗) produced a contradiction, and we conclude that (c, u) is
the unique global maximizer under the given constraint.

7 Proofs from Section 2

Proof of Lemma 2.5. Proof of (F1): We start with some preliminaries. We identify any function ρ ∈
C(Ω) with an element in H1(Ω)∗ resp. in H ∗ via Y 3 ψ 7→

∫
Ω
ρψ dx, where Y = H1(Ω) resp.

Y = H . Furthermore, since H ⊂ H1(Ω) is a closed subspace, there exists a unique orthogonal
projection P : H1(Ω) → H . Let P ∗ : H ∗ → H1(Ω)∗ denote its adjoint. In order to prove
that C(Ω) ⊂ H ∗ is dense, we use the fact that C(Ω) ⊂ H1(Ω)∗ is dense, which can be shown
by classical mollification arguments thanks to the Lipschitz continuity of ∂Ω. Let ρ ∈ H ∗. Then,
f := P ∗ρ ∈ H1(Ω)∗. Thus, there exist (fj)j ⊂ C(Ω) ⊂ H1(Ω)∗ with fj → f in H1(Ω)∗. The
restrictions ρj := fj |H ∈ C(Ω) ⊂H ∗ satisfy ρj → ρ in H ∗.

Proof of (F2): We specify the construction indicated in (2.10). As Ω has a Lipschitz boundary and
Hd−1(ΓD) > 0, we can assume that – after a suitable rotation and translation of the coordinate
system – there are some δ > 0 and a Lipschitz function h : Bδ(0) ⊂ Rd−1 → R with h(0) = 0
such that

Sδ :=
{

(y, h(y))
∣∣ y ∈ Bδ(0)

}
⊂ ∂Ω, γ̃δ := Hd−1(Sδ ∩ ΓD) > 0,

A1 :=
{

(y, h(y)+r)
∣∣ y ∈ Bδ(0), r ∈ (0, δ)

}
⊂ Ω.

We set Σδ :=
{
y ∈ Bδ(0)

∣∣ (y, h(y)) ∈ ΓD

}
⊂ Rd−1 and find

γδ := Ld−1(Σδ) ≥
∫

Σδ

√
1+|∇h(y)|2

1 + ‖∇h‖L∞
dy =

γ̃δ
1 + ‖∇h‖L∞

	 0.

We now define the L∞ functions

ρn :=
n

δγδ
1An with An :=

{
x = (y, h(y)+r) ∈ Ω

∣∣∣ y ∈ Σδ, r ∈
(

0,
δ

n

)}
.

Clearly, we have Ld(An) = Ld−1(Σδ) δ/n = γδδ/n which implies
∫

Ω
ρn dx = 1.

To estimate 〈ρn, ψ〉H ∗×H , we use that ψ ∈ H satisfies ψ(y, h(y)) = 0 for Ld−1-a.e. y ∈ Σδ.
Hence, for r ∈ (0, δ), we have

|ψ
(
y, h(y)+r

)
|2 ≤

(∫ r

0

|∂ydψ(y, h(y)+s)| ds
)2

≤ r

∫ δ

0

∣∣∂ydψ(y, h(y)+s)
∣∣2 ds. (7.1)
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With this, we can estimate as follows:∣∣〈ρn, ψ〉H ∗×H

∣∣2 =
∣∣∣ ∫

Ω

ρnψ dx
∣∣∣2 =

∣∣∣ n
δγδ

∫
An

ψ dx
∣∣∣2 ≤ n

δγδ

∫
An

ψ(x)2 dx

=
n

δγδ

∫
Σδ

∫ δ/n

0

ψ(y, h(y)+r)2 dr dy

(7.1)
≤ n

δγδ

∫
Σδ

∫ δ/n

0

r

∫ δ

0

∣∣∂ydψ(y, h(y)+s)
∣∣2 ds dr dy

=
δ

2γδ n

∫
A1

∣∣∂ydψ(x)
∣∣2 dx ≤ δ

2γδ n
‖∇ψ‖2

L2 ≤
δ

2γδ n
‖ψ‖2

H .

This shows ‖ρn‖H ∗ ≤ C/
√
n → 0, which is the desired assertion.

Proof of Proposition 2.6. We first treat the case (C) and discuss the necessary adjustments for (A)
and (B) afterwards.

In the case (C), we have 1Ω ∈ H = H1(Ω) and ρ 7→
∫

Ω
ρ dx = 〈ρ, 1〉H is well-defined on all of

H ∗. Since E and the constraint are continuous in H ∗, the density in (F1) allows us to replace the
infimum for V(Q0, ψext) by the infimum over all ρ ∈H ∗ with 〈ρ, 1〉H = Q0.

