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All spatial graphs with weak long-range effects have chemical
distance comparable to Euclidean distance

Lukas Lüchtrath

Abstract

This note provides a sufficient condition for linear lower bounds on chemical distances (com-
pared to the Euclidean distance) in general spatial random graphs. The condition is based on the
scarceness of long edges in the graph and weak correlations at large distances and is valid for
all translation invariant and locally finite graphs that fulfil these conditions. The proof is based on
a renormalisation scheme introduced by Berger [arXiv: 0409021 (2004)].

1 Introduction and statement of results

A fundamental question in percolation theory concerns the scaling relationship between the graph
distance, often referred to as the chemical distance, and the Euclidean distance between two ver-
tices. Understanding this relationship provides insights into the geometric and structural properties of
the infinite cluster in supercritical percolation models. Models for which the chemical distances were
studied are for instances classical Bernoulli percolation [1, 10], its continuum analogue [30], random
interlacements [6], and the Gaussian free field [9]. Although some of the models have long-range in-
teractions, these models have in common that edges are of bounded length, and thus the chemical
distance of two distant vertices of the infinite component is typically of the same order as their Eu-
clidean distance. Conversely, introducing edges of unbounded lengths can lead to drastically different
scaling behaviours, and chemical distances may depend logarithmically or even iterated logarithmi-
cally on the Euclidean distances [3, 8, 11, 24]. This property may be seen as a spatial version of the
famous (ultra) small world property of complex networks [7]. However, unbounded edge lengths do not
always lead to significantly shorter graph distances. Consider for instance long-range percolation [28],
in which each pair of lattice sites is connected by an edge with a probability that decays polynomially
with power −dδ in the vertices’ distance. If 1 < δ < 2, then the graph distance between two distant
vertices x, y is of order log∆ |x − y| for ∆ = 1/ log2(2/δ) [3], while for δ > 2 the graph distance
is given by a linear function of the Euclidean distance [2, 4]. The reason for this dramatic change of
behaviour is simply that for δ > 2 long edges are too rare to give a significant advantage over the
bounded edge lengths model.

This note builds on the work [2] and demonstrates that such linear scaling is a general feature of spatial
graphs where long edges are sufficiently rare. Using the framework of [19], which relates long edges
to subcritical annulus-crossing probabilities in graphs with weak correlations, we establish linear lower
bounds on the chemical distance under broad assumptions. Furthermore, we demonstrate that the
probabilistic rate of this is governed by the rate at which long edges are present, which has not been
known even for long-range percolation before.

Framework. We use the framework of [19] and consider general translation-invariant models defined
on some appropriate probability space whose probability measure we denote by P. We aim to study
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L. Lüchtrath 2

a countably infinite random graph G = (V ,E ) whose vertex set V is built on the points of a suitable
point process on Rd. We make the following standing assumptions:

(G1) The locations of the vertices in V are given by a locally finite, stationary, and simple point
process on Rd of intensity λ > 0. That is, the intensity measure is the Lebesgue measure
multiplied by λ [25]. Note that this refers to the location of the vertices only and the vertices may
carry additional marks or weights. In fact, in most examples, vertex marks are needed to model
a vertex’ attraction or influence in some way. Throughout the manuscript, we denote vertices by
x ∈ V . For a vertex x ∈ V , we denote its location by x ∈ Rd. Although V refers to the whole
vertex set and may contain additional markings, we still write x ∈ V ∩ A for a vertex x with
location x ∈ A ⊂ Rd.

(G2) We assume that G is translation invariant. That is, G and G + x have the same distribution for
each x ∈ Rd, where G +x is the graph constructed on the points of V +x, i.e., the connection
mechanism does not change if the location of each vertex is shifted by x.

(G3) The graph G is locally finite. That is, all vertices have finite degree, almost surely. We also refer
to this property as sparseness.

Remark 1.1.

(a) The parameter λ is the usual intensity parameter of continuum percolation. As studying the graph
distance of far apart vertices is only reasonable if there is an infinite connected component con-
taining both vertices, one may always assume that λ is chosen large enough to guarantee super-
criticality. However, we only prove a lower bound on the graph distance that does not necessarily
require the vertices being in the same component. Therefore, λ plays no particular role in the
following and we thus drop it from the notation.

(b) Our setup also allows for models based on some site-percolation process on the lattice Zd, when
translation invariance is with respect to shifts x ∈ Zd. In this case λ = P(o ∈ V ), i.e. the
probability that the origin survives percolation. If the remaining properties are fulfilled, all results
hold verbatim for continuum or lattice models.

(c) The two standard examples for the underlying point process that are most frequently used in the
literature are the homogeneous Poisson point process and the Bernoulli site-percolated lattice.
Other examples are discussed in [19].

