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Regularity for non-autonomous parabolic equations with
right-hand side singular measures involved

Joachim Rehberg

Abstract

This article provides a theory for non-autonomous parabolic equations the right-hand side of
which includes singular measures – depending on the time parameter – on the spatial domain. In
two space dimensions all bounded Radon measures are admissible as such. In higher dimensions
the focus is on measures whose support is concentrated on l-sets in the sense of Jonsson and
Wallin. It is shown that they may be interpreted as elements from a Sobolev space W−1,q(Ω).
So the right-hand side is considered as an element from Lq(J ;W−1,q(Ω). Having this at hand,
previous results on maximal (non-autonomuous) maximal parabolic regularity apply and show that
the solution lies in the corresponding space of maximal parabolic regularity. In contrast to other
work in this field we only require absolute minimal smoothness for the data of the problem: the
domain, the coefficients – and mixed boundary conditions are allowed. Under minimally stronger
assumptions we even show the Hölder property in space and time. Overall, this work contains an
interplay of geometric measure theory with advanced parabolic theory which delivers as much
parabolic regularity for the solution as one can expect.

1 Introduction

In the meanwhile the consideration of generally non-autonomous parabolic equations

∂u

∂t
+A(·)u = %, u(0) = 0 (1)

with right-hand sides % including measures is quite usual, see the pioneering paper [3], see also [8].
Here we consider the case where the (scalar) measure % on the space-time cylinder is of the kind

C0(]0, T [×Ω) 3 w 7→
∫ T

0

∫
Ω

w(t, x) dρt(x) dt, (2)

{ρt}t∈]0,T ] being a suitable family of Radon measures on Ω, which is – in its dependence of t – weak∗

measurable. The procedure how to treat such parabolic equations is widely common: embedM(Ω),
the space of bounded Radon measures on Ω, into a space W−1,q

D (Ω) and identify the r.h.s. in this
manner with a function f ∈ Ls(]0, T [,W−1,q

D (Ω)) (W 1,q
D (Ω) denoting the usual Sobolev space which

includes a trace-zero condition on D ⊂ ∂Ω and W−1,q
D (Ω) being the space of continuous antilinear

forms on W 1,q′

D (Ω)). For such right-hand sides one may – under certain conditions – apply maximal
parabolic regularity of the operators involved to get a solution which belongs to the maximal parabolic
regularity space (see (13) below). It is almost clear that this is widely optimal for the solution. Unfortu-
nately, this has several drawbacks:
• In order to catch all bounded Radon measures, the q’s to be chosen this way ly definitely below d

d−1
,

d being the space dimension. Therefore the domain of the elliptic second order divergence operator
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J. Rehberg 2

can be at best W 1,q
D (Ω) – with this limitation of q. This is any case more irregular than W 1,2

D (Ω). But
even worse: in general it is extremely delicate – in view of pathologies which were discovered already
by Serrin in [42] – to give the divergence operators on W−1,q

D (Ω) a precise meaning at all, if q < 2 is
far from 2.
N Only in special cases, concerning the domain Ω, the Dirichlet boundary part D and the coefficient
function µ it is true that the domain of−∇ ·µ∇ in fact is contained in the Sobolev space W 1,q(Ω). In
general it is impossible to determine the domain explicitly.
� Aside from more or less trivial cases – concerning ’smoothness’ of the problem – one has no idea
how to treat the non-autonomous case in generality. Sufficient concitions are e.g. the continuity in time
of the coefficient function with respect to the L∞-norm (for an application of the Prüss/Schnaubelt the-
orem [40]) in combination with rather strong elliptic regularity results – fulfilled only in special cases.
In recent years also the numerics of such problems has been treated, see [31], [32]; see also [41],
[35], [10]. In the first paper it is reflected that discontinuous diffusion coefficients allow the treatment
of moving interfaces – what is often definitely required in applications. [32] and [10] discuss real world
problems where the – time dependent – measures on the right-hand side of the parabolic equation are
concentrated on hypersurfaces. Moreover, parabolic equations with measure valued right-hand sides
have attracted attention also in optimal control, see e.g. [8], [9]. Here our ansatz in (2) is more or less
identical with that in [8] concerning the measures involved. But, in contrast to [8], [9], our coefficient
functions may depend discontinuously on space and time, so that in fact non-autonomous parabolic
equations are the main subject of this paper.
Since the case where any bounded Radon measure, among them Dirac measures, can serve as a ρt
in (2) is widely clear (inclusively the drawbacks in • N �), the focus is here on the following question:
Is there a good concept to confine the measures ρt to suitable subclasses M̂ such that the
embedding M̂ ↪→ W−1,q

D (Ω) is valid for considerably larger q than d
d−1

– at best close to 2?
’Good’ means at least the following:
I) In view of the above mentioned applications it is necessary that measures, living on curves, sur-
faces..., should appear within such subclasses in a cognizable manner.
II) One can find clear and general analytical conditions on the measures ρt such that the resulting
– via embedding – objects belong to W−1,q

D (Ω) and, additionally, that the corresponding functions
J 3 t 7→ ρt belong to a space Ls(]0, T [;W−1,q

D (Ω)). In particular, one has conditions on the sets
Mt, carrying the corresponding measure ρt, such that the mapping J 3 t 7→ ρt ∈ W−1,q

D is indeed
measurable.
III) The spaces W−1,q

D (Ω) – with q in the range of II) – have a good ’parabolic behavior’ – i.e. the
apparatus of autonomous and non-autonomous maximal parabolic regularity applies for the second
order elliptic operators and one gets as much information as one can on the solution this way.

Astonishingly, one can find such concept when employing the old, but pioneering ideas of Jons-
son/Wallin [29]. Namely one considers closed subsetsM of Ω which are so-called l-sets. This means
that they have to satisfy a condition

c• r
l ≤ Hl(M ∩B(x, r)) ≤ c• rl, x ∈M, r ∈ ]0, 1], (3)

where l ∈ {1, . . . , d − 1} and Hl is the l-dimensional Hausdorff measure. So, M taken as an l-
set, we consider measures σHl|M , σ being a function from Lp(M ;Hl) with p suitably chosen. It is
clear that this concept fulfills I): Lipschitzian curves, surfaces etc. are included as sets M (see [21,
Ch. 3.3.4]), and on these density functions σ from adequate summability classes are allowed. But
much more: one does not require any ’smoothness’, e.g. any finite combination of surfaces or curves
is admissible.
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Non-autonomous parabolic equations including measures 3

On the other hand, the pioneering results of Jonsson/Wallin admit even in this case the embeddings
required for an adequate analysis. Here the most striking argument is the following: due to a classical
result in [29] one gets the uniform boundedness for norms of the mappings

Lp(M ;Hl) 3 σ 7→ σHl|M ∈ W−1,q
D (Ω)

if M runs through a class of subsets in Ω admitting a uniform upper l estimate, i.e. when the constant
c• in (3) may be chosen uniformly for all sets under consideration. Obviously, this comes into play
when considering varying in time measures ρt on Ω and one needs that the corresponding right-hand
sides indeed belong to Ls(]0, T [;W−1,q

D (Ω)) – in order to apply then maximal parabolic regularity for
the second order operators on the space W−1,q

D (Ω)).
Now the right-hand sides being interpreted as functions in Ls(]0, T [;W−1,q

D (Ω)), let us discuss what
one has to expect concerning the quality of the solution for the corresponding parabolic equation – in
view of maximal parabolic regularity, autonomous and non-autonomous. Fortunately, in [24] and [15]
we developped the sharp instruments for the treatment of even non-autonomous parabolic equations:
on one hand is shown in [24] that the Lax-Milgram isomorphism

−∇ · µ∇+ 1 : W 1,q
D (Ω)→ W−1,q

D (Ω) (4)

for q = 2 extrapolates to other integrability indices q close to 2 – including adequate estimates for
the inverse operator and uniform in coefficient functions µ possessing the same L∞ bound and the
same ellipticity constant, see Prop. 2.6 below for details. Secondly, we exploit the central result of [15],
namely that, for s, q close to 2

W 1,s
0 (J ;W−1,q

D (Ω)) ∩ Ls(J ;W 1,q
D (Ω)) 3 w 7→ ∂w

∂t
− divµ̂gradw ∈ Ls(J ;W−1,q

D (Ω)) (5)

is a topological isomorphism, extrapolating the classical Lions isomorphism for r = q = 2, see [11,
Section XVIII.3 Remark 9].
Summing up, one can expect that III) fits well in general only if q is close to 2. But, good luck, exactly
this happens in the following cases which we consider as the most relevant ones in applications:
♣ In 2d one has (see Lemma 3.1 below)

M(Ω) ↪→ W−1,q
D (Ω), (6)

for every q ∈ ]1, 2[. This makes the parabolic equation tractable in the sense of maximal parabolic
regularity – then even knowing that the domains of the time dependent elliptic operators coincide with
W 1,q

D (Ω) if q sufficiently close to 2.
♠ Consider again a two-dimensional domain, this time with a curve M within, this being an 1-set.
Then 2 ∼ q > 2 is admissible, see Thm. 3.14.
F In three dimensions the situation is as follows: if the supporting setM for the measure is a ’curve’
– in the meaning of being a 1-set – then q < 2 may be taken arbitrarily close to 2.
If the supporting set M is a ’surface’ – in the meaning of being a 2-set – then q may be taken even
larger than 2 (even more is true, see Thm. 3.10 ). So in any of these two cases the available elliptic
and parabolic regularity theorems apply.
Let us emphasize that this whole machinery works for mixed boundary conditions – where the cases
of pure Dirichlet or pure Neumann conditions are, of course, included. Note that this requires for the
coefficient function t 7→ µ(t, ·) only boundeness, uniform (in t ) ellipticity and an extremely weak
measurability condition, see Assu. 2.13 below.

