
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Spectral bounds for the operator pencil of an

elliptic system in an angle

Michael Tsopanopoulos

submitted: December 18, 2024

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: michael.tsopanopoulos@wias-berlin.de

No. 3155

Berlin 2024

2020 Mathematics Subject Classification. 35B30, 35J47, 35B65, 47A10, 47A12, 47B44.

Key words and phrases. Operator pencil, mixed boundary conditions, elliptic systems, higher regularity, numerical range,
accretive operators.

The author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Spectral bounds for the operator pencil of an
elliptic system in an angle

Michael Tsopanopoulos

Abstract

The model problem of a plane angle for a second-order elliptic system with Dirichlet, mixed,
and Neumann boundary conditions is analyzed. The existence of solutions is, for each boundary
condition, reduced to solving a matrix equation. Leveraging these matrix equations and focus-
ing on Dirichlet and mixed boundary conditions, optimal bounds on these solutions are derived,
employing tools from numerical range analysis and accretive operator theory. The developed
framework is novel and recovers known bounds for Dirichlet boundary conditions. The results for
mixed boundary conditions are new and represent the central contribution of this work. Immediate
applications of these findings are new regularity results in linear elasticity.
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1 Introduction

Regularity theory for differential equations is concerned with the question of how regular a solution
can be with respect to the input data, such as the source function and the boundary data. A classic
example is the Laplace equation, ∆u = f , on a domain Ω with smooth boundary ∂Ω, subject to
Dirichlet boundary conditions u = 0 on ∂Ω. In this case, it is established that u ∈ W k+2,p(Ω) when
f ∈ W k,p(Ω), for any k ∈ N and p > 1 (§2.4 in [11]). This result does not hold if we consider domains
Ω which include edges or vertices. However, the irregularities of solutions in polygonal domains exhibit
a similar structure. Considering a cone K ⊂ Rn, a solution u to an elliptic equation near the vertex
of K can asymptotically be described by terms of the form (neglecting factors of log r, see [8], [11],
[19]):

u(r, ω) ∼ rλv(ω), (1.1)

where (r, ω) are spherical coordinates with r being the distance to the vertex.

Here, v is a function on a subset of the sphere ω ∈ Sn−1 (the cone opening), and λ ∈ C represents
the regularity parameter linking integrability and differentiability of u to Reλ. The associated operator
pencil A(λ) is a λ-dependent differential operator such that A(λ)v = 0, i.e., the spectrum of A
consists of the possible exponents λ in the asymptotic expansion (1.1).

By localization, the regularity of boundary value problems in general polyhedral domains can be re-
duced to model problems in cones and angles. This means the (ir)regularity of solutions to elliptic
equations is characterized by solutions of the form (1.1), or equivalently, by the spectrum of the cor-
responding operator pencil A. A well-established reference in this regard is [20], which provides es-
timates for Reλ for various model problems. These include the Lamé system (for general boundary
conditions) or general elliptic systems (for Dirichlet and Neumann boundary conditions) in cones. The
follow-up work [22] applies these results to specific problems in three-dimensional polyhedral domains,
translating the estimates for Reλ into regularity results. These references address a broad range of
model problems and include extensive discussions. As noted in the Introduction of [21] "No general,
even to some extent, methods of obtaining this information are known, since even for the simplest
problems of mathematical physics these spectral problems have a rather complicated form". Despite
originating in the last century, this observation is still valid today.

From the above considerations, it is evident that regularity results for elliptic equations are inherently
linked to solutions of the form rλv, arising from model problems that reflect the geometry of the original
problem. The primary motivation for this paper is to improve the known regularity estimates for solu-
tions in linear elasticity. The underlying equations can be nuanced because elasticity involves systems
of elliptic equations, as the displacement is a vector field, and often incorporates mixed boundary con-
ditions. Existing literature on regularity theory for linear elasticity is sparse, with many results providing
only relatively weak estimates or lacking full generality. The regularity of solutions to the Lamé system
with mixed boundary conditions is discussed in [23] for three-dimensional polygonal domains, includ-
ing edges and vertices. In [15], it is shown (without using the expansion rλv at all) that u ∈ W 1,2+ε for
some ε > 0, which is only a small improvement with respect to u ∈ W 1,2 from general solution the-
ory. In [14], one can find results on three-dimensional scalar elliptic model problems, including mixed
boundary conditions, that yield u ∈ W 1,p for some p > 3. A famous counter-example in [25] demon-
strates an upper bound, showing that we cannot expect u ∈ W 1,p for p ≥ 4 for scalar equations in
the two-dimensional half-space, and consequently not for elliptic systems.

This work develops a framework to study the model problem in a two-dimensional angle for a second-
order elliptic system with real-valued coefficient matrices. Utilizing this framework, we recover well-
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known bounds for Dirichlet boundary conditions in a novel way. The main result of this work, however,
focuses on the model problem with mixed boundary conditions (Theorem 7.2). For these, we prove
(under mild ellipticity conditions) that any solution rλv of the model problem satisfies the bounds
|Reλ| ≥ 1

2
for α ≤ π and |Reλ| ≥ 1

4
for α ≤ 2π, where α is the opening angle. These bounds

are optimal, and they coincide with those for the Laplace equation. Unlike implicit solution strategies in
other works, this framework allows for the explicit construction of solutions. Also, it might be possible to
adapt the framework to further boundary conditions, three-dimensional cones or higher-order elliptic
equations.

As mentioned before, our findings have applications in the regularity theory of linear elasticity. For
brevity, we only sketch a simple scenario: Consider the linear elastic equation div σ(u) = 0 in a
domain Ω ⊂ R3 with smooth boundary, where Dirichlet and Neumann boundary conditions are sep-
arated by a finite number of smooth, nonintersecting closed curves. Here, σ(u) = Ce(u), where C
denotes the elasticity tensor and e(u) the symmetrized gradient. Under suitable conditions, it can be
shown that solutions u satisfy u ∈ W 1,4−ε for any ε > 0. For details, we refer to Theorem 8.1.7 and
§8.3.1 in [22]. Applications to elasticity and other geometries will be addressed in a subsequent paper.

While the given approach provides new insights and results, its limitations must be acknowledged. The
present work focuses exclusively on the model problem in a plane angle. Hence, the results are only
applicable to domains Ω ⊂ R3, where non-smoothness of ∂Ω manifests as an edge. More complex
geometric structures, such as vertices, are not covered.

Structure of the paper

In Section 3, following [22] and [20], the model problem is introduced for an elliptic system of the form

LA(x, y) = A11∂
2
x + 2A12∂x∂y + A22∂

2
y ,

where A• are real-valued, symmetric matrices satisfying the strong ellipticity condition (weaker than
the formal positivity condition in elasticity, see Lemma B.3). The domain is given by the two-dimensional
angle

Kα = {(r cos(ϕ), r sin(ϕ)) : r > 0, 0 ≤ ϕ ≤ α} ⊂ R2,

for some fixed 0 < α ≤ 2π. We consider either Dirichlet or Neumann boundary conditions on the
two sides of the angle, respectively. Finding for the model problem solutions of the form rλv, where
λ ∈ C, is reformulated as determining the eigenvalues of the so-called operator pencil by translating
LA to a λ-dependent differential operator LA(λ).

In Section 4, it is shown that it suffices to consider elliptic systems with A22 = Id, referred to as
monic elliptic systems. Moreover, we study the algebraic structure of the polynomial C 3 β 7→ A11 +
2A12β + Id β2 and show, using a result in [10], that one has the factorization

A11 + 2A12β + Id β2 = (V ∗ − Id β)(V − Id β),

for V a complex-valued matrix with σ(V ) ⊂ {z ∈ C : Im z > 0}. The matrix V is unique (Theorem
4.6), and is referred to as the standard root of the matrix polynomial. Using V , one can show that all
solutions of the model problem without boundary conditions are given by (Prop. 4.7):

uλ : R2 \ {0} → C`, (x1, x2) 7→ (x1 Id` +x2V )λc1 + (x1 Id` +x2V )λc2, c1, c2 ∈ C`, (1.2)
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M. Tsopanopoulos 4

where ` ∈ N is the dimension of the system. The exponentiation of matrices here is defined via the
functional calculus, and the choice of complex exponentiation • 7→ •λ required for smooth solutions
is discussed.

In Section 5, Dirichlet, mixed, and Neumann boundary conditions for uλ are implemented. It is shown
that existence of a nontrivial solution rλv for the model problem with angle α is for each boundary
condition equivalent to the vanishing of the determinant of a matrix Mλ,α (Prop. 5.1, Prop. 5.2, Prop.
5.5). E.g., for Dirichlet boundary conditions, we get the equivalent condition

0 = det(Mλ,α) for Mλ,α = Zλ
α − Zα

λ
, (1.3)

where Zα is a complex symmetric matrix derived from V . The matricesMλ,α for mixed and Neumann
boundary conditions have a similar structure. Additionally, we introduce two ellipticity conditions, Neu-
mann well-posedness and contractive Neumann well-posedness (Def. 5.3), related to spectral prop-
erties of V . The former is equivalent to the complementing boundary condition for Agmon-Douglis-
Nirenberg (ADN)-elliptic systems [3] implementing Neumann boundary conditions (see Appendix B).
The latter relates to path-connectedness of Neumann well-posed systems to the Laplace operator
(Lemma 5.4).

In Section 6, utilizing the numerical range and results on fractional powers of accretive operators
[13], we are able to provide bounds on the spectrum of Mλ,α for Dirichlet (Theorem 6.4) and mixed
boundary conditions (Theorem 6.5, Theorem 6.6). These results are used to bound |Reλ| for λ ∈ C
a solution to equations like (1.3).

In Section 7, we summarize our findings and give bounds on |Reλ| for solutions rλv of the model
problem for Dirichlet and mixed boundary conditions. In particular, Theorem 7.2 establishes for mixed
boundary conditions the bounds |Reλ| ≥ 1

2
for α ≤ π and |Reλ| ≥ 1

4
for α ≤ 2π, provided that

the system is contractive Neumann well-posed. If the system is not contractive Neumann well-posed,
then cases with |Reλ| < 1

2
, resp. |Reλ| < 1

4
, may occur, but only in the form Reλ = 0.

In Section 8, the paper is summarized. Also, Neumann boundary conditions, optimality of the given
bounds, and the scalar case ` = 1 are briefly discussed.

The appendices provide supplementary material and detailed proofs that might disturb the flow of the
paper. In Appendix A, the concrete form of the differential operator LA is derived. In Appendix B, Neu-
mann well-posedness is related to the complementing boundary condition for ADN-elliptic systems.
Also, it is shown that formal positivity implies contractive Neumann well-posedness. In Appendix C, a
factorization result for nonnegative matrix polynomials is given. In Appendix D, the functional calculus
is summarized. In Appendix E, the numerical range is summarized and results on accretive operators
are adapted to our setting.
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Figure 1: Relation between Reλ and α ∈ [1, 2π] for different boundary conditions. The elliptic tuple is defined

by A11 =

(
5 0.6
0.6 1.5

)
, A12 =

(
0.25 −0.4
−0.4 −0.2

)
, A22 =

(
1 0
0 1

)
. The branches for Dirichlet and Neumann

boundary conditions are very close to each other.
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2 General prerequisites and notation

This section summarizes notation and standard results in linear algebra. The reference is [17]. For
r ∈ R \ {0}, let sgn(r) ∈ {−1,+1} denote the sign of r. R>0 denotes positive numbers, and
R≥0 = R>0 ∪ {0}. We use (x1, x2) ∈ R2 for Cartesian coordinates and (r, ϕ) ∈ R>0× [0, 2π) for
polar coordinates. Re z and Im z will denote the real and imaginary part of a complex number z ∈ C
(or matrix). Also, we write z for complex conjugation. For a setA ⊂ C, we write clos(A) for its closure.
LHS and RHS will be used as abbreviations for "left-hand sideänd "right-hand side", respectively.

Subsets of C
Let us denote the (open) upper half-plane UHP ⊂ C and the right half-plane RHP ⊂ C by

UHP := {z ∈ C : Im(z) > 0}, RHP := {z ∈ C : Re(z) > 0}.

The lower half-plane and left half-plane are simply denoted by −UHP and −RHP, where we use
the following notation for set operations: For two sets A,B ⊂ C and r ∈ C we write

A+B := {a+ b : a ∈ A, b ∈ B}, rA := {r · a : a ∈ A}, A := {a : a ∈ A},
ReA := {Re(a) : a ∈ A}, ImA := {Im(a) : a ∈ A}.

Vectors and Matrices

For the entire text, let us fix ` ∈ N to denote the dimension of the vector spaces we consider. We
denote by R` and C`, respectively, the canonical real and complex vector spaces. By 〈•, •〉, we
denote the scalar product on C`, and by ‖ • ‖ the vector norm ‖v‖ =

√
〈v, v〉 for v ∈ C`. Write

Mat`(C) for matrices of size `×` with entries in C, and let us assumeA ∈ Mat`(C) in what follows.
We denote by Ai,j the entry in the i-th row and j-th column. If the entries are only real-valued, we
may also write A ∈ Mat`(R) and often view this set as a subset of Mat`(C). Id` ∈ Mat`(C) will
denote the identity matrix. We write AT for the transpose and A−1 for the inverse matrix (if it exists).

Further, we write A∗ = A
T

for the adjoint. We consider symmetric matrices AT = A, Hermitian
matrices A∗ = A and unitary matrices A∗ = A−1. The operator norm on Mat`(C) is given by
‖A‖ = sup‖v‖=1 ‖Av‖. The commutator is denoted by [A,B] = AB − BA. Additionally, we rely
on the following result on block matrices (see [1], Exercise 5.30).

Lemma 2.1. Consider for A,B,C,D ∈ Mat`(C) the block matrix

R =

(
A B
C D

)
.

If A is invertible, then det(R) = det(A) · det(D − CA−1B).

Spectral Theory

If there exists a pair (λ, v) ∈ C × C` such that Av = λv, we call λ an eigenvalue of A and v the
corresponding eigenvector. The set of all eigenvalues of A is called the spectrum of A, denoted by
σ(A). We say A is diagonalizable if there exist Q,B ∈ Mat`(C), with Q invertible and B a diagonal
matrix, such that

A = QBQ−1. (2.1)

In this case, Bi,i ∈ C for 1 ≤ i ≤ ` is an eigenvalue of A, and the i-th row of Q is a corresponding
eigenvector. We say A and C ∈ Mat`(C) are similar if there is an invertible matrix S ∈ Mat`(C)

DOI 10.20347/WIAS.PREPRINT.3155 Berlin 2024
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such that A = SCS−1. In this case σ(A) = σ(C). A key result in spectral theory ist that normal
matrices (A∗A = AA∗) are always unitarily diagonalizable, meaning there exists a decomposition
(2.1) with Q unitary. For Hermitian matrices, the spectrum satisfies σ(A) ⊂ R, while for unitary
matrices, σ(A) ⊂ S1, where S1 denotes the complex unit circle. Properties of the spectrum include
the following: σ(AB) = σ(BA) for A,B invertible, 0 ∈ σ(A) ⇐⇒ det(A) = 0, and σ(A∗) =
σ(A). The spectral radius of A is given by

ρ(A) = sup
λ∈σ(A)

|λ|.