Quantifying long-rang effects. Next, we formulate the crucial properties for our main result, which
are subject to the long-range effects of the graph. Typically, there are two ways in which these inter-
actions can arise. One is through the presence of long edges in the graph that connect vertices far
apart from each other. The other is via correlations of the local configurations of the graph across
distant regions. While the amount of long edges is most relevant in order to deduce the typical graph
distances’ scale, we still require some control over the influence of the latter type on the graph topol-
ogy. To employ our proof, we require both effects to vanish on a polynomial scale. More precisely,
let Λm(o) and Λm(mx) be two boxes of side length m, centred in the origin o and in mx for some
|x| > 2 respectively. Note that the two boxes are disjoint. Let E(Λm(o)) be a local event, meaning
that it can be decided by the realisation of the internal vertices and edges of Λm(o) alone. Then, we
say that G is polynomially mixing with mixing exponent ξ < 0 if there exists a suitable constant Cmix

such that for all |x| > 2 and sufficiently large m,

Cov
(
1E(Λm(o)),1E(Λm(mx))

)
≤ Cmix m

−ξ. (PM )
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Linear chemical distances 3

If G is polynomially mixing with exponent ξ, we also say that G has Property PM ξ. Let us further
quantify the occurrence of long edges. To this end, define, for n,m ∈ N, the event

L(m,n) :=
{
∃x ∼ y : x, y ∈ Λm(o) and |x− y| > n

}
,

where x ∼ y denotes the existence of an edge connecting the vertices x and y. Therefore, L(m,n)
describes the occurrence of long edges in a box. Henceforth, we say that G has the ‘no long edges’
Property PL µ, if there exists an exponent µ < −d and a constant CL > 0 such that for all m ≥ 1
and sufficiently large n, we have

P(L(m,n)) ≤ CLm
dnµ. (PL )

Main result. We denote the graph distance in the graph G by d = dG , i.e.

d(x,y) := dG (x,y) = min
{
m : ∃ a path x = x0 ∼ x1 ∼ · · · ∼ xm = y in G

}
for x,y ∈ G ,

with the usual convention min ∅ =∞. In order to formulate our main theorem, let us define the event

DηL,M(m) =
{

d(x,y) ≥ η|x− y|, for all x ∈ ΛL and y ∈ Λc
Mm

}
,

stating that all paths connecting a vertex located relatively close to the origin to a vertex faraway have
length lower bounded by a constant multiple of the Euclidean distance of their end-vertices.

Theorem 1.2 (Linear graph distances, lower bound). If G = (V ,E ) has the Properties PM ξ

and PL µ, then there exist some constants η > 0 and M ∈ N, depending only on model pa-
rameters, such that for all L ∈ N,

lim sup
m→∞

logP
(
¬DηL,M(m)

)
logm

≤ ξ ∨ (d+ µ). (1)

Let us, for the moment, assume that d + µ > ξ. Then, Theorem 1.2 essentially states that the
probability of finding a path that leaves a box of side length m with ‘only a few steps’ decays at least
at the same rate as P(L(m,m)), which is the probability of having at least one edge of length m
in said box. Put differently, either all paths contain a number of edges proportional to the box’s side
length, or there is one single edge spanning the whole Euclidean distance alone. A similar behaviour
was observed in [19], where the existence of a subcritical annulus-crossing phase, i.e.

λ̂c := inf
{
λ > 0 : lim

m→∞
P(Annulus with radii m and 2m is crossed by a path) > 0

}
> 0,

was investigated. In that article, the authors consider the ‘long edges’ event L(m) := L(m,m) and

show that, if P(L(m)) → 0 as m → ∞ uniformly in small intensities λ, then λ̂c > 0, provided the
model mixes in the sense that the defining covariance in (PM ) tends uniformly to zero. Conversely,
if the convergence of P(L(m)) does not hold for any intensity λ, then there is no such phase, and
annuli are typically crossed by a single long edge. The reason we require a slightly finer version of the
‘long edges’ event and the polynomial decay lies in the renormalisation scheme of Berger [2], our proof
is built on. In order to employ it, we must exclude the existence of long edges that are on a smaller
scale than the boxes, in which they are contained. However, both versions of the event are closely
related. Clearly, Property PL µ implies polynomial decay of P(L(m)), and furthermore, polynomial
decay of P(L(m)) also implies Property PL µ in all our examples below. Let us additionally note
that, except for boundary cases, typical models of our interest either satisfy (PL ) with a polynomial
decay or contain many long-edges.
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L. Lüchtrath 4

Although the decay of the mixing term of Property PM ξ could also be the dominant term in (1),
we believe this to be a technical result and only the presence of long edges is truly significant. It is
demonstrated in [9] that models with polynomial correlations, which are monotone in the intensity, can
still exhibit weak correlations in the sense that monotone events in disjoint regions are independent
after a sprinkling, depending on the Euclidean distance of the regions, with a stretched exponential
error term. If the required sprinkling is summable over the scales, one should be able to adapt our proof
in a way that the long edges always yield the dominant contribution. Note, however, that this property
must be proved individually for each model, which is why we work with the weaker assumption of
polynomially bounded correlations.

