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Interface dynamics in a degenerate Cahn–Hilliard model for
viscoelastic phase separation

Katharina Hopf, John King, Andreas Münch, Barbara Wagner

Abstract

The formal sharp-interface asymptotics in a degenerate Cahn–Hilliard model for viscoelastic
phase separation with cross-diffusive coupling to a bulk stress variable are shown to lead to non-
local lower-order counterparts of the classical surface diffusion flow. The diffuse-interface model
is a variant of the Zhou–Zhang–E model and has an Onsager gradient-flow structure with a rank-
deficient mobility matrix reflecting the ODE character of stress relaxation. In the case of constant
coupling, we find that the evolution of the zero level set of the order parameter approximates the
so-called intermediate surface diffusion flow. For non-constant coupling functions monotonically
connecting the two phases, our asymptotic analysis leads to a family of third order whose prop-
agation operator behaves like the square root of the minus Laplace–Beltrami operator at leading
order. In this case, the normal velocity of the moving sharp interface arises as the Lagrange mul-
tiplier in a constrained elliptic equation, which is at the core of our derivation. The constrained
elliptic problem can be solved rigorously by a variational argument, and is shown to encode the
gradient structure of the effective geometric evolution law.

The asymptotics are presented for deep quench, an intermediate free boundary problem
based on the double-obstacle potential.

1 Introduction

Phase separation occurs widely in multi-component systems involving immiscible or partially miscible
constituents including melted alloys quenched to low temperature, complex fluids like emulsions, and
biological materials. It applies to situations where parameters are altered in such a way that a ma-
terial’s composition close to one of the pure phases is energetically favourable. In the early stage of
phase separation, a mixture is often seen to undergo spinodal decomposition, leading to the formation
of small droplets corresponding to an energetically preferred volume fraction. This process is primarily
driven by a reduction in bulk free energy. At a later stage, when the mixture has already decomposed
into distinct phases, decrease of interfacial energy, surface diffusion effects, and coarsening are key
characteristics of the evolution. If a material’s constituents have different mechanical properties, the
internal time scales dictating the unmixing process may differ between species, inducing a dynamic
asymmetry in the system [Tan00]. Dynamically asymmetric materials can display complex transient
morphologies during phase separation, including the early stages of coarsening. The presence of
multiple time scales is frequently observed in polymer solutions due to the longer relaxation time of
the polymer component. Given the inherent viscoelastic effects, phase separation in polymer solutions
is modelled by viscoelastic phase separation (VPS). It is thought to play a significant role in cell biol-
ogy [Tan22] due to its ability to exhibit transient patterns like volume shrinking and phase inversion.
Early two-fluid models for VPS in a binary mixture able to reproduce these phenomena were proposed
in [DO92, TO96], and developed further by Tanaka et al., see [Tan00] and references therein. A short-
coming of these models is their lack of thermodynamic consistency accompanied by deficiencies in
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K. Hopf, J. King, A. Münch, B. Wagner 2

the stability properties of numerical approximation schemes. The first two-fluid model for VPS consis-
tent with the second law of thermodynamics was derived by Zhou, Zhang, and E [ZZE06] based on
ideas from non-equilibrium thermodynamics. The detailed fluid model involves both reversible and irre-
versible processes, and consists of a degenerate Cahn–Hilliard equation coupled to a viscoelastic ver-
sion of the incompressible Navier–Stokes equations involving the momentum equation and a tensorial
equation describing stress relaxation. The global existence of weak solutions for a regularised version
of this model with stress diffusion was established by Brunk and Lukáčová-Medvid’ová [BLM22].

In this article, we focus on a purely dissipative variant, proposed in [ZZE06] as a simplification of the
original fluid model in a regime where hydrodynamic transport can be neglected. In this simplified de-
scription, the barycentric velocity of the mixture vanishes and the effects of viscoelasticity are encoded
in an ODE-like equation for the spherical part of the stress tensor. Specifically, the evolving state is
modelled by two scalar quantities, the difference in volume fraction u(t, x) ∈ [−1, 1] of the two com-
ponents and an extra variable q(t, x) ∈ R accounting for spherical stress. The equations are posed
in a bounded smooth domain Ω ⊂ Rd, d ≥ 2, and take the form

∂tu = − div
(
m(u) j

)
, j = −

[
∇ δF

δu
− 1

(1− u2)
∇(A(u)q)

]
, t > 0, x ∈ Ω, (1.1a)

∂tq = − 1

τ(u)
q + A(u) div

( m(u)

(1− u2)
j
)
, t > 0, x ∈ Ω, (1.1b)

with m(u) = (1 − u2)2m̃(u), where m̃, A, τ ∈ C∞(R,R+) and infR m̃ > 0. The function
A denotes the bulk modulus and τ the relaxation time. For polymer solutions, we typically have
A(−1) < A(+1) and τ(−1) < τ(+1) whenever {u = −1} describes the pure solvent and
{u = 1} the polymer phase. Equations (1.1a)–(1.1b) are supplemented by no-flux type and homoge-
neous Neumann boundary conditions

m(u)j · ν∂Ω = 0, ∇u · ν∂Ω = 0, t > 0, x ∈ ∂Ω, (1.1c)

where ν∂Ω denotes the outer unit normal field to Ω.

The driving free energy underlying system (1.1) is given by H(u, q) = F (u) +
∫

Ω
q2

2
dx, where,

in [ZZE06], F is chosen to be the logarithmic Cahn–Hilliard free energy

F (u) =

∫
Ω

(ε2

2
|∇u|2 + f(u)

)
dx, f(u) = 1

2
θ
(
λ(1+u) + λ(1−u)

)
+ 1

2
(1− u2), (1.1d)

with λ(s) = s log s, θ > 0.

Here, 0 < ε� 1 denotes the interface thickness parameter, while θ describes the fixed temperature
of this isothermal model. The quadratic part 1

2
‖q‖2

L2 ofH can be seen as a penalty term for polymeric
displacements. Notice that for A ≡ 0, equation (1.1a) reduces to a variant of the Cahn–Hilliard equa-
tion with ‘doubly’ degenerate mobility in the sense that the mobility function m(u) vanishes quadrat-
ically rather than linearly in each of the pure phases {u = ±1}, while equation (1.1b) turns into an
ordinary differential equation describing the relaxation of bulk stress to the equilibrium state q ≡ 0 at
an exponential rate with decay constant 1

τ(u)
. If A 6≡ 0, the second-order term arising on the right-

hand side of (1.1b) is needed to ensure the thermodynamic structure of the PDE system. Notice that
for A 6≡ 0 the system (1.1) is strongly coupled of cross-diffusion type. Further note that the diffusive
fluxes in (1.1a) and (1.1b) are linearly dependent, so that the system (1.1) cannot be fully parabolic.
Let us also mention that, numerically, the simplified model (1.1) is still able to capture the phenomena
of volume shrinking and phase inversion, cf. [ZZE06, STDLM19].
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In the present work, we wish to investigate the late-stage evolution of a class of degenerate Cahn–
Hilliard models for VPS motivated by (1.1) in the limit of vanishing interface thickness. The late-stage
evolution represents the most stable regime of the dynamics, beyond the equilibrium analysis. There-
fore, it is a natural starting point when trying to understand the geometric properties underlying the dy-
namics of VPS. Our goal is to formally identify the geometric flow that governs the evolution, once dis-
tinct interfaces have formed. A particular interest lies in understanding the effect of the cross-diffusive
coupling and the linear dependence of the diffusion fluxes on the asymptotic analysis and the resulting
effective interface evolution law.

Interface dynamics in degenerate Cahn–Hilliard equations. The first work relating a Cahn–Hilliard
model to a sharp-interface evolution law is due to Pego [Peg89]. He considered the Cahn–Hilliard
equation with constant mobility and a smooth double-well potential, and studied the asymptotics for
vanishing interface width ε ↓ 0 along different time scalings. Most notably, he showed that on the slow
time scale t 7→ εt at leading order, the motion of the limiting interface agrees with the Mullins–Sekerka
flow. This finding was made rigorous by Alikakos, Bates, and Chen [ABC94] for sufficiently smooth
solutions. Cahn, Elliott, and Novick–Cohen [CENC96] were the first to perform the sharp-interface
asymptotics for the Cahn–Hilliard equation with degenerate mobility. They studied the physically well-
grounded case with the free energy (1.1d) involving a logarithmic singular potential and the linearly
degenerate mobility m(u) = 1 − u2 on the time scale t 7→ ε2t and with vanishing temperature
θ = O(εα), α > 0, obtaining the surface diffusion flow

VΓ = −σ
δ

∆ΓκΓ, (1.2)

where σ
δ

= π2

16
> 0 (cf. (1.8a)), as the geometric law governing, at leading order, the interface

evolution. In (1.2), VΓ denotes the scalar normal velocity and κΓ the mean curvature of the moving
interface Γ = ∪t∈I{t}×Γ(t) (for details, see Section 2), while ∆Γ denotes the Laplace–Beltrami
operator. The authors of [CENC96] further show that the law (1.2) can equally be obtained for a
simplified degenerate Cahn–Hilliard model, where the logarithmic potential with small temperature
is replaced by its deep quench limit, the double-obstacle potential. The idea in these asymptotics
is that, on the slow time scale t 7→ ε2t, solutions to the Cahn–Hilliard equation should mimic, at
leading order, the asymptotic behaviour as ε ↓ 0 of the minimisers of the free energy: letting w∗ε =
−ε2∆uε + f ′(uε) ∈ R denote the chemical potential associated to a minimiser of the volume-
constrained Cahn–Hilliard free energy Fε, which acts as a Lagrange multiplier, it is a classical result
that, asymptotically as ε ↓ 0,

w∗ε = ε
σ

JuK
κ+ o(ε), σ =

∫ +1

−1

√
2f(u) du, JuK = 2. (1.3)

See [LM89] for smooth double-well potentials f(u), and [BE91] for the non-smooth case. For the
degenerate Cahn–Hilliard equation with logarithmic potential f(u) as in (1.1d), the formal asymptotics
in [CENC96] even entail the quantitative asymptotic behaviour (1.3) for the inner solution. It should be
noted that the problem of a rigorous derivation of the surface diffusion flow as the sharp-interface limit
of a degenerate Cahn–Hilliard equation is still open.

The choice of the mobility in degenerate Cahn–Hilliard equations is well-known to be able to impact
the precise structure of the formal effective interface law, and a subtle interplay between mobility and
potential has been observed [GSK08], not necessarily leading to pure surface diffusion in the sharp-
interface asymptotics. See also [LMS16], where an additional bulk-diffusion term (of lower differential
order) was observed numerically and through asymptotic analysis in the interfacial dynamics. In the
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present paper, we investigate the effect of a rank-deficient matrix-valued degenerate mobility inducing
a cross-diffusive coupling to the scalar variable q on the sharp-interface evolution law, where the bulk
energy part is chosen to be the double obstacle potential.

Outline of this manuscript. In Section 1.1 we identify the formal gradient-flow structure of the
diffuse-interface problem (1.1), which we use as a basis for introducing generalisations of model (1.1).
Our findings on the geometric evolution laws governing the sharp-interface dynamics for two variants
of the model (1.1), obtained for constant resp. for strictly monotonic coupling, are summarised in Sec-
tion 1.2. Section 2 introduces suitable parametrisations and coordinate transformations needed in the
formal asymptotic analysis. Sections 3, 4, and 5 comprise the main contributions of this work. In Sec-
tion 3, the sharp-interface asymptotic expansions are performed. For non-constant monotonic cross-
diffusive coupling the asymptotic analysis at third order leads to a constrained second-order elliptic
equation in tangential and normal variables (cf. Section 3.2.2), which to the authors’ knowledge is new
and does not usually occur in sharp-interface asymptotic analyses. An (independent) rigorous well-
posedness analysis of the constrained elliptic equation is developed in Section 4. As a consequence,
we obtain an abstract characterisation of the propagation operator inducing the interface dynamics
(cf. Section 4.3). Section 5 is devoted to a structural analysis of the geometric evolution law derived in
Section 4.3. First, based on the rigorous framework in Section 4, we establish the formal gradient-flow
structure in the sense of proving symmetry and positivity of the propagation operator (cf. Section 5.1).
Subsequently, in Section 5.2, we focus on explicitly identifying the (leading-order contribution of the)
propagation operator. Relying on spectral and semi-explicit ODE methods, we here mostly focus on a
specific class of coefficient functions, where bulk modulus and relaxation time are linked to the mobility
function. Generalisations and the investigation of more singular models closer to (1.1) will be left to
future research. Finally, in Section 5.3, we show how the two different interface evolution laws derived
in Sections 3 resp. in Sections 3–5 for constant resp. for strictly monotonic coupling, are formally con-
nected in a singular limit by considering coupling functions with small positive slope. Some auxiliary
geometric identities and transformation rules are recalled in Appendix A.