It satisfies ρ(A) ≤ ‖A‖, and for Hermitian matrices, ρ(A) = ‖A‖. The equality also holds for
A ∈ Mat`(R) skew-symmetric (AT = −A), since iA is Hermitian.

Positive definite matrices

We call A positive definite, and write A > 0, if it is Hermitian and satisfies 〈v, Av〉 > 0 for any vector
v ∈ C` \ {0}. A Hermitian matrix A is positive definite if and only if σ(A) ⊂ R>0. If σ(A) ⊂ R≥0,
A is called positive semi-definite, denoted A ≥ 0. The product A∗A is always positive semi-definite,
and it is positive definite if 0 /∈ σ(A). Furthermore, A−1 > 0 if and only if A > 0. For matrices A
and C , we have A − C > 0 if and only if C−1 − A−1 > 0. Additionally, if A > 0 and C ≥ 0, then
A+ C > 0. Any positive definite matrix A has a unique positive definite square root C ∈ Mat`(C),
i.e., C2 = A. We often write C = A1/2.

3 The model problem

This section introduces the model problem as presented in §6 of [22]. The domain of interest is given,
for 0 < α ≤ 2π, by the two-dimensional angle

Kα := {(r cos(ϕ), r sin(ϕ)) : r > 0, 0 ≤ ϕ ≤ α} ⊂ R2,

which has the boundary

∂Kα = Γ− ∪ Γ+ ∪ {(0, 0)}
for Γ− := {(x, 0) : x > 0} and Γ+ := {(r cos(α), r sin(α)) : r > 0}.

For A = (A11, A12, A22), where A• ∈ Mat`(R) are symmetric matrices, the second-order differen-
tial operator LA is given by

LA(∂x1 , ∂x2) :=
2∑

i,j=1

Aij∂xi∂xj = A11∂
2
x1

+ 2A12∂x1∂x2 + A22∂
2
x2
, (3.1)

where we set A21 = A12 in the following. The conormal derivatives N±A associated to LA on Γ± are
given by

N−A (∂x1 , ∂x2) = NA(0, ∂x1 , ∂x2) and N+
A (∂x1 , ∂x2) = NA(α, ∂x1 , ∂x2) for

NA(ϕ, ∂x1 , ∂x2) :=
2∑

i,j=1

Aijni∂xj = A11n1∂x1 + A12(n1∂x2 + n2∂x1) + A22n2∂x2 , ϕ ∈ {0, α},
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where n = (− sin(ϕ), cos(ϕ)) for ϕ ∈ {0, α} is the normal vector perpendicular to Γ±. We investi-
gate complex-valued solutions u : Kα → C` to the equations

LA(∂x1 , ∂x2)u = 0 on Kα, B±A(∂x1 , ∂x2)u = 0 on Γ±, (3.2)

where u can be decomposed in the radial form u(r, ϕ) = rλv(ϕ) for some λ ∈ C and v : [0, α]→
C` smooth. Here,

B±A(∂x1 , ∂x2) := (1− d±)u+ d±N±A (∂x1 , ∂x2)u (3.3)

for d± ∈ {0, 1} such that (d+, d−) = (0, 0) implements Dirichlet, (d+, d−) = (1, 1) Neumann and
(d+, d−) = (0, 1) mixed boundary conditions. The problem of finding a solution u of radial form to
the equations (3.2) is called the model problem. If we only consider

LA(∂x1 , ∂x2)u = 0 on Kα, (3.4)

then we call (3.4) the model problem without boundary conditions.

Remark. In the following, ` ∈ N in u : Kα → C` always denotes the dimension of the codomain,
and α in 0 < α ≤ 2π always the opening angle.

Our question is the following: For fixed α ∈ (0, 2π], for which λ ∈ C can we expect a solution of the
form rλv for the model problem (3.2)? More specifically, what is the smallest value for |Reλ| that we
can expect for a solution? These results can be translated to regularity of solutions for strongly elliptic
systems in polyhedral domains (see §2 and §6 in [22]).

3.1 Ellipticity

So far, we have not implemented ellipticity of LA. One can find the next definition in a similar form in
§1.1.2 of [22].

Definition 3.1. Consider the elliptic operator LA in (3.1) where A• ∈ Mat`(R) are symmetric. For
ξ = (ξ1, ξ2) ∈ R2, we define the polynomial

LA(ξ) :=
2∑

i,j=1

Aij ξiξj.

We say

� LA is elliptic if

detLA(ξ) 6= 0 ∀ξ ∈ R2 \ {0}. (3.5)

� LA is strongly elliptic if there exists κ > 0 such that

〈LA(ξ)η, η〉 ≥ κ‖η‖2‖ξ‖2 ∀η ∈ C`, ξ ∈ R2. (3.6)

Remark. LA(ξ) ∈ Mat`(R) is symmetric real-valued and thus Hermitian for any ξ ∈ R2. So the
LHS in (3.6) is always real.

Obviously, strong ellipticity implies ellipticity. From now on, we always assume that A11 and A22 are
positive definite. In this case, one can show that the two notions coincide, simplifying the analysis.
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Lemma 3.2. Assume that A11, A12, A22 ∈ Mat`(R) are symmetric matrices and A11, A22 are
positive definite. Then the following are equivalent:

i) det(LA(ξ)) 6= 0 for all ξ ∈ R2 of the form ξ = (1, β) ∈ R2.

ii) LA is elliptic.

iii) LA is strongly elliptic.

In this case, in particular, det(LA(ξ)) > 0 for any ξ ∈ R2 \ {0}.

For the proof, see Appendix B. Throughout this work, we refer to A as an elliptic system or elliptic
tuple if A = (A11, A12, A22) are all symmetric and A11 > 0, A22 > 0. Correspondingly, we refer to
the operator LA as an elliptic operator.

Remark. The condition for strong ellipticity is sometimes referred to as Legendre-Hadamard condition
(see §3.4.1 of [9]).

Remark. Thus far, we have only described the ellipticity of the operator LA. However, to ensure the
well-posedness of the elliptic problem, it is also necessary to specify a complementing condition for
the boundary operators B±A . These conditions, introduced in the framework of elliptic systems by
Agmon, Douglis, and Nirenberg in [3], establish compatibility between the boundary operators and the
elliptic operator. The need for such a condition will arise naturally in our analysis, so we postpone this
discussion to a later section. The ellipticity conditions are discussed in more detail in Appendix B.

3.2 Eigenvalues of the operator pencil

In this section, the model problem is translated to a parameter-dependent second-order ODE, and the
operator pencil is introduced. The reference is §6.1.3 of [22].

Writing u = rλv for λ ∈ C, we define the λ-dependent differential operators LA(∂ϕ, λ), B±A(∂ϕ, λ)
andNA(∂ϕ, λ) by:

LA(∂ϕ, λ)v := r2−λLA(∂)rλv,

NA(∂ϕ, λ)v := r1−λNA(∂)rλv,

B±A(∂ϕ, λ)v := (1− d±)v + d±NA(∂ϕ, λ)v.

A long but straightforward calculation (see Appendix A) shows that:

LA(∂ϕ, λ) = b2(ϕ)∂2
ϕ + (λ− 1)b1(ϕ)∂ϕ + λ(λ− 1)b0(ϕ) + λb2(ϕ), (3.7)

NA(∂ϕ, λ) = b2(ϕ)∂ϕ +
λ

2
b1(ϕ),

where the b•’s are the periodic functions:

b0(ϕ) = A11 cos(ϕ)2 + A22 sin(ϕ)2 + 2A12 sin(ϕ) cos(ϕ), (3.8)

b1(ϕ) = 2(A22 − A11) sin(ϕ) cos(ϕ) + 2A12(cos(ϕ)2 − sin(ϕ)2),

b2(ϕ) = A11 sin(ϕ)2 + A22 cos(ϕ)2 − 2A12 cos(ϕ) sin(ϕ).
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We define the λ-dependent mapping:

A(λ) : W 2,2((0, α),C`)→ L2((0, α),C`)× C` × C` (3.9)

by

v 7→
(
LA(λ)v, B−A(λ)v

∣∣
ϕ=0

, B+
A(λ)v

∣∣
ϕ=α

)
.

Here,W 2,2 andL2 denote the usual Sobolev and Lebesgue space. In the literature,A(λ) is called the
operator pencil. If there exist λ ∈ C and v 6= 0 such that A(λ)v = 0, then λ is called an eigenvalue
of A and v an eigenvector to λ. See §1 in [20] for an introduction to operator pencils and further
references. With the above derivations, the model problem is reduced to a λ-dependent second-order
ODE, and we have the following: The model problem (3.2) has a solution of the form rλv for λ ∈ C if
and only if λ ∈ C is an eigenvalue of the corresponding operator pencilA(λ) in (3.9).

Remark. Note that the leading coefficient b2(ϕ) in LA is positive definite for any ϕ ∈ [0, 2π). This
can be seen by taking ξ = (sin(ϕ),− cos(ϕ)) ∈ R2 and observing that b2(ϕ) = LA(ξ) > 0 due to
Lemma 3.2.

Remark (Solution theory for LA(∂ϕ, λ)v = 0). We refer to [16] for the following arguments. Fix
λ ∈ C, and observe that the system of ` second-order ODE’s given by LA(∂ϕ, λ)v = 0 can be
reduced, by a standard trick, to a system of first order ODE’s of the form

∂ϕy = M(ϕ, λ)y.

Here, the entries of M(ϕ, λ) ∈ Mat2`(C) are analytic in ϕ. This reduction requires inverting b2(ϕ),
which is possible due to the last remark. Using the results of §IV.10 in [16], this first order ODE has
a fundamental matrix Y (ϕ, λ) which is analytic in ϕ. This implies that one can choose 2` linearly
independent analytic solutions vλ,1(λ), . . . , vλ,2`(λ) : R → C` (depending on λ), and any solution
v(λ) of LA(λ, ∂ϕ)v(λ) = 0 is given by a linear combination:

v(λ) :=
2∑̀
l=1

clvλ,l(λ) for some c• ∈ C. (3.10)

We do not discuss the analytic dependence of v(λ) on λ ∈ C here, as it will be revealed at a later
point (Section 4.2). Furthermore, by the preceding discussion, any solution uλ to the model problem
without boundary conditions can be expressed as uλ = rλv(λ), where v(λ) is given in (3.10).

3.3 The case λ = 0

The subsequent derivation does not cover λ 6= 0, which is why we address this case now. A solution
u = rλv to the model problem (3.2) is called a trivial solution if v = 0.

Lemma 3.3. The model problem (3.2) admits for λ = 0 and any angle 0 < α ≤ 2π only the
trivial solution for Dirichlet and mixed boundary conditions, and only constant solutions for Neumann
boundary conditions.

This is not a new result but included for completeness.

Proof. Consider an elliptic tuple A, and assume LA(λ)v = 0 for λ = 0. By (3.7), this reduces to

∂ϕ(b2∂ϕv)(ϕ) = 0, (3.11)
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Spectral bounds for the operator pencil of an elliptic system in an angle 13

due to ∂ϕb2 = −b1. The 2` linearly independent solutions are given by

v(ϕ) = c1 + P (ϕ)c2 for c• ∈ C`,

where P (ϕ) =
´ ϕ

0
b−1

2 (s)ds. Note that P (ϕ) > 0 for ϕ > 0, ensuring that P (ϕ) is invertible.
Dirichlet boundary conditions yield

c1 = 0 and c1 + P (α)c2 = 0 =⇒ c1 = 0 = c2,

so only the trivial solution exists. Neumann boundary conditions (check (3.7)) yield c2 = 0 for ϕ ∈
{0, α} (b2 is invertible), so v(ϕ) = c1 is the most general solution. Finally, for mixed boundary
conditions, both c2 = 0 = c1 are enforced, so only the trival solution exists. This completes the
proof.

3.4 Laplace equation

If we assume A11 = Id` = A22 and A12 = 0, then the system reduces to decoupled Laplace
equations in ` components. In this case, LA(λ) = Id`(∂

2
ϕ + λ2) and solutions to the λ-dependent

ODE without boundary conditions are given by

vλ(ϕ) = c0 sin(λϕ) + c1 cos(λϕ) for c0, c1 ∈ C`.

Let us implement boundary conditions for ϕ ∈ {0, α}. Note that NA(λ) = Id` ∂ϕ, so nontrivial
solutions are given by c1 = 0 and λ ∈ π

α
· Z \ {0} for Dirichlet, c0 = 0 and λ ∈ π

α
· Z for Neumann,

and c1 = 0 and λ ∈ π
2α
· Z \ {0} for mixed boundary conditions (compare to §2.1 in [20]). This

leads for α ≤ π to the bounds |Reλ| ≥ 1 for Dirichlet and Neumann boundary conditions (ignoring
constant solutions at λ = 0 for the latter) and |Reλ| ≥ 1

2
for mixed boundary conditions. Although

this is the simplest example of an elliptic system, we will derive similar lower bounds for more general
elliptic systems.

4 Analysis of the model problem without boundary conditions

4.1 Algebraic properties of LA

Reduction to monic matrix polynomials

The elliptic operator LA is normalized in the sense that one only needs to consider the case of A22 =
Id`.

Lemma 4.1. Consider an elliptic tuple A = (A11, A12, A22). The model problem

LA(∂x1 , ∂x2)u = 0 on Kα, B±A(∂x1 , ∂x2)u = 0 on Γ±

admits the solution u = rλv if and only if the model problem

LÃ(∂x1 , ∂x2)u = 0 on Kα, B±
Ã

(∂x1 , ∂x2)u = 0 on Γ±

for Ã = (A
−1/2
22 A11A

−1/2
22 , A

−1/2
22 A12A

−1/2
22 , Id`) admits the solution rλṽ, where ṽ = A

1/2
22 v.
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Here, we write A−1/2
22 =

(
A

1/2
22

)−1

. Note that A is an elliptic tuple if and only if Ã is an elliptic tuple:

This can be shown by using Lemma 3.2 and the determinant product rule (observe Ã11 > 0 due
to A−1/2

22 being symmetric, invertible and Sylvester’s law of inertia, see Theorem 4.5.8 in [17]). This
ensures that LÃ is a well-defined elliptic operator.

Proof. Assume that LAu = 0. It is clear that ũ := A
1/2
22 u will be a solution to LÃũ = 0. Also, if u has

the form u = rλv, then ũ has the form rλṽ for ṽ := A
1/2
22 v. Lastly, we show that boundary conditions

are transformed accordingly: Assume ϕ ∈ {0, α}. Observe for Dirichlet boundary conditions:

v(ϕ) = 0 ⇐⇒ A1/2v(ϕ) = 0, (4.1)

due to invertibility of A1/2. For Neumann boundary conditions, assume:

b2(ϕ)(∂ϕv)(ϕ) +
λ

2
b1(ϕ)v(ϕ) = 0,

where b• are defined as in (3.8) by A. Observe that b̃• = A
−1/2
22 b•A

−1/2
22 are the corresponding

coefficients for the tuple Ã and that:

b̃2(ϕ)(∂ϕṽ)(ϕ) +
λ

2
b̃1(ϕ)ṽ(ϕ) = A

−1/2
22

(
b2(ϕ)(∂ϕv)(ϕ) +

λ

2
b1(ϕ)v(ϕ)

)
= 0.

Since A1/2
22 is invertible, the converse implication is clear.