Finally, if one sets a = −2/(ξ ∨ (d + µ)) and mk = dkae, then P(DL,M(mk)) is summable
by Theorem 1.2. Thus, by the Borel-Cantelli lemma, almost surely, all paths connecting the vertices
in ΛL to a large distance become bounded from below by a constant multiple of their end-vertices’
Euclidean distance eventually. This recovers the original result of Berger for long-range percolation [2]
and extends it to the whole class of models that satisfy our assumptions.

Remark 1.3 (On the upper bound). Theorem 1.2 only establishes a linear lower bound on graph
distances in terms of the Euclidean distance. The natural question is whether there exists a corre-
sponding upper bound. This is believed to hold for all the models we are aware of. However, deriving
this in full generality is challenging. Let us only consider models constructed on either a Poisson pro-
cess or a site-percolated lattice, in which edges do only depend on their end vertices to ensure a
sufficient amount of independence. For long-range percolation on the lattice, the upper bound and
the corresponding shape-theorem were only recently proven in [4]. The proof relies on the continu-
ity of the critical value, a property that is generally hard to prove. This continuity allows the removal
of edges longer than an appropriate threshold, hence approximating the graph by one with bounded
edge lengths. For this approximating graph, one can adapt the established results of [1, 5] to con-
clude the proof. Similarly, in [9] linear upper bounds for correlated percolation models on the lattice
are proven in general, provided the model exhibits the aforementioned weak correlations of monotone
events and local uniqueness of the infinite component. The latter property is again closely related to
the continuity of the critical value. However, this continuity has only been established in regimes with
many long-edges [26], and not in our regime, where long edges are rare. In a nutshell, long edges
are too rare to use them constructively as in [26] but they still prevent us from applying localisation
arguments from finite-range models.

It is worth noting that typical examples often dominate either a long-range percolation model, a Gilbert
graph or a model in the framework of [9]. If these underlying models are supercritical, one immediately
observes linear upper bounds. Hence, in most examples chemical distances are linear in the Euclidean
distance for sufficiently large intensities λ� λc, and we believe this to hold for all λ > λc.

2 Examples

Let us apply our result to a couple of examples. We shall only briefly sketch these examples and refer
the reader to [19] for a more detailed discussion on the models.

The weight-dependent random connection model. This model was first introduced in [12, 15] as
a general framework for inhomogeneous random connection models. It contains many models from
the literature as special instances, cf. [12, Tab. 1]. In this model, V is either a standard Poisson point
process or a (Bernoulli site-percolated) lattice where each vertex carries additionally an independent
uniformly distributed vertex mark. We denote a vertex by x = (x, ux) ∈ Rd × (0, 1). Here, the mark
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Linear chemical distances 5

ux models the inverse weight of a vertex, thus the smaller ux the more attractive for connections the
vertex x is. Currently, the model is most frequently studied using the following connection rule [14]:
Given V , each pair of vertices x and y is connected by an edge independently with probability

ρ
(
(ux ∧ uy)γ(ux ∨ uy)α|x− y|d

)
, where γ ∈ [0, 1) and α ∈ [0, 2− γ). (2)

Here, ρ is a decreasing and integrable profile function, typically chosen to be either ρ(x) = 1∧ |x|−δ
for some δ > 1 or ρ = 1[0,1]. If one identifies the indicator function case with δ =∞, one can identify
and compare many models from the literature by only three real parameters [14, Tab. 1].

It is clear that local events in disjoint regions are independent in this setting, and thus PM−∞ is
satisfied. It therefore remains to check for which choices of parameters Property PL µ holds in order
to apply Theorem 1.2. To this end, the downwards vertex boundary exponent ζ , introduced in [21,
22], can be used. Loosely speaking, ζ quantifies the number of vertices within a box Λr that are
connected to a vertex at distance r, which is weaker (i.e. has larger mark) than themselves (thus
the term ‘downward’). If ζ < 0, then there are only a few such vertices, and long edges are rare.
More precisely, it is shown in [19] that P(L(m,m)) � mdζ in this case. Using the calculations and
definitions of [19], it is not hard to deduce that ζ < 0 implies Property PL µ for µ = d(ζ − 1).
More precisely, one can identify an optimal un, the mark a vertex should have in order to connect by a
single edge to distance n. Following the reasoning of [21, 19], these optimal-mark vertices dominate
the picture and, using their derived optimal mark, the number of such optimal-mark vertices in the box
of volume md is of order mdnd(ζ−1). For the choice m = n, we arrive back at the original exponent
dζ = d + µ. Using the results of [19, Prop. 23], precisely identifying the ζ < 0 regime of the model,
we obtain:

Corollary 2.1. Consider the weight-dependent random connection model (2). If δ > 2, γ < 1− 1/δ,
and α < 1− γ, then

lim sup
m→∞

log
(
P
(
¬DηL,M(m)

))
/ log(m) ≤ dζ.