Overall, combining ideas from geometric measure theory and advanced parabolic theory, we intend to
give in this article a general and profound functional analytic investigation of – even nonautonomous
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J. Rehberg 4

– parabolic equations with measure-valued right-hand sides which can serve as a basis for numerical
treatment and even optimal control for such equations.

Throughout this paper we denote by d the dimension of the domain Ω and, for l ∈ {1, . . . , d− 1} the
l-dimensional Hausdorff measure by Hl. We recall that on smooth and Lipschitzian submanifolds of
Rd the Hausdorff measure is identical with the measure defined by parametrizations on this manifold,
see [21, Ch. 3.3/3.4]. Moreover, if M ⊂ Ω ⊂ Rd then we abbreviate Lp(M ;Hl|M) by Lp(M ;Hl) in
all what follows, since misunderstandings seem to be excluded at this point. If Ω ⊂ Rd is a bounded
domain, then we denote byM(Ω) the space of finite Radon measures on Ω.
Finally, for two Banach spaces X, Y , Y continuously embedded into X , we denote by (X, Y )θ,r the
usual real interpolation space and by [X, Y ]θ the corresponding complex interpolation space (see
[44, Ch. I]).

Since in most applications the coefficient function is real-valued, we suppose this during this paper.

2 Elliptic and parabolic regularity in the W−1,q
D scale

In all what follows we suppose the following assumption to be in power.

Assumption 2.1. Let here and in the sequel B(x, r) denote the ball in Rd with center x and radius
r. Ω is a bounded domain in Rd.

(a) D is a closed subset of ∂Ω which satisfies the Ahlfors–David condition; that is, there are
c0, c1 > 0 such that

c0 r
d−1 ≤ Hd−1(D ∩B(x, r)) ≤ c1 r

d−1 (7)

for all x ∈ D and r ∈ ]0, 1].

(b) For every x ∈ ∂Ω \D there exists an open neighborhood Ux of x and a bi-Lipschitz map φx
from Ux onto the cube K := ]−1, 1[d, such that the following three conditions are satisfied:

φx(x) = 0,

φx(Ux ∩ Ω) = {x ∈ K : xd < 0},
φx(Ux ∩ ∂Ω) = {x ∈ K : xd = 0}.

(c) ∂D := D ∩ ∂Ω \D) is a (d− 2)-set, i.e. there are constants c, c, such that

c rd−2 ≤ Hd−2

(
∂D ∩B(x, r)

)
≤ c rd−2.

2.1 Elliptic operators

Definition 2.2. We define W 1,q
D (Ω) as the closure of

C∞D (Ω) := {ψ|Ω : ψ ∈ C∞0 (Rd), suppψ ∩D = ∅}

in W 1,q(Ω).

By W−1,q
D (Ω) we denote the (anti)dual of W 1,q′

D (Ω).
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Non-autonomous parabolic equations including measures 5

Remark 2.3. If only Assu. 2.1 (b) is fulfilled, then there exists a continuous extension operator E :
W 1,q

D (Ω) into W 1,q(Rd). It can be chosen independently of q ∈ [1,∞[.

Definition 2.4. Assume q ∈ ]1,∞[ and let µ be a measurable, bounded, Rd×d-valued function on Ω.
Then we define the operator −∇ · µ∇ : W 1,q

D (Ω)→ W−1,q
D (Ω) by

〈−∇ · µ∇ψ, ϕ〉 =

∫
Ω

µ∇ψ · ∇ϕ, ψ ∈ W 1,q
D (Ω), ϕ ∈ W 1,q′

D (Ω). (8)

Proposition 2.5. i) −∇ · µ∇ : W 1,q
D (Ω) → W−1,q

D (Ω) is bounded with bound not larger than
‖µ‖L∞(Ω;L(Cd)) – entirely independent of q.

ii) The operators are consistent with each other for different q’s.

Proof. i) follows from Hölder’s inequality and ii) is obvious.

We use the same symbol −∇ · µ∇ irrespective what q is. This is reasonable by ii) of the proposition.

Proposition 2.6. (see [24] )

Let µ be a bounded, measurable, strongly elliptic coefficient function, i.e. one has

ess inf
x∈Ω

<〈µ(x)ξ, ξ〉 ≥ µ•‖ξ‖2, ξ ∈ Cd (9)

for some positive constant µ•.
Then, under Assumption 2.1, the set of q’s for which

−∇ · µ∇+ I : W 1,q
D (Ω)→ W−1,q

D (Ω) (10)

is a surjection (and, hence, topological isomorphism) is an open interval Iµ =]2− δ, 2 + ε[3 2.
For every set C of coefficient functions µ which admit a uniformL∞ bound and also a uniform ellipticity
constant µ•, the numbers δ and ε may be taken uniformly with respect to all coefficient functions from
C.
In addition,

sup
µ∈C
‖(−∇ · µ∇+ I)−1‖L(W−1,q

D ;W 1,q
D ) <∞

for all q from the corresponding uniform interval.

Let us state a permanence property for the operators −∇ · µ∇.

Lemma 2.7. Let µ∗ be the adjoint coefficient function. Then

−∇ · µ∗∇+ I : W 1,q′

D (Ω)→ W−1,q′

D (Ω) (11)

is the adjoint operator to (10).
(11) is a topological isomorphism if and only if (10) is.

Proof. This follows by a straight forward calculation.
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Striking examples (see [38] or [19, Ch. 4]) show that the result of Prop. 2.6 is optimal in general insofar
as both, δ and ε, can become arbitrarily small in general. Nevertheless, one succeeds in establishing
a large variety of geometries and coefficient functions on Ω ⊂ R3, such that (10) is a topological
isomorphism even for a q > 3, see [16], compare also [28], [18], [19], [22, Cor. 9.3], [45], [23]. The
price one has to pay are severe restrictions on on the geometry of Ω, D and on the coefficient function
µ.

All of this makes it clear that it is more the exception than the rule that (10) is surjective. Even worse,
this operator is for q′s outside the interval ]2 − δ, 2 + ε[ not even a closed one and very strange
phenomena can appear then, see [42]. In this paper we will avoid all these difficulties by restricting,
for q < 2, the considerations to q’s from Iµ .

In contrast to [2], D 6= ∅ 6= ∂Ω \ D with D ∩ ∂Ω \D 6= ∅, i.e. mixed boundary conditions, are
allowed – see in particular [25] for a model problem.

2.2 Non-autonomous maximal parabolic regularity: Definition and results

Throughout this paper let T > 0 and set J =]0, T [. Let us start by introducing the following (standard)
definition.

Definition 2.8. If X is a Banach space and s ∈ ]1,∞[, then we denote by Ls(J ;X) the space of
X-valued functions f on J which are Bochner-measurable and for which

∫
J
‖f(t)‖s dt is finite. We

defineW 1,s(J ;X) := {u ∈ Ls(J ;X) : ∂u
∂t
∈ Ls(J ;X)}, where ∂u

∂t
is to be understood as the time

derivative of u in the sense ofX-valued distributions (cf. [1, Section III.1]). Moreover, we introduce the
subspace

W 1,s
0 (J ;X) := {u ∈ W 1,s(J ;X) : u(0) = 0}.

We equip this subspace always with the norm u 7→ ‖∂u
∂t
‖Ls(J ;X).

Definition 2.9. Let X , D be Banach spaces with D densely and continuously embedded in X . Let
J 3 t 7→ A(t) ∈ L(D;X) be a bounded and strongly measurable map and suppose that the
operator A(t) is closed in X for all t ∈ J . Let s ∈ ]1,∞[. Then we say that the family {A(t)}t∈J
satisfies (non-autonomous) maximal parabolicLs(J ;X)-regularity, if for any f ∈ Ls(J ;X) there
is a unique function u ∈ Ls(J ;D) ∩W 1,s

0 (J ;X) which satisfies

∂u

∂t
+A(t)u(t) = f(t) (12)

for almost all t ∈ J . We write

MRs
0(J ;D,X) := Ls(J ;D) ∩W 1,s

0 (J ;X) (13)

for the space of maximal parabolic regularity. The norm of u ∈ MRs
0(J ;D,X) is

‖u‖MRs0(J ;D,X) = ‖u‖Ls(J ;D) + ‖∂u
∂t
‖Ls(J ;X).

Then MRs
0(J ;D,X) is a Banach space.

We emphasize that Dom(A(t)) = D for all t ∈ J in Definition 2.9. In particular, all operators A(t)
have the same domain. If all operatorsA(t) are equal to one (fixed) operator A, and there exists one
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Non-autonomous parabolic equations including measures 7

s ∈ ]1,∞[ such that {A(t)}t∈J satisfies maximal parabolic Ls(J ;X)-regularity, then {A(t)}t∈J
satisfies maximal parabolic Ls(J ;X)-regularity for all s ∈ ]1,∞[. In this case we say thatA satisfies
maximal parabolic regularity on X .

Let us recall some embedding property of the space of maximal par. regularity which will be needed
later.