In the following, we refer to elliptic tuples A with A22 = Id` as monic elliptic tuples, and to LA as a
monic elliptic operator. Additionally, we call Ã, given in Lemma 4.1, the monic reduction of A.

Factorization of monic matrix polynomials

Consider a monic elliptic operator LA. Taking ξ = (1, β) ∈ R2, we obtain the matrix polynomial

LA(1, β) = LA(ξ) = A11 + 2A12β + Id` β
2,

which can be factorized into linear terms.

Lemma 4.2. 1 Consider a monic elliptic tuple A = (A11, A12, Id`). Then:

i) There exists some V ∈ Mat`(C) such that

A11 + 2A12β + Id` β
2 = (V ∗ − Id` β)(V − Id` β) ∀β ∈ C, (4.2)

and σ(V ) ⊂ UHP.

ii) Assume V = C + iD with C = ReV and D = ImV , then

A12 = −1

2
(C + CT ), A11 = CTC +DTD, (4.3)

D = DT , CTD = DTC. (4.4)

2 On the other hand, assume V = C + iD for C,D ∈ Mat`(R) which satisfy the algebraic
relations (4.4). Then:
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Spectral bounds for the operator pencil of an elliptic system in an angle 15

i) V satisfies (4.2) for A• as defined by (4.3).

ii) If σ(V ) ∩ R = ∅, then the tuple defined by A22 = Id` and (4.3) is monic elliptic.

This result relies on a factorization property of nonnegative matrix polynomials as found in [10]. For the
convenience of the reader, this result and all definitions necessary to understand it are summarized in
Appendix C, which we refer to in the proof.

Proof. 1.i) Existence of such V with σ(V ) ⊂ clos(UHP) follows from Theorem C.1 since the matrix
polynomial LA(1, β) is monic, self-adjoint, and nonnegative due to Lemma 3.2. It remains to show
σ(V ) ∩ R = ∅. Assuming the contrary, we have β ∈ σ(V ) ∩ R, implying

det(V − Id` β) = 0
(4.2)
=⇒ det

(
A11 + 2A12β + Id` β

2
)

= 0,

a contradiction to Lemma 3.2.
1.ii) Writing V = C + iD, A11 = V ∗V , and A12 = −1

2
(V ∗ + V ), we get:

A11 = (CT − iDT )(C + iD) = CTC +DTD + i(−DTC + CTD),

A12 = −1

2
(CT + C) + i(−DT +D).

Now, the imaginary part in both RHS’s must vanish since A11 and A12 are real-valued. Thus, (4.3)
and (4.4) follow.
2.i) Assume we define V = C + iD for C,D ∈ Mat`(R) satisfying (4.4). It is clear from the last
calculation that we obtain (4.2) for A• given in (4.3).
2.ii) We additionally assume σ(V ) ∩ R = ∅ and prove that the corresponding operator LA is elliptic.
First, we need to show that A11, A12, Id` are all symmetric and that A11, Id` > 0. Symmetry is clear
by the definition of A12 and A11 given in (4.3). For positive definiteness, note that A11 = V ∗V , which
is positive definite since 0 /∈ σ(V ). Lastly, using Lemma 3.2, it suffices to show that

det(LA(1, β)) 6= 0 ∀β ∈ R.

This follows from

det
(
(V ∗ − Id` β)(V − Id` β)

)
= det(V ∗ − Id` β) det(V − Id` β) 6= 0 ∀β ∈ R,

since σ(V ) ∩R = ∅ and thus also σ(V ∗) ∩R = ∅. By definition, LA is monic, which completes the
proof.

Definition 4.3. Assume that LA is a monic elliptic operator. We call V ∈ Mat`(C) fulfilling 1.i) in
Lemma 4.2 a standard root of LA.

Example 4.4. In the case of the Laplacian tuple A = (Id`, 0, Id`), a standard root is given by
V = i Id`.

By Lemma 4.2, it is clear that any monic elliptic operator admits at least one standard root. We derive
some more interesting properties of standard roots.

Lemma 4.5. Let V be a standard root of a monic elliptic differential operator LA. Then D = ImV is
positive definite.
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Proof. Let us write V = C+ iD for C,D ∈ Mat`(R), where V is the standard root under consider-
ation. Due to Lemma 4.2, we have D = DT such that all eigenvalues of D are real, and we need to
show that they are all positive. First, we argue that 0 /∈ σ(D). Assume the contrary, 0 ∈ σ(D), and
derive a contradiction. In this case, there is v ∈ R` \{0} such thatDv = 0. Due to the commutativity
relations in Lemma 4.2, we have 0 = CTDv = DCv. From this, it follows that either Cv = 0 or
Cv 6= 0 is also an eigenvector of D with eigenvalue 0. If Cv = 0, it would follow that V v = 0,
which is a contradiction since 0 cannot be an eigenvalue of V by Lemma 4.2. So, assuming the lat-
ter, spanC ({v, Cv}) ⊂ kerD. But repeating the discussion with Cv instead of v, we conclude that
Cnv 6= 0, for arbitrary n ∈ N, must also be an eigenvector of D with eigenvalue 0. Define the cyclic
(complex) subspace generated by v:

Sv := spanC ({Cnv : n ∈ N0}) .

By the above derivation, we have D(Sv) = {0}, and by its definition, it is clear that C(Sv) ⊂ Sv.
This implies C|Sv = V |Sv . Thus, Sv is an eigenspace of V and moreover, V has a real-valued matrix
representation (the same as C) for the subspace Sv. This implies that V has either a real eigenvalue
or two different complex conjugated eigenvalues, which contradicts V being a standard root since
σ(V ) ⊂ UHP. Thus, we have shown that 0 /∈ σ(D).
Next, we argue why D cannot have negative eigenvalues. This follows by a simple scaling argument.
Define for any ρ ≥ 1

Vρ := C + i · ρD.

Observe that Cρ := ReVρ = C and Dρ := ImVρ = ρD still fulfill the algebraic relations (4.4).
Moreover, the operator LA,ρ defined by Vρ (second part of Lemma 4.2) is elliptic for any ρ ≥ 1, since
we can write the matrix polynomial as

LA,ρ(1, β) = (ρ− 1)D2 + A11 + 2A12β + Id` β
2,

and LA(1, β) > 0, for β ∈ R, implies LA,ρ(1, β) > 0 since (ρ − 1)D2 is positive semi-definite.
Now, let us assume that r ∈ σ(D) for some r < 0 and derive a contradiction. Since all eigenvalues
of D are nonzero, we get for the spectrum

σ(Vρ) = σ(C + iρD)
ρ→∞−−−→ iρ · σ(D)

in the appropriate sense. Since 0 > r ∈ σ(D), it means that for sufficiently large ρ > 1 there exists
some βρ ∈ σ(Vρ) with Im βρ < 0. Consequently, because the path

[1,∞) 3 ρ 7→ Vρ ∈ Mat`(C)

is continuous and σ(V ) ⊂ UHP, there must be some intermediate 1 < ρ̃ < ρ where

σ(Vρ̃) ∩ R 6= ∅.

However, this contradicts the ellipticity of LA,ρ̃ which we just have shown.

The next statement summarizes the main result concerning standard roots.

Theorem 4.6. Consider LA, a monic elliptic operator, and V a standard root of LA.

i) The standard root of LA is unique.
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ii) V satisfies A11 + 2A12V + Id` V
2 = 0 = A11 + 2A12V + Id` V

2
.

iii) V can be written as V = (S + i Id`)D, where both S,D ∈ Mat`(R) are symmetric and
D > 0.

Conversely, any V = (S + i Id`)D with S,D ∈ Mat(R, `) symmetric and D > 0 is the standard
root of the monic elliptic operator LA for the tuple

A = (A11 = V ∗V,A12 = −1

2
(V + V ∗), A22 = Id`). (4.5)

Proof. Consider LA, a monic elliptic operator, and let V ∈ Mat`(C) be a standard root.

i) Uniqueness of V follows from LA(1, β) = (V ∗ − Id` β)(V − Id` β), σ(V ) ⊂ UHP, σ(V ∗) ⊂
−UHP, and uniqueness of monic Γ-spectral right divisors for matrix polynomials. For the latter, we
refer to §4.1 in [10], in particular Theorem 4.1 and the comment thereafter.

ii) The first equality follows by A11 = V ∗V and A12 = −1
2
(V + V ∗). The second by complex

conjugation and A• ∈ Mat`(R).

iii) By Lemma 4.2 and Lemma 4.5, we can write V = C + iD for C,D ∈ Mat`(R), where D > 0
and (4.4) holds. In particular, we can invert D and thus V = (S + i Id`)D for S = CD−1. The
symmetry of S follows from:

ST = (D−1)TCT = D−1CTDD−1 (4.4)
= D−1DCD−1 = CD−1 = S.

Lastly, consider V = (S + i Id`)D with S,D ∈ Mat(R, `) symmetric and D > 0. We show that
V is the standard root of LA for A given in (4.5). By Lemma 4.2, it suffices to verify the algebraic
relations

D = DT , (SD)TD = D(SD),

which are trivially fulfilled by symmetry of S and D, and to show σ(V )∩R = ∅. The latter statement
follows, due to D > 0, from Lemma E.1 and σ(V ) = σ(D1/2SD1/2 + iD).

Remark. One may wonder if V with the properties given in Theorem 4.6 is diagonalizable. A counter
example is given by:

V =

(
3i − 1√

3

−
√

3 i

)
=

((
0 − 1√

3

− 1√
3

0

)
+ i

(
1 0
0 1

))(
3 0
0 1

)
.

Remark. The discussion generalizes for nonmonic elliptic tuples A = (A11, A12, A22) by defining a
standard root V ∈ Mat`(C) to satisfy σ(V ) ⊂ UHP and

A11 + 2A12β + A22β
2 = (V ∗ − Id` β)A22(V − Id` β).

One can show that V is related to the standard root Ṽ of the monic reduction Ã of A by V =
A
−1/2
22 Ṽ A

1/2
22 . For our purposes, it suffices to work with the monic reduction.
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4.2 Solutions for the model problem without boundary conditions

It is time to close the gap between algebra and analysis and justify the time spent on exploring the
algebraic structure of LA. In this section, solutions for the model problem without boundary conditions
are derived. The idea is based on the solution basis given in §2.2 of [6]. For this, we first need to define
the complex exponent λ ∈ C of a complex number σ ∈ C\{0}. We do so by using three branches of
the complex logarithm, i.e. three different arg-functions (see §8.2 in [4] for a reference). To distinguish
between them, we introduce the set of symbols a ∈ {o,+,−} and use these as decoration. Explicitly,
we define

σλa := exp(λ loga(σ)) for loga(σ) := log(|σ|) + iλ arga(σ). (4.6)

Here, log(r) for r ∈ R is simply the standard logarithm for positive real numbers. The arga-functions
are uniquely determined by requiring that loga inverts exp on the domain C\{0} and by the following
conditions:

arg+(σ) ∈ [0, 2π), argo(σ) ∈ (−π, π], arg−(σ) ∈ (−2π, 0] ∀σ ∈ C \ {0}.

With this choice, logo represents the principal logarithm, denoted by log in the following, and it exhibits
a discontinuity along the branch cut of the negative real axis. The introduction of log+ and log− serves
to provide continuous extensions of the logarithm that avoid the discontinuity at arg(σ) = π, shifting
the branch cut instead to the positive real axis. Note that argo = arg+ on UHP and argo = arg− on
−UHP.

Consider 0 < α < 2π and the model problem for a monic elliptic tuple A with standard root V . We
define, for λ ∈ C \ {0} and c1, c2 ∈ C` arbitrary, the complex vector-valued functions:

uλ : R2 \ {0} → C`, (x1, x2) 7→ (x1 Id` +x2V )λ+c1 + (x1 Id` +x2V )λ−c2. (4.7)

Here, the exponentiation of matrices is defined via the functional calculus (see Appendix D). It is well-
defined if 0 /∈ σ(x1 Id` +x2V ) = x1 + x2σ(V ) is ensured for any (x1, x2) ∈ R2 \ {0}, which
follows from σ(V ) ⊂ UHP. We will show that any solution to the model problem without boundary
conditions (3.4) is of the form (4.7). For this, note that uλ = rλvλ, where

vλ : [0, 2π)→ C`, ϕ 7→ (cos(ϕ) Id` + sin(ϕ)V )λ+c1 + (cos(ϕ) Id` + sin(ϕ)V )λ−c2. (4.8)

Remark. Let us briefly discuss the choice of λ±. Since σ(V ) ⊂ UHP, we have

σ(cos(ϕ) Id` + sin(ϕ)V ) ⊂ UHP for 0 < ϕ < π,

σ(cos(ϕ) Id` + sin(ϕ)V ) ⊂ −UHP for π < ϕ < 2π.

Because the arg-function in the principle logarithm has a discontinuity at ϕ = π, the function ϕ 7→
(cos(ϕ) Id` + sin(ϕ)V )λ is not continuous. This issue is resolved by changing λ to λ+. A similar
reasoning applies to V and λ−.

Also, note that uλ satisfies LAuλ = 0. For this, observe that

LA(∂x1 , ∂x2)uλ =
2∑

i,j=1

Aij∂xi∂xjuλ

=(A11 + 2A12V + V 2)(x1 Id` +x2V )(λ−2)+c1 + (A11 + 2A12V + V
2
)(x1 Id` +x2V )(λ−2)−c2

vanishes by Theorem 4.6. Here, the chain rule is applied, and it is important to note that the differenti-
ation rules for •λa are consistent regardless of the choice a ∈ {o,+,−}.
We have the following result.
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Proposition 4.7. Consider 0 < α < 2π and a monic elliptic operator LA with standard root V . For
λ ∈ C \ {0}, any solution uλ = rλv to LAuλ = 0 is of the form (4.7). Similarly, any solution to
LA(λ)vλ = 0 is of the form (4.8).

Proof. By the preceding discussion and the final remark in Section 3.2, it suffices to show that there
are no (c1, c2) ∈ C2` \ {0} such that uλ in (4.7) reduces to uλ = 0. Let us assume the contrary and
derive a contradiction. Then there are c1, c2 ∈ C`, at least one c• 6= 0, such that

(cos(ϕ) Id` + sin(ϕ)V )λ+c1 + (cos(ϕ) Id` + sin(ϕ)V )λ−c2 = 0 for ϕ ∈ [0, α). (4.9)

In particular, for ϕ = 0, this leads to c1 = −c2. Differentiating (4.9) and evaluating at ϕ = 0+, we get
the condition

(V − V )c1 = 0 =⇒ det(ImV ) = 0,

which is a contradiction to Theorem 4.6.

Remark. Note that we excluded λ = 0 because

u0(x1, x2) = c1 + c2, for c1, c2 ∈ C`,

does not yield 2` linearly independent solutions. For this reason, the case λ = 0 was treated sepa-
rately in Lemma 3.3.

Example 4.8. Assume the standard root V in the above discussion is diagonalizable. Then we can
write V = QBQ−1 for Q,B ∈ Mat`(C) with B = diag(β1, . . . , β`) the diagonal matrix of eigen-
values. A corresponding eigenvector qk to βk for 1 ≤ k ≤ ` is given by the k-th row of Q. Using
properties of the functional calculus (Appendix D), we derive:

(x1 Id` +x2V )λ+ = (x1 Id` +x2QBQ
−1)λ+ = Q(x1 Id` +x2B)λ+Q−1.