Note that the model (2) always dominates a Gilbert graph and a linear upper bound on the chemical
distances follows by domination for all large enough λ, cf. Remark 1.3 and [30]. Let us consider two
models from the class of weight-dependent random connection models more closely.

The Boolean model corresponds to the choice of γ > 0, α = 0, and δ =∞ [16]. That is, each vertex
is assigned an independent Pareto distributed radius with tail exponent d/γ and each vertex is centre
of a ball of its associated radius. Any two vertices are connected by an edge if the centre of the smaller
ball is contained in the larger ball. It was shown in [18] that the chemical distances are lower bounded
by |x|/ logp |x| for any power p > 0. However, it was conjectured that the logarithmic correction was
a result of the method and that graph distances are indeed linearly lower bounded, cf. [18, Conj. 5].
Corollary 2.1 proves the conjecture.

The soft Boolean model corresponds to the choice of γ > 0, α = 0, and δ ∈ (1,∞) [11], which is
a model that interpolates between the Boolean model and long-range percolation [20]. It was shown
in [11] that chemical distances are doubly logarithmic in the Euclidean distance for all δ > 1 and
γ > 1 − 1/(δ + 1). Further, [11] elaborates that distances are at least logarithmic in the Euclidean
distance if γ < 1 − 1/(δ + 1). We find with Corollary 2.1 that graph distances are at least linear
if δ > 2 and γ < 1 − 1/δ, specifying the result of [11]. Recent results for scale-free percolation
(α = γ > 0) suggest that for δ < 2 and γ < 1/2, graph distances are a power of the logarithm of the
Euclidean distance, where the power is the one of long-range percolation [24]. It remains an interesting
open problem to identify the power of the logarithm for the regime δ > 2 and 1/δ < γ < 1/(δ + 1).
We leave this for future work.
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L. Lüchtrath 6

Soft Boolean model with local interference. This model is an example for a generalised weight-
dependent random connection model, in which edges not only depend on their end-vertices but also
on surrounding vertex clouds [19]. The vertex set is the same as for the soft Boolean model and a
vertex x = (x, ux) still has assigned a sphere of influence of radius u−d/γx that is used together
with additional long-range effects to form connections. Additionally, the vertex has assigned a sphere
of interference of radius u−d/βx for some β < 1. The vertices located in the latter sphere interfere
and make it harder for the vertex to form connections. More precisely, two vertices x = (x, ux) and
y = (y, uy) with ux < uy are connected by an edge with probability

p(x,y,V ) =
1 ∧ (uγx|x− y|d)−δ

]{z ∈ V : |x− z|d < u−βx }
.

It is elaborated in [19] that the exponent ζ can straight-forwardly be generalised to such a setting. It is
further shown that the model mixes polynomially with exponent ξ = 1− 1/β and that it has ζ < 0 if
γ < (δ + β − 1)/δ. Hence, Theorem 1.2 applies in this case and proves linear lower bounds on the
chemical distance, with probabilistic rate no slower than polynomially with exponent ξ ∨ ζ .

Ellipses percolation. Introduced in [29], this model can be seen as a generalisation of the planar
Boolean model. Instead of a ball, each vertex is the centre of an ellipsis with Pareto(2/γ) distributed
major axis, minor axis equal to one, and uniformly distributed orientation. Intriguingly, replacing balls
by ellipses introduces additional correlations with interesting effects. The paper [17] elaborates graph
distances in the regime γ ∈ (1, 2) and shows that these scale doubly logarithmically in the Euclidean
distance. In the γ < 1 regime however Property PL −2/γ is satisfied, cf. [19], and Theorem 1.2
shows linear lower bounds on the graph distances. For a more detailed discussion on the correlations
involved, their interesting effects, and generalisations of the model, we refer to the recent preprint [13].

More general underlying vertex locations. Theorem 1.2 also applies to models that are con-
structed on more correlated point clouds than a Poisson point process or a Bernoulli site-percolated
lattice. For instance one could consider models constructed on a Cox process, a Gibbs process, or a
lattice based on percolation of worms [27], which is done in greater detail in [19].

3 Proof of Theorem 1.2

In this section, we employ the renormalisation scheme that goes back to [2]. We start by defining the
scales. Fix a large K ∈ N to be specified later and set K0 := K as well as Kn := K(n!)2. A
stage-n box is a box Bn(x) := ΛKn(x) = x + [−Kn/2, Kn/2)d of side length Kn, centred at
x ∈ Rd. We abbreviate Bn = Bn(o). Let us define the notion of a good box; we refer to a box that is
not good as being bad.