Proposition 2.10. LetX, Y be Banach spaces and assume that Y is continuously embedded intoX .

i) If s ∈ ]1,∞[, then

W 1,s(J ;X) ∩ Ls(J ;Y ) ↪→ C(J ; (X, Y )1− 1
s
,s),

(see [1, Ch. III Thm. 4.10].

ii) If s ∈ ]1,∞[ and θ ∈ ]0, 1− 1
s
[, then

W 1,s(J ;X) ∩ Ls(J ;Y ) ↪→ Cβ(J ; (X, Y )θ,1), (14)

where β = 1− 1
s
− θ, (see [15, Lemma 2.11]).

In the sequel we primarily consider the case D = Y = W 1,q
D (Ω) and X = W−1,q

D (Ω). For later
purpose it is of essential importance to know compact embeddings of the maximal parabolic regularity
space MRs

0(J ;W 1,q
D (Ω),W−1,q

D (Ω)) into suitable other functional spaces.

Lemma 2.11. Assume s > 2.

i) Suppose q > 2. Then MRs
0(J ;W 1,q

D ,W−1,q
D ) compactly embeds into C(J ;Lq(Ω)).

ii) Suppose that 2− q > 0 is sufficiently small. Then MRs
0(J ;W 1,q

D ,W−1,q
D ) compactly embeds

into C(J ;L2(Ω)).

Proof. We employ (see [5])

(W−1,q
D (Ω),W 1,q

D (Ω)) 1
2
,1 ↪→ [W−1,q

D (Ω),W 1,q
D (Ω)] 1

2
= Lq(Ω), q ∈ ]1,∞[. (15)

i) Chose θ ∈ ]1
2
, 1− 1

s
[ and use re-iteration (see [44, Ch. 1.10]) in combination with (15); this yields(

W−1,q
D (Ω),W 1,q

D (Ω)
)
θ,1

=
(
(W−1,q

D (Ω),W 1,q
D (Ω)) 1

2
,1,W

1,q
D (Ω)

)
2θ−1,1

↪→

↪→ (Lq(Ω),W 1,q
D (Ω))2θ−1,1. (16)

Since W 1,q
D (Ω) compactly embeds into Lq(Ω), also (Lq(Ω),W 1,q

D (Ω))2θ−1,1 compactly embeds into
Lq(Ω), see [44, Ch. 1.16.4]. This, in combination with (14) gives the assertion, due to the Arzela/Ascoli
thm.
ii) Again chose θ ∈ ]1

2
, 1− 1

s
[. Take q ∈ ]2− δ, 2[. The same argument as in i) gives the embedding

(16) – but q now being smaller than 2. We define ϑ := d
(

1
q
− 1

2

)
and chose q < 2 so large that

ϑ < 2θ − 1. Then we can again use re-iteration and continue (16), for some κ ∈ ]0, 1[,

=
(
[Lq(Ω),W 1,q

D (Ω)]ϑ,W
1,q
D (Ω)

)
κ,1

↪→
(
[Lq(Ω), Lq

∗
(Ω)]ϑ,W

1,q
D (Ω)

)
κ,1
, (17)

q∗ being the Sobolev conjugated of q. But ϑ is chosen that [Lq(Ω), Lq∗(Ω)]ϑ equals L2(Ω). So (17)
equals

(
L2(Ω),W 1,q

D (Ω)
)
κ,1

. This embeds compactly into L2(Ω) by [44, Ch. 1.16.4]. So one can use
(14), and the and the standard compactness argument via Arzela/Ascoli applies.
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J. Rehberg 8

Remark 2.12. It may seem somewhat surprising that one also gets in case ii) a compact embedding
into C(J ;L2(Ω)) – although the supposed integrability index q is here smaller than 2. Of course, the
reason is the higher integrability s > 2 with respect to time. The reader will see in a moment that this
fits well to the subsequent extrapolation result Thm. 2.16.

Now we pass to the presentation of the (known) regularity results for the non-autonomous parabolic
equations.

Assumption 2.13. Let µ̂ : J × Ω→ Rd×d be a bounded mapping, such that

J ∈ t 7→ µ̂(t, ·) ∈ L1(Ω;Rd×d), (18)

is measurable. The bound will be denoted by µ• in the sequel.

Note that the set of points in Ω where µ̂(t, ·) is discontinuous may depend on t. In general the map
t 7→ µ(t, ·) from J into L∞(Ω;Rd×d) is discontinuous at every time point t and therefore it cannot
be measurable, see the example in [14, Ch. 7.1]. This is the reason for what we only demand L1-
measurability.
Let us make precise what we will understand under the non-autonomous parabolic operator.

Definition 2.14. Let µ̂ is as in Assu. 2.13. Then we define(
−divµ̂grad u

)
(t) :=

(
−∇ · µ̂(t, ·)∇

)
u(t), u ∈ Ls(J ;W 1,q

D (Ω)). (19)

Lemma 2.15. Adopt Assu. 2.13. Let q, s ∈ (1,∞). Then one has the following.

i) The map t 7→ ∇ · µ(t, ·)∇u is (strongly) measurable from J into W−1,q
D (Ω) for all u ∈

W 1,q
D (Ω).

ii) The map ∂
∂t
− divµ̂grad is a bounded linear map from the space MRs

0(J ;W 1,q
D ,W−1,q

D ) into

Ls(J ;W−1,q
D ) with norm at most 1 + µ•.

Proof. see [14, Lemma 7.1]

Proposition 2.16. Adopt the Assumptions 2.1 (a)/(b) and 2.13. Moreover, suppose that the function
(18) has a uniform in time ellipticity constant µ•. Then there are two open intervals I1 3 2 and I2 3 2,
such that

∂

∂t
− divµ̂grad : MRs

0(J ;W 1,q
D ,W−1,q

D ) → Ls(J ;W−1,q
D ) (20)

is a topological isomorphism for s ∈ I1 3 2 and q ∈ I2 3 2, i.e.
{
−divµ̂(t, ·)grad

}
t∈J satisfies

non-autonomous maximal parabolic Ls(J,W−1,q
D ) regularity.

Proof. see [14, Thm. 7.3].

The reader should carefully notice that the extrapolation of non-autonomous maximal parabolic regu-
larity is a very delicate matter. One cannot expect that this holds considerably beyond [14, Thm. 3.4]
– neither what affects the Banach spaces nor the integrability exponent with respect to time, compare
here [12] and [6].
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Non-autonomous parabolic equations including measures 9

3 Non-autonomous problems with ’wild’ dependence of the co-
efficients on time and measure-valued functions as right-hand
sides

3.1 Generalities

In this chapter, we investigate non-autonomous parabolic problems like

∂u

∂t
− divµ̂grad u = %, u(0) = 0 (21)

ρ being a function on J and taking in every time point t a bounded Radon measure ρt on Ω as its
value.
It makes sense to consider mappings J 3 t 7→ ρt ∈ M(Ω), which are only weak* measurable, this
means: mappings for which

J 3 t 7→ 〈ρt, ψ〉, ψ ∈ C(Ω) (22)

are measurable (compare the discussion in [8, Ch. 2.1]). In the opposite case one excludes examples
like this:
Let J 3 t 7→ x(t) be an injective curve in Ω. If one defines ρt := δx(t) – the Dirac measure in the
point x(t) ∈ Ω – then the mapping J 3 t 7→ ρt is in every point discontinuous, if one equipps the
space of (bounded) measures with the strong topology. Hence, it is not measurable if one defines the
structure of measurability via this strong topology. On the contrary, if one considers the weak* topology
and the induced concept of measurability, then the mapping J 3 t 7→ δx(t) is at least measurable if
the mapping J 3 t 7→ x(t) is measurable itself.
IfN is a space of measures for which one knows an embeddingN ↪→ W−1,q

D (Ω), then the measur-
ability of (22) is in particular true for functions ψ ∈ C∞D (Ω) and, hence, carries over to all functions

ψ ∈ W 1,q′

D (Ω) by density. But this means: the mapping J 3 t 7→ ρt ∈ W−1,q
D (Ω) is weakly mea-

surable in this case. Then the separability of W−1,q
D (Ω) implies, quite in contrast to the situation in

M(Ω), even the strong measurability. Thus one is, via embeddding, in a situation in which rather gen-
eral mappings J 3 t 7→ ρt are admissible and, additionally, suit in the context of maximal parabolic
regularity – even in the non-autonomous case.
However, the reader should carefully notice: weak∗ limits of measures, these being possibly concen-
trated on sets of lower Hausdorff dimension, can be of entirely different nature. E.g. every Radon
measure on Ω is the weak∗ limit of linear combinations of Dirac measures on Ω. In other words: the
affiliation of a measure to a class of measures, concentrated on lower dimensional objects, is by no
means necessarily preserved for the weak∗ limit.

3.2 Interpretation of singular measures as elements from W−1,q
D (Ω)

As already explained, we intend to investigate the equation (21) by understanding the measures ρt
as elements from W−1,q

D (Ω) – a space on which the second order operators admit a well-behaved
parabolic theory. Fortunately, the geometric measure theory, elaborated in particular by Jonsson and
Wallin, provides the adequate instruments for this.