Since ψρ is the unique minimizer of ψ 7→ 1
2
B(ψ) − 〈ρ, ψ〉H with minimum value −E(ρ, 0), we see

that

E(ρ, ψext) =
1

2
B(ψext) + 〈ρ, ψext〉H + sup

{
〈ρ, ψ〉H −

1

2
B(ψ)

∣∣∣ ψ ∈H
}
.

To include the total-charge constraint on ρ, we define the Lagrange function L : H ∗×H ×R → R
via

L(ρ, ψ, κ) =
1

2
B(ψext)−

1

2
B(ψ) + 〈ρ, ψext+ψ−κ〉H +Q0κ,

where the scalar κ is the Lagrange parameter for the charge constraint.

Note that L is a quadratic functional and we have

V(Q0, ψext) = inf
ρ∈H ∗

(
sup

ψ∈H , κ∈R
L(ρ, ψ, κ)

)
.

Clearly, ρ 7→ L(ρ, ψ, κ) is affine, and hence convex, (ψ, κ) 7→ L(ρ, ψ, κ) is concave. Thus, we have
a classical saddle-point problem with a continuous quadratic Lagrange function.

By the theory in [EkT76, Chap. VI], it is enough to find a saddle point, which can be done by inter-
changing the inf-sup into a sup-inf. By linearity in ρ, we have

inf
ρ∈H ∗

L(ρ, φ, κ) =

{
1
2
B(ψext)− 1

2
B(φ) +Q0κ for ψext + φ ≡ κ,

−∞ for ψext + φ 6≡ κ.

The subsequent supremum over φ, κ is then attained at φ∗ = κ− ψext and leads to

sup
ψ∈H

inf
ρ∈H ∗

L(ρ, ψ, κ) =
1

2
B(ψext)−

1

2
B(κ−ψext) + κQ0 (7.2)

= κQ0 + κB(1, ψext)−
κ2

2
B(1), (7.3)
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where we used the bilinear form B for B(φ) = B(φ, φ). Note that B(1) = B(1, 1) =
∫
∂Ω
ω da > 0

and B(1, ψext) =
∫
∂Ω
ωψext da.

Maximizing with respect to κ gives the maximizer κ∗ =
(
Q0+B(1, ψext)

)
/B(1), which provides the

desired saddle point (ρ∗, ψ∗, κ∗) where ψ∗ = κ∗−ψext and ρ∗ = Lψ∗ = L(κ−ψext) ∈ H ∗.
Moreover, we have

V(Q0, ψext) =
1

2
B(ψ∗−ψext) =

1

2
B(κ∗) =

κ2
∗

2
B(1) =

κ2
∗

2

∫
∂Ω

ω da.

In the case ψext = M(D,ψR) = L−1N(D, gR), we use that L(κ∗1Ω) = N(0, κ∗ω) to obtain
ρ∗ = L(κ∗−ψext) = N(−D, κ∗ω−gR). With this, both assertions concerning (C) are established.

To show (B), we use HN :=
{
ψ ∈ H1(Ω)

∣∣ ∫
Ω
ψ dx = 0

}
and restrict to the case Q0 = 0. For all

ψext ∈HN, we easily see thatψ∗ := −ψext and ρ∗ := Lψ∗ = −Lψext provide the unique minimizer
of E defined in (2.7), which leads to V(0, ψext) = 0. In fact, since HN = span{1}⊥H1 , we have

H ∗
N
∼= H1(Ω)∗/H

⊥H1

N = H1(Ω)∗/span{1}; see, e.g., [Lan93]. Moreover, for every ρ+span{1} ∈
H ∗

N with ρ ∈ H1(Ω)∗, there exists some r ∈ R such that 〈ρ + r, 1〉H1 = 0. Hence, the charge
constraint is not present at all on H ∗

N and both parts of (B) are shown.

For the case (A), we can use (F1) and (F2), which essentially means that we can adjust the total
charge Q0 with arbitrarily small cost. This means that for taking the infimum, we can drop the charge
constraint completely and obtain a minimizer with a wrong total charge Q∗. Thus, as in case (B), we
minimize E(·, ψext) by finding the minimizer ψ∗ of ψρ 7→ 1

2
B(ψρ+ψext) and then letting ρ∗ := Lψ∗.

The difference is that we now use HD :=
{
ψ ∈ H1(Ω)

∣∣ ψ|ΓD
= 0

}
. Clearly, we find ψ∗ = −ψext

and ρ∗ = −Lψext as well as the minimal energy E(ρ∗, ψext) = 0. Thus, the result for part (A) is
established as well.
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