Definition 3.1 (Good boxes). Let x ∈ Rd and consider the boxes Bn(x). We say that

(i) the stage-0 box B0(x) is good, if it contains no internal edge longer than K0/100.

(ii) We say that the stage-n box Bn(x) is good if all 3d boxes Bj
n(x) := Bn(x + Kn−1

2
j), for

j ∈ {−1, 0, 1}d, satisfy the following two conditions:

(a) No edge internal to Bj
n(x) is longer than Kn−1/100.

(b) Of all the n2d stage-(n−1) boxes contained inBj
n(x), no more than 3d are bad themselves.
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Our first result is to determine the probability that a box centred at the origin is bad. Define

ψ(n) := P(Bn is bad).

Lemma 3.2. If G has the Properties PM ξ and PL µ, then there exists K ∈ N such that

ψ(n) ≤
(
(n+ 1)!

)ξ∨(d+µ)
.

Proof. Let us define, for each n ∈ N, the event Ln := L(Kn, Kn−1/100), where L(m,n) is the
defining event of Property PL µ. We immediately infer

P(Ln) ≤ 100−µCLK
d
nK

µ
n−1 = 100−µCLn

2dKd+µ
n−1 . (3)

Observe that this implies, for each fixed n, that P(Ln) ↓ 0, as K → ∞. Let us further derive, for
n ≥ 2, a recursive formula for the probability of the stage-n box being bad. Such a box is bad, if one
of the 3d translated boxes Bj

n fails either Property (a) or (b). A union bound over the 3d many boxes
Bj
n combined with translation invariance (G2), thus yields

ψ(n) ≤ 3d
(
P(Ln) + P(at least 3d + 1 stage-(n− 1) boxes contained in Bn are bad)

)
.

By construction, if there are at least 3d + 1 bad stage-(n − 1) boxes contained in Bn, then at least

two of these are at distance Kn−1. Since there are no more than
(
n2d

2

)
≤ n4d many possibilities

to choose two such boxes, we infer with a union bound, the mixing property PM ξ, and translation
invariance (G2),

ψ(n) ≤ 3dP(Ln) + 3dn4d
(
ψ(n− 1)2 + CmixK

ξ
n−1

)
. (4)

We now prove the claim by induction. Set C = 3d(100−µCL+1+Cmix), write α = ξ∨ (d+µ) < 0,
and let N be the smallest integer such that

C(n+ 1)−2α+4d((n− 1)!)α ≤ 1, for all n ≥ N,

noting that this N exists. For n = 1, we now have

ψ(1) ≤ 3dP(L1) ≤ (2!)α,

for large enough K . Similarly, for n = 2, we find using (4) and ψ(1) ≤ 3dP(L′1),

ψ(2) ≤ 3dP(L2) + 3d · 24d
(
ψ(1)2 + CmixK

ξ
1

)
≤ 3dP(L2) + 32d · 24d P(L1)2 + CmixK

ξ
1 ≤ (3!)α,

perhaps increasingK if necessary. We proceed similarlyN times, adaptingK at each step if needed
and infer ψ(n) ≤ (n + 1)!α for all n = 1, . . . , N . Note that K is finite still and remains unchanged
from this point onwards. Now assume that the claim has been proven until some n − 1 ≥ N . Then,
applying (3) and the induction hypothesis to (4), we infer

ψ(n) ≤ 3d 100−µCLn
2dKd+µ(n− 1)!2(d+µ) + 3d

(
n!2α + CmixK

ξ(n− 1)!2ξ
)

≤ Cn−α+4dn!2α ≤ (n+ 1)!α
(
C(n+ 1)−2α+4d(n− 1)!α

)
≤ (n+ 1)!α,

since n > N . This concludes the proof.

In the remainder of this section, we shall always assume that K is chosen sufficiently large for
Lemma 3.2 to hold. To make use of good boxes, we prove the following proposition, which is a stronger
version of [2, Lemma 2] in the spirit of [23, Proposition 2.6] for cost distances in one-dependent first-
passage percolation. Note that the following result holds deterministically on each realisation that fulfils
the assumptions on the good boxes, the proposition requires.
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L. Lüchtrath 8

Proposition 3.3. Fix N > (2d + 1)9d. Consider x,y ∈ V such that y ∈ Bn(x) and |x − y| >
Kn−1/8 for some n ≥ N . Assume that both boxes Bn(x) and Bn−1(x) are good. Then there exists
a constant C1, which does not depend on x and y, such that each path connecting x and y that is
completely contained in Bn(x) consists of at least C1|x− y| many edges.