Lemma 3.1. Let Ω ⊂ Rd, D be a closed subset of ∂Ω which, together, fulfill Assu. 2.1 (b). Then
the space of bounded Radon measures on Ω continuously embeds into any space W−1,q

D (Ω) if q ∈
]1, d′[.
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Proof. Thanks to Rem. 2.3 and the usual Sobolev embedding one has a continuous embedding
W 1,q′

D (Ω) ↪→ C(Ω) for every q > d. So one gets for every bounded Radon measure m on Ω

‖m‖W−1,q
D

= sup
‖ψ‖

W
1,q′
D

=1

∣∣∣ ∫
Ω

ψ dm
∣∣∣ ≤ sup

‖ψ‖
W

1,q′
D

=1

sup
x∈Ω
|ψ(x)| ‖m‖ ≤ c ‖m‖.

Let us explicitly notice that an argument like this – to embed the space of bounded Radon measures in
a spaceW−1,q – is not new at all, it appears at the latest in [7] – there even in the context of non-linear
(elliptic) equations.
So far, this affects general bounded Radon measures on Ω irrespective of their singularity – even
Dirac measures are admitted, compare e.g. [33], [41], [10].

In the sequel we restrict the class of measures which are admitted. The reason is the following: In full
generality, Thm. 2.16 holds only for q close to 2. So, at least concerning non-autonomous parabolic
equations, one is restricted to measures which can be considered as elements of W−1,q

D (Ω) with
q ∼ 2 – if one is willing to exploit that theory. In two space dimensions it turns out that – besides
the class of all bounded Radon measures – the measures situated on sets of Hausdorff dimension 1
deserve special attention; naively spoken: curves. In three space dimensions this affects the measures
concentrated on ’surfaces’ and ’curves’ – in fact: 2-sets and 1-sets. In order to make this precise, we
need some preparation. Recall first the definition of an l-set from the introduction.

Lemma 3.2. If the closed set M ⊂ Rd is an l-set satisfying (3), and one defines the measure ρ on
Rd by ρ(N) = Hl(N ∩M) for every Borel set N ⊂ Rd, then ρ satisfies ρ(B(x, r)) ≤ 2lc• rl for
r ≤ 1.

Proof. For all x ∈ Rd with dist(x,M) > 1/2 one has B(x, r) ∩ M = ∅ for r ≤ 1/2, so that
ρ(B(x, r)) = 0 for these r. If dist(x,M) = r ≤ 1/2, then exists a y ∈M with |x− y| = r ≤ 1/2.
But then B(x, r) ⊆ B(y, 2r) and the assertion follows.

Proposition 3.3. If M ⊂ Ω is a Borel set of finite Hausdorff measureHl, then the forming

C0(Ω) 3 v 7→
∫
M

v dHl

is a bounded Radon measure on Ω.

Proof. SinceHl is a Borel measure on Rd (see [21, Ch. 2 Thm. 2.1]) andHl(M) is finite, the restric-
tion ofHl to M is even a (bounded) Radon measure on Rd (see [21, Ch. 2 Thm. 2.1]). It is clear that
the restriction of this to Ω remains a (bounded) Radon measure.

So, if in particular M ⊂ Ω is a Borelian l-set, then Hl|M is a bounded Radon measure on Ω.
Moreover, the total mass of M ⊃ M with respect to Hl can be estimated by c• × τ , where τ is the
number of (shifted) unit balls required for a covering of M .

Proposition 3.4. Suppose l ∈ {1, . . . , d− 1}. Let M ⊂ Rd be a closed set satisfying

Hl

(
M ∩B(x, r)

)
≤ c rl, x ∈M, r ∈ ]0, 1]. (23)

Assume α ∈ ]0, 1], 0 < α− d−l
p

for some p ∈ ]1,∞[.
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Non-autonomous parabolic equations including measures 11

i) For f ∈ Lp(Rd) and ϕ = Gα ? f one has

‖ϕ‖Lp(M ;Hl) ≤ c ‖f‖Lp(Rd), (24)

Gα being the corresponding Bessel potential (see [43, Ch. V.3]). The constant c can be chosen
independent of f .

ii) The constant c in (24) may be taken even uniform for sets M obeying the estimate (3) with a
uniform c•.

Proof. i) is a special case of [29, Ch. VI. Lemma 6]. ii) follows by a careful inspection of that proof. For
the convenience of the reader we give some comments how to read the proof of [29, Ch. VI. Lemma
6] in the special case under consideration here in the appendix.

Corollary 3.5. LetM ⊂ Rd be a Borel set with l ∈ {1, . . . , d−1} which satisfies (23). Letα ∈ ]0, 1],
0 < α− d−l

p
for some p ∈ ]1,∞[. Then one has a continuous embedding Hα

p (Rd) into Lp(M ;Hl),

Hα
p (Rd) being the well-known Bessel potential space (see [44, Ch. 2.3.3], compare also [43, Ch. V.3]).

The embedding constants are uniformly bounded for different sets M obeying the estimate (3) with a
uniform c.

Proof. As is well-known, the space Hα
p (Rd) can be defined as the set {Gα ? f : f ∈ Lp(Rd)}, this

equipped with the corresponding graph norm (see [44, Ch. 2.3.4]). So (24) can be interpreted as

‖ϕ‖Lp(M ;Hl) ≤ c ‖ϕ‖Hα
p (Rd), (25)

and the assertions follow.

Theorem 3.6. Let Ω be a bounded domain in Rd, d ≥ 2, and D be a closed portion of ∂Ω. Suppose
that M is a closed subset of Ω, which satisfies (23), l ∈ {1, . . . , d − 1}. Assume q ∈ ]1, d[. If
p ∈ ]1, ql

d−q [, then the usual trace mapping embeds W 1,q
D (Ω) continuously into Lp(M ;Hl).

The embedding constants may be taken uniform for different sets M as long as (23) is satisfied for a
uniform constant c.

Proof. One first considers the mapping

W 1,q
D (Ω)→ W 1,q(Rd)→ Hα

p (Rd), (26)

the left being the extension operator E (see Rem. 2.3) and the second Sobolev’s embedding (see [44,
Ch. 2.8.1 Rem. 2] or [29, Ch. 1.4]). Hence, q given, α and p are related via the well-known condition

1

q
− 1− α

d
=

1

p
or, equivalently, α =

d

p
− d

q
+ 1. (27)

Of course, our intention is to apply Cor. 3.5, what demands α > d−l
p

. A straight forward computation
shows that for this latter, in combination with (27) the above condition for p is a necessary and sufficient
one.

Thus, for the supposed p’s one may apply Cor. 3.5, what proves the claim.
The reader should carefully observe here that M is a subset of the open set Ω so that the forming of
the trace onto M when considered as a subset of Ω is compatible with the forming on whole Rd.

Our original intention is to identify the measures σHl with elements of W−1,q
D . This follows from Thm.

3.6 by the following straight forward duality argument.
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Theorem 3.7. Let Ω be a bounded domain in Rd and D be a closed portion of ∂Ω. LetM be a closed
subset of Ω of finite Hl measure, l ∈ {1, . . . , d}. Suppose that W 1,q

D (Ω) continuously embeds into
Lp(M ;Hl) with embedding constant e. Then, for all σ ∈ Lp′(M ;Hl), the measure σHl|M belongs

to W−1,q′

D (Ω) and the mapping

Lp
′
(M ;Hl) 3 σ 7→ σHl|M =: Ψ ∈ W−1,q′

D (Ω) (28)

is well-defined and has a norm not larger than e.

Proof. One has

|〈σHl|M , ψ〉| ≤
∫
M

|ψ| |σ| dHl ≤ ‖σ‖Lp′ (M ;Hl) ‖ψ‖Lp(M ;Hl) ≤

e ‖σ‖Lp′ (M ;Hl) ‖ψ‖W 1,q
D (Ω), ψ ∈ W 1,q

D (Ω). (29)

Let us make explicit, l ∈ {1, . . . , d − 1} and p ∈ ]1,∞[ given, for which q’s the embedding
Lp(M,Hl) ↪→ W−1,q

D exists.

Theorem 3.8. Let Ω be a bounded domain in Rd, d ≥ 2, and D be a closed portion of ∂Ω. Suppose
that M is a closed subset of Ω, which satisfies (23), l ∈ {1, . . . , d− 1}. If

1 < q <
(
1− 1

d
[l + 1− l

p
]
)−1

, (30)

then one has the embedding
Lp(M,Hl) ↪→ W−1,q

D . (31)

The embedding constants may be taken uniform for different sets M as long (23) holds uniformly with
the same constant c.

Proof. From Thm. 3.6 and Thm. 3.7 it is clear that for the embedding (31) the condition p′ ≤ q′l
d−q′ is

a sufficient one, q′ < d. A straight forward computation shows that this is true iff (30) holds.

In the sequel we focus ourselves, for technical simplicity, to the most important cases

d = 2, l = 1 (32)

and
d = 3, l ∈ {1, 2} (33)

One immediately sees that the condition (30) becomes in case of l = d − 1 the form q < d
d−1

p and

in case of l = d− 2 > 0 the form q < d
(
1 + d−2

p

)−1
.

Lemma 3.9. Let, for every t ∈ J , ρt be a bounded Borel measure on Ω, such that the mapping
J 3 t 7→ ρt is weak∗ measurable. Suppose that, for every t ∈ J ,

sup
ψ∈C∞D (Ω),‖ψ‖

W
1,q′
D

=1

∣∣ ∫
Ω

ψ dρt
∣∣ <∞. (34)

Then the forming C∞D (Ω) 3 ψ 7→
∫

Ω
ψ dρt extends by continuity to an element Ψt ∈ W−1,q

D (Ω).