1.1 Onsager gradient-flow structure

The model (1.1) belongs to a class of dissipative evolutions equations characterised by a formal On-
sager structure

ẏ = −K(y)DH(y), (1.4a)

where H denotes the driving functional acting on the state variables y, and DH an appropriate
differential. The linear map K = K(y) is the so-called Onsager operator, a symmetric positive semi-
definite operator at each point y in state space. In the context of [ZZE06], the state y = (u, q)
consist of an order parameter u and a quantity q related to bulk stress, while the driving functional
H(y) = H(u, q) is of the form

H(u, q) = F (u) +

∫
Ω

q2

2
dx, (1.4b)

where

F (u) = Fε(u) =

∫
Ω

(ε2

2
|∇u|2 + f(u)

)
dx, ∇u · ν∂Ω = 0, x ∈ ∂Ω, (1.4c)
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for ε > 0. In the notation below, we identify DH with its L2-gradient, so that DH(u, q) '
(
δF
δu

q

)
.

Then, the Onsager operator takes the form

K(u, q)� = −N1(u)T div
(
M(u)∇(N1(u)�)

)
+ L(u)� (1.4d)

with no-flux boundary conditions M(u)∇(N1(u)�)·ν∂Ω = 0 for x ∈ ∂Ω, where M(u), L(u) ∈ R2×2
sym

are positive semi-definite, and N1(u) ∈ R2×2. Notice that K(y) is indeed formally symmetric and
positive semi-definite with respect to L2(Ω). The matrices N1(u), L(u) are such that the invariance

propertyK(y)

(
1Ω

0

)
≡ 0 is fulfilled, where 1Ω denoting the constant function on Ω, identically equal

to 1.

Symmetry and positivity ofK imply, along suitably regular solution trajectories y = y(t), the entropy–
entropy-dissipation identity

d

dt
H(y) = −D(y),

where for y = (u, q)

D(y) =

∫
Ω

∇(N1(u)DH(y)) : M(u)∇(N1(u)DH(y)) dx+

∫
Ω

DH(y) · L(u)DH(y) dx ≥ 0.

The invariance property, in turn, combined withK = K∗ entails volume conservation d
dt

∫
Ω
u dx = 0.

Below, we provide some examples.

The Zhou–Zhang–E model. Let H be of the form (1.4b), (1.4c) with f given by (1.1d). Then, sys-
tem (1.1) is obtained from (1.4a)–(1.4d) by choosing

M(u) = N2(u)m(u)(1⊗ 1)N2(u), where 1 = (1, 1)T , (1.5a)

L(u) =

(
0 0
0 1

τ(u)

)
, (1.5b)

N1(u) = diag(1,−A(u)), N2(u) = diag(1,
1

n(u)
), (1.5c)

where
m(u) = (1− u2)2m̃(u), n(u) = 1− u2.

Observe that the 2×2-mobility matrix M(u) in (1.5a) is singular of rank one for all u ∈ (−1, 1).

A special variant. Taking n(u) ≡ 1 in (1.4), (1.5) yields the PDE system

∂tu = − div(m(u)j),

∂tq = A(u) div(m(u)j)− 1

τ(u)
q,

where j = ∇( δF
δu
− A(u)q). Equivalently, this PDE system can be written in the form

∂tu = − div(m(u)j),

∂tz = − 1

τ(u)
q, z := q +R(u), j = −∇(

δF

δu
− A(u)q),

where R′ = A
n

, which exposes the hyperbolic/ODE-like features of viscoelasticity.
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Double-obstacle potential. A primary purpose of this article is to understand the effect of the dissi-
pation mechanism (1.4d)–(1.5) on the sharp-interface asymptotics in (1.4). To focus on the main ideas,
we will directly work with the deep quench limit of the logarithmic entropy function in (1.1d). Thus, we
consider (1.4b) with a Cahn-Hilliard free energy F = F (DO)

ε (1.4c), where f = f (DO) is of double
obstacle type

f (DO)(u) = ι[−1,1](u) +
1

2
(1− u2), ι[−1,1](u) =

{
0 if u ∈ [−1, 1],

+∞ if u ∈ R \ [−1, 1].

As will be detailed in Section 3, the double-obstacle potential turns the diffuse-interface model into a
free-boundary problem. The global existence of weak solutions to the Cahn–Hilliard equation (A ≡ 0)
with double-obstacle potential in the case of a constant mobility has been established in [BE91]. For
results concerning degenerate mobilities, we refer to [EG96, BLM22].

1.2 Main results

Our basic strategy is to adapt the approach of [CENC96, Section 3] involving the double-obstacle
potential to a class of Onsager-type VPS models (1.4), (1.5). After rescaling to the appropriate slow
time scale, t 7→ ε2t, the equations for (u, q, w) = (uε, qε, wε) take the form

ε2∂tu = − div
(
m(u) j

)
, j = −

[
∇w − 1

n(u)
∇(A(u)q)

]
, t > 0, x ∈ Ω, (1.6a)

ε2∂tq = − 1

τ(u)
q + A(u) div

(
m(u)
n(u)

j
)
, t > 0, x ∈ Ω, (1.6b)

m(u)j · ν∂Ω = 0, ∇u · ν∂Ω = 0, t > 0, x ∈ ∂Ω, (1.6c)

where

w ∈ ∂uF (DO)
ε = −ε2∆u− u+ ∂ι[−1,1]. (1.6d)

The mobility functionm is assumed to degenerate precisely in the two pure phases {u = ±1}. In our
asymptotic analysis, we restrict to linearly degenerate mobilities of the form

(m1) m(u) = (1− u2)m̃(u), where m̃ ∈ C∞([−1, 1]) with min[−1,1] m̃ > 0,

which is the classical choice when combined with the logarithmic or double-obstacle potential.

The relaxation time τ and the bulk modulus A are chosen in such a way that

(τ1) τ, A ∈ C∞([−1, 1]) with A2τ > 0 on (−1, 1).

Our formal asymptotics are based on the assumption of a well-defined smooth interface motion in the
limit ε→ 0 :

(G1) There exists a non-trivial compact time interval I ⊂ R≥0 such that the zero level set Γε b I×Ω
of uε : I × Ω → R approaches an evolving hypersurface Γ = ∪t∈I{t}×Γ(t) b I × Ω with
the property that, for all t ∈ I , Γ(t) b Ω is a smooth, closed, connected, and embedded
hypersurface smoothly varying in t ∈ I .
Furthermore, the order parameter uε converges, as ε → 0, to a pointwise limit u = u(t, x) ∈
{±1} in I × Ω, and with Ω±(t) := {u(t, ·) = ±1} it holds that

Ω = Ω−(t) ∪ Γ(t) ∪ Ω+(t), t ∈ I.
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Interface dynamics in viscoelastic phase separation 7

Throughout this article, by a closed hypersurface we mean a (d − 1)-dimensional differentiable sub-
manifold of Rd that is topologically compact and without boundary.

The starting point of our asymptotic analysis is the assumption that the late-stage evolution captured
along the slow time scale inherits property (1.3) at leading order in the sense that, to leading order, the
chemical potential vanishes across the interface. While this hypothesis leads to a consistent asymp-
totic analysis, we leave it open whether or not it may be deduced from our set-up. Let us point out that,
in the pure Cahn–Hilliard case, a similar assumption was made in [CENC96, Section 3], even though
in this case the desired property of the chemical potential can indeed be deduced from a solvability
condition. We emphasise that the quantitative property (1.3) up to first order cannot be expected for
the present VPS models unless A ≡ 0. Finally, let us note that it is not necessary to impose an
analogous stationarity assumption on the leading order contribution of the bulk stress variable, whose
O(ε) behaviour is a consequence of our asymptotics procedure.

Depending on the choice of the coupling function n = n(u), our asymptotic analysis leads to two
different non-local lower-order variants of the surface diffusion flow:

Intermediate surface diffusion. The following result is a by-product of our asymptotics.

Assertion 1.1 (Intermediate surface diffusion). Consider (1.6) assuming (m1), (τ1), and n ≡ 1 on
the model coefficients and (G1) on the limiting geometry. Then, as ε ↓ 0, the formal sharp-interface
asymptotics lead to the intermediate surface diffusion flow

VΓ = −σ
(
δ Id− ω∆Γ

)−1
∆ΓκΓ, (1.7)

where

σ =

∫ +1

−1

√
(1− u2) du =

∫ +1

−1

√
2f (DO)(u) du, δ = 4

(∫ +1

−1

m(u)√
1− u2

du
)−1

, (1.8a)

ω =

∫ +1

−1

A2(u)τ(u)
√

1− u2 du. (1.8b)

The intermediate surface diffusion flow (1.7) was introduced by Cahn and Taylor [CT94, TC94] as a
volume-preserving and area-decreasing geometric evolution connecting the classical volume-preserving
mean-curvature flow (δ ↓ 0) to the surface diffusion flow (ω ↓ 0). It is the formal gradient flow of
the surface area functional with respect to a metric structure induced by the weighted sum of the
(volume-preserving) L̇2(Γ) and Ḣ−1(Γ). Elliott and Garcke [EG97] proposed the viscous degenerate
Cahn–Hilliard equation as its diffuse-interface counterpart, see also [CT94, TC94]. In view of Asser-
tion 1.1, the model (1.6) with n ≡ 1 provides an alternative phase-field approximation. Heuristically,
the viscous degenerate Cahn–Hilliard equation can be obtained from the viscoelastic Cahn–Hilliard
model (1.6) with n ≡ 1 and A ≡ A0 > 0, τ ≡ τ0 > 0 in the regime τ0 � 1 with A2

0τ0 ∼ 1.

The first existence result under a smallness condition (short time or close to a steady state) for the
intermediate surface diffusion flow was obtained in [EG97] for planar curves by means of energy
estimates. In the general multi-dimensional case, well-posedness results under smallness were es-
tablished by Escher and Simonett [ES99] for smooth, closed, embedded, connected hypersurfaces
based on tools from maximal parabolic regularity and analytic semigroups. The rigorous singular lim-
its, locally in time, towards the volume-preserving mean-curvature flow and to the surface diffusion flow
were performed in [EGI01, EGI02]. We refer to [EI04] for a review and further qualitative properties of
the intermediate surface diffusion flow.
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Fractional surface diffusion. The main result of this work pertains to strictly monotonic coupling
functions n = n(u) satisfying

(n1) n ∈ C∞([−1, 1]) with min[−1,1] |n| > 0

(n2) min[−1,1] |n′| > 0

under the condition that

(τ2) the function a(u) :=
(

1
A2τ

(
n2

n′

)2
)
|u

1
1−u2 satisfies a(u) = ã(u)

m(u)
for some ã ∈ C∞([−1, 1])

with min[−1,1] ã > 0.

Hypothesis (n2) is complementary to the case n ≡ 1, where this condition is clearly violated. Under
hypotheses (m1), (τ1), (n1), and (n2), assumption (τ2) essentially means that A2τ ∼ 1.

Below, for a smooth closed connected embedded hypersurface Σ we let {ek}k∈N denote an orthonor-
mal basis of L̇2(Σ) := {h ∈ L2(Σ) : −

∫
Σ
h dHd−1 = 0} composed of eigenfunctions of the mi-

nus Laplace–Beltrami operator −∆Σ with associated eigenvalues 0 < λ1 ≤ λ2 ≤ . . . satisfying
λk →∞ (see also Section 5.2.1). We set Λ := {λk : k ∈ N}.

Assertion 1.2 (Square-root minus Laplace–Beltrami). Consider (1.6), and assume hypotheses (m1),
(τ1), (n1), (n2), and (τ2) on the model coefficients and (G1) on the limiting geometry. Further, let
σ, δ be as in (1.8a). Then, the sharp-interface asymptotics lead to fractional versions of the surface
diffusion flow

VΓ = GΓκΓ.

For any smooth closed connected embedded hypersurface Σ, GΣ is an unbounded linear operator
with respect to L2(Σ) enjoying the following properties (cf. Sections 3–5):

� Curvature flow: GΣ is symmetric and positive

� Volume preservation: GΣ1Σ = 0

� Dominance by surface diffusion: GΣ ≤ −σ
δ
∆Σ.

� Representation via −∆Σ : ∃! ζ : Λ → R>0 such that (GΣek, el)L2(Σ) = ζ(λk)δkl for all
k, l ∈ N

� Fractional surface diffusion: Let a(u)m(u) = 1. Then

GΣ = ση
√
−∆Σ + σR(

√
−∆Σ), (1.9)

with η =
(
( n(1)
n′(1)

)2 + ( n(−1)
n′(−1)

)2
)−1

, whereR(
√−∆Σ) stands for a lower-order perturbation:

the map % : Λ→ R given by %(λk) = (R(
√−∆Σ)ek, ek)L2(Σ) satisfies |%(λ)| . λ

1
6 .

� Asymptotically close to ση
√−∆Σ : Let a(u)m(u) = 1 and n(u) = β0 +β1(u+1), β0, β1 >

0. Then
(R(

√
−∆Σ)ek, ek)L2(Σ) → 0 rapidly as λk →∞.
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Rigorous statements concerning the construction and properties of the operator GΓ are provided in
Proposition 4.1 (abstract definition), Proposition 5.1 (curvature flow), and Proposition 5.5 (PDE struc-
ture).