By a similar argument for (x1 Id` +x2V )λ− , it is deduced that any solution uλ = rλv to LAuλ = 0
can be written as

uλ(x1, x2) =
∑̀
l=1

dlql(x1 + x2βl)
λ+ + dl+`ql(x1 + x2βl)

λ− for d• ∈ C.

To see this, observe that (x1 Id` +x2B)λ+ is diagonal, with entries (x1 + x2β•)
λ+ , and that the

vectors d•q• are related to c• in (4.7) through Q−1.

Remark. The representation of solutions for the model problem without boundary conditions provided
in (4.7) is new. However, an alternative representation involving complex contour integrals is known
and can be found in [5] and [6]. In these references, the explicit solution basis discussed in Example
4.8 (with a slightly different representation) is introduced. In fact, this basis served as the foundational
idea for the representation of solutions for general (non-diagonalizable) V as presented in this work.

Remark. The reason for avoiding α = 2π in the discussion and Prop. 4.7 is to prevent multivalued
arga-functions. Nonetheless, Prop. 4.7 can be canonically generalized to α = 2π by considering a
continuous continuation of arga from the case α < 2π.
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5 Analysis of the model problem with boundary conditions

After deriving explicit formulas for solutions of the model problem without boundary conditions, we
now investigate solutions of the model problem with boundary conditions. This will be equivalent to the
vanishing of the determinant of some matrix Mλ,α. For the remainder of this section, let us assume
0 < α < 2π, and that we consider a monic elliptic tuple A = (A11, A12, Id`) with standard root V .
We consistently write V = (S + i Id`)D = C + iD for C,D, S ∈ Mat`(R) given in Lemma 4.2
and Theorem 4.6. In this case, by Prop. 4.7, we have that u = rλv for λ ∈ C \ {0} is a solution to
LA(∂x1 , ∂x2)u = 0 if there exist c1, c2 ∈ C` such that:

v(ϕ) = (cos(ϕ) Id` + sin(ϕ)V )λ+c1 + (cos(ϕ) Id` + sin(ϕ)V )λ−c2. (5.1)

5.1 Dirichlet boundary conditions

Assume that rλv, for v in (5.1), satisfies Dirichlet boundary conditions on Γ±. Consequently,

0 = v(0) = c1 + c2, 0 = v(α) = V λ+
α c1 + Vα

λ−
c2,

where we denote

Vα = cos(α) Id` + sin(α)V = cos(α) Id` + sin(α)SD + i sin(α)D. (5.2)

Thus, finding u = rλv 6= 0 for the model problem with Dirichlet boundary conditions is equivalent to
the vanishing of the determinant of Mλ,α ∈ Mat2`(C) which is given by

Mλ,α :=

(
Id` Id`

V λ+
α Vα

λ−

)
.

To see this, apply the block vector (c1, c2) ∈ C` from the right to Mλ,α. Using Lemma 2.1, we derive:

0 = det(Mλ,α) ⇐⇒ 0 = det
(
V λ+
α − Vα

λ−
)
. (5.3)

We can further manipulate the RHS in (5.3):

0 = det
(
V λ+
α − Vα

λ−
)
⇐⇒ 0 = det

(
D1/2V λ+

α D−1/2 −D1/2Vα
λ+
D−1/2

)
by the product rule for determinants since D is positive definite and thus det

(
D±1/2

)
6= 0. We set

Zα := D1/2VαD
−1/2 and note that

Zα = cos(α) +D1/2SD1/2 sin(α) + iD sin(α) (5.4)

is a symmetric matrix. By properties of the functional calculus like D1/2V λ+
α D−1/2 = Zλ+

α (Appendix
D), we derive:

0 = det(Mλ,α) ⇐⇒ 0 = det
(
Zλ+
α − Zα

λ−
)
.

The discussion shows the following result.

Proposition 5.1. Consider 0 < α < 2π and a monic elliptic operator LA with standard root V =
(S + i Id`)D. The model problem with Dirichlet boundary conditions has for λ ∈ C \ {0} a solution
rλv 6= 0 if and only if

0 = det
(
Zλ+
α − Zα

λ−
)
, (5.5)

for Zα given in (5.4).
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5.2 Mixed boundary conditions

Before we continue, let us characterize the Neumann boundary condition NAv(ϕ) = 0 for ϕ ∈
{0, α}. For this, we calculate (note that n = (− sin(ϕ), cos(ϕ)) = 1

r
(−x2, x1) is the normal vector):

2∑
i,j=1

Aijni∂xj(x1 Id` +x2V )λ+ =
λ

r

(
− x2(A11 + A12V ) + x1(A12 + V )

)
(x1 Id` +x2V )(λ−1)+ .

Since V solves A11 + A12V = −A12V − V 2 (see Theorem 4.6), we obtain

2∑
i,j=1

Aijni∂xj(x1 Id` +x2V )λ+ =
2λ

r
(A12 + V )(x1 Id` +x2V )λ+ .

Similarly, we derive
∑2

i,j=1Aijni∂xj(x1 Id` +x2V )λ− = 2λ
r

(A12 + V )(x1 Id` +x2V )λ− . Now, as-

sume that rλv 6= 0, for v in (5.1), satisfies Dirichlet boundary conditions on Γ+ and Neumann bound-
ary conditions on Γ−. Thus, the coefficients c• in (5.1) satisfy (recall that we assumed λ 6= 0):

0 = c1 + c2, 0 = (A12 + V )V λ+
α c1 + (A12 + V )Vα

λ−
c2,

for Vα in (5.2). This is equivalent to the condition 0 = det(Mλ,α), where:

Mλ,α :=

(
Id` Id`

(A12 + V )V λ+
α (A12 + V )Vα

λ−

)
.

Using Lemma 2.1, we derive:

0 = det(Mλ,α) ⇐⇒ 0 = det
(

(A12 + V )V λ+
α − (A12 + V )Vα

λ−
)
.

Write A12 = −1
2
(V + V ∗) and V = (S + i Id`)D (see Theorem 4.6) such that:

A12 + V =
1

2
[S,D] + iD, A12 + V =

1

2
[S,D]− iD, (5.6)

and we conclude:

0 = det(Mλ,α) ⇐⇒ 0 = det

((
1

2
[S,D] + iD

)
V λ+
α −

(
1

2
[S,D]− iD

)
Vα

λ−

)
.

Now, again using Zα = D1/2VαD
−1/2 and det

(
D±1/2

)
6= 0, we reformulate 0 = det(Mλ,α) as:

0 = det

(
D−1/2

(
1

2
[S,D] + iD

)
D−1/2Zλ+

α −D−1/2

(
1

2
[S,D]− iD

)
D−1/2Zα

λ−

)
= det

(
1

2
D−1/2[S,D]D−1/2(Zλ+

α − Zα
λ−

) + i(Zλ+
α + Zα

λ−
)

)
.

This leads to the following result.

Proposition 5.2. Consider 0 < α < 2π and a monic elliptic operator LA with standard root V =
(S + i Id`)D. The model problem with mixed boundary conditions has for λ ∈ C \ {0} a solution
rλv 6= 0 if and only if

0 = det

(
1

2
[D−1/2SD−1/2, D](Zλ+

α − Zα
λ−

) + i(Zλ+
α + Zα

λ−
)

)
,

for Zα given in (5.4).
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5.3 Additional ellipticity conditions for Neumann boundary

So far, we have only set ellipticity conditions for the operatorLA (Def. 3.1) but no conditions forB±A . For
the model problem to be an elliptic system in the sense of Agmon-Douglis-Nirenberg, we additionally
need that B±A satisfies the so called complementing boundary condition (discussed in more detail in
Appendix B). To motivate the following definitions, note that the matrix Mλ,α for Neumann boundary
conditions will have the form:

Mλ,α :=

(
(A12 + V )V

λ+
0 (A12 + V )V0

λ−

(A12 + V )V λ+
α (A12 + V )Vα

λ−

)
=

(
A12 + V A12 + V

(A12 + V )V λ+
α (A12 + V )Vα

λ−

)
This form is deduced by similar derivations as in the last section, and the last equation is due to
V0 = Id`. Now, using Lemma 2.1 is not immediate since it is not clear if A12 + V is invertible. One
can show that invertibility of A12 + V is equivalent to the complementing boundary condition for N±A
(Appendix B).

Remark. A discussion of the complementing boundary condition in the case of Dirichlet boundary
conditions for Γ− was not necessary, as it is automatically satisfied for strongly elliptic systems. See
Remark 3.2.7 in [7].

For the subsequent derivations, we introduce the following ellipticity conditions:

Definition 5.3. Consider an elliptic tupleA, where V = C+ iD forC,D ∈ Mat`(R) is the standard
root of its monic reduction. We say

� A is Neumann well-posed if 2i /∈ σ([D−1, C]).

� A is contractive Neumann well-posed if ρ([D−1, C]) < 2.

Clearly, contractive Neumann well-posedness implies Neumann well-posedness. How do these defi-
nitions relate to the considerations discussed above? From (5.6):

A12 + V =
1

2
[S,D] + iD =

1

2
D(D−1SD − S + 2i Id`),

which is invertible if and only if −2i is not an eigenvalue of:

D−1SD − S = D−1C − CD−1 = [D−1, C]. (5.7)

Note that, first, σ([D−1, C]) ⊂ iR, and second, it ∈ σ([D−1, C]) if and only if −it ∈ σ([D−1, C])
for any t ∈ R. This follows from the computation:

σ([D−1, C]) = σ(D1/2[D−1, C]D−1/2) = σ([D−1/2SD−1/2, D]) ⊂ iR. (5.8)

The last inclusion holds sinceD−1/2SD−1/2 andD are symmetric, their commutator is skew-symmetric,
and skew symmetric matrices have imaginary, complex conjugated eigenvalues. Thus, we have shown
that invertibility of A12 + V is equivalent to Neumann well-posedness.

Contractive Neumann well-posedness is related to path-connectedness to the Laplace operator via
Neumann well-posed elliptic tuples. To understand this, consider a contractive Neumann well-posed
tuple A = (A11, A12, A22). We can find a continuous path

[0, 1] 3 s 7→ A(s) = (A11(s), A12(s), A22(s)) ∈ (Mat`(R))3
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such that A(1) = (Id`, 0, Id`) and A(0) = A, with each A(•) being contractive Neumann well-
posed. The path is constructed in three segments which can be glued together.
First Segment: Start with (A11, A12, A22) and deform it as follows:

[0, 1] 3 s 7→ A(s) = (A
−s/2
22 A11A

−s/2
22 , A

−s/2
22 A12A

−s/2
22 , A1−s

22 ).

Note that

A(0) = A, A(1) = (A
−1/2
22 A11A

−1/2
22 , A

−1/2
22 A12A

−1/2
22 , Id`),

and that all A(•) are elliptic tuples and have the same monic reduction as A(1). Thus, if A(0) is
contractive Neumann well-posed, then all A(•) are contractive Neumann well-posed.
Second Segment: Start with a contractive Neumann well-posed elliptic tuple of the form (A11, A12, Id`).
Let us write V = C + iD for its standard root and define a path of matrices Vs := (1 − s)C + iD
for s ∈ [0, 1]. Using Theorem 4.6, these represent the standard roots of the elliptic tuples:

[0, 1] 3 s 7→ A(s) =

(
V ∗s Vs,−

1

2
(V ∗s + Vs), Id`

)
.

Note that:

ρ([(ImVs)
−1,ReVs]) = (1− s)ρ([D−1, C]) < 2(1− s) < 2

since ρ([D−1, C]) < 2 due to A(0) being contractive Neumann well-posed. Moreover, we have
A(1) = (D2, 0, Id`) due to −1

2
(V ∗1 + V1) = 0.

Third Segment: Start with an elliptic tuple of the form (A11, 0, Id`), set:

[0, 1] 3 s 7→ A(s) = (A
−s/2
11 A11A

−s/2
11 , 0, Id`),

and note that A(1) = (Id`, 0, Id`). Ellipticity along the path is clear by Lemma 3.2, as is contractive
Neumann well-posedness since ReV = 0 for any standard root V along the way.

On the other hand, any tuple not being contractive Neumann well-posed cannot be connected to the
Laplace operator by a path of Neumann well-posed systems. To illustrate this, consider a continuous
path of elliptic tuples

[0, 1] 3 s 7→ A(s) = (A11(s), A12(s), A22(s)) ∈ (Mat`(R))3

such that A(1) = (Id`, 0, Id`). Let Vs = Cs + iDs denote the standard root of the monic re-
duction of A(s). If A(0) is not contractive Neumann well-posed, then there is t > 2 such that
it ∈ σ([D−1

0 , C0]). Note that σ([D−1
1 , C1]) = {0}, due to C1 = 0 (see Example 4.4). So by

continuity and σ([D−1
s , Cs]) ⊂ iR, there must be some intermediate value s ∈ (0, 1) such that

2i ∈ σ([D−1
s , Cs]) and Neumann well-posedness is violated. The discussion leads to the following

result:

Lemma 5.4. Consider A an elliptic touple. Then:

i) IfA is contractive Neumann well-posed, there exists a continuous path of contractive Neumann
well-posed elliptic tuples connecting A to (Id`, 0, Id`).

ii) If there exists a continuous path from A to (Id`, 0, Id`) consisting of Neumann well-posed
tuples, then A is contractive Neumann well-posed.
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5.4 Neumann boundary conditions

We proceed with Neumann boundary conditions for the model problem. Assume that rλv 6= 0, for v
in (5.1), satisfies Neumann boundary conditions on Γ±. Additionally, assume that the elliptic tuple A
is Neumann well-posed. As mentioned in the last section, we can derive the condition det(Mλ,α) = 0
for

Mλ,α =

(
A12 + V A12 + V

(A12 + V )V λ+
α (A12 + V )Vα

λ−

)
.

Using Lemma 2.1 and determinant rules (here Neumann well-posedness is essential such that A12 +
V is invertible), we obtain:

0 = detMλ,α ⇐⇒ 0 = det
(

(A12 + V )V λ+
α (A12 + V )−1 − (A12 + V )Vα

λ−
(A12 + V )−1

)
.

By substituting (5.6), we derive:

0 = det

((
1

2
[S,D] + iD

)
V λ+
α

(
1

2
[S,D] + iD

)−1

−
(

1

2
[S,D]− iD

)
Vα

λ−

(
1

2
[S,D]− iD

)−1
)
.

Rewriting Zα = D1/2VαD
−1/2 and using similar arguments as before, we arrive at the following

result.

Proposition 5.5. Consider 0 < α < 2π and a Neumann well-posed monic elliptic operator LA with
standard root V = (S + i Id`)D. The model problem with Neumann boundary conditions has for
λ ∈ C \ {0} a solution rλv 6= 0 if and only if

0 = det
(
E Zλ+

α E−1 − E Zα
λ−
E
−1
)
,

for Zα given in (5.4) and E = 1
2
D−1/2[S,D]D−1/2 + i Id`.