Proof. We start by showing, inductively for all n ≥ N , that if B′n is some good box with x, y ∈ B′n
and |x− y| > Kn−1/16, then every path π connecting the two vertices insideB′n has length at least

`(π) := ]{edges of π} ≥ C ′Λ(n)|x− y|, for some C ′ > 0, and Λ(n) :=
n∏

h=N

(
1− N

h2

)
. (5)

We start with the base case N = n. Since B′N is good, there is no edge contained in it longer
than KN−1/100. Furthermore, as |x − y| > KN/16, we immediately infer `(π) ≥ (25/4)N2.
Additionally, |x − y| ≤

√
dKN . Thus, the claim follows for C ′ = 1/(

√
dKN−1) as this implies

(25/4)N2 ≥ C ′(1− 1/N)|x− y|.

For the induction step, assume that (5) holds for all stages up to stage n − 1, for some n > N . Let
x,y ∈ B′n with |x − y| > Kn/16 and B′n be good. Let π = (v0, . . . ,v`) be a path connecting
x = v0 and y = v` that is completely contained inB′n. SinceB′n is good, |vi−vi−1| ≤ Kn−1/100.
Moreover, at most 3d of the stage-(n− 1) sub boxes in each translation (B′n)j are bad. Hence, there
are no more than 9d bad sub boxes in the union of all translations. We denote the bad sub boxes
by Q1, . . . , Qj (for j ≤ 9d) and set Q := Q1 ∪ · · · ∪ Qj . We decompose π into alternating good
segments πs and bad segments σt such that π = (π1, σ1, π2, . . . , σT , πS) for some S, T , where
the last vertex in each segment is also the first vertex in the subsequent one. As, by construction,
S − 1 ≤ T ≤ 9d, we may simplify S = T = 9d in the following as this may only introduce additional
empty segments at the end of the decomposition. With the same reasoning, we may always start the
decomposition with a good segment because, if the first segment is bad, then simply π1 = ∅. We use
the following procedure to obtain the desired decomposition. Firstly, if π ∩ Q = ∅, we simply choose
π1 = π and all the other segments to be empty. Otherwise, define i1 = min{i ≤ ` : vi ∈ Q} the
index of the first vertex contained in the bad region and j1 the index of the bad box it is contained in,
i.e. vi1 ∈ Qj1 , where we choose the smallest such index if two or more bad boxes overlap. However,
our result does not depend on the precise ordering of the bad regions and the result holds verbatim
for any other decision rule. We set π1 = (v0, . . . ,vi1−1) (or π1 = ∅ if i1 = 0). Define further
k1 = max{i : vi ∈ Qj1} and set σ1 = (vi1−1, . . . ,vk1+1). Let us remark that this segment may
also leave and reenter the bad boxQj1 multiple times but the path never returns toQj1 after the vertex
with index k1. Inductively, define is = min{i > ks−1 : vi ∈ Q}, js = min{i : vis ∈ Qi}, and
ks = max{i : vi ∈ Qjs}, as well as the good segment πs = (vks−1+1, . . . ,vis−1), and the bad
segment σs = (vis−1, . . . ,vks+1) all the way up to S and T .

Denote for a path ρ by dist(ρ) the Euclidean distance between its two endpoints. The triangle in-

equality gives |x − y| ≤
∑9d

1 dist(πs) +
∑9d

1 dist(σt). Since each Qjs (a bad stage-(n − 1) box)
has diameter

√
dKn−1 and all edge lengths are bounded by Kn−1/100, the contribution of any bad

segment is bounded by

dist(σt) ≤ |vit−1 − vit |+ |vit − vkt |+ |vkt − vkt+1| ≤ Kn−1/100 +
√
dKn−1 +Kn−1/100

≤ 2dKn−1.

Let I = {s : dist(πs) > Kn−1/2}. Then trivially,
∑

s 6∈I dist(πs) ≤ 9dKn−1/2. Combined with the
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assumption |x− y| > Kn/16 and the fact Kn = n2Kn−1, we infer by use of the triangle inequality∑
s∈I

dist(πs) ≥ |x− y| −
9d∑
t=1

dist(σt)−
∑
s 6∈I

dist(πs) ≥ |x− y| − 2d · 9dKn−1 − 9d

2
Kn−1

≥ |x− y|
(
1− N

n2

) (6)

by our choice of N . Let us mention here, that for |x − y| ≥ 2NKn−1, we further get with the same
calculation ∑

s∈I

dist(πs) ≥ |x− y| −NKn−1 ≥ |x− y|/2, (7)

which will be useful below. To finish the induction proof of (5), we show that for each s ∈ I
`(πs) ≥ dist(πs) · C ′Λ(n− 1) (8)

since the claim then follows by summing (8) over the segments of I and applying (6). For v,w ∈ πs,
we write πs[v,w] for the path segment from v to w. Observe that there exists a collection vks−1+1 =
w1, . . . ,wm = vis−1 of vertices of πs, such that for every i

(1) |wi+1 − wi| > Kn−1/16, and

(2) |v − wi| < Kn−1/2 for all v ∈ πs[wi,wi+1].