Moreover, the mapping J 3 t 7→ Ψt ∈ W−1,q
D (Ω) is strongly measurable.
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Proof. The first assertion is clear. Secondly, from the supposed weak∗ measurability it follows that
J 3 t 7→

∫
Ω
ψ dρt = 〈Ψt, ψ〉 is measurable as long as ψ ∈ C∞D (Ω). But this latter set is dense in

W 1,q′

D (Ω), so the measurability for general ψ ∈ W 1,q′

D (Ω) follows by taking the limit – what implies

weak measurability of J 3 t 7→ Ψt ∈ W−1,q
D (Ω). Since W 1,q′

D (Ω) is separable and reflexive, its dual
W−1,q

D (Ω) also is, and the asserted strong measurability follows.

Let us have a closer look on what kind of restriction the uniformity of the constant c means in a simple
example:
Consider a bounded domain Ω ⊂ R2 which includes 0 ∈ R2 and a closed ballB(0, r0) around. Take
a sequence from the interval [0, π], {αk}n, which converges to zero. From this we form the set

NN := ∪k≤N{x ∈ R2 : x = reiαk , r ∈ [0, r0]}.

Then the condition (41), there l taken as 1, obviously gives a bound for the admissibleN . In any case,
not the union over all k is admissible.
However: if one changes the above set to

∪k{x ∈ R2 : x = reiαk , r ∈ [0, rk]}

and chooses the rk suitably, then (41) can indeed be satisfied in this case. Very roughly spoken, one
can say: only finitely many ’curves’ of a certain minimal length are admissible, but if the length may
shrink to zero, then infinitely many may be admissible and still satisfy (3).
Let us now take a function η ∈ C∞0 (Ω) which is identical 1 on B(0, r0). Then ‖η‖Lp(NN ) = Nr

1/p
0 .

This clearly shows that, in order to delimitate the embedding constant of W 1,q
D (Ω) ↪→ Lp(NN) one

must delimitate N . So an inequality like (3) seems not to be too far from a necessary one for the
required embedding.
Clearly, one can construct analogous examples also in higher dimensions.

Lemma 3.10. Let Ω be a bounded domain in R3 and D be a closed portion of ∂Ω.

i) Let M be a closed subset of Ω fulfilling the condition

H1(M ∩B(x, r)) ≤ c1 r, x ∈M, r ∈ ]0, 1[. (35)

a) L2(M ;H1) continuously embeds into every spaceW−1,q
D (Ω) with q being any number from

]1, 2[.

b) For every p > 2, Lp(M ;H1) continuously embeds into W−1,q
D (Ω) as long as q < 3p

p+1
.

ii) Let M be a closed subset of Ω fulfilling the condition

H2(M ∩B(x, r)) ≤ c2 r
2, x ∈M, r ∈ ]0, 1[. (36)

a) For every ε > 0 there is a δ > 0 such that L2+ε(M ;H2) continuously embeds into
W−1,3+δ

D (Ω).
b) L2(M ;H2) continuously embeds into every spaceW−1,q

D (Ω) with q being any number from
]1, 3[.

iii) If different setsM do admit the same constant c in (35)/ (36), then the corresponding embedding
constants in all cases may be taken uniformly.
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Proof. The proof follows from Thm. 3.8.

Up to now we were primarily interested in individual measures σHl|M . Having parabolic equations
with varying in time measures as right-hand sides in our general focus, we must find a concept which
allows to identify the time dependent, measure-valued function as one with values in the Sobolev
spaceW−1,q

D (Ω) – including suitable measurability and integrability properties. This is achieved in the
next

Theorem 3.11. Let Ω be a bounded domain in Rd and D be a closed portion of ∂Ω. Let, for every
t ∈ J , Mt be a closed subset of Ω. Suppose that, for an l ∈ {1, . . . , d− 1},

Hl(M t ∩B(x, r)) ≤ c rl, x ∈M t, r ∈ ]0, 1] (37)

holds with a uniform in t constant c.
Assume p ∈ ]1,∞[ and that q satisfies (30). For every t ∈ J let be given a function σt ∈ Lp(Mt;Hl)
such that
a) the mapping

J 3 t 7→ σtHl|Mt ∈M(Ω) (38)

is weak∗ measurable
and
b) the upper integral (see [13, Ch. 13.5])

∫ ∗
J
‖σt‖sLp(Mt,Hl) dt is finite.

Let Ψ(t) ∈ W−1,q′

D (Ω) be the element which is associated to the measure σtHl|Mt by Thm. 3.8.

Then the mapping J 3 t 7→ Ψ(t) ∈ W−1,q
D (Ω) is strongly measurable and one has∫

J

‖Ψ(t)‖s
W−1,q

D (Ω)
dt ≤ k

∫ ∗
J

‖σt‖sLp(Mt,Hl) (39)

for some constant k. Moreover, the constant k is uniform with respect to all families {σt}t∈J for which
only

∫ ∗
J
‖σt‖sLp(Mt,Hl) dt <∞.

Proof. One may apply Lemma 3.9 – the suppositions of which are fulfilled according to Thm. 3.6 and
Thm. 3.7. This first proves the asserted measurability. On the other hand, (37) implies, for every t ∈ J ,
‖Ψ(t)‖W−1,q

D (Ω) ≤ l‖σt‖Lp′ (Mt,Hl) with a uniform in t constant l, thanks to Thm. 3.6 and Thm. 3.7.
Since we already know the measurability of the mapping in question this proves (39).

Remark 3.12. The reader should carefully notice that – besides the weak∗ measurability of the func-
tion (38) no measurability condition is supposed for the function t 7→ σt and even not for t 7→
‖σt‖Lp′ (Mt,Hl). To make such a measurability precise would be a challenging task – and not easy
to control in examples. On the contrary, for the finiteness of the upper integral a uniform boundedness
condition for the functions σt, for example, is a sufficient one since the function J 3 t 7→ Hl(Mt) is
bounded by the (supposed) uniform upper l-property of the sets Mt.

3.3 Regularity for non-autonomous parabolic equations with measure-valued
right-hand sides

In this chapter, we prove parabolic regularity results for equations with measure valued right-hand
sides. The crucial point is two-fold: on one hand, the results of the foregoing chapter allow to inter-
pret suitable measures as elements of W−1,q

D (Ω). Here in the two-dimensional case there are no
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Non-autonomous parabolic equations including measures 15

restrictions concerning the measures under consideration: all bounded Radon measures are admis-
sible. In the three dimensional case one is restricted in this concept to measures which live on sets
with Hausdorff dimension one or two and are, additionally, absolutely continuous with respect to the
corresponding Hausdorff measure there. Secondly, we are then in the position to apply the results of
maximal non-autonomous parabolic regularity from Ch. 2.

Theorem 3.13. Let Ω ⊂ R2 be a domain and D be a closed portion of the boundary ∂Ω. Assume
% : J → M(Ω) to be weakly* measurable with

∫ ∗
J
‖ρt‖τMdt < ∞ for some τ > 2. Then, for

s > 2 and q < 2, both sufficiently close to 2, the solution of the problem (21) lies in the space
W 1,s

0 (J ;W−1,q
D ) ∩ Ls(J ;W 1,q

D ) = MRs
0(J,W 1,q

D ,W−1,q
D ) – inclusively the appropriate estimate for

the solution.

Proof. In case of two space dimensions, the space of bounded Radon measures on Ω continuously
embeds into every space W−1,q

D (Ω) – as long q ∈ ]1, 2[, see Lemma 3.1. So one associates to the
function % a function Ψ with values inW−1,q

D (Ω) which is shown to be strongly measurable and admits
the same integrability with respect to time, see Thm. 3.11. Investing this knowledge, one may apply
Thm. 2.16.

This result should not be far from optimal. Unfortunately, the range of admissible integrability exponents
s with respect to time is restricted to numbers close to 2. The next result shows that the solution is
more regular with respect to the spatial variable, if one restricts the admissible measures to those
’living on one-dimensional’ subsets. In particular, for almost all t ∈ J , the function u(t, ·) is Hölderian
on Ω then.

Theorem 3.14. Let Ω ⊂ R2 be a domain and D be a closed portion of the boundary ∂Ω, together
fulfilling Assu. 2.1. Moreover, we suppose the existence of a p > 1 with the following properties:

(a) For every t ∈ J there is a closed 1-set Mt of Ω, and a function σt ∈ Lp(Mt;H1) such that
the mapping

J 3 t 7→ σtH1|Mt =: ρt ∈M(Ω) (40)

is weak∗ measurable.

(b) It exists a constant c, such that

H1(M t ∩B(x, r)) ≤ c r, x ∈M t, r ∈ ]0, 1] (41)

holds for all t ∈ J .

(c) For a τ > 2 one has
∫ ∗
J
‖σt‖τLp(Mt;H1)dt <∞.

Then there exist s, q > 2, such that the solution of the problem (21) lies in the spaceW 1,s
0 (J ;W−1,q

D )∩
Ls(J ;W 1,q

D ) = MRs
0(J,W 1,q

D ,W−1,q
D ) – inclusively the appropriate estimate for the solution.

Proof. Thanks to Thm. 3.8/Thm. 3.11, the function (40) can be interpreted as a measurable one with
values in W−1,q

D (Ω) with the same integrability exponent in time, as long as q ∈ [2, 2 + ε[. Possibly
diminishing τ and q, one may now apply Thm. 2.16.