6 Matrix equations associated to the model problem

In the previous section, we derived matrix equations 0 = det(Mλ,α) corresponding to solutions of the
model problem with Dirichlet, mixed, or Neumann boundary conditions. This section provides bounds
on |Reλ|, where 0 = det(Mλ,α) is solvable for the case of Dirichlet and mixed boundary conditions.
We emphasize the following two points, which will be relevant throughout the section:

� Note that 0 = det(A) for A ∈ Mat`(C) if and only if 0 ∈ σ(A). Our strategy is to use the
numerical range W (A) and angular field W ′(A) to bound the eigenvalues of A away from
zero. For details and the properties N1-N8 of the numerical range, we refer to Appendix E.

� A matrixZ ∈ Mat`(C) satisfyingZT = Z (i.e., both its real and imaginary part are symmetric)
is called a (complex) symmetric matrix. Note that Z∗ = Z for symmetric matrices.

Definition 6.1. Denote by Mat`(C)+i the subset of symmetric matrices Z ∈ Mat`(C) satisfying
Im(Z) > 0. Similarly, denote by Mat`(C)−i the set of symmetric matrices satisfying − Im(Z) > 0.
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For Z ∈ Mat`(C) with Z = ZT , ImZ > 0 is equivalent to W (Z) ⊂ ±UHP. This is derived by
applying N7 in Appendix E to ∓iZ .

We present two key results that will guide the subsequent proofs. The proofs of these results are given
in Appendix E.

Lemma 6.2. Consider Z ∈ Mat`(C)±i. For λ ∈ [−1, 1] \ {0} we have

W (Zλ) ⊂ sgn(λ) · {z ∈ C \ {0} : ± arg(z) ∈ (0, λπ)} ,

and, in particular, W ′(Zλ) ⊂ ± sgn(λ) UHP.

Lemma 6.3. Consider Z ∈ Mat`(C)+i and λ ∈ R \ {0}. Then the following holds:

i) sgn(λ)
(
Id`−(Ziλ)∗Ziλ

)
> 0,

ii) ρ((Ziλ)∗Ziλ)
λ→∞−−−→ 0,

iii) min{β : β ∈ σ((Ziλ)∗Ziλ)} λ→−∞−−−−→∞.

Finally, note that, in this section, complex exponentiation, as well as arg- and log-functions, will always
refer to the principal branch.

6.1 Dirichlet boundary conditions

Theorem 6.4. Consider Z ∈ Mat`(C)+i and λ ∈ C. The equation

0 = det
(
Zλ − Zλ

)
(6.1)

admits for |Reλ| ≤ 1 only the trivial solution λ = 0.

Proof. Consider Z ∈ Mat`(C)+i and λ ∈ C. Decompose λ into real and imaginary part λ =
λ1 + iλ2 and write:

0 = det
(
Zλ − Zλ

)
= det

(
Ziλ2Zλ1 − Zλ1

Z
iλ2
)

= det
(
Ziλ2Zλ1 − Zλ1

(Z−iλ2)∗
)

(6.2)

= det
(
Ziλ2Zλ1(Ziλ2)∗ − Zλ1

)
det
(
(Z−iλ2)∗

)
⇐⇒ 0 = det

(
Ziλ2Zλ1(Ziλ2)∗ − Zλ1

)
.

Here, we used Z = ZT and that matrix exponentials of symmetric matrices are again symmetric,

which allowed us to write (Z−iλ2)∗ = Z−iλ2 = Z
iλ2

. We also relied on det
(
Z
iλ2
)
6= 0, (Z−1)λ =

(Zλ)−1, and Ziλ2Zλ1 = Zλ1Ziλ2 (see Appendix D for all of these statements).

Case 1: Reλ 6= 0.

Let us assume λ1 ∈ [−1, 1] \ {0}. We aim to show that the spectrum of Ziλ2Zλ1(Ziλ2)∗ − Z
λ1

is bounded away from 0, implying that 0 = det
(
Zλ − Zλ

)
is not possible. From properties of the

numerical range:

σ(Ziλ2Zλ1(Ziλ2)∗ − Zλ1
) ⊂ W (Ziλ2Zλ1(Ziλ2)∗ − Zλ1

)

⊂W (Ziλ2Zλ1(Ziλ2)∗)−W (Z
λ1

) ⊂ W ′(Ziλ2Zλ1(Ziλ2)∗) + sgn(λ1) UHP

⊂W ′(Zλ1) + sgn(λ1) UHP ⊂ sgn(λ1) UHP, (6.3)
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where we used properties N3, N5, N4 given in Appendix E, and Lemma 6.2 (twice).

Case 2: Reλ = 0.

Next, assume λ1 = 0 and λ2 ∈ R\{0}. By (6.2), the argument boils down to show 0 6= det
(
Ziλ2(Ziλ2)∗ − Id`

)
.

This follows directly from Lemma 6.3.

The above cases show that (6.1) for λ ∈ C \ {0} with |Reλ| ≤ 1 does not have a solution. Finally,

note that λ = 0 is always a solution for any Z ∈ Mat`(C)+i, since Z0 = Id` = Z
0
.

6.2 Mixed boundary conditions

Theorem 6.5. Let Z ∈ Mat`(C)+i and A,B ∈ Mat`(R) be symmetric. Consider the equation:

0 = det
(

[A,B](Zλ − Zλ
) + i(Zλ + Z

λ
)
)
. (6.4)

Then:

i) Equation (6.4) has no solution λ ∈ C with |Reλ| ∈ (0, 1
2
].

ii) Equation (6.4) has a solution λ ∈ C with Reλ = 0 if and only if ρ([A,B]) > 1.

Note that [A,B] ∈ Mat`(R) is skew-symmetric due to

[A,B]T = (AB −BA)T = BTAT − ATBT = BA− AB = −[A,B].

Thus, σ([A,B]) ⊂ iR, and all eigenvalues come in conjugate pairs. Similarly, i[A,B] is Hermitian,
so σ(i[A,B]) ⊂ R.

Proof. Consider Z ,A,B as given in the statement, and λ ∈ C with |Reλ| ≤ 1
2
. Decompose λ into

real and imaginary part λ = λ1 + iλ2. Rewrite (6.4) as:

0 = det
((

[A,B](Zλ − Zλ
) + i(Zλ + Z

λ
)
)

= det
(

[A,B](Ziλ2Zλ1(Ziλ2)∗ − Zλ1
) + i(Ziλ2Zλ1(Ziλ2)∗ + Z

λ1
)
)

det
(
(Z−iλ2)∗

)
⇐⇒ 0 ∈ σ

(
[A,B](Ziλ2Zλ1(Ziλ2)∗ − Zλ1

) + i(Ziλ2Zλ1(Ziλ2)∗ + Z
λ1

)
)
. (6.5)

Here, we used the same arguments as in the derivation for (6.2). Again, we separate into two cases.

Case 1: λ1 6= 0.

In this case, Ziλ2Zλ1(Ziλ2)∗−Zλ1
is invertible as shown in (6.3). Thus, Equation (6.4) is due to (6.5)

equivalent to:

0 ∈ σ (M∗
1 [A,B]M1 + iM∗

1M2) for

M1 := Ziλ2Zλ1(Ziλ2)∗ − Zλ1
and M2 := Ziλ2Zλ1(Ziλ2)∗ + Z

λ1
.

For Case 1, it suffices to prove the following claim.

Claim 1: σ (M∗
1 [A,B]M1 + iM∗

1M2) ⊂ sgn(λ1) RHP for λ1 ∈ [−1
2
, 1

2
] \ {0}.
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Due to N3 in Appendix E, it suffices to show W (M∗
1 [A,B]M1 + iM1M2) ⊂ sgn(λ1) RHP. Note

that:

W (M∗
1 [A,B]M1) ⊂ W ′(M∗

1 [A,B]M1) ⊂ W ′([A,B]) ⊂ −i ·W ′(i[A,B]) ⊂ iR.

Here, we used properties N4, N2, N6 of the numerical range (Appendix E), as well as i[A,B] being
Hermitian. So by additivity of the numerical range N5, it suffices to showW (iM∗

1M2) ⊂ sgn(λ1) RHP
for the claim. This result follows from a more extensive derivation: Note that

sgn(λ1) RHP ⊃ W (iM∗
1M2) = W

(
i
(
Ziλ2Zλ1(Ziλ2)∗ − Zλ1

)∗ (
Ziλ2Zλ1(Ziλ2)∗ + Z

λ1
))

= W
(
i
(
Ziλ2Z

λ1
(Ziλ2)∗ − Zλ1

)(
Ziλ2Zλ1(Ziλ2)∗ + Z

λ1
))

is, due to N7, equivalent to:

0 < i sgn(λ1)
(
Ziλ2Z

λ1
(Ziλ2)∗ − Zλ1

)(
Ziλ2Zλ1(Ziλ2)∗ + Z

λ1
)

− i sgn(λ1)
(
Ziλ2Z

λ1
(Ziλ2)∗ + Zλ1

)(
Ziλ2Zλ1(Ziλ2)∗ − Zλ1

)
= 2i sgn(λ1)

(
Ziλ2Z

λ1
(Ziλ2)∗Z

λ1 −
(
Ziλ2Z

λ1
(Ziλ2)∗Z

λ1
)∗)

= 2 sgn(λ1)
(
iZiλ2Z

λ1
(Ziλ2)∗Z

λ1
+
(
iZiλ2Z

λ1
(Ziλ2)∗Z

λ1
)∗)

,

which is, again using N7, equivalent to:

sgn(λ1) RHP ⊃ W
(
iZiλ2Z

λ1
(Ziλ2)∗Z

λ1
)

(∗)
= W

(
iZiλ2Z

2λ1
(Ziλ2)∗

)
⇐⇒ sgn(λ1) RHP ⊃ W ′

(
iZiλ2Z

2λ1
(Ziλ2)∗

)
N4
= W ′

(
iZ

2λ1
)

(∗∗)⇐⇒ W ′
(
Z

2λ1
)
⊂ − sgn(λ1) UHP

N8⇐⇒ W ′ (Z2λ1
)
⊂ sgn(λ1) UHP,

where we used Z
λ1

(Ziλ2)∗ = (Ziλ2)∗Z
λ1

at (∗) and UHP = iRHP at (∗∗). The last statement
holds true by Lemma 6.2 and 0 < 2|λ1| ≤ 1. This shows Claim 1 and closes Case 1.

Case 2: λ1 = 0.

In this case, (6.5) can be rewritten as:

0 ∈ σ
(
[A,B](Zit(Zit)∗ − Id`) + i(Zit(Zit)∗ + Id`)

)
, (6.6)

where we write λ2 = t ∈ R in the following. For t = 0, this is equivalent to 0 ∈ σ (2i Id`), which is
not possible. So assume t 6= 0 such that − sgn(t)(Zit(Zit)∗ − Id`) > 0 due to Lemma 6.3. Define
for t ∈ R \ {0}:

Kt :=
(
Zit(Zit)∗ − Id`

) (
Zit(Zit)∗ + Id`

)−1
.

Alternatively, Kt can be given by the functional calculus Kt = f(Zit(Zit)∗) for

f : C \ {−1} → C, z 7→ z − 1

z + 1
. (6.7)
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Note that Kt is Hermitian, and by the spectral mapping theorem, along with Lemma 6.3, one has
− sgn(t)Kt > 0. Now (6.6) is equivalent to:

(6.6) ⇐⇒ 0 ∈ σ([A,B]Kt + i Id`) ⇐⇒ −i ∈ σ([A,B]Kt)

⇐⇒ −i sgn(t) ∈ σ(−[A,B] sgn(t)Kt) ⇐⇒ −i sgn(t) ∈ σ(|Kt|1/2[A,B]|Kt|1/2)

⇐⇒ i ∈ σ(|Kt|1/2[A,B]|Kt|1/2),

where we used det(Zit(Zit)∗ + Id`) 6= 0 and the abbreviation |Kt| = − sgn(t)Kt > 0. The
sign flip in the last line is due to skew-symmetry (note |Kt|1/2[A,B]|Kt|1/2 is skew-symmetric since
|Kt|1/2 symmetric and [A,B] skew-symmetric). Before we continue, let us show the following claim.

Claim 2: ρ(|Kt|1/2[A,B]|Kt|1/2) < ρ([A,B]) for any t ∈ R.

By the spectral mapping theorem, (6.7), and σ(Zit(Zit)∗) ⊂ R>0, we deduce that ρ(Kt) = ‖Kt‖ <
1, since Kt is Hermitian. Consequently, we have ‖[A,B]|Kt|‖ < ‖[A,B]‖ = ρ([A,B]). It follows
that:

ρ(|Kt|1/2[A,B]|Kt|1/2) = ρ([A,B]|Kt|) ≤ ‖[A,B]|Kt|‖ < ρ([A,B]),

which shows the claim.

It remains to show that Equation (6.4) has a solution λ ∈ C with Reλ = 0 if and only if ρ[A,B]) > 1.
So far, we have shown that Equation (6.4) admits such a solution if and only if

∃t ∈ R \ {0} : i ∈ σ(|Kt|1/2[A,B]|Kt|1/2). (6.8)

Case 2a: ρ([A,B]) ≤ 1.

If ρ([A,B]) ≤ 1, then Claim 2 implies ρ(|Kt|1/2[A,B]|Kt|1/2) < 1 for any t ∈ R\{0}. This shows
that (6.8) cannot hold, and hence, no solution exists in this case.

Case 2b: ρ([A,B]) > 1.

In this case, there exists some β ∈ σ(i[A,B]) such that β > 1. To complete the proof, it suffices to
consider from now on t < 0 such that |Kt| = Kt. Due to Lemma 6.3 and the definition of Kt, we

have Kt
t→0−−−−→ 0 and Kt

t→−∞−−−−→ Id` such that:

iK
1/2
t [A,B]K

1/2
t

t→0−−−−→ 0, iK
1/2
t [A,B]K

1/2
t

t→−∞−−−−→ i[A,B].

Note that iK1/2
t [A,B]K

1/2
t is Hermitian and admits only real eigenvalues. By continuity of eigenval-

ues, and since β > 1, there exist some t < 0 such that 1 ∈ σ(iK
1/2
t [A,B]K

1/2
t ). Consequently,

±i ∈ σ(K
1/2
t [A,B]K

1/2
t ) which shows that (6.8) holds. This completes the proof.

The next result is needed for mixed boundary conditions in the case where α ∈ {π, 2π}.

Theorem 6.6. Let Z ∈ Mat`(C)+i and A,B ∈ Mat`(R) be symmetric. Consider the equation:

0 = det
(
[A,B](eiλπ − e−iλπ) + i(eiλπ + e−iλπ) Id`

)
. (6.9)

Then:

i) All solutions λ ∈ C of (6.9) satisfy Reλ ∈ 1
2
Z.
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ii) If ρ([A,B]) ≤ 1, then all solutions λ ∈ C of (6.9) satisfy Reλ = 1
2

+ Z.

iii) If ρ([A,B]) < 1, then for any k ∈ Z there exist ` solutions λ ∈ C (counted with multiplicity)
satisfying Reλ = 1

2
+ k.