It appears that the geometric flow induced by fractional versions of the surface Laplacian, even in
the case of the square root minus Laplace–Beltrami as the propagation operator, has so far not been
investigated systematically in the literature. The local existence and uniqueness of classical solutions
should follow, for instance, from an adaptation of the maximal parabolic regularity approach [EMS98,
ES99].

Connecting the two laws. Observe that, with regard to differential order, there is an apparent dis-
continuity between the interface evolution laws in Assertion 1.2 (second order) and Assertion 1.1 (third
order). In Section 5.3, we will show that the special case considered in Assertion 1.1 with n ≡ 1 can
formally be recovered from the laws derived in Assertion 1.2 by taking the singular limit ε ↓ 0 in a
family of problems involving coupling coefficients nε with small positive slope ε. A summary of this
result is provided in the following remark.

Remark 1.1 (Intermediate surface diffusion as a singular limit in the fractional third-order laws). Let
the hypotheses of Assertion 1.2 be in force and let m(u) = (1 − u2)m̃(u) be even. Consider the
family of coupling functions n = nε satisfying

nε(u) = 1 + εu, u ∈ [−1, 1],

with 0 < ε� 1. Further letA2
ετε = n4

εm̃, so that aε = ε−2

m
. Let Gε,Σ denote the propagation operator

of the interface law derived in Assertion 1.2 and set ζε(λk) := (Gε,Σek, ek)L2(Σ). Then,

ζε(λ) = σλ
(
δ + ωλ+OR(ε)

)−1
if λ = λk ≤ R,

as long as 0 < ε �R 1. Here, the coefficients δ and ω are identical to those in Assertion 1.1 for the
given, ε-independent functions m(u) = (1− u2)m̃(u), n ≡ 1, and A2τ = n4m̃ = m̃.

Thus, loosely speaking, at low frequencies we recover the propagation operator associated to the
intermediate surface diffusion flow in the sense that, on compact subsets in frequency space and for
0 < ε� 1,

Gε,Γ =
“
σ
(
δ Id− ω∆Γ +O∆Γ

(ε)
)−1

(−∆Γ)
”
,

where O∆Γ
(ε) stands for an (unbounded) linear operator that converges to zero as ε ↓ 0, at least

linearly, on finite linear combinations of the basis functions {ek}k∈N.

For the precise closed formula for ζ = ζε(λ) in the setting of Remark 1.1, we refer to equation (5.30).

2 Preliminaries

In this preparatory section, we introduce the coordinate transformations and geometric identities
needed in the formal asymptotic analysis. The setting chosen below is motivated by the following.
We expect that for 0 < ε � 1 the phase field component uε of the solution to (1.6) changes from
one phase to the other on a thin interfacial layer of width ∼ ε. In the transition layer, which lies in the
vicinity of the limiting interface Γ (cf. (G1)), we introduce new coordinates mostly following [AGG12].
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2.1 Evolving interface

For a non-trivial compact time interval I ⊂ R≥0, consider a finite family of smooth local parametrisa-
tions γ[α] : I × O[α] → Rd with O[α] ⊂ Rd−1 open and γ[α](t, ·) : O[α] → γ[α](t,O[α]) ⊂ Γ(t)
a diffeomorphism for every 1 ≤ α ≤ N such that Γ(t) = ∪1≤α≤Nγ[α](t,O[α]) for all t ∈ I . In
the following, we let α ∈ {1, . . . , N} be fixed but arbitrary and abbreviate γ := γ[α], O := O[α].
Unless stated otherwise, geometric quantities of the evolving interface ∪t∈I{t} ×

(
Γ(t) ∩ γ(t,O)

)
will be considered as functions on I ×O by means of the parametrisation γ. The unit normal field to
Γ(t) pointing towards Ω+(t) will be denoted by ν(t, ·) : O → Rd. Then the (scalar) normal velocity
V : I ×O → R of the evolving interface Γ is defined via (see e.g. [PS16, Chapter 2.2.5])

V = ∂tγ · ν.
Let d(t, ·) : Ω → R denote the signed distance function to Γ(t), with the convention that d > 0
in the phase Ω+ = {u = +1}. Then there exists d > 0 such that d(t, ·) is smooth in the d-
tubular neighbourhood Nd(t) := {|d(t, ·)| < d} b Ω of Γ(t) for all t ∈ I and such that on Nd(t)
the orthogonal projection pΓ(t) onto Γ(t) is well-defined. We note the following basic identities for
x ∈ Nd(t) (see e.g. [Amb00, BMST22]):

∇xd(t, x) = νΓ(t, pΓ(t)(x)), ∂td(t, x) = −VΓ(t, pΓ(t)(x)), (2.1)

where νΓ : Γ → Rd denotes the unit normal field to Γ determined by νΓ(t, γ(t, s)) = ν(t, s), and
VΓ : Γ → R the normal velocity of the moving interface related to V by VΓ(t, γ(t, s)) = V (t, s).
Below, by κγ we denote the (scalar) mean curvature of Γ, i.e. the sum of its principle curvatures,
considered as a function on I ×O, where we adopt the sign convention that κγ(t, ·) ≤ 0 if Ω−(t) is
convex. By κΓ : Γ → R we denote the mean curvature of Γ, considered as a function on Γ, so that
κΓ(t, γ(t, s)) := κγ(t, s).

2.2 Parametrisation for the bulk region

Based on the mappings γ(t, ·), we construct local parametrisations of the tubular neighbourhood
Nd(t) of Γ(t) via

γεt (s, ρ) = γ(t, s) + ερν(t, s), (t, s) ∈ I ×O, ρ ∈ Jε := (−ε−1d, ε−1d).

Here, the rescaling ρ = d
ε

serves to normalise, at leading order, the thickness of the interfacial transi-
tion region in the new coordinates. We sometimes omit the dependence on the time parameter t, and
simply write γε(·, ρ). Furthermore, we abbreviate γερ = γε(·, ρ), if no confusion arises with the time
subscript. Then, the map

Gε : I ×O × Jε → Gε(I ×O × Jε) =: N , Gε(t, s, ρ) = (t, γεt (s, ρ))

is a local parametrisation of the (spatial) d-tubular neighbourhood N of Γ. We denote its inverse
(t, x) 7→ (t, s, ρ) by (idI ,S,R) := (Gε)−1 : N → I ×O× Jε. Thus, R(t, x) = d(t,x)

ε
and, owing

to (2.1), we deduce

∂tR ◦Gε = ε−1∂td ◦Gε = −ε−1V. (2.2)

We now compute the differential operators in the new coordinates. For differentiable scalar functions
u = u(t, x), b = b(t, x), and a vectorial function j = j(t, x), we write U(t, s, ρ) := u(Gε(t, s, ρ)),
B(t, s, ρ) := b(Gε(t, s, ρ)), and J(t, s, ρ) := j(Gε(t, s, ρ)). From (2.2) we infer

∂tu ◦Gε = −ε−1V ∂ρU + ∂tS ◦Gε · ∇sU + ∂tU, (2.3a)
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The following identities follow from basic geometric calculus (cf. Appendix A):

∇xu ◦Gε = ε−1∂ρU ν +∇γερU,

(divx j) ◦Gε = ε−1∂ρJ · ν + divγερ J ,

divx(b∇xu) ◦Gε = ε−2∂ρ(B∂ρU) + ε−1B∂ρU∆xd ◦Gε + divγερ(B∇γερU),

(2.3b)

and, in particular, ∆xu◦Gε = ε−2∂2
ρU +ε−1∆xd◦Gε ∂ρU +∆γερU . Here,∇γερU := ∇Γερu◦Gε

resp. ∆γερU := ∆Γερu ◦ Gε denote the surface gradient resp. Laplace–Beltrami operator of u with
respect to the hypersurface (t-dependence omitted)

Γερ = {γε(s, ρ), s ∈ O},
expressed in terms of the parametrisation (O, γε(·, ρ)). Likewise, divγερ J := (divΓερ j) ◦ Gε de-
notes the surface divergence of j with respect to Γερ in local coordinates.

We want to expand these operators in terms of their ε-independent counterparts ∇γU := ∇Γu ◦ γ,
∆γU := ∆Γu ◦ γ, where∇Γu and ∆Γu denote the surface gradient and Laplace–Beltrami operator
applied to u|Γ : Γ→ R. As shown in Appendix A.2, for any smooth scalar U = U(s, ρ) and vectorial
J = J(s, ρ)

∇γερU = ∇γU + ερ
d−1∑
i=1

ri∂siU +O(|ερ|2),

divγερ J = divγ J + ερ
d−1∑
i=1

ri · ∂siJ +O(|ερ|2),

(2.4)

for tangential fields ri(s) (satisfying ν ·ri ≡ 0), i = 1, . . . , d−1, that only depend on γ. In particular,

divγερ(B∇γερU) = divγ(B∇γU) +O(|ερ|). (2.5)

We further note that (cf. Appendix A.1)

∆xd ◦Gε = −κγ − ερ|Wγ|2 − ε2ρ2k3
3 +O(|ερ|3), (2.6)

where |Wγ| = (
∑d−1

i=1 κ
2
i )

1/2 denotes the Frobenius norm of the Weingarten tensor of Γ, and k3
3 :=∑d−1

i=1 κ
3
i , where κi are the principle curvatures of Γ, considered as functions on I ×O.

In the next section, we will adapt the approach of [CENC96] to study the sharp-interface asymptotics
of the cross-diffusion models (1.6). We caution that the authors in [CENC96] use a different parametri-
sation.

3 Sharp-interface asymptotics

In this section, we apply the method of formal asymptotic expansions to the Onsager VPS mod-
els (1.6). Throughout this section, we assume (G1) and impose hypotheses (m1), (τ1), and (n1).
In addition, we will assume that either n ≡ 1 (cf. Assertion 1.1) or (n2) holds (cf. Assertion 1.2).

To begin with, we rewrite equation (1.6b) using (1.6a), to obtain the formally equivalent problem

ε2∂tu = − div
(
m(u) j

)
, j = −

[
∇w − 1

n(u)
∇(A(u)q)

]
, t > 0, x ∈ Ω, (3.1a)

ε2∂tz = − 1

τ(u)
q + A(u)m(u)∇(

1

n(u)
) · j, z = q +R(u), t > 0, x ∈ Ω, (3.1b)

m(u)j · ν∂Ω = 0, ∇u · ν∂Ω = 0, t > 0, x ∈ ∂Ω, (3.1c)
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where R′ = A
n

, R(0) = 0, and

w ∈ ∂uF (DO)
ε = −ε2∆u− u+ ∂ι[−1,1].

Notice that for n ≡ 1, equation (3.1b) reduces to a u-dependent ordinary differential equation for z,
and in fact, the sharp-interface analysis of (3.1) turns out to be much less delicate if n is constant.

Formulation as a free boundary problem. We wish to study the asymptotic behaviour of solutions
(uε, qε, wε) = (u, q, w) of (3.1) as ε ↓ 0. Equation (3.1) can formally be written as a free boundary
problem, where at each point in time the domain Ω is decomposed as

Ω = Ω−ε (t) ∪ ΩI
ε(t) ∪ Ω+

ε (t),

with Ω±ε (t) := {uε(t, ·) = ±1}, and where for t > 0, x ∈ ΩI
ε(t) := {|uε(t, ·)| < 1} the unknowns

(uε, qε, wε) are subject to the equations

ε2∂tu = − div
(
m(u) j

)
, j = −

[
∇w − 1

n(u)
∇(A(u)q)

]
, (3.2a)

ε2∂tz = − 1

τ(u)
q + A(u)m(u)∇(

1

n(u)
) · j, z = q +R(u), (3.2b)

w = −ε2∆u− u, (3.2c)

where R′ = A
n

, R(0) = 0. These equations are complemented by appropriate continuity conditions
on the free boundary ∂ΩI

ε(t) ∩ Ω±ε (t), which take the form

m(u)j · ν Iε = 0,

u = ±1, ∇u · ν Iε = 0.
(3.2d)

Here, ν Iε denotes the outer unit normal field to ΩI
ε(t).

In our asymptotic analysis, we focus on a simple geometric setting without boundary effects, assuming
that ΩI

ε(t) b Ω is connected and annular-like (of thickness at most ∼ ε), encloses the domain
Ω−ε (t), which is supposed to be simply connected, and is separated from ∂Ω by Ω+

ε (t). Then, the
conditions (3.1c) on the outer boundary ∂Ω are trivially satisfied. We henceforth let (cf. Figure 1)

Γ±ε (t) := ∂ΩI
ε(t) ∩ Ω±ε (t) and ν I,±ε := ν Iε|Γ±ε .