We proceed with the corresponding results in three space dimensions.

Theorem 3.15. Let Ω ⊂ R3 and adopt the Assumptions 2.1 and 2.13.
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(a) Let, for every t ∈ J , Mt ⊂ Ω be closed subsets of Ω. There is a constant c1 such that

H1(M t ∩B(x, r)) ≤ c1 r, x ∈M t, r ∈ ]0, 1] (42)

holds for all t ∈ J .
Further, let, for some p ≥ 2 and every t ∈ J , σ1(t) ∈ Lp(Mt,H1).

(b) Let the mapping
J 3 t 7→ σ1(t)H1|Mt =: ρt ∈M(Ω) (43)

be weak* measurable and suppose∫ ∗
J

‖σ1(t)‖τLp(Mt;H1)dt <∞ (44)

for some τ > 2.

Then the following holds.

i) If p = 2, one can understand ρt in view of Thm. 3.8 as an element Ψ(t) ∈ W−1,q
D (Ω) and the

function % in view of Thm. 3.11 as one from Lτ (J ;W−1,q
D (Ω)), where q may be taken as any

number from ]1, 2[.

ii) If p > 2, one can understand ρt in view of Thm. 3.8 as an element Ψ(t) ∈ W−1,q
D (Ω) and the

function % in view of Thm. 3.11 as one from Lτ (J ;W−1,q
D (Ω)), q ∈ ]2, 3p

p+1
[.

iii) The equation
∂u

∂t
− divµ̂gradu = %, u(0) = 0 (45)

can be interpreted as
∂u

∂t
− divµ̂gradu = Ψ, u(0) = 0. (46)

This equation has a unique solution which belongs to the space of maximal parabolic regularity
MRs

0(J ;W 1,q
D ,W−1,q

D ) for some s ∈ ]2, τ ] and any q < 2 in case of p = 2 and q ∈ ]2, 3p
p+1

[
in case of ii)

Proof. The proof follows from Thm. 3.8 and Thm. 3.11 in combination with Thm. 2.16.

The reader should carefully observe that these considerations would not work for p = 2 if one
would miss this certain flexibility concerning the integrability index q around 2 with regard of maxi-
mal parabolic regularity.

Theorem 3.16. Let Ω ⊂ R3 and adopt the Assumptions 2.1 and 2.13.

(a) Let, for every t ∈ J , Mt ⊂ Ω be closed subsets of Ω. There is a constant c2 such that

H1(M t ∩B(x, r)) ≤ c2 r
2, x ∈M t, r ∈ ]0, 1] (47)

holds for all t ∈ J .
Further, let, for some p > 4

3
and every t ∈ J , σ2(t) ∈ Lp(Mt,H2).
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(b) Assume the mapping
J 3 t 7→ σ2(t)H1|Mt =: ρt ∈M(Ω) (48)

to be weak* measurable and suppose∫ ∗
J

‖σ2(t)‖τLp(Mt;H2)dt <∞ (49)

for some τ > 2.

Then the following is true.

i) One can understand ρt in view of Thm. 3.8 as an element Ψ(t) ∈ W−1,q
D (Ω) and the function

% in view of Thm. 3.11 as one from Lτ (J ;W−1,q
D (Ω)), q ∈ ]1, 3p

2
[.

ii) The equation
∂u

∂t
− divµ̂grad u = %, u(0) = 0 (50)

can be interpreted as
∂u

∂t
− divµ̂grad u = Ψ, u(0) = 0. (51)

Its solution belongs belongs to the spaces of maximal parabolic regularity MRs
0(J ;W 1,q

D ,W−1,q
D )

for some s ∈ ]2, τ ] and some q > 2.

Proof. The proof follows from Thm. 3.10 and Thm. 3.11 in combination with Thm. 2.16.

The case of p > 2 will be of particular interest later. Here one gets Ψ ∈ Ls(J ;W−1,q
D (Ω)) with

q > 3. This will be of substantial use for the derivation of Hölder continuity in space and time.

4 Hölder continuity in space and time

In this section we show, under very mild conditions on the data of the problem, the Hölder continuity of
the solution for the parabolic equation simultaneously in space and time. The crucial point is that the
domains of the elliptic operators, when being considered on W−1,q

D (Ω), need not be known explicitly.
By far they need not coincide with W−1,q

D (Ω) – as we have used for q ∼ 2 in the foregoing chapters.
Fortunately, we have an elliptic Hölder regularity result at hand which implies the desired parabolic
one.
We restrict the considerations here to the autonomous case. If one strengthens the geometric sup-
positions to those in [36, Assu. 2.2/Assu. 2.4], then gets Hölder regularity in space and time even in
the non-autonomous case incusively corresponding estimates, see [36] for details. Since this brings
presently nothing really new for measure valued right-hand sides, we will not go into details here.
In the subsequent context we consider constellations in which the operator (10) is not surjective. So
we introduce the following

Definition 4.1. For q > 2 we define Bq as the part of −∇ · µ∇ in W−1,q
D (Ω), i.e.

Dom(Bq) = {ψ ∈ W−1,q
D (Ω) ∩W 1,2

D (Ω) : −∇ · µ∇ψ ∈ W−1,q
D (Ω)} (52)

and, for ψ ∈ Dom(Bq), one sets Bqψ = −∇ · µ∇ψ.
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Proposition 4.2. Adopt Assumption 2.1 and suppose that the coefficient function µ is measurable,
bounded and strongly elliptic. Let s ∈ ]1,∞[ be arbitrary.

Then, for all q ∈ [2,∞[, the operator Bq satisfies maximal parabolic regularity on W−1,q
D (Ω), i.e. the

equation
∂u

∂t
+Bqu = f ∈ Ls(J ;W−1,q

D (Ω)), u(0) = 0 (53)

admits exactly one solution. This belongs to the max-par-reg space MRs
0(J,Dom(Bq);W

−1,q
D ), and

the mapping f 7→ u between the corresponding spaces is continuous by the open mapping theorem.

Proof. see [4, Ch. 11].

The reader should carefully notice that it is – by far – not understood in the theorem that Dom(Bq)
equals W 1,q

D (Ω).

Proposition 4.3. Let Assumption 2.1 be satisfied and let q > d.

i) Suppose that Dom(Bq) ↪→ Cα(Ω) for some α > 0. Let κ ∈ ]0, α[ and ι ∈
(

1
2

+ d
2q

+ κ
α

(1
2
−

d
2q

), 1
)
. Then one has (

W−1,q
D (Ω),Dom(Bq)

)
ι,1
↪→ Cκ(Ω).

ii) If s is large enough, then there is a ϑ > 0 such that the solution u of (53) even belongs to the
space Cϑ(J ×Ω) and the mapping Ls(J ;W−1,q

D (Ω)) 3 f 7→ u ∈ Cϑ(J ×Ω) is continuous.

Proof. i) see [26, Thm. 3.1]. ii) Thanks to Prop. 4.2 we know that Bq satisfies maximal parabolic
regularity on W−1,q

D (Ω), i.e. (53) has exactly one solution u, and the dependence of u, considered
in the max.-par.-reg. space, on the right-hand side f ∈ Ls(J ;W−1,q

D (Ω)) is continuous. Moreover,
according to Prop. 2.10, one has for s ∈ ]1,∞[ and θ ∈ ]0, 1− 1

s
[,

W 1,s(J ;W−1,q
D (Ω)) ∩ Ls(J ; Dom(Bq)) ↪→ Cβ(J ; (W−1,q

D (Ω),Dom(Bq))θ,1), (54)

where β = 1− 1
s
− θ. Combining this with i), one gets the result.

This already enables us to formulate the final Hölder result in the autonomous case for two-dimensional
domains Ω.

Theorem 4.4. Let Ω be a bounded domain inR2 andD ⊂ ∂Ω a closed portion of the boundary which,
together, fulfill Assu.2.1. Moreover, we suppose the existence of a p > 1 such that the suppositions
of Thm. 3.14 are satisfied for sufficiently large s.
Then there is a q > 2 such that the following holds:

i) The function

J 3 t 7→ σtH1|Mt =: ρt ∈M(Ω) (55)

can be interpreted as a measurable function Ψ with values in W−1,q
D (Ω) with the same integra-

bility exponent τ in time.
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ii) The solution u of

∂u

∂t
+Bqu = Ψ ∈ Lτ (J ;W−1,q

D (Ω)), u(0) = 0 (56)

exists, is unique and belongs to the maximal regularity space

MRτ
0(J,Dom(Bq);W

−1,q
D ) = Lτ (J ;W 1,q

D (Ω)) ∩W 1,τ
0 (J ;W−1,q

D (Ω)).

One can diminish q, such that Dom(Bq) = W 1,q
D (Ω), and, consequently,

MRτ
0(J,Dom(Bq);W

−1,q
D ) = MRτ

0(J,W 1,q
D ;W−1,q

D ).

iii) Finally, if τ is large enough, then it exists a ϑ > 0 such that this solution u even belongs to the
space Cϑ(J × Ω) and the Cϑ-norm of u may be estimated as follows

‖u‖Cϑ(J×Ω) ≤ c
(∫ ∗

J

‖σt‖τLp(Mt;H1)dt
)1/τ

, (57)

c being independent of {σt}t∈J .