Proof. i) Equation (6.9) can be rewritten as:

0 = det ([A,B] sin(λπ) + cos(λπ) Id`) . (6.10)

First, note that λ ∈ Z cannot be a solution to (6.10) since then sin(λπ) = 0 and cos(λπ) 6= 0. Thus,
we can assume sin(λπ) 6= 0. Dividing by sin(λπ), the conditions becomes:

(6.9) ⇐⇒ − 1

tan(λπ)
∈ σ([A,B]). (6.11)

Now assume λ ∈ C\Z solves the RHS in (6.11). Since σ([A,B]) ∈ iR, it follows that tan(λπ) ∈ iR.
Using the following representation of complex tangent:

tan(x+ iy) =
sin(2x) + i sinh(2y)

cosh(2y) + cos(2x)
for x, y ∈ R,

we deduce that (6.9) implies 0 = sin(2πReλ). This is equivalent to Reλ ∈ 1
2
Z which shows i).

ii) Assume ρ([A,B]) ≤ 1. Write λ = k
2

+ it for k ∈ Z and t ∈ R. Using the tangent representation,
we have:

1

tan(λπ)
= −icosh(2tπ) + (−1)k

sinh(2tπ)
. (6.12)

If k ∈ 2Z, then
∣∣tan(λπ)−1

∣∣ > 1. In this case, λ cannot solve (6.9) due to (6.11) and ρ([A,B]) ≤ 1.

iii) Assume ρ([A,B]) < 1, so σ([A,B]) ⊂ i(−1, 1). If k ∈ 1 + 2Z, then the RHS of (6.12)
can be continuously extended to t = 0 (with the value 0) such that it defines a surjective function
f : R → i(−1, 1). By relation (6.11) and σ([A,B]) ⊂ i(−1, 1), Equation (6.9) has ` solutions
(counted with multiplicity) as t in (6.12) varies over (−∞,∞).
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7 Regularity results for the model problem

The main results of this work, bounds on |Reλ| for Dirichlet and mixed boundary conditions, are
given. Neumann boundary conditions are briefly discussed in Section 8.1.

7.1 Dirichlet boundary conditions

Theorem 7.1. Consider an elliptic tuple A = (A11, A12, A22). Define

Λα := {λ ∈ C : ∃rλv 6= 0 solving (3.2) with angle α and Dirichlet b.c.}

Then, for all λ ∈ Λα:

i) |Reλ| > 1 if 0 < α < π.

ii) λ ∈ Z \ {0} if α = π.

iii) |Reλ| > 1
2

if π < α < 2π.

iv) λ ∈ 1
2
Z \ {0} if α = 2π.

This result is not new, compare with §8.6 and §11.3 in [20]. However, the proof is new and utilizes the
methods derived in this work.

Proof. Due to Lemma 3.3, we can assume λ 6= 0 in the following. Furthermore, by Lemma 4.1,
it suffices to prove the result for monic elliptic tuples. For such tuples, Theorem 4.6 guarantees the
existence of a standard root V = (S+ i Id`)D ∈ Mat`(C), where S,D ∈ Mat`(R) are symmetric,
and D > 0. Due to Prop. 5.1, the corresponding model problem with Dirichlet boundary conditions
admits a solution rλv 6= 0 for λ ∈ C \ {0} and 0 < α < 2π if and only if

0 = det
(
Zλ+
α − Zα

λ−
)

(7.1)

admits a solution. Here, Zα = cos(α) + D1/2SD1/2 sin(α) + iD sin(α) is a complex symmetric
matrix. We now analyze the different cases for α:

i) 0 < α < π.

In this case, Zα ∈ Mat`(C)+i due to D > 0 and sin(α) > 0. By Lemma E.1, this implies σ(Zα) ⊂
UHP and σ(Zα) ⊂ −UHP. Consequently, we can replace λ+ and λ− with the principal branch
λo = λ, and Equation (7.1) simplifies to:

0 = det
(
Zλ
α − Zα

λ
)
.

The results follows by Theorem 6.4 and λ 6= 0.

ii) α = π.

In this case, Zπ = − Id`, so (7.1) reads

0 = det
(
((−1)λ+ − (−1)λ−) Id`

)
= det

(
(eiπλ − e−iπλ) Id`

)
= 0 ⇐⇒ sin(λπ) = 0.
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The last equation holds if and only if λ ∈ Z. This shows Λπ = Z \ {0} due to λ 6= 0.

iii) π < α < 2π.

Before we can reduce λ± to λ as in i), we need a trick. Since D > 0 and sin(α) < 0, Lemma

E.1 implies W (Zα) ⊂ −UHP. By Lemma 6.2, this further implies W (Z
1/2
α ) ⊂ −UHP. Define

Yα = −Z1/2
α and observe W (Yα) ⊂ UHP and Y 2

α = Zα. Since σ(Yα) ⊂ UHP by N3, it follows

that Y 2λ
α = Y

(2λ)+
α = Zλ+

α . Similarly, we obtain Yα
2λ

= Zα
λ−

. Thus, (7.1) reads:

0 = det
(
Y 2λ
α − Yα

2λ
)
.

Note that Yα = −Z1/2
α is a complex symmetric matrix with ImYα > 0 (due to W (Yα) ⊂ UHP and

N7 applied to −iYα). The result follows by Theorem 6.4 and λ 6= 0.

iv) α = 2π.

Here, Z2π = Id`, and we cannot use the original definition of λ±. However, as pointed out in the last
remark of Section 4.2, the result can be obtained as a boundary case of α < 2π. For this, define

Zε := (1− iε) Id` for ε > 0. Note Zε
ε→0+−−−→ Z2π, as well as

(Zε)
λ+ → e2πiλId`, (Zε)

λ− → e−2πiλId`.

Thus, taking the limit, (7.1) becomes:

det
(
(e2iπλ − e−2iπλ) Id`

)
= 0 ⇐⇒ sin(2λπ) = 0.

This shows Λ2π = 1
2
Z \ {0}.

7.2 Mixed boundary conditions

Theorem 7.2. Consider an elliptic tuple A = (A11, A12, A22). Define:

Λα := {λ ∈ C : ∃rλv 6= 0 solving (3.2) with angle α and mixed b.c.}

1 If A is contractive Neumann well-posed, then for all λ ∈ Λα:

i) |Reλ| > 1
2

if 0 < α < π.

ii) Reλ ∈ 1
2

+ Z if α = π.

iii) |Reλ| > 1
4

if π < α < 2π.

iv) Reλ ∈ 1
4

+ 1
2
Z if α = 2π.

2 If the assumption on contractive Neumann well-posedness is dropped, the only additional solu-
tions not satisfying the above conditions are of the form:

2.1 Reλ = 0 for i) and iii).

2.2 Reλ ∈ 1
2
Z for ii).

2.3 Reλ ∈ 1
4
Z for iv).

This result is new and was the central motivation for developing the framework introduced in this work.
Many arguments in the proof are similar to those for Dirichlet boundary conditions, so we omit details
where appropriate.
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Proof. By Lemma 3.3, we can assume λ 6= 0 in the following. Furthermore, by Lemma 4.1 (and
the definition of contractive Neumann well-posedness), it suffices to prove the result for monic ellip-
tic tuples (which are contractive Neumann well-posed). For such tuples, let V = (S + i Id`)D ∈
Mat`(C)+i, where S,D ∈ Mat`(R) are symmetric and D > 0, denote its standard root. Recall that
contractive Neumann well-posedness means:

ρ([(ImV )−1,ReV ]) < 2
(5.8)⇐⇒ ρ

(
1

2
[D−1/2SD−1/2, D]

)
< 1. (7.2)

Due to Prop. 5.2, the model problem with mixed boundary conditions admits a solution rλv 6= 0 for
λ ∈ C \ {0} and 0 < α < 2π if and only if

0 = det

(
1

2
[D−1/2SD−1/2, D](Zλ+

α − Zα
λ−

) + i(Zλ+
α + Zα

λ−
)

)
(7.3)

admits a solution for Zα defined in (5.4).

i) 0 < α < π.

As in the case of Dirichlet boundary conditions, λ± = λ, and Equation (7.3) becomes:

0 = det

(
1

2
[D−1/2SD−1/2, D](Zλ

α − Zα
λ
) + i(Zλ

α + Zα
λ
)

)
,

where Zα is a complex symmetric matrix with ImZα > 0. The result for i) and (a) follows from
Theorem 6.5 and (7.2).

ii) α = π.

Similar to the case of Dirichlet boundary conditions, (7.3) becomes:

0 = det

(
1

2
[D−1/2SD−1/2, D](eiλπ − e−iλπ) + i(eiλπ + e−iλπ) Id`

)
.

The result for ii) and (b) follows from Theorem 6.6 and (7.2).

iii) π < α < 2π.

By the same argument as in the Dirichlet case, we can rewrite (7.3) as

0 = det

(
1

2
[D−1/2SD−1/2, D](Y 2λ

α − Yα
2λ

) + i(Y 2λ
α + Yα

2λ
)

)
,

for some Yα ∈ Mat`(C)+i. The result for iii) and (a) follows from Theorem 6.5 and (7.2).

iv) α = 2π.

Using the same limiting argument as in the Dirichlet case, we conclude in this case:

0 = det

(
1

2
[D−1/2SD−1/2, D](e2iλπ − e−2iλπ) + i(e2iλπ + e−2iλπ) Id`

)
.

The result for iv) and (c) follows from Theorem 6.6 and (7.2).

Remark. For 1.) in Theorem 7.2, we could also include elliptic tuples where the standard root V
satisfies ρ([(ImV )−1,ReV ]) = 2. This follows because the main ingredients, Theorem 6.5 and
Theorem 6.6, cover this case. Then, however, the system is not Neumann well-posed.
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Remark. Neglecting the case mentioned in the previous remark, contractive Neumann well-posedness
precisely distinguishes scenarios where purely imaginary solutions occur. Verifiying contractive Neu-
mann well-posedness can be challenging in practice, however, Appendix B relates it to a stronger
ellipticity condition that is commonly used in linear elasticity.

Remark. Theorem 7.1 and Theorem 7.2 are highly relevant in the context of regularity theory, as they
provide the sharpest lower bounds on |Reλ| that can be expected for given 0 < α ≤ 2π. This is
also discussed in Section 8.4.

8 Summary and comments

In this work, we analyzed the model problem for an elliptic system in an angle 0 < α ≤ 2π under
Dirichlet, mixed, and Neumann boundary conditions within a new framework. For all three boundary
conditions, we derived a matrix equation of the form det(Mλ,α) = 0, which characterizes the pairs
(α, λ) such that the model problem with angle α admits a solution of the form rλv. Equivalently, this
equation determines eigenvalues of the corresponding operator pencil. For Dirichlet and mixed bound-
ary conditions, we established lower bounds on |Reλ| for nontrivial solutions. For the former, these
results align with those found in the literature. For the latter, our findings represent a new contribution.

8.1 Bounds on |Reλ| for Neumann boundary conditions

We did not discuss bounds for |Reλ| in the case of Neumann boundary conditions. Recall that the
corresponding matrix equation in this case is:

0 = det
(
E Zλ+

α E−1 − E Zα
λ−
E
−1
)
,

where Zα is given in (5.4) and E = 1
2
D−1/2[S,D]D−1/2 + i Id`. For α = π, we have Zλ±

π =
Id` e

±λπ, so the equation reduces to sin(λπ) = 0, as in the Dirichlet case (similarly for α = 2π).
For all other angles, the bounds on Reλ are less clear. As Figure 2 suggests, assuming contractive
Neumann well-posedness does not guarantee |Reλ| > 1/2 for π < α < 2π. However, if the elliptic
tupleA is formal positive (see Appendix B), the literature (see §12 in [20]) indicates that similar bounds
to those for Dirichlet boundary conditions can be obtained (for λ 6= 0).

8.2 The scalar case

In the scalar case (` = 1), the matricesA• reduce to real numbers, and the matrix equation det(Mλ,α) =
0 simplifies significantly. For Dirichlet and Neumann boundary conditions, the equations both reduce

to Zλ+
α = Zα

λ−
. For mixed boundary conditions, the equation becomes Zλ+

α = −Zα
λ−

.

8.3 Location of zeros

Theorem 7.1 and Theorem 7.2 provide bounds on |Reλ|, but they do not specify the existence and
location of λ in the complex plane. In principle, the corresponding statements do not exclude the
possibility of Λα = ∅ for given α. However, as Figure 1 suggests, this is not the case. For the par-
ticular cases α ∈ {π, 2π}, it is straightforward to show that λ = 1 (for α = π) and λ = 1/2 (for
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Figure 2: Relation between Reλ and α ∈ [π, 2π] for Neumann boundary conditions. The standard root of

the monic elliptic tuple is given by V = (S + i Id`)D for S =

(
0 0
0 2

)
, D =

(
2 1
1 2

)
. Although this tuple

is contractive Neumann well-posed, it is not formal positive. The qualitative behavior differs from the Dirichlet
(and mixed) case: Branch merging and |Reλ| < 1/2 can be observed. Note that only selected branches are
plotted.

α = 2π) are solutions with multiplicity ` for Dirichlet and Neumann boundary conditions. This follows
from det(Id` sin(λπ)) = sin(λπ)`. Similarly, by using iii) in Theorem 6.6, one can show for mixed
boundary conditions that there exist ` solutions rλv (counted with multiplicity) satisfying Reλ = 1

2

for α = π (Reλ = 1
4

for α = 2π) if we assume contractive Neumann well-posedness. For angles
α /∈ {π, 2π}, it is also possible to show the existence of solutions in certain strips of the complex
plane. See the proof of Theorem 8.6.2 in [20] for details, where a generalization of Rouché’s theorem
is used.

8.4 Optimality of the bounds

The bounds on |Reλ| for different cases of 0 < α ≤ 2π in Theorem 7.1 and 1.) of Theorem 7.2 are
sharp in the sense that one can construct a sequence of elliptic systems approaching these bounds.
Note that the bounds for α ∈ {π, 2π} are sharp, as discussed in Section 8.3. To illustrate this for
other angles, it suffices to consider the scalar case. For k ∈ N, define Sk := −k and Dk := 1. This
yields the standard root Vk = (Sk + i)Dk = −k + i, and from (5.4) we derive:

Zα,k = cos(α)− k sin(α) + i sin(α).

For 0 < α < π and Dirichlet boundary conditions, we obtain, as previously discussed, the condition

Zλ
α,k − Zα,k

λ
= 0 (here λ± = λ). This is solved by λα,k ∈ R such that Im(Z

λα,k
α,k ) = 0. As

arg(Zα,k)
k→∞−−−→ π, it follows that λk,α

k→∞−−−→ 1 for any 0 < α < π, which aligns with the bound
given in Theorem 7.1. Similar arguments can be given for π < α < 2π and for mixed boundary
conditions.
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Figure 3: Relation between Reλ and α ∈ [1, 2π] for different boundary conditions. The (scalar) elliptic tuple is
defined by the standard root V = −10+ i. In this case, the single branch for Neumann and Dirichlet boundary
conditions coincides, and all branches closely approximate the bounds given in Theorem 7.1 and 1.) of Theorem
7.2.