3.1 Formulation in local reference coordinates

Free boundary. Our geometric set-up implies that the moving boundary ∂ΩI
ε(t) is composed of

two connected components Γ±ε (t), which are part of the unknowns. For ε small, we can assume that
|d(t, x)| < d for all x ∈ ΩI

ε(t). Thus, in line with our setting, we may assume that, locally, each of the
components Γ±ε can be written as a graph over Γ in the sense that

Γ±ε ∩ Ĝ = {Gε(t, s, Y ±ε (t, s)) : (t, s) ∈ I×O}, Ĝ := Gε(I ×O × Jε),

or equivalently

Γ±ε (t) ∩ Ĝ(t) = {γ(t, s) + εY ±ε (t, s)ν(t, s) : s ∈ O}, t ∈ I, (3.3)
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Γ(t)

νΓ(t, ·) Γ+
ε (t)

ν I,+ε (t, ·)

Γ−
ε (t)ν I,−ε (t, ·)

Ω−
ε (t)

Ω+
ε (t)

ΩI
ε(t)

Figure 1: Free transition layer ΩI
ε(t) and sharp interface Γ(t).

with Ĝ(t) := γεt (O × Jε), where the height functions

Y ±ε : I ×O → R

are part of the unknowns. In the reference coordinates (s, ρ), the transition region ΩI
ε(t) then takes

the form

(Gε(t, ·))−1(ΩI
ε(t) ∩ Ĝ(t)) = {(s, ρ) : s ∈ O, ρ ∈ (Y −ε (t, s), Y +

ε (t, s))}, t ∈ I.

Equations in the transition layer. The transformation rules (2.3) allow us to reformulate equa-
tions (3.2a)–(3.2c) in terms of (U,Q,W ) = (u, q, w) ◦Gε as

−ε∂ρUV + ε2∇sU ∂tS ◦Gε + ε2∂tU = ε−2∂ρ(m(U)[∂ρW −
1

n(U)
∂ρ(A(U)Q)]) (3.4a)

+ ε−1m(U)[∂ρW −
1

n(U)
∂ρ(A(U)Q)]∆xd ◦Gε

+ divγερ(m(U)[∇γερW −
1

n(U)
∇γερ(A(U)Q)]),

−ε∂ρZV + ε2∇sZ ∂tS ◦Gε + ε2∂tZ = − 1

τ(U)
Q (3.4b)

− ε−2A(U)m(U)∂ρ
( 1

n(U)

)
[∂ρW −

1

n(U)
∂ρ(A(U)Q)]

−A(U)m(U)∇γερ

( 1

n(U)

)
· [∇γερW −

1

n(U)
∇γερ(A(U)Q)],

where Z = Q+R(U), R′ = A
n

, and

W = −(∂2
ρU + U)− ε∂ρU∆xd ◦Gε − ε2∆γερU. (3.4c)

These equations are to be imposed on {(t, s, ρ) : Y −ε (t, s) < ρ < Y +
ε (t, s), (t, s) ∈ I ×O}.
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Conditions at the free boundary. The continuity conditions (3.2d) at the free boundary turn into
conditions at {ρ = Y ±ε (t, s)} in the reference coordinates, and take the form

ε−1m(U)(∂ρW −
1

n(U)
∂ρ(A(U)Q))ν · ν±ε +m(U)

(
∇γερW −

1

n(U)
∇γερ(A(U)Q)

)
· ν±ε = 0,

(3.5a)

U = ±1,
(3.5b)

ε−1∂ρUν · ν±ε +∇γερU · ν±ε = 0,
(3.5c)

where ν±ε (t, s) := ν I,±ε (Gε(t, s, Y
±
ε (t, s))) denotes the outer unit normal field ν Iε(t, ·) restricted to

Γ±ε (t) in the local coordinates. The equations (3.5) are to be understood in the trace sense.

In view of (3.3), ν±ε is determined by the conditions

ν±ε ⊥ ∂siγ + εY ±ε ∂siν + ε∂siY
±ν, i = 1, . . . , d− 1, |ν±ε | = 1, ±ν±ε · ν ≥ 0. (3.6)

3.2 Asymptotic expansions

We assume the following expansions of the unknowns written in the local reference coordinates
(U,Q,W )(t, s, ρ; ε) = (uε, qε, wε) ◦ Gε(t, s, ρ) and the height functions Y ±ε = Y ±ε (t, s) deter-
mining the moving boundary

U(·; ε) =
∑
i≥0

εiU i, Q(·; ε) =
∑
i≥0

εiQi, W (·; ε) =
∑
i≥0

εiW i,

Y ±ε =
∑
i≥0

εiY i
±.

Thus, in view of (3.6), we also have expansions

ν±ε = ν0
± + εν1

± +O(ε2), ν0
± = ±ν.

In particular, ±ν · ν0
± = 1. The first-order corrections ν1

± are determined by

ν1
± · ∂siγ = ∓∂siY 0

± for all i = 1, . . . , d− 1, and ν1
± · ν = 0.

We now insert the above expansions of the dependent variables in the transformed equations (3.4),
(3.5), and then, treating 0 < ε � 1 as a small parameter, use Taylor expansions to separate terms
of different order. Taking also into account the expansions of the differential operators in (2.4), (2.5)
as well as the identity (2.6), we then sort by orders of ε. This leads to a hierarchy of linear equations
for the higher-order corrections. Our main focus is the formal derivation of the interface evolution laws,
which will emerge at ‘third order’.

Before we start, let us briefly illustrate the expansion procedure for g(Y ±ε ) := g(t, s, Y ±ε (s, t))
assuming that ρ 7→ g(t, s, ρ) is smooth enough. With the above ansatz Y ±ε =

∑
i≥0 ε

iY i
±, for

0 < ε� 1, formal Taylor expansion of ρ 7→ g(t, s, ρ) yields

g(Y ±ε ) = g(Y 0
±) + ε∂ρg(Y 0

±)Y 1
± + ε2

(
∂ρg(Y 0

±)Y 2
± +

1

2
∂2
ρg(Y 0

±)(Y 1
±)2
)

+O(ε3).
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Leading order. Transition layer:O(ε−2), O(ε−2), O(1). Continuity conditions:O(ε−1), O(1), O(ε−1).
The starting point in the hierarchy is to assume that W 0 = 0, which can be interpreted as a quasi-
stationarity condition and leads to an asymptotic analysis that is consistent with the present continuity
conditions at the free boundary. Given this hypothesis, the leading order equations are

0 = −∂ρ
(m(U0)

n(U0)
∂ρ(A(U0)Q0)

)
, (3.7a)

0 = A(U0)
m(U0)

n(U0)
∂ρ
( 1

n(U0)

)
∂ρ(A(U0)Q0), (3.7b)

0 = −∂2
ρU

0 − U0. (3.7c)

These equations are imposed for ρ ∈ (Y 0
−, Y

0
+) =: J and are supplemented by the leading order

equations of (3.5), to be understood in the trace sense,

−m(U0)

n(U0)
∂ρ(A(U0)Q0) ν · ν0

± = 0 on {ρ = Y 0
±}, (3.8a)

U0 = ±1 on {ρ = Y 0
±}, (3.8b)

∂ρU
0 ν · ν0

± = 0 on {ρ = Y 0
±}. (3.8c)

We first consider the problem for U0. To this end, recall that our hypothesis that the zero level sets
of {U(·; ε)}ε converge to Γ, i.e. to {ρ = 0}, enforces U0

|ρ=0 = 0. Combining this condition with

equations (3.7c), (3.8b), (3.8c), and recalling that ν · ν0
± = ±1, yields a discrete family of solutions

(U0, Y 0
±) of which we choose the ‘minimal’ one given by

U0(ρ) = sin ρ, ρ ∈ J = (Y 0
−, Y

0
+), Y 0

± = ±π
2
. (3.9)

This further entails∇sY
0
± ≡ 0, and therefore ν1

± ≡ 0.

Equation (3.7a) implies that m(U0)
n(U0)

∂ρ(A(U0)Q0) = c0 in J for a function c0 = c0(t, s) that is in-

dependent of ρ. Invoking (3.8a), we deduce that c0 ≡ 0, and hence m(U0)
n(U0)

∂ρ(A(U0)Q0) = 0 in J .

Since m(U0)
n(U0)

6= 0 for all ρ ∈ (Y 0
−, Y

0
+) (cf. (m1), (n1)), we infer that ∂ρ(A(U0)Q0) = 0. Consequently,

A(U0)Q0 = a0, where a0 = a0(t, s).

First order. Transition layer: O(ε−1), O(ε−1), O(ε). Continuity conditions: O(1), O(ε), O(1). The
bulk equations at first order are imposed for ρ ∈ J

0 = ∂ρ(m(U0)E1), (3.10a)

0 = −A(U0)m(U0)∂ρ
( 1

n(U0)

)
E1, (3.10b)

W 1 = −∂2
ρU

1 − U1 + ∂ρU
0κγ, (3.10c)

where

E1 := ∂ρW
1 − 1

n(U0)
∂ρ(A(U0)Q1 + A′(U0)U1Q0).
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They are supplemented by the appropriate continuity conditions stemming from (3.5)

(m(U0)E1)|ρ=Y 0
±

= 0, (3.11a)

U1
|ρ=Y 0

±
= 0,

(
∂ρU

1 + ∂2
ρU

0Y 1
±
)
|ρ=Y 0

±
= 0. (3.11b)

Here, for equation (3.11a), we used the orthogonality ν · ∇γ ≡ 0.

Equations (3.10a), (3.11a) imply that m(U0)E1 ≡ 0, and thus, since m(U0) > 0 in J ,

E1 = 0. (3.12)

This also means that (3.10b) is trivially satisfied.

We next consider the linear elliptic Dirichlet problem (3.10c), (3.11b) in ρ for U1 with ‘right-hand side’
data r1 := W 1 − ∂ρU

0κγ . By elliptic theory (cf. [GT01, Chapter 8]), solvability of this problem is
ensured if and only if r1 is L2(J)-orthogonal to the kernel of the elliptic operator −∂2

ρ − Id, which is
spanned by ∂ρU0. This leads to the solvability condition (∂ρU

0,W 1)L2(J) − ‖∂ρU0‖2
L2(J)κγ = 0.

Abbreviating σ :=
∫
J
(∂ρU

0)2 dρ, it becomes∫
J

W 1∂ρU
0 dρ = σ κγ. (3.13)

Let us also note that the second equation in (3.11b) combined with (3.9) determines Y 1
± in terms of

U1 via

Y 1
± = ±∂ρU1

|ρ=Y 0
±
.

Since the actual values of the higher-order corrections Y i
±, i ≥ 1, will not be needed directly for our

purpose, we will not explicitly consider (3.5c) at the subsequent higher orders.

Second order. Transition layer: O(1), O(1), O(ε2). Continuity conditions: O(ε), O(ε2), O(ε). Us-
ing (3.12), we obtain the equations

0 = ∂ρ(m(U0)E2)− m(U0)

n(U0)
∆γa0, (3.14a)

0 = − 1

τ(U0)
Q0 − A(U0)m(U0)∂ρ(

1

n(U0)
)E2, (3.14b)

W 2 = −∂2
ρU

2 − U2 + ∂ρU
1κγ + ∂ρU

0ρ|Wγ|2, (3.14c)

where

E2 := ∂ρW
2 − 1

n(U0)
∂ρ
(
A(U0)Q2 + A′(U0)U1Q1 + (A′(U0)U2 +

1

2
A′′(U0)(U1)2)Q0

)
+
n′(U0)

n(U0)2
U1∂ρ(A(U0)Q1).

Due to (3.12), the fact that ν±ε = ±ν + O(ε2), and thanks to the orthogonality relation ν · ∇γερ ≡ 0
(in its expanded form: ν · ∇γ ≡ 0, ν · ri ≡ 0 with ri as in (2.4)), the continuity condition associated
to (3.5a) states

(m(U0)E2)ρ=Y 0
±

= 0. (3.15)
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Equation (3.5b) at the relevant order states U2
|ρ=Y 0

±
= 0, thus complementing (3.14c).

Owing (3.15), integration of (3.14a) over ρ ∈ J implies that

−
∫
J

m(U0)

n(U0)
dρ ∆γa0(t, s) = 0.

Since m(U0)
n(U0)

has a sign (cf. (n1)) and hence
∫
J
m(U0)
n(U0)

dρ 6= 0, we deduce that −∆γa0 ≡ 0. This, in
turn, combined with (3.14a) and (3.15) yields

E2 = 0. (3.16)

Inserting (3.16) into (3.14b) and using the finiteness of τ (cf. hypothesis (τ1)), we thus arrive at

Q0 = 0.

Equation (3.12) therefore becomes

∂ρW
1 − 1

n(U0)
∂ρ(A(U0)Q1) = 0. (3.17)

Third order. Transition layer: O(ε), O(ε), O(ε3). Continuity conditions: O(ε2), O(ε3), O(ε2). Us-
ing (3.17) and (3.16), the equations (3.4a) and (3.4b) at order O(ε) can be cast in the form

−∂ρU0V = ∂ρ(m(U0)E3) + ∆γ(m(U0)f), (3.18a)

−∂ρR(U0)V = − 1

τ(U0)
Q1 − A(U0)∂ρ

( 1

n(U0)

)
(m(U0)E3), (3.18b)

with R′ = A
n

, and where we introduced

f := W 1 − 1

n(U0)
A(U0)Q1 (3.18c)

and

E3 := ∂ρW
3 − 1

n(U0)
∂ρ
(
A(U0)Q3 + A′(U0)U1Q2 + (A′(U0)U2 +

1

2
A′′(U0)(U1)2)Q1

)
+
n′(U0)

n(U0)2
U1∂ρ

(
A(U0)Q2 + A′(U0)U1Q1

)
+

(
n′(U0)

n(U0)2
U2 − 1

2

(
1

n

)′′
|u=U0

(U1)2

)
∂ρ(A(U0)Q1).