Proof. i) The first assertion follows from Thm. 3.11. ii) is implied by i) and Thm. 4.2. iii) One has
an embedding Dom(Bq) ↪→ Cα(Ω); for q > 2 ∼ q this follows from Prop. 2.6: Dom(Bq) =
W 1,q

D (Ω) ↪→ Cα(Ω) and for larger q’s from the smaller ones. So the result is obtained by means of
Prop. 4.3.

Unfortunately, in spaces with dimension d > 2 it is not that easy – simply by embedding W 1,q
D (Ω) ↪→

Cα(Ω) – to achieve the Hölder property for elements of Dom(Bq), even if q > d. The fundamental
problem lies in the fact that Dom(Bq) fails to coincide withW 1,q

D (Ω) in general – as already discussed
above. But there is a way out of this dilemma: when investing, besides our general Assu. 2.1 two
minimal additional ones, we indeed get Dom(Bq) ↪→ Cα(Ω). These things were first elaborated
in [20], but it exists a simplified version [26] for the dimensions up to 4. The latter avoids the highly
non-trivial mechanisms of DeGiorgi estimates and Campanato spaces. The first additional assumption
relies on the rather classical notion with a twist of saying that an open subset Λ of Rd is of class (Aς)
(at Υ ⊆ ∂Λ) with a constant ς ∈ ]0, 1[, if

|B(x; r) \ Λ| ≥ ς|B(x; r)| for all x ∈ Υ, r ∈ (0, 1].

This condition prevents inwards cusps of Λ at Υ. If Υ = ∂Λ, we just refer to Λ being of class (Aς).
The second condition, rather intriguing, concerns the interface between the Dirichlet boundary part
D and the Neumann boundary part N = ∂Ω \ D in the boundary of Ω, here λd−1 denoting the
(d− 1)-dimensional Lebesgue measure on the hyperplane [zd = 0].

Assumption 4.5. [(a)]

1 There is some ς ∈ (0, 1) such that Ω is of class (Aς) at D.

2 Using the notation of Assumption 2.1 (b), there are two constants c0 ∈ ]0, 1[ and c1 > 0 such
that for any point x ∈ Π := D∩N , every y ∈ Rd−1 such that (y, 0) ∈ φx(Π∩Vx) and every
s ∈ ]0, 1] it holds

λd−1

({
z ∈ Br(y) : dist

(
z, φx(N ∩ Vx)

)
> c0r

})
≥ c1r

d−1. (58)

Here Br(y) denotes the open ball of radius r in Rd−1 with its center at y ∈ Rd−1, and in
the distance function we tacitly consider φx(N ∩ Vx) ⊂ [zd = 0] as a subset of Rd−1 in the
obvious manner.
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Very roughly spoken, condition (58) demands that D is ’sufficiently rich’ in a neighborhood of D ∩
(∂Ω \D) – in a certain quantitative sense. It is clear that this condition is tailor suited for mixed
boundary conditions: the pure Dirichlet case is known for decades (see [30]), and the pure Neumann
case was treated in [39].

Theorem 4.6. Assume d = 3.

(a) Adopt the Assumptions 2.1 and 2.13 and 4.5.

(b) Let, for every t ∈ J , Mt ⊂ Ω be a closed 2-set of Ω with the property

H2(M t ∩B(x, r)) ≤ c2 r
2, x ∈M t, r ∈ ]0, 1] (59)

for a constant c2 and all t ∈ J .

(c) There is some p > 2 and, for all t ∈ J , a function σt ∈ Lp(Mt,H2) together satisfying∫ ∗
J

‖σt‖sLp(Mt;H2)dt, <∞, (60)

such that the mapping
J 3 t 7→ σ2H2|Mt =: ρt ∈M(Ω) (61)

is weakly* continuous.

i) Then the equation
∂u

∂t
+Bqu = ρ u(0) = 0 (62)

admits exactly one solution u. This solution belongs to the maximal parabolic reg. space
MRs

0(J,Dom(Bq);W
−1,q
D ) .

ii) If s is large enough, then there is a ϑ > 0 such that this solution u even belongs to the space
Cϑ(J × Ω). Finally, one has the estimate

‖u‖Cϑ(J×Ω) ≤ c
(∫ ∗

J

‖σt‖sLp(Mt);H2)dt
)1/s

(63)

for some constant c.

Proof. According to the Theorems 3.10/3.11 one can understand ρt as an element of W−1,q
D (Ω) and

the function ρ as one from Ls(J ;W−1,q
D (Ω)) with a q > 3. So the result is obtained by Thm. 4.5 in

[15].

5 Measurability in time

Up to now we considered parabolic equation with prescribed right-hand side σtHl|Mt here only de-
manding the finiteness of the upper integral∫ ∗

J

‖σ‖sLp(Mt;Hl)dt <∞ (64)
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and, secondly, the measurability of the mappings

J 3 t 7→ 〈σtHl, ψ〉W−1,q
D ×W 1,q′

D

=

∫
Mt

σt ψ|Mt dHl, ψ ∈ W 1,q′

D (Ω). (65)

Unfortunately, the upper integral does single out a suitable space of functions nor a ’practical’ norm
on it. This can be seen as follows: if one has a family {σt}t, chose a scalar non-measurable function
f on J , taking only the values ±1. Then, if (65) is measurable, then it is not if σt is replaced there by
f(t)σt there. This cries for a suitable restriction of the functions σt in the context of (65). In the sequel
we offer one version of this. Let us first inspect the case where all sets Mt are identical, i.e. Mt = M
for a fixed M . Then it is clear that the desired w∗-measurability is achieved if and only if the mapping
J 3 t 7→ σ(t) ∈ Lp(M,Hl) itself is measurable. This shows that the family {σt}t has, firstly, to
satisfy some ’measurability in itself’. Of course, it would be not satisfying to restrict the considerations
to this case. In practice one would like to investigate the case where, firstly, the Mt’s ’move in time’
and, secondly, are allowed to ’deform’. It is the intention of this section to offer a concept within that is
allowed.

So, throughout this section we make the following general

Assumption 5.1. There is an l-set M ⊂ Ω such that, for all t ∈ J , there is a bi-Lipschitz diffeo-
morphism φt from M onto Mt. The Lipschitz constants lt of the φt’s and their inverses φ−1

t , l−t , are
uniformly (in t) bounded.

Lemma 5.2. Consider the image, named $t, of the Hausdorff measure Hl on M under φt on Mt.
Then $t is of the form $t = ςtHl, where ςt isHl-measurable and is bounded from above and below
by constants, uniform in t.

Proof. One has, for anyHl-measurable subsetA ⊂M

γtHl(φt(A)) ≤ Hl(A)) ≤ γ−1
t Hl(φt(A)), t ∈ J (66)

where γt is determined by the Lipschitz constants of the mappings φt, φ
−1
t , see [21, Ch. 2.4.1]. In

particular, the sets {γt}t and {γ−1
t }t are bounded. This shows, in particular, that $t is absolutely

continuous with respect toHl on Mt and, hence, admits a density ςt by the Radon-Nikodym theorem.
It is clear that (66) implies the (uniform in t) boundedness of the ςt’s from above and below by positive
constants.

Consider now the space Ls(J ;Lp(M ;Hl)). Let us introduce, for every t, the mapping
Vt : Lp(M ;Hl)→ Lp(Mt;Hl) defined by(

Vt(ϕ)
)
(x) = ςt(x) ϕ(φ−1

t x), ϕ ∈ Lp(M ;Hl), x ∈Mt. (67)

Then the definition of the image of a measure together with Lemma 5.2 shows that, for every t ∈ J ,
Vt is a linear and bounded mapping from Lp(M ;Hl) onto Lp(Mt;Hl). So it is straight forward to
check that the set of mappings

J 3 t 7→ Vtσt ∈ Lp(Mt;Hl), σ ∈ Ls(J ;Lp(M ;Hl)),

topologized by the pre-images from Ls(J ;Lp(M ;Hl)) gives rise to a suitable space – formally de-
noted as a direct integral

∫ ⊕
J
Lp(Mt;Hl) dt.

The crucial point is now the measurability – or not – of the mappings

J 3 t 7→ 〈σtHl, ψ〉W−1,q
D ×W 1,q′

D

=

∫
Mt

σt ψ|Mt dHl, σ ∈
∫ ⊕
J

Lp(Mt;Hl) dt, (68)
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for all ψ ∈ W 1,q′

D . Since C∞D (Ω) is dense in W 1,q′

D (Ω) we may restrict ourselves to ψ ∈ C∞D (Ω). For
the inspection of (68) it is essential to observe that σ ∈

∫ ⊕
J
Lp(Mt;Hl) dt is necessarily of the form

σt = ςt vt(φ
−1
t (·)) with v ∈ Ls(J ;Lp(M ;Hl)). So one may calculate∫

Mt

σt ψ|Mt dHl =

∫
Mt

ςt vt(φ
−1
t (·))ψ|Mt dHl =

∫
Mt

vt(φ
−1
t (·))ψ|Mt d$t =

=

∫
M

vt ψ(φt(·)) dHl, ψ ∈ C∞D (Ω) (69)

because $t was the image of the measure Hl|M under φt. The reader should carefully notice that
the function M 3 x 7→ ψ(φt(x))→ C is bounded and continuous – hence measurable with respect
to Hl. Since Hl(M) is finite, the function, consequently, belongs to L2(M,Hl), and the last term in
(69) is well defined – irrespective of the Hausdorff dimension of M . Since the functions v run through
the whole space Ls(J ;Lp(M ;Hl)), it is straight forward that the measurability of (69) with respect to
t is equivalent to the measurability of the function

J 3 t 7→ ψ(φt(·)) ∈ Lp
′
(M ;Hl) (70)

for every function ψ ∈ C∞D (Ω).
In the next lemma we will give a simple and absolutely natural condition which indeed implies this.