Numerical implementation

Some parts of this work, such as the plots, can be found as a numerical implementation in the publicly
available Jupyter Notebook: https://doi.org/10.5281/zenodo.14417259.
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A Derivation of LA andNA

The explicit form of LA and NA in (3.7) is derived. A similar result is presented in [14] (see Def. 6),
but without derivation. For this, we need to translate the differential operator

LA(∂x1 , ∂x2) = A11∂
2
x1

+ 2A12∂x1∂x2 + A22∂
2
x2

into radial coordinates. The relation between Cartesian and polar coordinates is (x1, x2) = (r cos(ϕ), r sin(ϕ)),
so we have for the Jacobian and its inverse:

∂(x1, x2)

∂(r, ϕ)
=

(
cos(ϕ) −r sin(ϕ)
sin(ϕ) r cos(ϕ)

)
,

∂(r, ϕ)

∂(x1, x2)
=

(
cos(ϕ) sin(ϕ)
−1
r

sin(ϕ) 1
r

cos(ϕ)

)
.

Using the chain rule, we compute (write ∂i for ∂xi):

∂1 =
∂r

∂x1

∂r +
∂ϕ

∂x1

∂ϕ = cos(ϕ)∂r −
1

r
sin(ϕ)∂ϕ,

∂2 =
∂r

∂x2

∂r +
∂ϕ

∂x2

∂ϕ = sin(ϕ)∂r +
1

r
cos(ϕ)∂ϕ.

The second-order derivatives are derived by using the product rule:

∂1∂1 = cos(ϕ)2∂2
r +

2

r2
cos(ϕ) sin(ϕ)∂ϕ −

2

r
cos(ϕ) sin(ϕ)∂r∂ϕ +

1

r
sin(ϕ)2∂r +

1

r2
sin(ϕ)2∂2

ϕ,

∂1∂2 = cos(ϕ) sin(ϕ)∂2
r +

1

r2
(sin(ϕ)2 − cos(ϕ)2)∂ϕ +

1

r
(cos(ϕ)2 − sin(ϕ)2)∂r∂ϕ

−1

r
cos(ϕ) sin(ϕ)∂r −

1

r2
cos(ϕ) sin(ϕ)∂2

ϕ = ∂2∂1,

∂2∂2 = sin(ϕ)2∂2
r −

2

r2
cos(ϕ) sin(ϕ)∂ϕ +

2

r
cos(ϕ) sin(ϕ)∂r∂ϕ +

1

r
cos(ϕ)2∂r +

1

r2
cos(ϕ)2∂2

ϕ.

We calculate LA, where LA(∂x1 , ∂x2)r
λv = rλ−2LA(∂ϕ, λ)v, and obtain:

LA(∂ϕ, λ) = b2(ϕ)∂2
ϕ + (λ− 1)b1(ϕ)∂ϕ + λ(λ− 1)b0(ϕ) + λb2(ϕ),

where

b0(ϕ) = A11 cos(ϕ)2 + A22 sin(ϕ)2 + 2A12 sin(ϕ) cos(ϕ),

b1(ϕ) = 2(A22 − A11) sin(ϕ) cos(ϕ) + 2A12(cos(ϕ)2 − sin(ϕ)2),

b2(ϕ) = A11 sin(ϕ)2 + A22 cos(ϕ)2 − 2A12 cos(ϕ) sin(ϕ).

For the conormal derivative, we start with:

NA(ϕ) = A11n1∂1 + A12(n1∂2 + n2∂1) + A22n2∂2, where n =

(
− sin(ϕ)
cos(ϕ)

)
.

Exchanging Cartesian with polar coordinates yields:

NA(ϕ) =
1

r

(
A11 sin2(ϕ) + A22 cos2(ϕ)− 2A12 sin(ϕ) cos(ϕ)

)
∂ϕ

+
(
(A22 − A11) cos(ϕ) sin(ϕ) + A12(cos2(ϕ)− sin2(ϕ))

)
∂r,

such that, using NA(ϕ)u = rλ−1NA(∂ϕ, λ)v, we derive:

NA(∂ϕ, λ) = b2(ϕ)∂ϕ +
λ

2
b1(ϕ).
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B Ellipticity conditions

Proof of Lemma 3.2

We provide the proof of Lemma 3.2, restated here for completeness:

Lemma B.1. Assume that A11, A12, A22 ∈ Mat`(R) are symmetric matrices and that A11, A22 are
positive definite. Then the following are equivalent:

i) det(LA(ξ)) 6= 0 for all ξ ∈ R2 of the form ξ = (1, β) ∈ R2.

ii) LA is elliptic.

iii) LA is strongly elliptic.

Moreover, in this case, det(LA(ξ)) > 0 for any ξ ∈ R2 \ {0}.

For clarity, let us write LA(1, β) instead of LA((1, β)) in the following.

Proof. The implications iii) =⇒ ii) =⇒ i) are clear. Now, let us assume that

det(LA(1, β)) 6= 0 ∀β ∈ R, (B.1)

and show that LA is strongly elliptic.

Claim 1: LA(1, β) > 0 for any β ∈ R.

Take β ∈ R. Symmetry of LA(1, β) follows from symmetry of the A•’s. Since det(LA(1, β)) is
the product of eigenvalues of LA(1, β) (factors occurring with algebraic multiplicity), and because
LA(1, 0) = A11 > 0 has only positive eigenvalues, we conclude that σ(LA(1, β)) ⊂ R>0 for all
β ∈ R. This follows from (B.1), continuity of β 7→ det(LA(1, β)), and continuity of eigenvalues. This
shows Claim 1.

Claim 2: LA(β, 1) > 0 for any β ∈ R.

Observe that LA(β, 1) = β2LA(1, 1/β) for β 6= 0. Claim 2 then follows from Claim 1. For β = 0,
the claim follows from A22 > 0.

To complete the proof, we need to show that there exists κ > 0 such that

〈LA(ξ)η, η〉 ≥ κ‖η‖2‖ξ‖2 ∀η ∈ C`, ξ ∈ R2. (B.2)

Set M1 := {ξ = (ξ1, ξ2) ∈ R2 : ξ1 6= 0} and M2 := {ξ = (ξ1, ξ2) ∈ R2 : ξ2 6= 0}. We show
uniform boundedness for each M• separately.

Claim 3a: ∃κ1 > 0 such that

〈LA(ξ)η, η〉 ≥ κ1‖η‖2‖ξ‖2 ∀η ∈ C`, ξ ∈M1. (B.3)

Dividing both sides of (B.3) by ξ2
1 6= 0 yields the equivalent condition (note β =

ξ22
ξ21

):

〈LA(1, β))η, η〉 ≥ κ1‖η‖2(1 + β2) ∀η ∈ C`, β ∈ R.
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Assume this is false and derive a contradiction. Then there exist sequences (ηn)n∈N ⊂ C` with
‖η•‖ = 1 and (βn)n∈N ⊂ R such that

〈LA(1, βn)ηn, ηn〉
1 + β2

n

≤ 1

n
∀n ∈ N. (B.4)

Note that (βn)n∈N ⊂ R cannot be bounded. Otherwise it admits an accumulation point β ∈ R which
implies 〈LA(1, β))η, η〉 = 0 for some η ∈ C` \ {0}, a contradiction to Claim 1 (not that the set of
normalized vectors is compact). So without loss of generality, assume |βn|

n→∞−−−→∞. Rewriting (B.4)
yields:

β2
n

1 + β2
n

〈A22ηn, ηn〉 ≤
1

n
− 2

βn
1 + β2

n

〈A12ηn, ηn〉 −
1

β2
n

〈A11ηn, ηn〉 → 0.

As |βn| → ∞, and thus β2
n

1+β2
n
→ 1, it follows that 〈A22ηn, ηn〉 → 0. This contradicts the assumption

that A22 is positive definite (again by compactness). Thus, Claim 3a is shown.

Claim 3b: ∃κ2 > 0 such that

〈LA(ξ)η, η〉 ≥ κ2‖η‖2‖ξ‖2 ∀η ∈ C`, ξ ∈M2. (B.5)

This follows by the same reasoning as for Claim 3a, swapping the roles of A11 with A22, and using
Claim 2 instead of Claim 1.

Since M1 ∪M2 = R2 \ {0}, we can define κ = min{κ1, κ2} to satisfy (B.2). For ξ = 0, (B.2) holds
for any κ > 0. Thus, i) =⇒ iii). Positivity of det(LA(ξ)) for ξ ∈ R2 \ {0} is clear by ellipticity and
continuity.

Complementing b.c. and Neumann well-posedness

We aim to relate the ellipticity conditions presented in this work to those found in the literature, in
particular to ADN-elliptic systems [3]. The reference for the next paragraphs is §1.1.2 of [22].

Recall the setup given in Section 3: Consider the domain Kα with boundaries Γ±, and let LA de-
note the differential operator defined by A = (A11, A12, A22) for A• ∈ Mat`(R) symmetric and
A11, A22 > 0. On the boundary, we have two differential operators B±A , which we summarize as
BA(x) = B±A(x) for x ∈ Γ±. The system (LA, BA) is called elliptic (or ADN-elliptic) if the following
two conditions are met:

1.) The operator LA is properly elliptic.

2.) BA satisfies the complementing boundary condition on ∂Kα.

For 1.), in the case of real-valued A•, proper ellipticity of LA is equivalent to LA being elliptic (3.5).
For details, refer to §1 in [2].

To address 2.), we introduce some terminology. Consider x0 ∈ ∂Kα and ξ tangential to ∂Kα at x0.
Denote byM(ξ) the subspace of solutions u to the ODE:

LA(ξ − in∂t)u(t) = 0, t > 0,

DOI 10.20347/WIAS.PREPRINT.3155 Berlin 2024



Spectral bounds for the operator pencil of an elliptic system in an angle 41

such that u(t)→ 0 for t→∞. Here, n denotes the unit vector orthogonal to ξ and pointing outward
from Kα. Now, BA is said to satisfy the complementing boundary condition if, for every x0 ∈ ∂Kα,
every ξ tangential to Kα at x0, and every g ∈ C`, there exists a unique u ∈M(ξ) satisfying:

BA(ξ − in∂t)u(t)|t=0 = g.

In our case, the tangential vectors ξ at x0 ∈ ∂Kα and the corresponding unit vectors n can be
parameterized as:

ξ(r, ϕ) = r

(
cos(ϕ)
sin(ϕ)

)
, n(ϕ) =

(
− sin(ϕ)
cos(ϕ)

)
,

for r 6= 0 and ϕ ∈ {0, α}, depending on x0 ∈ Γ±. For ϕ = 0, the above n is actually pointing
inward, but without loss of generality, we can reverse the sign for a simpler (but similar) argument.
One can compute:

LA(ξ(r, ϕ)− in(ϕ)∂t) =
2∑

k,l=1

Akl(ξ(r, ϕ)− in(ϕ)∂t)k(ξ(r, ϕ)− in(ϕ)∂t)l

=r2b0(ϕ)− irb1(ϕ)∂t − b2(ϕ)∂2
t ,

where the b•’s are given in Appendix A. Since the case of ϕ = α boils down to a rotated version of
ϕ = 0, we restrict to discuss ϕ = 0. Then the above reduces to:

LA(ξ(r, 0)− in(0)∂t) = r2A11 − 2irA12∂t − A22∂
2
t .

Let us assume A is monic, and let V be the standard root of A. Then for r > 0 any u ∈M(ξ(r, 0))
is of the form (recall Theorem 4.6 ii):

u(t) = exp(irtV )c for c ∈ C` and t ∈ [0,∞).

Note that exp
(
irtV

)
does not occur, since ‖ exp

(
irtV

)
c‖ t→∞−−−→∞ for any c ∈ C` \ {0} (deduced

by the spectral mapping theorem). For r < 0, we simply swap V and V . Continuing with r > 0,
we now analyze the complementing boundary condition on Γ− for B−A(x0) = N−A (x0) (Neumann
boundary conditions). In this case, we have:

B−A(ξ(r, 0)− in(0)∂t) =
2∑

k,l=1

Akln(0)k(ξ(r, 0)− in(0)∂t)l = rA12 − iA22∂t.

So the complementing boundary condition reduces to the statement that, for any g ∈ C`, there exists
a unique c ∈ C` such that (recall A22 = Id`):

∑̀
k=1

(A12 + V )c = g,

which is equivalent to invertibility of A12 + V . Comparing to Secion 5.3, this shows that the comple-
menting boundary condition at points BA(x0) = NA(x0) is equivalent to Neumann well-posedness.
The arguments can also be generalized to nonmonic tuples.
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Formal positivity and contractive Neumann well-posedness

The tuple A = (A11, A12, A22) is said to be formal positive (§3.2 in [7]) if there exists κ > 0 such
that:

2∑
i,j=1

〈Aijf (i), f (j)〉 ≥ κ(‖f (1)‖2 + ‖f (2)‖2) for all f (1), f (2) ∈ C`. (B.6)

This condition is often found in the context of linear elasticity and is sometimes called Legendre con-
dition (§3.1.4 in [9]). Note that the LHS of (B.6) can be rewritten in block matrix form as fTMAf ≥
κ‖f‖2, where

f :=
(
f (1) f (2)

)
∈ C2`, MA :=

(
A11 A12

A12 A22

)
∈ Mat2`(R).

Thus, formal positivity is equivalent to MA > 0. Before continuing, let us state a result about block
matrices, from Theorem 7.7.6 in [17].

Lemma B.2. Consider A,B,C ∈ Mat`(C) and the block matrix

M =

(
A B
B∗ C

)
.

M is positive definite if and only if A > 0 and C > B∗A−1B. Furthermore, this is equivalent to
ρ(B∗A−1BC−1) < 1.

The next result relates formal positivity and contractive Neumann well-posedness.

Lemma B.3. Consider an elliptic tuple A which is formal positive. Then it is contractive Neumann
well-posed.

Proof. Consider an elliptic tuple A. Note that A is formal positive if and only if its monic reduction
is formal positive. To see this, one can apply diag(A

−1/2
22 , A

−1/2
22 ) from the left and right to MA. So,

without loss of generality, assume A22 = Id`. We prove the following claim.

Claim: Formal positivity of A implies that A is Neumann well-posed.

Before proving the claim, let us argue why the claim shows the statement. Due toMA > 0 and Lemma
B.2, we have:

MA(s) :=

(
A11 sA12

sA12 Id`

)
> 0 for all s ∈ [0, 1].

Thus, using the claim, any A(•) on the path s 7→ A(s) = (A11, sA12, Id`) is Neumann well-posed.
Using techniques from the proof of Lemma 5.4, we can further deform (A11, 0, Id`) to (Id`, 0, Id`),
showing that A is path-connected to (Id`, 0, Id`) by a path of Neumann well-posed systems. From
Lemma 5.4 it follows that A is contractive Neumann well-posed. It remains to prove the claim.

Proof of the claim: Using Theorem 4.6, we write for the standard root V = (S + i Id`)D for S,D ∈
Mat`(R) symmetric and D > 0, and MA as:

MA =

(
D(S2 + Id`)D −1

2
(SD +DS)

−1
2
(SD +DS) Id`

)
.
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Now assume MA > 0 and that A is not Neumann well-posed, and derive a contradiction. The latter
implies 2i ∈ σ(D−1SD − S) (recall (5.7)). MA > 0 is by Lemma B.2 equivalent to:

ρ((SD +DS)(D(S2 + Id`)D)−1(SD +DS)) < 4 ⇐⇒ ρ(N∗N) < 4 ⇐⇒ ‖N‖ < 2,
(B.7)

where N := (S + i Id`)
−1(D−1SD + S). By assumption, there exists y ∈ C` with ‖y‖ = 1 such

that (D−1SD − S)y = 2iy. This implies (D−1SD + S)y = 2(S + i Id`)y, and thus ‖Ny‖ = 2,
contradicting (B.7). This proves the claim.