For later use, we observe that W 1 and Q1 are uniquely determined by f through the linear system

W 1 = f +
1

n(U0)
A(U0)Q1, (3.18d)

∂ρf = −∂ρ
( 1

n(U0)

)
A(U0)Q1 =

n′(U0)

n(U0)2
A(U0)Q1∂ρU

0, (3.18e)

where in (3.18e) we used (3.17) to find ∂ρf = ∂ρW
1−∂ρ( 1

n(U0)
A(U0)Q1) = −∂ρ( 1

n(U0)
)A(U0)Q1.
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For completeness, we note that the equation coming from (3.4c) states

W 3 = −∂2
ρU

3 − U3 + ∂ρU
2κγ + ∂ρU

1ρ|Wγ|2 + ∂ρU
0ρ2k3

3.

It is supplemented by U3
|ρ=Y 0

±
= 0, which stems from the continuity condition (3.5b).

The continuity condition associated to (3.5a) at O(ε2) states

(m(U0)E3)ρ=Y 0
±

= 0. (3.18f)

To proceed with the equations at ‘third order’, we need to distinguish between constant coupling n ≡ 1
and functions n satisfying the complementary hypothesis (n2). In the remaining part of the asymptotic
expansions, we will focus on identifying the equations that determine the interface evolution law.

3.2.1 Third order for n ≡ 1

In this paragraph, we consider the setting of Assertion 1.1. In particular, we let n ≡ 1. In this case, the
identity (3.17) implies that f = f(t, s) is independent of ρ. Thus, using (3.18f) and integrating (3.18a)
over ρ ∈ J , yields

V = −2

δ
∆γf, (3.19)

where δ = 4(
∫
J
m(U0) dρ)−1 = 4(

∫ +1

−1
m(u)√
1−u2 du)−1 because of ∂ρU0 =

√
1− (U0)2, U0(ρ) =

sin ρ.

We now turn to (3.18b), which for n ≡ 1 reduces to

−∂ρU0A(U0)V = − 1

τ(U0)
Q1.

Multiplying this equation by τ(U0)A(U0) and substituting W 1 − f for A(U0)Q1 (cf. (3.18c)) yields

∂ρU
0τ(U0)A(U0)2 V = W 1 − f. (3.20)

We multiply (3.20) by ∂ρU0 and integrate over ρ ∈ J . Combined with (3.19) and (3.13), this gives

−2ω

δ
∆γf + [U0]+−f = σκγ, (3.21)

where

ω =

∫
J

A(U0)2τ(U0)(∂ρU
0)2 dρ =

∫ +1

−1

A(u)2τ(u)
√

1−u2 du

and [U0]+− := U0(Y 0
+)−U0(Y 0

−) = 2.

For a smooth closed hypersurface and any ω̂ > 0, the linear operator f 7→ −ω̂∆Γf + f induces an
isomorphism from H2(Γ) onto L2(Γ). Hence, in global notation, equations (3.19), (3.21) amount to
the interface evolution law

VΓ = −σ(δ Id− ω∆Γ)−1∆ΓκΓ,

where we recall that VΓ, κΓ : Γ→ R denote the normal velocity resp. the mean curvature of Γ.
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3.2.2 Third order for non-constant coupling n

Here, we consider the setting of Assertion 1.2. To solve equation (3.18a) for m(U0)E3, we integrate
over (−π

2
, ρ) and use (3.18f) to deduce

m(U0)E3 = −(U0 + 1)V −∆γ

∫ ρ

−π/2
m(U0)fdρ′.

Inserted in (3.18b), this gives(
− A(U0)∂ρ

( 1

n(U0)

)
(U0 + 1)− ∂ρR(U0)

)
V

= − 1

τ(U0)
Q1 + A(U0)∂ρ

( 1

n(U0)

)(
∆γ

∫ ρ

−π/2
m(U0)fdρ′

)
. (3.22)

Owing to hypothesis (n2), we may divide (3.22) by A(U0)∂ρ(
1

n(U0)
). We then recall (3.18e) to sub-

stitute 1
A(U0)∂ρ( 1

n(U0)
)
∂ρf for −Q1. After multiplying the resulting equation by − 1

A(U0)∂ρ( 1
n(U0)

)
and

computing
A(U0)
n(U0)

∂ρU
0

A(U0)∂ρ(
1

n(U0)
)

= − n(U0)

n′(U0)
,

we deduce(
(U0 + 1)− n(U0)

n′(U0)

)
V = − 1

A(U0)2τ(U0)

( n(U0)2

∂ρn(U0)

)2
∂ρf −∆γ

∫ ρ

−π/2
m(U0)f dρ′.

Upon differentiation in ρ, we arrive at the equation

Lf := −∂ρ
(
a(U0)∂ρf

)
−m(U0)∆γf =

(
∂ρU

0−∂ρ
( n(U0)

n′(U0)

))
V in {−π

2
< ρ < π

2
},

(3.23a)

where we abbreviated (cf. (τ2))

a(u) :=

(
1

A2τ

(n2

n′

)2
)
|u

1

1− u2
,

and used the fact that (∂ρU
0)2 = 1− (U0)2.

In order to identify the boundary conditions for f at {ρ = ±π
2
} that supplement equation (3.23a), we

subtract (3.18a) from (3.23a), simplify, and rearrange terms to find

∂ρ
(
− a(U0)∂ρf +

n(U0)

n′(U0)
V +m(U0)E3

)
= 0.

Hence, there exists c1 = c1(t, s), independent of ρ, such that −a∂ρf + n(U0)
n′(U0)

V +m(U0)E3 = c1.

Inserting m(U0)E3 = c1− (−a∂ρf + n(U0)
n′(U0)

V ) into (3.18b), and substituting 1

A(U0)∂ρ

(
1

n(U0)

)∂ρf for

−Q1 in (3.18b), we deduce, upon rearranging terms, that c1 = 0. Owing to (3.18f), we thus arrive at
the boundary conditions

−a(U0)∂ρf = − n(U0)

n′(U0)
V on {ρ = ±π

2
}. (3.23b)
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We next formulate the constraint (3.13) in terms of f , using (3.18d), (3.18e). This gives∫
J

W 1∂ρU
0 dρ =

∫
J

(
∂ρU

0f +
n(U0)

n′(U0)
∂ρf
)

dρ.

Hence, the constraint (3.13) takes the form

Cf :=

∫
J

(
∂ρU

0f +
n(U0)

n′(U0)
∂ρf
)

dρ = σκγ. (3.23c)

Note that DC(f) = ∂ρU
0 − ∂ρ

( n(U0)
n′(U0)

)
in the sense of distributions. Hence, the velocity field V =

V (t, s) on the right-hand side of (3.23a), (3.23b), which is independent of ρ, arises as the Lagrange
multiplier associated to the constraint (3.23c). In order to derive the geometric evolution law, we are
thus left to determine the couple (f, V ) satisfying the equations (3.23).

4 Well-posedness of the constrained elliptic problem

In this section, we rigorously establish the existence and uniqueness of a solution (f, V ) to (3.23) by
recasting the equations as a variational problem for sufficiently regular closed connected embedded
hypersurfaces Γ. We further derive an abstract formula for the interface evolution law by identifying
the operator that maps given curvature data κ to the normal velocity V .

4.1 Notation and hypotheses

The problem in this section being purely spatial, we here drop any temporal dependence and write
γ : O → Γ, f = f(s, ρ), s ∈ O, ρ ∈ J := (−π

2
, π

2
), etc. As our analysis of problem (3.23) is

essentially independent of the preceding formal asymptotics, let us separately formulate a relaxed set
of hypotheses on the (time-independent) geometry Γ and the coefficients m,n,A2τ that suffices for
the analysis of the present section.

Hypotheses.

(e1) Γ b Rd is a smooth, closed (incl. compact), connected, embedded hypersurface

(e2) m(u) = (1− u2)im̃(u) for some i ∈ N, where m̃ ∈ C∞([−1, 1]) with min[−1,1] m̃ > 0;
n,A2τ ∈ C∞([−1, 1]), n, n′ 6= 0 a.e., and (τ1)

(e3) ι := inf(−1,1)
n2(u)

(A2τ)(u)
√

1−u2 > 0.

Global coordinates. For the variational arguments below, it is natural to formulate the problem glob-
ally in terms of unknowns f : Γ× [−1, 1]→ R and V : Γ→ R, which will then yield the local solution
(f, V ) to (3.23) for (s, ρ) ∈ O × J (at a fixed time t) via

f(s, ρ) = f(s, u), V (s) = V(s) with (s, u) = (γ(s), U0(ρ)), s ∈ O, ρ ∈ J,
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where we recall that U0(ρ) = sin ρ. Here, γ = γ(t, ·) : O ⊂ Rd−1 → Γ(t) stands for any of
the local parametrisations of the evolving hypersurface, evalued at time t. Note that for differentiable
functions g = g(s, u), due to ∂ρU0 =

√
1− (U0)2 and the definition of ∆γ (cf. Section 2),

1√
1− (U0)2

∂

∂ρ
g(s, U0(·)) = (∂ug)(s, U0(·)),

∆γg(γ(·), u) = (∆Γg)(γ(·), u).

Hence, in the (s, u)-coordinates, problem (3.23) takes the form

−∂u(a∂uf)−m∆Γf =
(
1− ∂u(

n

n′
)
)
V in Γ× [−1, 1], (4.1a)

−a∂uf = − n
n′
V on Γ, (4.1b)∫ +1

−1

(f +
n

n′
∂uf) du = σκ on Γ (4.1c)

with κ = κΓ and V = VΓ, where here and in the rest of this manuscript, we adopt the notation

a(u) :=
( 1

A2τ

(n2

n′
)2
)
|u

1√
1− u2

, (4.2a)

m(u) :=
m(u)√
1− u2

. (4.2b)

Observe that (e3) implies the bound

a ≥ ι
( n
n′

)2

. (4.3)

This will ensure compatibility of the constraint (4.1c) with the functional setting induced by the elliptic
operator L.

Since we are interested in determining the propagation operator inducing the interface dynamics, we
will develop the well-posedness theory for general functions κ : Γ→ R, a priori not equal to the mean
curvature κΓ of Γ. We will always assume that κ ∈ H1(Γ).

Surface divergence theorem. Let us briefly recall the following integration-by-parts formula for suf-
ficiently regular functions f, g : Γ→ R∫

Γ

∇Γf · ∇Γg dHd−1 =

∫
Γ

(−∆Γf) g dHd−1,

which is a consequence of the surface divergence theorem on Γ for tangential vector fields. This
formula will be used below without explicit mention.

4.2 Function spaces

Let

Cf(s) =

∫ +1

−1

(
f(s, u) +

n(u)

n′(u)
∂uf(s, u)

)
du,
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whever the integral converges. Then, define the space

Ĥ :=
{
f ∈ C∞(Γ× [−1, 1]) :

√
a∂uf ∈ L2(Γ× [−1, 1]), Cf ∈ H1(Γ)

}
.

Note that, due to (4.3),∫
Γ

∫
[−1,1]

a|∂uf|2 du dHd−1 ≥ ι

∫
Γ

∫
[−1,1]

∣∣∣ n
n′
∂uf
∣∣∣2 du dHd−1.

Consequently, n
n′
∂uf ∈ L2(Γ× [−1, 1]) ⊂ L1(Γ× [−1, 1]) for f ∈ C∞(Γ× [−1, 1]) with

√
a∂uf ∈

L2(Γ × [−1, 1]), showing that the integral Cf =
∫ 1

−1

(
f + n

n′
∂uf
)

du is well-defined a.e. in Γ. Thus,

the space Ĥ is well-defined.

For f, g ∈ Ĥ let (
f, g
)
E :=

∫
Γ

∫
[−1,1]

(
a∂uf ∂ug + m∇Γf · ∇Γg

)
du dHd−1,

and

(f, g)H := (f, g)E + (Cf, Cg)H1(Γ).

The non-negative bilinear form (·, ·)H defines an inner product on the space Ĥ . To see the definite-
ness, suppose that (̄f, f̄)H = 0 for some f̄ ∈ Ĥ . Since m, a are positive a.e. in [−1, 1], this implies
that∇Γf̄ = 0, ∂uf̄ = 0, and hence f̄ ≡ c for a fixed constant c ∈ R. Thus, 2c =

∫ 1

−1
f̄ du = C f̄ = 0.

Hence c = 0, showing the definiteness.

We now define the Hilbert space H as the completion of Ĥ with respect to ‖ · ‖H := (·, ·)1/2
H .

Furthermore, given κ ∈ H1(Γ), we let

Mκ = {f ∈ H : Cf = σκ} .