Lemma 5.3. Let ψ be uniformly continuous on Ω and adopt the above conditions on the mappings φt.
Assume that the mappings J 3 t 7→ φt(x) ∈ Ω are measurable for every x ∈M . Then

J 3 t 7→ ψ(φt(·)) =: ft ∈ Lr(M ;Hl) (71)

is measurable for every r ∈ ]1,∞[.

Proof. First one observes that the system of functions {ft}t is equicontinuous on M according to
the uniform continuity of ψ and the (uniform) Lipschitz properties of the mappings φt. Let {xj}j be a
countable, dense subset of M . Standard arguments (see [13, Ch. 13.9, 13.9.6]) tell us that, for every
x ∈ M , the function J 3 t 7→ ft(x) is measurable. Let ε > 0 be arbitrary. So, by Lusin’s theorem,
for every j there is a compact set Kjε ⊂ J , such that |J \ Kjε | ≤ ε2−j−1 and the mapping

Kjε 3 t 7→ ft(xj)

is continuous (see [13, Ch. 13.9, 13.9.4]). Define K = ∩jKjε . We show:
For every x ∈M , the mapping

K 3 t 7→ ft(x) (72)

is continuous. One has

|ft(x)− fs(x)| ≤ |ft(x)− ft(xj)|+ |ft(xj)− fs(xj)|+ |fs(x)− fs(xj)|,

and all three addends can be made arbitrarily small by taking xj close enough to x. Let ϕ ∈
Lr
′
(M ;Hl). Knowing the continuity of (72), Lebesgue dominance tells us that

K 3 t 7→
∫
M

ft ϕ dHl (73)

is continuous (see [13, Ch. 13.8, 13.8.6]) . But the measure of J \ K is at most ε. So Lusin’s theorem
again applies and tells us that

J 3 t 7→
∫
M

ft ϕ dHl (74)

is measurable. This shows that (71) is weakly measurable, and, hence, measurable.
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Finally, Assu. 5.1 can be relaxed in a straight forward manner as follows: divide the interval into the
intervals J1, J2, . . . and demand for every subinterval J = Jk again Assu. 5.1.

6 Concluding remarks

(a) The assignment

% : C0(J × Ω) 3 f 7→
∫
J

∫
Ω

f(t, x) dρt(x) dt (75)

defines a measure on J×Ω, if the mapping t 7→ ρt ∈M(Ω) is weakly measurable and some
integrability condition ∫

J

‖ρt‖sMdt <∞ (76)

holds.
Conversely, if % is a measure on J × Ω, then it always admits a disintegration of type

C0(J × Ω) 3 f 7→
∫
J

∫
Ω

f(t, x) d%t(x) d$(t), (77)

each %t being a measure on Ω and $ being a measure on J , see [27].
Thus, our result is proved for measures on J × Ω for which the measure $ is the Lebesgue
measure on J and the measures %t are of the form σtHl|Mt , satisfying the integrability condi-
tion (76). This condition (76) seems reasonable in applications, see [8] and [41].

(b) Basing on the presented results and [34, Prop. 2.2.2], one can – quite analogously – also treat
the initial value problem with initial u0 6= 0. We leave this to the reader.

(c) In fact, Prop. 2.6 remains true even under still weaker assumptions, see [24] for details. Since
the suppositions in Assu. 2.1 deliver a frame which is, on one hand, rather general and can be,
on the other, be overlooked also by non-specialists in elliptic and parabolic theory, we decided
to take this as the general assumption in this paper.

(d) We have restricted to the case where the measures live on subsets of integer dimension only
for technical simplicity. The basis in geometric measure theory on which our results rest is es-
tablished in [29] for the general case also. Everything can then be proved quite analogously.
Since we are not aware of any applications of this we did not carry out this here but restricted
to integral dimensions.

(e) One can consider also right-hand sides where the sets Mt are unions Mt = M1
t ∪M2

t , M1
t

being an l1-set and M2
t being an l2-set. If p1, p2 allow embeddings Lp1(M1

t ) ↪→ W−1,q
D and

Lp2(M2
t ) ↪→ W−1,q

D , then the corresponding parabolic equation can be treated as before.

(f) Generalizations to complex coefficients and even to systems are possible. These can rest on
the fact that Prop. 2.6 is available also in these cases (see [24]). Also Prop. 2.16 does not
require that the coefficients are real: basing on the novel and pioneering results of Moritz Egert
[17] on can prove that the elliptic (system) operators also satisfy maximal parabolic regularity on
(certain) spaces W−1,q

D (Ω). Having this at hand, one can again exploit [14, Thm. 3.4] in order
to extrapolate also non-autonomous maximal parabolic regularity – for complex coefficients.
Another matter is it with the things in Ch. 4: the results for the spatial two-dimensional case
remain valid, but for the three-dimensional go wrong.
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(g) Generalizations to semilinear/quasilinear equations are possible, but highly non-trivial, compare
[37]. This is entirely out of scope here. In particular, the existence of the solutions over the whole
interval is a delicate matter and wrong in general.

(h) As the title of [32] suggests, it can happen that distributional objects are of interest which are not
necessarily measures. Consider the following situation: Take Ω ⊂ R2 as a Lipschitz domain
which contains a subinterval ] − a, a[3 0 of the x-axis. Define the distribution Ψ on Ω as the
PV distribution on ]− a, a[ as follows:

〈Ψ, v〉 = lim
ε 7→0

∫ −ε
−a

v(x)

x
dx+

∫ −ε
−a

v(x)

x
dx, v ∈ W 1,q

D (Ω), q > 2. (78)

It is not hard to see that the forming in (78) is well-defined and continuous on Hölder spaces,
hence on W 1,q

D (Ω) with q > 2. Consequently, the so defined Ψ – not being a measure –
belongs to anyW−1,q

D (Ω) (q ∈ ]1, 2[) and lives on a one-dimensional manifold. We expect that
such distributional objects, entering the parabolic equations as right-hand sides, can be treated
entirely the same way as the measures above under our consideration.
We suggest that similar constructions can be found also in higher dimensions, but do not expe-
diate this here further.

7 Appendix

We give the explanations to the proof of Prop. 3.4.
The expression in question which one has to estimate is

‖Gα ? f‖pLp(M ;Hl) =

∫
M

∣∣∣ ∫
Rd
Gα(x− y)f(y) dy

∣∣∣p dHl(x) (79)

We follow widely Jonsson/Wallin with the exception to determine the constant a explicitly here – what
should allow an easier reading.
We define the number a via(

d− d− l
p

)
(1− a)p′ =

( d
p′

+
l

p

)
(1− a)p′ = d. (80)

Multiplying this by p
p′

and re-arranging terms, one obtains

(
d
p

p′
+ l
)
a =

(
d− d− l

p

)
a p = l. (81)

Clearly, this gives a =
(
1 + d

l
p
p′

)−1 ∈ ]0, 1[. Evidently, (80) yields

(
d− α

)
(1− a)p′ =

(
d− d− l

p

)
(1− a)p′ − (α− d− l

p

)
(1− a)p′ =

= d− (α− d− l
p

)
(1− a)p′ < d (82)

and (81) provides

(d− α)ap = (d− d− l
p

)ap+ (
d− l
p
− α)ap = l − (α− d− l

p
)ap < l, (83)
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thanks to the supposition α > d−l
p

.

One estimates the r.h.s of (79) by∫
M

(∫
Rd

∣∣Gα(x− y)
∣∣1−a∣∣Gα(x− y)

∣∣af(y) dy
)p
dHl(x)

Applying Hölder’s inequality, one further estimates

≤
∫
M

(∫
Rd

∣∣Gα(x− y)
∣∣ap|f(y)|pdy ·

(∫
Rd
|Gα(x− y)|(1−a)p′dy

) p
p′
)
dHl(x).

The crucial point is to show that the terms∫
Rd
|Gα(x− y)|(1−a)p′dy =

∫
Rd
|Gα(y)|(1−a)p′dy, (84)

and ∫
M

|Gα(x− y)|apdHl(x), y ∈ Rd, (85)

may be estimated and this uniformly for sets M admitting the same constant c•. Investing the expo-
nential decay of the Bessel kernel at∞ (see [43, Ch. V.3]) one sees that (84) makes no difficulties at
∞. But around zero (84) also converges, thanks to

|Gα(z)| ≤ γ |z|α−d, (86)

(see [43, Ch. V.3]) in combination with (82).

(85) can be written as∫
M∩{x:|x−y|>1}

|Gα(x− y)|apdHl(x) +

∫
M∩{x:|x−y|≤1}

|Gα(x− y)|apdHl(x).

According to (86), the first integral is not larger than γap Hl(M), andHl(M) is not larger than c•×τ –
τ being the number of( shifted) unit balls B(z, 1) required for a covering of M . The second integral is
estimated by again employing (86) in combination with (83), what yields |Gα(x−y)|ap ≤ γap|x−y|−σ
with σ < l. Afterwards one applies [29, Ch. V.1.2 Lemma 1]. This shows, first, that (85) is indeed finite
– and may be estimated uniformly with respect to y ∈ Rd. But even more, one sees that the constant
c• enters linearly in this estimate.
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