Remark. The statement that formal positivity implies Neumann well-posedness (a.k.a. the comple-
menting boundary condition for NA) is given, in a more general context, in Theorem 3.2.6. of [7].

Remark. Assuming that A is an elliptic tuple, the various (ellipticity) conditions discussed in this work
are related as follows:

formal positive =⇒ contractive Neumann well-posed =⇒ Neumann well-posed

⇐⇒ complementing boundary condition for NA.

C Factorization of nonnegative matrix polynomials

The reference is [10], in particular the Introduction, §1.4 and §12.5. A matrix polynomial L is a matrix-
valued polynomial function L(ξ) =

∑r
k=0Akξ

k, where ξ ∈ C and A• ∈ Mat`(C). Here, r ≥ 0 is
called the order of L. L is called monic if Ar = Id`. If all A• are Hermitian matrices, L is called self-
adjoint. The spectrum of a matrix polynomial, denoted by σ(L), generalizes the spectrum of matrices
and is defined as:

σ(L) := {λ ∈ C : ∃v ∈ C` \ {0} with L(λ)v = 0}.

L(ξ) is called nonnegative if one has 〈L(λ)v, v〉 ≥ 0 for all λ ∈ R and v ∈ C`. The main result is
the following.

Theorem C.1. For a monic, self-adjoint matrix polynomial L(λ), the following statements are equiva-
lent:

i) L(λ) is nonnegative.

ii) L(λ) admits a representation of the form

L(λ) = M∗(λ)M(λ),

where M(λ) is a monic matrix polynomial and σ(M) ⊂ clos(UHP).

For a matrix polynomial of order 2, this yields M(λ) of the form M(λ) = Id` λ −M0, for M0 ∈
Mat`(C) and σ(M) = σ(M0).
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D Functional calculus

General concept

We briefly summarize the functional calculus adapted to finite-dimensional vector spaces. The ref-
erence is Symbolic Calculus in §10 of [24]. Let A ∈ Mat`(C) be fixed for this subsection. For a
polynomial f(z) = c0 + c1z+ · · ·+ cnz

n, where c• ∈ C, we can canonically define f(A) by setting:

f(A) := c0 + c1A+ · · ·+ cnA
n.

The functional calculus generalizes this idea, addressing whether a more general complex function
f : C → C (with possible restrictions to the domain) can be meaningfully lifted to a function f :
Mat`(C) → Mat`(C), denoted by the same symbol. Remarkably, this is possible for a broad class
of functions, including holomorphic ones. Using a generalization of the Cauchy integral formula, we
define:

Definition D.1. Consider a holomorphic function f : Ω ⊂ C → C on an open set Ω and let
A ∈ Mat`(C) with σ(A) ⊂ Ω. We define

f(A) :=
1

2πi

ˆ
Γ

f(z)(Id` ·z − A)−1dz, (D.1)

where Γ is a contour enclosing σ(A).

Remark. i) The integral is understood componentwise in the entries of the integrand.
ii) The definition is independent of the choice of contour Γ, provided it encloses σ(A). Then, (Id` ·z−
A)−1 and the integral are well-defined.

The functional calculus exhibits several key properties:

� The spectrum of f(A) satisfies σ(f(A)) = f(σ(A)). This is called the spectral mapping
theorem.

� For any invertible Q ∈ Mat`(C), it holds that f(QAQ−1) = Qf(A)Q−1.

� If A is diagonalizable such that A = QBQ−1 for Q,B = diag(β1, . . . , β`) ∈ Mat`(C), the
functional calculus simplifies to:

f(A) := Qf(B)Q−1,

where f(B) = diag(f(β1), . . . , f(β`)). This is consistent with (D.1), which boils down to
Cauchy’s integral formula for complex numbers in the diagonal components. This representation
does not depend on the choice of Q, resp. eigenvectors.

Complex Exponentation

For λ ∈ C and A ∈ Mat`(C) with 0 /∈ σ(A), complex exponentiation was defined in Section 4.2 by
Aλa = exp(λ loga(z)). The following exponential rules hold for λ, µ ∈ C and a ∈ {+,−, o}:

A(λ+µ)a = AλaAµa , (Aλa)µa = A(λ·µ)a .

These results can first be proven for diagonalizableA and then extended to generalA using a density

argument. Similarly, one can show Aλa = A
λa

. By the spectral mapping theorem, 0 /∈ σ(Aλa),
implying that matrix exponentials are always invertible.
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Remark. For A1, A2 ∈ Mat`(C), it is generally not true that (A1A2)λa = Aλa1 A
λa
2 .

Most of the time, we consider Zλa for Z ∈ Mat`(C)±i (see Def. 6.1). This is well-defined due to
0 /∈ σ(Z) (see Lemma E.1). Also, (Zλa)T = Zλa . This follows from the Cauchy integral formula and
the fact that Id` z − Z , and thus also its inverse, are complex symmetric matrices for any z ∈ C.

E Numerical range and accretive operators

We summarize the relevant definitions and provide the proofs, which were used in Section 6 to bound
the spectrum of Mλ,α away from zero.

Numerical range

The reference for this subsection is §1 in [18], where the numerical range is referred to as "field of
values". Additional results can be found in [12]. For A ∈ Mat`(C), the numerical range of A is
defined as:

W (A) =

{
〈x,Ax〉
〈x, x〉

: x ∈ C` \ {0}
}
,

and the angular field of A as:

W ′(A) =
{
〈x,Ax〉 : x ∈ C` \ {0}

}
.

Using the scaling x 7→ rx for r > 0, it follows thatW ′(A) consists of rays connecting the origin 0 ∈ C
to points in W (A). Also, it is clear that W (A) ⊂ W ′(A). For A,B ∈ Mat`(C) and α, β ∈ C, the
following hold:

N1: W (A) is convex and compact.

N2: W (αA+ β Id`) = αW (A) + {β}.

N3: The spectrum is bounded by the numerical range: σ(A) ⊂ W (A).

N4: W (A) = W (U∗AU) for any unitary U ∈ Mat`(C) and W ′(A) = W ′(C∗AC) for any
C ∈ Mat`(C).

N5: W (A+B) ⊂ W (A) +W (B).

N6: W (A) is a line segment [α, β] if and only ifA is Hermitian. Then λmin(A) = α and λmax(A) =
β.

N7: W (A) ⊂ RHP if and only if A+ A∗ > 0.

N8: W (A∗) = W (A).

Here, we used λmin(A) := min{σ(A)} and λmax(A) := max{σ(A)} for HermitianA. Additionally,
we have the following result.

Lemma E.1. Consider Z ∈ Mat`(C)±i (see Def. 6.1). Then σ(Z),W (Z) ⊂ ±UHP.

Proof. This follows from W (Z) ⊂ W (ReZ) + iW (ImZ) ⊂ R ± iR>0, using N2, N3, N5, and
N6.
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Accretive operators

Throughout this section, the arg- and log-function correspond to the principal branch. To bound the
spectrum of Mλ,α away from zero, as discussed in Section 6, we used results on the numerical range
of Zλ for Z ∈ Mat`(C)±i (recall Def. 6.1). These classes of matrices are naturally closely related to
symmetric matrices Mat`(C) 3 A = AT with ReA > 0, which are examples of accretive operators.
Bounds for fractional powers of accretive operators are known, and our task is to translate these to
Mat`(C)±i. The reference for all definitions and results in this section is the dissertation [13]. Some
concepts have been simplified, in particular the notion of maximal accretive operators is not required
for finite dimensions.

For 0 < ω ≤ π, the open sector is defined as:

Sω := {z ∈ C : z 6= 0 and | arg(z)| < ω}.

The following definition, found on p.101 of [13], introduces the concept of ω-accretivity.

Definition E.2. Let 0 ≤ ω ≤ π
2

. A ∈ Mat`(C) is called ω-accretive if W (A) ⊂ clos(Sω). For
ω = π

2
, i.e., W (A) ⊂ clos(RHS), A is simply called accretive.

Accretive operators often appear as generators of contraction semigroups.

Theorem E.3 (Theorem B.21 in [13]). A ∈ Mat`(C) is accretive if and only if −A generates a
strongly continuous contraction semigroup, i.e., ‖e−At‖ ≤ 1 for all t ≥ 0.

Remark. See Appendix A.7 in [13] for a summary on semigroups and generators. In our case, the
semigroup can be expressed, using the functional calculus, as T (t) = e−At.

The numerical range of fractional powers of accretive operators is well understood. The following
results, all found in §Fractional Powers of m-Accretive Operators and the Square Root Problem of
[13], will be used to extend these results to Mat`(C)±i.

Proposition E.4. Let δ > 0 and A − δ Id` be accretive for A ∈ Mat`(C). Then Aλ − δλ Id` is
accretive for each 0 < λ ≤ 1.

Proposition E.5. Let A ∈ Mat`(C) be accretive, and let 0 ≤ λ ≤ 1. Then Aλ is λπ
2

-accretive, i.e.,
W (Aλ) ⊂ clos(Sλπ

2
).

Proposition E.6. LetA ∈ Mat`(C) be an injective ω-accretive operator for some 0 ≤ ω ≤ π
2

. Then:

W (log(A)) ⊂ {z ∈ C : | Im z| ≤ ω}.

Now that we established the necessary tools, we can prove Lemma 6.2 and Lemma 6.3. For the
reader’s convenience, we restate them:

Lemma E.7. Consider Z ∈ Mat`(C)±i. For λ ∈ [−1, 1] \ {0} we have

W (Zλ) ⊂ sgn(λ) · {z ∈ C \ {0} : ± arg(z) ∈ (0, λπ)} ,

and, in particular, W ′(Zλ) ⊂ ± sgn(λ) UHP.
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Proof. Consider Z ∈ Mat`(C)±i and 0 < λ ≤ 1. Define A± = ∓iZ so ReA± = ImZ > 0,
implying W (A±) ⊂ RHP. Thus, A is π−ε

2
-accretive for some ε > 0. Using this, we bound the

numerical range of Zλ as follows:

W (Zλ) = (±i)λW (Aλ±) = e±iλπ/2W (Aλ±) ⊂ e±iλπ/2 clos
(
Sλ(π−ε)

2

)
(E.1)

⊂{z ∈ C \ {0} : ± arg(z) ∈ (0, λπ)} ∪ {0},

where we applied N2 and Prop. E.5. It remains to show 0 /∈ W (Zλ). For this, note that there exists
δ > 0 such that Z ∓ iδ Id` ∈ Mat`(C)±i, implying W (A± − δ Id`) ⊂ RHP. By Prop. E.4,
W (Aλ± − δλ Id`) ⊂ clos(RHP), which implies W (Aλ±) ⊂ RHP. Thus, 0 /∈ W (Zλ) by the second
equality in (E.1). This completes the proof for λ ∈ (0, 1]. For λ ∈ [−1, 0), the proof follows from
(Z−1)λ = Z−λ and the next result.

Lemma E.8. We have Z ∈ Mat`(C)±i ⇐⇒ Z−1 ∈ Mat`(C)∓i.

Proof. Consider Z ∈ Mat`(C)+i and show Z ∈ Mat`(C)−i. The reverse implication follows simi-
larly. (Z−1)T = Z−1 is clear, and it remains to show ImZ−1 < 0.

Claim: Z−1 ∈ Mat`(C)−i for Z = ReZ + i Id`.

First, we assume that Z has the simple form Z = ReZ + i Id`. Since ReZ is symmetric, there
exists a diagonalization ReZ = QBQT for Q,B ∈ Mat`(R) and Q orthogonal. Thus, we can
write Z = Q(B + i Id`)Q

T . The inverse is given by Z−1 = Q(B + i Id`)
−1QT . Now observe that

ImZ−1 = Q Im[(B + i Id`)
−1]QT , since Q is real-valued, as well as Im[(B + i Id`)

−1] < 0. This
shows the claim.

Now for general Z = ReZ + i ImZ ∈ Matn(C)+i we have Z−1 = (ImZ)−1/2Z̃−1(ImZ)−1/2

for Z̃ := (ImZ)−1/2 ReZ(ImZ)−1/2 + i Id`. Due to the claim, Im Z̃−1 < 0, and by Sylvester’s
law of inertia, ImZ−1 = (ImZ)−1/2 Im Z̃−1(ImZ)−1/2 < 0. This completes the proof.

Lemma E.9. Consider Z ∈ Mat`(C)+i and λ ∈ R \ {0}. Then the following holds:

i) sgn(λ)
(
Id`−(Ziλ)∗Ziλ

)
> 0,

ii) ρ((Ziλ)∗Ziλ)
λ→∞−−−→ 0,

iii) min{β : β ∈ σ((Ziλ)∗Ziλ)} λ→−∞−−−−→∞.

Proof. Claim 1: ‖Ziλ‖ < 1 for λ > 0.

Consider Z ∈ Mat`(C)+i and λ > 0. We have Ziλ = exp(iλ log(Z)), and due to Theorem
E.3, it suffices to show that −iW (log(Z)) ⊂ RHP. Let A = −iZ , so W (A) ⊂ RHP and A is
π−ε

2
-accretive for some ε > 0. Then:

−i log(Z) = −i log(iA) = −i(log(i) Id` + log(A)) =
π

2
Id`−i log(A),

where we used the functional calculus and properties of the log-function. By N2 and Prop. E.6, we
obtain:

W (−i log(iA)) ⊂ π

2
− i ·

{
z ∈ C : | Im z| ≤ π − ε

2

}
⊂ RHP .

This establishes Claim 1.
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Claim 2: ρ(Ziλ) < 1 for λ > 0 and min{|β| : β ∈ σ(Ziλ)} > 1 for λ < 0.

The first part follows from Claim 1, as ρ(Ziλ) ≤ ‖Ziλ‖. The second part follows since (Ziλ)−1 =
Z−iλ, and the spectral theorem implies:

min{|β| : β ∈ σ(Ziλ)} = max{|β| : β ∈ σ(Z−iλ)}.

This establishes Claim 2.

i) Note that for any A ∈ Mat`(C) one has ‖AA∗‖ = ‖A∗A‖ = ‖A‖2 = ρ(A∗A), so Id`−A∗A >
0 is equivalent to ‖A‖ < 1. Thus, the case sgn(λ) > 0 follows from Claim 1. The case sgn(λ) < 0
can be derived from the case sgn(λ) > 0, the fact

A−B > 0 ⇐⇒ B−1 − A−1 > 0

applied to A = Id` and B = (Ziλ)∗Ziλ, and σ((Z−iλ)∗Z−iλ) = σ(Z−iλ(Z−iλ)∗).

ii) For any N ∈ N, we have:

ρ((Ziλ)∗Ziλ) = ‖(Ziλ)∗Ziλ)‖ = ‖Ziλ‖2 = ‖(Ziλ/N)N‖2 ≤ ‖Ziλ/N‖2N ,

where we used ‖AN‖ ≤ ‖A‖N . Claim 1 implies ρ((Ziλ)∗Ziλ)
λ→∞−−−→ 0.

iii) This follows from ii) using (Ziλ)−1 = Z−iλ, σ((Z−iλ)∗Z−iλ) = σ(Z−iλ(Z−iλ)∗), and the spec-
tral theorem.
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