The setMκ is non-empty (since the function f(s, u) ≡ σ
2
κ(s) lies inMκ) and forms an affine subspace

of H . Furthermore, due to ‖Cf‖H1(Γ) ≤ ‖f‖H , the linear operator C : H → H1(Γ) is continuous,
which implies that Mκ ⊂ H is closed.

4.3 Variational characterisation and interface dynamics

For f ∈ H define the quadratic functional

E(f) =
1

2

∫
Γ

∫
[−1,1]

(
a(∂uf)

2 + m|∇Γf|2
)

du dHd−1,

i.e. E(f) = 1
2
(f, f)E .

Consider the minimisation problem of E on Mκ: find f ∈Mκ such that

E(f) = inf
f̃∈Mκ

E (̃f). (4.4)

The Lagrangian L : H ×H1(Γ)∗ → R associated to (4.4) is given by

L(f,V) = E(f)− 〈V, Cf − σκ〉H1(Γ)∗,H1(Γ).
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At any critical point (f,V) it holds that ∂fL(f,V) = 0, ∂VL(f,V) = 0. Hence,

DE(f)− 〈V, C·〉H1(Γ)∗,H1(Γ) = 0 in H∗,

which is the appropriate weak formulation of (4.1a), (4.1b), and

Cf − σκ = 0 in H1(Γ),

which specifies (4.1c). Thus, the system (4.1) are the Euler–Lagrange equationsDL|(f,V) = 0 of (4.4).
We formalise these observations in the following proposition.

Proposition 4.1. Assume hypotheses (e1), (e2), and (e3). Given a function κ ∈ H1(Γ), there exists
a unique couple (f,V) ∈Mκ ×H1(Γ)∗ solution to

DE(f) = 〈V, C·〉H1(Γ)∗,H1(Γ) in H∗, (4.5a)

Cf = σκ in H1(Γ). (4.5b)

In particular,
∫ 1

−1

(
f + n

n′
∂uf
)

du = σκ a.e. in Γ, and for all ϕ ∈ H∫
Γ

∫
[−1,1]

(
a∂uf ∂uϕ+ m∇Γf · ∇Γϕ

)
du dHd−1 =

〈
V,

∫ 1

−1

(
ϕ+

n

n′
∂uϕ

)
du
〉
H1(Γ)∗,H1(Γ)

.

(4.6)

Define the linear solution operator

Ĝ = (F ,G) : H1(Γ)→ H ×H1(Γ)∗

κ 7→ (f,V).

Then, Gκ = −1
2
∆Γ

∫ 1

−1
mf du, where f := Fκ. More precisely, for all ψ ∈ H1(Γ)

〈Gκ, ψ〉H1(Γ)∗,H1(Γ) =
1

2

∫
Γ

∇Γ

(∫ 1

−1

mFκ du

)
· ∇Γψ dHd−1. (4.7)

Furthermore, Ĝ is continuous and

(f, f)
1
2
E ≤

σ√
δ
‖∇κ‖L2(Γ), f := Fκ, (4.8a)

sup
{ψ∈H1:‖∇ψ‖L2≤1}

〈Gκ, ψ〉H1(Γ)∗,H1(Γ) ≤
σ

δ
‖∇κ‖L2(Γ), (4.8b)

where σ, δ are given by (1.8a).

The second component G of the operator Ĝ determines the evolution law of the moving hypersurface
Γ = Γ(t) through VΓ = GΓκΓ, where κΓ ∈ H1(Γ) denotes the mean curvature of Γ, and VΓ the
normal velocity (cf. problem (4.1) resp. (3.23)).

Definition 4.2. We call the operator GΓ : κ→ −∆Γ

∫ 1

−1
mFκ du the propagation operator.

Proof of Proposition 4.1. The functional E : H → R is convex and continuous, and thus weakly lower
semi-continuous. Furthermore, the restriction E : Mκ → R is mildly coercive on Mκ ensuring that
minimising sequences of E in Mκ are bounded with respect to ‖ · ‖H . The affine space Mκ ⊂ H
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is closed, and thus weakly closed. Consequently, a standard application of the direct method of the
calculus of variations (cf. [Zei85, Proposition 41.2]) yields a unique solution f ∈Mκ to the constrained
minimisation problem

E(f) = inf
f̃∈Mκ

E (̃f). (4.9)

The uniqueness of the solution f ∈ H to (4.4) follows from the strict convexity of E|Mκ .

Equation (4.5b) is immediate, since f ∈ Mκ. To deduce (4.5a), we note that the continuous linear
operator C : H → H1(Γ) is a submersion (since C(1

2
h) = h for all h = h(s) ∈ H1(Γ)). Therefore,

the theory of Lagrange multipliers (see e.g. [Zei85, Theorem 43 D (1)]) yields the existence of a unique
V ∈ H1(Γ)∗ such that for all ϕ ∈ H

〈DE(f), ϕ〉H∗,H = 〈V, DC(f)ϕ〉H1(Γ)∗,H1(Γ) = 〈V, Cϕ〉H1(Γ)∗,H1(Γ), (4.10)

where the second equality follows from the linearity of C. The uniqueness of solutions to (4.10) follows
by invoking the converse direction [Zei85, Theorem 43 D (2)] of the Lagrange multiplier rule and the
uniqueness of the solution f to (4.9).

By construction, DE(f) = (f, ·)E . Inserting this identity in (4.10), we conclude the weak formula-
tion (4.6).

Choosing in (4.6) the test function ϕ ≡ ψ with ψ ∈ H1(Γ), which is admissible since ϕ ∈ H , we
deduce (4.7).

It remains to show the bounds (4.8a), (4.8b), which imply the continuity of the linear map Ĝ from
H1(Γ) to H ×H1(Γ)∗. From (4.7) we deduce the bound

〈Gκ, ψ〉H1(Γ)∗,H1(Γ) ≤
1

2

(∫ 1

−1

m du

) 1
2

(f, f)
1
2
E ‖∇ψ‖L2(Γ) =

1√
δ

(f, f)
1
2
E ‖∇ψ‖L2(Γ), f = Fκ.

Choosing Fκ (= f) itself as a test function in (4.5a) then gives

(Fκ,Fκ)E ≤ σ sup
{ψ∈H1:‖∇ψ‖L2≤1}

〈Gκ, ψ〉H1(Γ)∗,H1(Γ)‖∇κ‖L2(Γ)

≤ σ

2

(∫ 1

−1

m du

) 1
2

(Fκ,Fκ)
1
2
E ‖∇κ‖L2(Γ) =

σ√
δ

(Fκ,Fκ)
1
2
E ‖∇κ‖L2(Γ).

4.4 Regularity

Here, we show a basic regularity property of the solution (f,V) to the constrained elliptic equa-
tion (4.5a), (4.5b) in tangential variables. To this end, it will be convenient to work with an orthonormal
basis {ej}j∈N of L̇2(Γ) := {h ∈ L2(Γ) : −

∫
Γ
h dHd−1 = 0} composed of eigenfunctions of the

minus Laplace–Beltrami operator −∆Γ with associated eigenvalues 0 < λ1 ≤ λ2 ≤ . . . satisfying
λj →∞ (cf. Section 5.2.1 for more background).

Lemma 4.3 (Higher regularity in tangential variables). Let κ ∈ Hk+1(Γ) for some k ∈ N. Then
(−∆Γ)k/2Fκ ∈ H and (−∆Γ)k/2Gκ ∈ H1(Γ)∗.
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Proof. We take advantage of the fundamental orthogonality relations established in Lemma 5.4 below,
whose proof is independent of the present assertion. By hypothesis, κ − −

∫
Γ
κ =

∑
j∈N κjej for

coefficients κj satisfying
∑

j∈N λ
k+1
j |κj|2 < ∞. Let N ∈ N. Due to the linearity of the operator

Ĝ, we know that
(∑N

j=1 λ
k/2
j Fκjej,

∑N
j=1 λ

k/2
j Gκjej

)
∈ H ×H1(Γ)∗ is the solution to (4.5) with

datum
∑N

j=1 λ
k/2
j κjej . Thus, owing to Lemma 5.4, the estimates (4.8) provide us with N -truncated

versions of the bounds

E((−∆)k/2Fκ)1/2 . ‖(−∆)k/2κ‖H1(Γ)

‖(−∆)k/2Gκ‖H1(Γ)∗ . ‖(−∆)k/2κ‖H1(Γ).

Since ‖(−∆)k/2κ‖2
H1(Γ) =

∑
j∈N λ

k+1
j |κj|2 < ∞, the asserted regularity follows in the limit

N→∞.

The regularity in the normal variable depends on the choice of the coefficients m,n,A2τ .

Remark 4.4 (Analyticity). In Section 5.2 we explicitly determine the operators F ,G by computing
their action on the basis {ej}j∈N. There, we will see that, for a specific choice of coefficients as in
Assertion 1.2, Fej is analytic in u for all j as long as the coefficient functions are analytic in u.

5 The (new) geometric evolution law

We now investigate the structural properties of the propagation operator GΓ := G given by

GΓ : κ 7→ −1

2
∆Γ

∫ 1

−1

mFκ du,

which, as we have seen in Proposition 4.1, determines the interface dynamics via VΓ = GΓκΓ.

Throughout this section, we assume the general hypotheses (e1), (e2), and (e3) from Section 4, en-
suring that GΓ : H1(Γ)→ H1(Γ)∗ is well-defined, and adopt the notations introduced in Section 4.1.
Recall, in particular, the definition (4.2b) of m = m(u). In the context of an evolving hypersurface, the
hypotheses (e1) on the geometry are to be understood pointwise in time.

5.1 Gradient-flow structure

Below, we will use, without further notice, the observation that the regularity property in Lemma 4.3
implies that GΓh ∈ L2(Γ) for all h ∈ H2(Γ).

Proposition 5.1 (Symmetry, invariance, and positivity of the propagation operator).

1 Symmetry. The operator GΓ is symmetric with respect to L2(Γ) in the sense that

(GΓh, κ)L2(Γ) = (h,GΓκ)L2(Γ) for all h, κ ∈ H2(Γ). (5.1)

2 Invariance. It holds that

GΓ1Γ ≡ 0, (5.2)

where 1Γ denotes the constant function on Γ that is identically equal to 1.
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3 Positivity. It holds that

(GΓκ, κ)L2(Γ) ≥ 0 for all κ ∈ H2(Γ). (5.3)

Furthermore, the equality (GΓκ, κ)L2(Γ) = 0 with κ ∈ H2(Γ) holds true if and only if κ ≡ c
on Γ for some constant c ∈ R.

4 Upper bound. It holds that

GΓ ≤ −
σ

δ
∆Γ (5.4)

in the sense that (GΓκ, κ)L2(Γ) ≤ (−σ
δ
∆Γκ, κ)L2(Γ) for all κ ∈ H2(Γ).

Remark 5.2 (Gradient structure). Since −κΓ can be obtained by normal variation of the surface area
functional, the properties 1, 3 asserted in Proposition 5.1 mean that, formally, the interface evolution
law VΓ = GΓκΓ has the structure of a gradient flow of the surface area functional.

Proof of Proposition 5.1. Abbreviate G = GΓ. The proof relies on the characterisation of the solution
operator Ĝ = (F ,G) in Proposition 4.1. The starting point is the equality

C
(
Fh− σ

2
h
)

= 0 for all h ∈ H1(Γ),

which follows from (4.5b) and the definition of C. Using (4.5a) and the fact that DE(f)ϕ = (f, ϕ)E , it
allows us to deduce that(

Fκ, (Fh− σ

2
h)
)
E

= 0 for all κ, h ∈ H2(Γ). (5.5)

From (5.5) and equation (4.5a), we then infer the key identity(
Fκ,Fh

)
E =

(
Fκ, σ

2
h
)
E = 〈Gκ, C(σ

2
h)〉H1(Γ)∗,H1(Γ) = σ(Gκ, h)L2(Γ). (5.6)

Thus, assertion (5.1) resp. (5.3) follows from the symmetry resp. the non-negativity of the bilinear form
(·, ·)E combined with the positivity of σ > 0.

To show the invariance property, we compute for h ∈ H2(Γ) fixed but arbitrary, using the symmetry
of GΓ, (4.5a), and a calculation as in (5.6):

(h,G1Γ)L2(Γ) = (Gh, 1Γ)L2(Γ) = 1
2
〈Gh, C1Γ〉H1(Γ)∗,H1(Γ) = 1

2
(Fh, 1Γ)E = 0.

Since h ∈ H2(Γ) was arbitrary, we infer that G1Γ ≡ 0 on Γ. Alternatively, this assertion can be
deduced from (4.8b).

Suppose now that (Gκ, κ)L2(Γ) = 0 for some κ ∈ H2(Γ). From the representation (5.6) and the
definition of the bilinear form (·, ·)E , we conclude that ∂u(Fκ) = 0,∇Γ(Fκ) = 0 a.e. on Γ×[−1, 1].
Consequently, there exists c̃ ∈ R such thatFκ = c̃ a.e. on Γ×[−1, 1], and thus σκ = C(Fκ) = 2c̃.
Hence κ ≡ c for c := 2

σ
c̃ ∈ R. The converse direction that (Gc, c)L2(Γ) = 0 for constant functions c

follows from (5.2).