That is, the wi divide the good segment πs into sub-segments πs[wi,wi+1] such that the whole sub-
segment is contained in the ball of radius Kn−1/2, centred at wi, but still a large Euclidean distance
is bridged. This sequence can for instance be constructed using a greedy algorithm [23, Prop. 2.6].
To this end, one assumes inductively that w1, . . . ,wi have already been found and the segment πs
is not fully covered yet. Then, the remaining path is either contained in the ball of radius Kn−1/2,
centred in vis−1 (the last vertex on πs), in which case we choose wi+1 = vis−1, or this is not the
case and we follow the path and pick wi+1 to be the first vertex that fulfils both properties. Note that
this is always possible as πs is a good path segment and the assumption implies that either vis−1 is
at a far distance from wi or the paths wanders far off before reaching vis−1.

Now, by Property (2) and the choice of πs, there exists a good stage-(n−1) box containing πs[wi,wi+1].
By (1) and the induction hypothesis (5) for n− 1, we have

`(πs[wi,wi+1]) ≥ dist(πs[wi,wi+1]) · C ′Λ(n− 1),

using |wi −wi+1| = dist(πs[wi,wi+1]). Using `(πs) = `(πs[w1,w2]) + · · ·+ `(πs[wm−1,wm])
together with the triangle inequality, thus proves the claim (8).

To finish the proof of the proposition, set C2 := C ′Λ(∞), let x,y ∈ V such that |x− y| > Kn−1/8
and Bn−1(x), Bn(x) are good, and let π be a path connecting x and y within Bn(x). Assume first
that |x− y| ≥ 2NKn−1. Then, by combining (7) and (8), and the fact that Λ(n) is decreasing in n,

`(π) ≥ C2

∑
s∈I

dist(πs) ≥
C2

2
|x− y|.

If instead |x − y| < 2NKn−1, then by the fact that Bn(x) is good and no edge is longer than
Kn−1/100, there must exists a vertex v ∈ π, such that Kn−1/16 < |x − v| ≤ Kn−1/8. If v is the
first such vertex on the path, then additionally π[x,v] ⊂ Bn−1(x). By assumption, the box Bn−1(x)
is good and we can apply (5) and the bounds on the Euclidean distance to obtain

`(π) ≥ `(π[x,v]) ≥ C2|x− v| ≥ C2
Kn−1

16
≥ C2

|x− y|
32N

.

Hence, the claim follows for C1 = C2/32N .
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Proof of Theorem 1.2. Fix L ∈ N and choose some M ≥ 2K . For m ∈ N, let n = nm be the
largest integer satisfying n! ≤ m. Assume n (and thus m) to be large enough such that ΛL ⊂ Bn−3.
Consider now a realisation ω, in which all the boxesBn−1, Bn, . . . are good. Let x ∈ ΛL and y ∈ Bc

n

be two vertices in this realisation. Let ny be the first index such that y ∈ Bny \ Bny−1. Particularly,

this implies ny ≥ n as well as
√
d(Kn−1 − L)/2 < |x− y| <

√
d(Kny + L)/2. Let further π be a

path from x to y and let nπ ≥ ny be the first index such that π ⊂ Bnπ . By the definition of nπ, there
exists a vertex v ∈ π ∩ Bnπ \ Bnπ−1. If nπ = ny, we pick v = y. Otherwise, nπ > ny and we pick
the first v in π with this property, and consequently,

|v − x| ≥ (Knπ−1 − L)/2 ≥ (Kny − L)/2 ≥ |y − x|/
√
d.

In both cases Proposition 3.3 applies and we find `(π) ≥ η|x − y|, where η = C1/
√
d. Note that,

although we may not have centred the boxes in question at x, the box ΛL is only a small box of constant
size close to the origin. As x ∈ ΛL and n is chosen large enough, the proof of Proposition 3.3 still
applies. As a result, DηL,M(m) always occurs, if the boxes Bn−1, Bn, . . . are all good. Consequently,
DηL(m) can only fail to occur if at least one of these boxes is bad. Abbreviating α = ξ ∨ (d+ µ), we
derive for the latter event by Lemma 3.2,

P
( ⋃
k≥n−1

{Bk is bad}
)
≤

∞∑
k=n

(n!)α ≤ C
∞∑
k=n

(
√
k)αeαk(log k−1) ≤ C(

√
n)α

∞∑
k=n

eαk(logn−1)

≤ C
(
√
n)α

log n
eαn(logn−1) ≤ C(n!)α,

(9)

for large enough n, where we used Stirling’s formula and denoted by C a constant that may have
changed from line to line. By definition, we have m < (n + 1)! and thus m/(n + 1) ≤ n!. As the
factorial grows faster than exponentially, we clearly have n+ 1 ≤ logm, therefore m/ log(m) ≤ n!.
Plugging this back into (9), we obtain

P(¬DηL,M(m)) ≤ P
( ⋃
k≥n−1

{Bk is bad}
)
≤ C log(m)−αmα.