The upper bound is an immediate consequence of inequality (4.8b).

Having established the relevant structural properties of the linear operator GΓ, we may now deduce
volume preservation and area decrease of the associated geometric flow along classical solutions.
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Corollary 5.3 (Volume-preserving curvature flow). Let Γ = ∪t∈I{t}×Γ(t) be a smoothly evolving
hypersurface governed by the geometric law

VΓ = GΓκΓ.

Then:

(i) Volume preservation. d
dt
Hd(Ω−) = 0, where Ω−(t) denotes the domain enclosed by Γ(t).

(ii) Area decrease. d
dt
Hd−1(Γ) ≤ 0.

(iii) Equilibria. VΓ = 0 if and only if κΓ is constant, i.e. if Γ(t) ≡ Sd−1
r (x) is a Euclidean sphere.

Proof. The assertions of Corollary 5.3 are consequences of the properties of GΓ obtained in Proposi-
tion 5.1, see e.g. [PS16]. A short derivation is provided below for completeness:

Re (i): We compute, using the transport theorem for moving domains (cf. [PS16, Chapter 2.5.5]), the
symmetry property (5.1) of GΓ, and the invariance (5.2),

d

dt

∫
Ω−

1 dx =

∫
Γ

VΓ dHd−1 = (GΓκΓ, 1Γ)L2(Γ) = (κΓ,GΓ1Γ)L2(Γ) = 0.

Re (ii): It follows from the transport theorem for moving hypersurfaces (cf. [PS16, Chapter 2.5.4]) and
the positivity of GΓ (cf. item 3 in Proposition 5.1) that the surface area functional is non-increasing
along solutions

d

dt

∫
Γ

1 dHd−1 = −
∫

Γ

VΓ κΓ dHd−1 = −(GΓκΓ, κΓ)L2(Γ) ≤ 0

with strict inequality unless κΓ = c for some c ∈ R.

Re (iii): It follows from the second part of item 3 in Proposition 5.1 that GΓκΓ = VΓ = 0 is equivalent
to κΓ ≡ c ∈ R. Combined with the properties (e1) of the hypersurface Γ(t) and Aleksandrov’s
characterisation of closed connected C2 hypersurfaces with constant mean curvature, embedded in
Rd, (cf. [Ale56]), this amounts to Γ(t) being a sphere.

5.2 Spectral representation of the propagation operator

Our next goal is to explicitly compute the action of the operator GΓ : κ 7→ −1
2
∆Γ

∫ 1

−1
mf du in

terms of −∆Γ. In view of the invariance property GΓ1Γ ≡ 0, it suffices to determine GΓ on functions
κ : Γ → R with

∫
Γ
κ = 0. For simplicity, we focus on specific choices of the coefficient functions

m,n,A2τ , see hypotheses (s1), (s2) in Section 5.2.2 below.

We emphasise that the explicit solution (f,V) to be constructed below agrees with the unique weak
solution of Proposition 4.1.

5.2.1 Spectral decomposition

Homogeneous Sobolev spaces. Given a hypersurface Γ satisfying (e1), we denote by L̇2(Γ) the
Hilbert space of square-integrable real-valued functions on Γ with zero average. The minus Laplace–
Beltrami operator−∆Γ, considered as an unbounded operator−∆Γ : D(−∆Γ) b L̇2(Γ)→ L̇2(Γ)
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with compactly embedded domain, is selfadjoint and strictly positive. Thus, by the spectral theorem,
there exists an orthonormal basis of eigenfunctions {ek}k∈N ⊂ L̇2(Γ) of−∆Γ with associated eigen-
values 0 < λ1 ≤ λ2 ≤ . . . satisfying λk ↑ +∞ as k → ∞. For s ∈ R and h =

∑
k∈N hkek,

hk ∈ R, we define

‖h‖2
Ḣs :=

∑
k∈N

λsk|hk|2,

and let

Ḣs(Γ) := {h =
∑
k∈N

hkek : ‖h‖Ḣs <∞}

denote the homogeneous L2-based Sobolev space of order s. Observe that Ḣ2(Γ) is the domain of
−∆Γ, and that, owing to (5.4), the domain of GΓ contains Ḣ2(Γ). Further note that−∆Γ : Ḣs(Γ)→
Ḣs−2(Γ) is an isometric isomorphism. Finally, observe the natural isomorphism Ḣ−s(Γ) ' Ḣs(Γ)∗

given by

Ḣ−s(Γ) 3 h =
∑
k∈N

hkek 7→ h̃, 〈h̃, φ〉Ḣs(Γ)∗,Ḣs(Γ) =
∑
k∈N

hkφk.

We further let

Λ = {λk : k ∈ N}, and ΛR = {λk ∈ Λ : λ ≤ R}, R > 0.

In general, an eigenvalue λ ∈ Λ may, of course, have multiplicity strictly larger than one in the sense
that λ = λk = λl for certain k 6= l.

Projection on eigenspace. The present spectral approach takes advantage of the observation that
the operator GΓ is diagonal with respect to the orthonormal basis {ek}k∈N of eigenfunctions of−∆Γ,
as shown in the following lemma. This basic property essentially follows from the fact that the coeffi-
cients of the constrained elliptic problem are independent of the tangential variables.

Lemma 5.4. The following holds true:

1 For all k, l ∈ N with k 6= l it holds that

(Fek, el)L2(Γ) = 0 a.e. in (−1, 1). (5.7)

2 There exists ζ : Λ→ R>0 such that for all h ∈ Ḣ2(Γ), h =
∑

k∈N hkek,

GΓh =
∑
k∈N

ζ(λk)hkek, (5.8)

The map ζ is uniquely determined by

ζ(λk) = (GΓek, ek)L2(Γ) =
1

2
λk

∫ 1

−1

mfk du, fk := (Fek, ek)L2(Γ), k ∈ N. (5.9)
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Proof. Given k 6= l, we take κ = ek and ϕ(s, u) = φkl(u)el(s), where φkl = (Fek, el)L2(Γ) in
Proposition 4.1 (cf. (4.5b), (4.6)). Then

Cφkl = C(Fek, el)L2(Γ) = σ(ek, el)L2(Γ) = 0.

Hence, with the above choice of ϕ, the right-hand side of equation (4.6) vanishes, and we infer, upon
rearranging terms, ∫ 1

−1

(
a|∂uφkl|2 + λlm|φkl|2

)
du = 0,

which implies (5.7). Choosing ϕ ≡ el in (4.6) then yields (GΓek, el)L2(Γ) = ζkδkl with ζk given by the

right-hand side of (5.9). In view of the completeness of the orthonormal system {ek}k∈N ⊂ L̇2(Γ),
we thus infer (5.8) with ζ(λk) replaced by ζk.

It remains to show that ζk = ζl whenever λk = λl. This is a consequence of the fact that the problem
uniquely determining fk = (Fek, ek)L2(Γ) only depends on k through λk (cf. equation (5.10)).

Thanks to the orthogonality (5.7), the problem of determining the solution operator Ĝ in Proposition 4.1
can be reduced to a second-order constrained ODE for f = fk := (Fek, ek)L2(Γ) depending on a
parameter λ = λk > 0, k ∈ N : the equations for fk are obtained by choosing in (4.5) the data
κ = ek and in the weak formulation (4.6) the test function ϕ(s, u) = φ(u)ek(s) for φ ∈ C∞([−1, 1])
with φ′ ∈ C∞c ((−1, 1)), and by taking the L2(Γ)-inner product of (4.5b) with ek:∫ 1

−1

(
a∂ufk ∂uφ+ λkmfkφ

)
du = ζ(λk)

∫ 1

−1

(
φ+

n

n′
∂uφ
)
du ∀φ ∈ C∞, suppφ′ b (−1, 1),

(5.10a)∫ 1

−1

(
fk +

n

n′
∂ufk

)
du = σ, (5.10b)

where we recall that σ is given by (1.8a). Note that ζ(λk) is the Lagrange parameter to (5.10b).

In the following, we will determine the solution fk to (5.10) for specific choices of m,n,A2τ , which
allows us to specify ζ(λk), and thus the propagation operator. A key interest lies in identifying the
asymptotic growth law of ζ(λ) as λ→∞.

5.2.2 Problem formulation

Let us first list the hypotheses under which the subsequent analysis is valid.

Hypotheses.

(s1) Let (e1), (e2), (e3) as well as (n2) be in force.

(s2) Assume (τ2) with ã ≡ const > 0 (required as of Section 5.2.3), and let m be even.

The first condition in (s2) amounts to requiring that a = const
m

. The hypothesis that m (or equivalently
m) be even has been made to simplify the presentation and can easily be removed.

Notice that the above assumptions are compatible with those in Assertion 1.2.
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Strong formulation. Upon an integration by parts in equation (5.10a) and in the constraint (5.10b),
problem (5.10) may be formulated as follows. Determine for λ = λk > 0 the solution couple f =
fλ, ζ = ζ(λ) of the system:∫ 1

−1

(
(−∂u(a∂uf) + mλf)φ

)
du =

∫ 1

−1

n′′n

(n′)2
φ du ζ +

[
(−a∂uf +

n

n′
ζ)φ

]1

−1

(5.11a)

for all φ ∈ C∞([−1, 1]) with φ′ ∈ C∞c ((−1, 1)), and∫ 1

−1

n′′n

(n′)2
f du+

[
n

n′
f

]1

−1

= σ. (5.11b)

Problem (5.11) can be decomposed into three subproblems:

1 First considering φ ∈ C∞c ((−1, 1)), reduces (5.11a) to the second-order differential equation

−∂u(a∂uf) + mλf =
n′′n

(n′)2
ζ (5.12a)

in the pointwise sense.

2 Taking now into account that in (5.11a) general test functions φ ∈ C∞([−1, 1]) with φ′ ∈
C∞c ((−1, 1)) are admitted, yields the associated boundary conditions on (−1, 1) :

a∂uf =
n

n′
ζ for u ∈ {±1}. (5.12b)

3 The constraint is taken as stated, i.e.∫ 1

−1

n′′n

(n′)2
f du+

[
n

n′
f

]1

−1

= σ. (5.12c)

If f and a∂uf are sufficiently regular, the three equations (5.12a)–(5.12c) are equivalent to (5.10).

Our strategy is now to first compute the general solution f to item 1 for given ζ . This solution has two
degrees of freedom, denoted by b1, b2 ∈ R, which we then specify in such a way that f fulfils the
boundary conditions in item 2. In the last step, we fix ζ in such a way that item 3 is fulfilled.

5.2.3 Explicit solution

Our explicit approach below takes advantage of the identity a = ã
m

with ã ≡ const > 0 imposed in
hypothesis (s2). To simplify the presentation, we suppose that ã = 1. The extension to the case of
general ã ≡ const > 0 is straightforward by suitable rescalings, see also Section 5.3.

For a = 1/m the change of variables r = α(u), α(u) :=
∫ u

0
m(u′) du′ brings the homogeneous

equation

−∂u(a∂uf) + mλf = 0 (5.13)

into the constant-coefficient form

−∂2
r f̂ + λf̂ = 0. (5.14)
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Equation (5.14) has two explicit linearly independent solutions f̂±(r) = 1
λ1/4 e±

√
λr. Returning to the

original variables, the solutions f± = f̂± ◦ α to the homogeneous equation (5.13) take the form

f+(u) =
1

λ1/4
e
√
λα(u), f−(u) =

1

λ1/4
e−
√
λα(u).

For later use, we note that, since m,m are even, the function α is odd.

The Wronskian W associated to (f+, f−) is given by

W = ∂uf+f− − ∂uf−f+ = 2m.

Let F̃ := mF := m nn′′

(n′)2 ζ . Then F̃ /W = 1
2
`ζ , where

`(u) :=
nn′′

(n′)2
. (5.15)

We assert that, using the method of variation of parameters, the general solution to the inhomoge-
neous equation (5.12a) can be written in the form

f(u) =
(
− f+(u)

∫ u

1

f−
`
2
du′ + f−(u)

∫ u

−1

f+
`
2
du′

+
b1

λ1/4
f+(u)e−

√
λα(1) +

b2

λ1/4
f−(u)e−

√
λα(1)

)
ζ, (5.16)

where b1, b2 ∈ R are free parameters. For convenience, we provide the calculations showing the
solution property: first we compute, using (5.16),

a∂uf =
(
− e

√
λα(u)

∫ u

1

e−
√
λα `

2
du′ − e−

√
λα(u)

∫ u

−1

e
√
λα `

2
du′

+ b1e−
√
λ(α(1)−α(u)) − b2e−

√
λ(α(1)+α(u))

)
ζ. (5.17)

Differentiating once more with respect to u, we deduce

− ∂u(a∂uf) = −λ1/2m
(
− e

√
λα(u)

∫ u

1

e−
√
λα `

2
du′ + e−

√
λα(u)

∫ u

−1

e
√
λα `

2
du′

+ b1e−
√
λ(α(1)−α(u)) + b2e−

√
λ(α(1)+α(u))

)
ζ + `ζ.