Taking the logarithms and dividing both sides by log(m) concludes the proof of Theorem 1.2.
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[6] Jir, í Černý and Serguei Popov. On the internal distance in the interlacement set. Electron. J.
Probab., 17:1 – 25, 2012.

[7] Fan Chung and Linyuan Lu. Complex Graphs and Networks, volume 107 of CBMS Regional
Conference Series in Mathematics. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.

[8] Maria Deijfen, Remco van der Hofstad, and Gerard Hooghiemstra. Scale-free percolation. Ann.
Inst. Henri Poincaré Probab. Stat., 49(3):817–838, 2013.

[9] Alexander Drewitz, Balázs Ráth, and Artëm Sapozhnikov. On chemical distances and shape
theorems in percolation models with long-range correlations. J. Math. Phys., 55(8):083307, 2014.

[10] Olivier Garet and Régine Marchand. Large deviations for the chemical distance in supercritical
Bernoulli percolation. Ann. Probab., 35(3):833 – 866, 2007.

[11] Peter Gracar, Arne Grauer, and Peter Mörters. Chemical distance in geometric random graphs
with long edges and scale-free degree distribution. Comm. Math. Phys., 395(2):859–906, 2022.

[12] Peter Gracar, Markus Heydenreich, Christian Mönch, and Peter Mörters. Recurrence versus
transience for weight-dependent random connection models. Electron. J. Probab., 27:1 – 31,
2022.

[13] Peter Gracar, Marilyn Korfhage, and Peter Mörters. Robustness in the poisson boolean model
with convex grains, 2024.

[14] Peter Gracar, Lukas Lüchtrath, and Christian Mönch. Finiteness of the percolation threshold for
inhomogeneous long-range models in one dimension, 2022.

[15] Peter Gracar, Lukas Lüchtrath, and Peter Mörters. Percolation phase transition in weight-
dependent random connection models. Adv. in Appl. Probab., 53(4):1090–1114, 2021.

[16] Peter Hall. On continuum percolation. Ann. Probab., 13(4):1250–1266, 1985.

[17] Marcelo Hilário and Daniel Ungaretti. Euclidean and chemical distances in ellipses percolation,
2021.

[18] Christian Hirsch. From heavy-tailed Boolean models to scale-free Gilbert graphs. Braz. J. Probab.
Stat., 31(1):111 – 143, 2017.

[19] Emmanuel Jacob, Benedikt Jahnel, and Lukas Lüchtrath. Subcritical annulus crossing in spatial
random graphs, 2024.

[20] Benedikt Jahnel, Lukas Lüchtrath, and Marcel Ortgiese. Cluster sizes in subcritical soft boolean
models, 2024.

[21] Joost Jorritsma, Júlia Komjáthy, and Dieter Mitsche. Cluster-size decay in supercritical kernel-
based spatial random graphs, 2023.

[22] Joost Jorritsma, Júlia Komjáthy, and Dieter Mitsche. Large deviations of the giant in supercritical
kernel-based spatial random graphs, 2024.

[23] Júlia Komjáthy, John Lapinskas, Johannes Lengler, and Ulysse Schaller. Polynomial growth in
degree-dependent first passage percolation on spatial random graphs, 2024.

[24] Kostas Lakis, Johannes Lengler, Kalina Petrova, and Leon Schiller. Improved bounds for poly-
logarithmic graph distances in scale-free percolation and related models, 2024.

DOI 10.20347/WIAS.PREPRINT.3154 Berlin 2024



L. Lüchtrath 12

[25] Günter Last and Mathew Penrose. Lectures on the Poisson Process. Cambridge University
Press, 10 2017.

[26] Christian Mönch. Inhomogeneous long-range percolation in the weak decay regime. Probab.
Theory Relat. Fields, 189(3):1129–1160, 2024.

[27] Balázs Ráth and Sándor Rokob. Percolation of worms. Stochastic Process. Appl., 152:233–288,
2022.

[28] L. S. Schulman. Long range percolation in one dimension. J. Phys. A, 16(17):L639–L641, 1983.

[29] Augusto Teixeira and Daniel Ungaretti. Ellipses percolation. J. Stat. Phys., 168(2):369–393, 2017.

[30] Chang-Long Yao, Ge Chen, and Tian-De Guo. Large deviations for the graph distance in super-
critical continuum percolation. J. Appl. Probab., 48(1):154 – 172, 2011.

DOI 10.20347/WIAS.PREPRINT.3154 Berlin 2024


	Introduction and statement of results
	Examples
	Proof of Theorem 1.2