Observing that(
− e

√
λα(u)

∫ u

1

e−
√
λα `

2
du′ + e−

√
λα(u)

∫ u

−1

e
√
λα `

2
du′

+ b1e−
√
λ(α(1)−α(u)) + b2e−

√
λ(α(1)+α(u))

)
ζ = λ1/2f,

we deduce that f chosen according to (5.16) satisfies, in the pointwise sense, the equation (5.12a),
i.e.

−∂u(a∂uf) + λmf = `ζ

with ` given by (5.15).
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The parameters b1, b2 and ζ will now be fixed in such a way that f = fk fulfils all remaining prop-
erties, which will ensure that fkek coincides with the unique weak solution f = Fek constructed in
Proposition 4.1 for data κ = ek. We recall that ζ > 0, and thus ζ 6= 0, which also follows from condi-
tion (5.12c) by virtue of σ > 0. Let us first impose the boundary conditions (5.12b). We abbreviate

c(u) =
n(u)

n′(u)
. (5.18)

Then, using (5.17), condition (5.12b) turns into the system

−e−
√
λα(1)

∫ 1

−1

e
√
λα `

2
du′ + b1 − b2e−2

√
λα(1) = c(1)

e
√
λα(−1)

∫ 1

−1

e−
√
λα `

2
du′ + b1e−2

√
λα(1) − b2 = c(−1).

Define the 2×2-matrix

M :=

(
1 −e−2

√
λα(1)

e−2
√
λα(1) −1

)
.

Note that M is invertible for λ > 0. Thus, condition (5.12b) uniquely determines b = (b1, b2) ∈ R by
Mb = p, where

p =

(
c(1) + e−

√
λα(1)

∫ 1

−1
e
√
λα `

2
du′

c(−1)− e
√
λα(−1)

∫ 1

−1
e−
√
λα `

2
du′

)
.

We next estimate the asymptotic behaviour of p as λ→∞. Owing to (n2), the factor nn′′

(n′)2 appearing

in the definition of ` (cf. (5.15)) is bounded:Cn := supu∈[−1,1]

∣∣n(u)n′′(u)
(n′(u))2

∣∣ <∞. Furthermore,α(u) =∫ u
0
m(ũ) dũ is odd and increasing with max[−1,1] α = α(1). Therefore,∣∣∣∣e−√λα(1)

∫ 1

−1

e±
√
λα(u′) `(u′)

2
du′
∣∣∣∣ ≤ Cn

∫ 1

0

e−
√
λ
∫ 1
u′ m(ũ) dũ du′.

Definition (4.2b) and hypothesis (e2) imply that m(u) = m(u)√
1−u2 & (1 − u)i−

1
2 on (0, 1), and hence∫ 1

u′
m(ũ) dũ & (1− u′)i+ 1

2 . We thus obtain, for a small fixed constant δ > 0,∫ 1

0

e−
√
λ
∫ 1
u′ m(ũ) dũ du′ .

∫ 1

0

e−δ
√
λ(1−u′)i+

1
2 du′

. λ
− 1

2(i+ 1
2 )

∫ λ

1

2(i+ 1
2 )

0

e−δu
i+ 1

2 du . λ−
1

2i+1 ,

where, in the second step, we employed the change of variables u = λ
1

2(i+ 1
2 ) (1− u′).

In combination, the last two estimates show that∣∣∣∣e−√λα(1)

∫ 1

−1

e±
√
λα `

2
du′
∣∣∣∣ ≤ Cλ−

1
2i+1 (5.19)
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for a constant C ∈ (0,∞) that is independent of λ. Therefore, as λ→∞,

p1 = c(1) +O(λ −
1

2i+1 ), p2 = c(−1) +O(λ −
1

2i+1 ).

Since M = diag(1,−1) + t.s.t.λ, where t.s.t.λ denotes a term decaying rapidly to zero as λ → ∞,
we conclude that, as λ→∞,

b1 = c(1) +O(λ −
1

2i+1 ), b2 = −c(−1) +O(λ −
1

2i+1 ). (5.20)

It remains to determine ζ in such a way that (5.12c) holds true. To this end, let us compute the value
of Cf̃ =

∫ 1

−1
n′′n
(n′)2 f̃ du+

[
n
n′
f̃
]1
−1

, where (cf. (5.16))

f̃ := f/ζ = −f+(u)

∫ u

1

f−
`

2
du′ + f−(u)

∫ u

−1

f+
`

2
du′

+
b1

λ1/4
f+(u)e−

√
λα(1) +

b2

λ1/4
f−(u)e−

√
λα(1).

Reasoning similarly as in the derivation of the bound (5.19) and using (5.20), we find[ n
n′
f̃
]1
−1

=
(
c(1)b1 − c(−1)b2

)
λ−

1
2 +O(λ−

1
2
− 1

2i+1 ) = c∗λ
−1/2 +O(λ−

1
2
− 1

2i+1 ) (5.21)

with

c∗ := c(1)2 + c(−1)2 > 0.

Furthermore, we assert that ∣∣∣ ∫ 1

−1

n′′n

(n′)2
f̃ du

∣∣∣ . λ−
1
2
− 1

2i+1 . (5.22)

Proof of the bound (5.22). We estimate∣∣∣ ∫ 1

−1

n′′n

(n′)2
f̃ du

∣∣∣ . ∫ 1

−1

|f̃ | du . λ−1/2R1 + λ−1/2R2,

with the non-negative terms Ri, Ri,j ≥ 0, i, j = 1, 2,

R1 := R1,1 +R1,2 :=

∫ 1

−1

e
√
λα(u)

∫ 1

u

e−
√
λαdu′du+

∫ 1

−1

e−
√
λα(u)

∫ u

−1

e
√
λαdu′du,

and

R2 := R2,1 +R2,2 :=

∫ 1

−1

e−
√
λ(α(1)−α(u))du+

∫ 1

−1

e−
√
λ(α(1)+α(u))du.

Each of the two summands of R2 can be bounded similarly as (5.19) giving

R2 . λ−
1

2i+1 .

We next turn to R1,1 :

R1,1 =

∫ 1

−1

∫ 1

u

e−
√
λ(α(u′)−α(u))du′du

=

∫ 1

−1

∫ 1

u

e−
√
λ
∫ u′
u m(ũ) dũdu′du =: I1 + I2 + I3,
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where in the last line we split the double-integal in three parts corresponding to:
I1 : u′ > 0, u > 0;
I2 : u′ > 0, u < 0;
I3 : u′ < 0, u < 0.
Since m(u) & (1− u)i−

1
2 for u ∈ (0, 1), there exists δ > 0 such that

I1 :=

∫ 1

0

∫ 1

u

e−
√
λ
∫ u′
u m(ũ) dũdu′ du

.
∫ 1

0

∫ 1

u

e−δ
√
λ
(

(1−u)i+
1
2−(1−u′)i+

1
2

)
du′ du

Upon changing variables û := λ
1

2i+1 (1− u), ū = λ
1

2i+1 (1− u′), we obtain

I1 . λ−
2

2i+1

∫ λ
1

2i+1

0

∫ û

0

e−δ(û
i+ 1

2−ūi+
1
2 ) dūdû

≤ λ−
2

2i+1

∫ λ
1

2i+1

0

(∫ 1

0

e−δ(û
i+ 1

2−ūi+
1
2 ) dū+ e−δû

i+ 1
2

∫ û

1

eδū
i+ 1

2 ūi−
1
2 dū

)
dû

≤ λ−
2

2i+1

∫ λ
1

2i+1

0

(
C1 + C2

)
dû

. λ−
1

2i+1 ,

where in the penultimate step we use eδū
i+ 1

2 ūi−
1
2 = 1

(i+ 1
2

)δ
d

du
eδū

i+ 1
2 .

For the integrals I3 and I2, we obtain analogous bounds, so that R1,1 . λ−
1

2i+1 .

The term R1,2 can be handled in the same way as R1,1, leading to R1,2 . λ−
1

2i+1 .

In combination, this proves the asserted estimate (5.22).

From (5.21), (5.22) we conclude that Cf̃ = λ−1/2
(
c∗ + O(λ−

1
2i+1 )

)
. Since imposing the constraint

Cf = σ translates into ζ = σ/Cf̃ , the expression for Cf̃ computed above determines the asymptotic
growth of ζ , as λ→∞, in the form

ζ(λ) = ση
√
λ (1 +O(λ−

1
2i+1 )), η :=

1

c∗
=
(
( n(1)
n′(1)

)2 + ( n(−1)
n′(−1)

)2
)−1

.

Thus, for coefficient functions satisfying the hypotheses (s1), (s2), the action of the operator GΓ is
given by (5.8) with ζ = ζ(λk) as above, and the corresponding curvature flow takes the form

VΓ = ση
√
−∆ΓκΓ + σR(

√
−∆Γ)κΓ, (5.23)

where R(
√−∆Γ) denotes a linear pseudo-differential operator of order strictly less than one (and

hence of lower order with repect to
√−∆Γ). For linearly degenerate mobility, i.e. i = 1, we obtain the

growth law ζ(λ) = σηλ1/2 + σO(λ1/6) and a remainderR of order at most 1
3
.

The geometric evolution law (5.23) has the structure of a third-order quasli-linear parabolic equation,
and differs both from intermediate surface diffusion, which is parabolic of order two, and from classical
surface diffusion, which is parabolic of order four. One may refer to laws of the above type more
generally as fractional surface diffusion. Notice that while (5.23) illuminates the PDE structure of the
law VΓ = GΓκΓ, its variational structure has been captured by the arguments in Section 5.1.
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Examples. We conclude by a selection of prototypical choices of m and n that obey the hypothe-
ses (s1), (s2) of the present section:

(C1) m(u) = 1− u2, leading to

α(u) = u− 1

3
u3.

(C2) m(u) = (1− u2)2, leading to

α(u) = u− 2

3
u3 +

1

5
u5.

The arguably simplest choice of an admissible coupling function n(u) with inf |n′| > 0, is given by
an affine choice with non-trivial slope. Without loss of generality, we suppose that n is larger in the
polymeric phase {u ≈ +1} :

n(u) = β0 + β1(u+ 1), βi > 0, i = 0, 1, u ∈ [−1, 1]. (5.24)

Notice that for this choice of n, it holds that n(u)
n′(u)

= (u + 1) + β0

β1
and n′′ ≡ 0. Hence, the con-

straint (5.12c) simplifies to

[
cf
]+1

−1
= σ, c = c(u) = (u+ 1) +

β0

β1

,

the inhomogeneity on the right-hand side of (5.12a) vanishes, and ` ≡ 0 in the solution formula (5.16).
Thus, the preceding derivation (in Section 5.2.3) shows that, if n is affine, we even have transcendental
smallness of the remainder term, asymptotically as λ→∞,

b1 = c(1) +O(e−2
√
λα(1)), b2 = −c(−1) +O(e−2

√
λα(1)). (5.25)

The solution f of (5.12) is then given by

f(u) =
ζ√
λ

e−α(1)
√
λ
(
b1eα(u)

√
λ + b2e−α(u)

√
λ
)

with b as in (5.25) and where ζ is determined by

ζ√
λ

(
c(1)[b1 + b2e−2α(1)

√
λ]− c(−1)[b1e−2α(1)

√
λ + b2]

)
= σ.

The identities (5.25) imply that, as λ→∞,(
c(1)[b1 + b2e−2α(1)

√
λ]− c(−1)[b1e−2α(1)

√
λ + b2]

)
= c(1)2 + c(−1)2 +O(e−2

√
λα(1)).

Hence, letting η :=
(
c(1)2+c(−1)2

)−1
, we find that

ζ(λ) = ση
√
λ+ σ

√
λO(e−2

√
λα(1)) = ση

√
λ+ σ t.s.t.λ,

where t.s.t.λ stands for a term that decays rapidly to zero as λ→∞.

We conclude by summarising the main results established in the present section (Section 5.2).
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Proposition 5.5. Assume hypotheses (s1), (s2), and let a(u)m(u) = 1. Then, the operator GΓ = G
determined by the constrained elliptic equation in Proposition 4.1 takes the form

GΓ = ση
√
−∆Γ + σR(

√
−∆Γ)

with η =
(
( n(1)
n′(1)

)2 + ( n(−1)
n′(−1)

)2
)−1

, where R(
√−∆Γ) denotes a linear pseudo-differential operator

of lower order (order at most 1
3
) with respect to

√−∆Γ.

If, in addition, the function n(u) is affine (cf. (5.24)), then R(
√−∆Γ) extends to a bounded linear

operator on L2(Γ) with the property that (R(
√−∆Γ)ek, ek)L2(Γ) decays to zero rapidly as λk →∞.

Combining Proposition 5.1, Lemma 5.4, and Proposition 5.5 with the formal asymptotics in Section 3
completes the justification of Assertion 1.2.

5.3 Formal limit towards the intermediate surface diffusion flow

In this section, we derive the assertion of Remark 1.1. To this end, let ε > 0 be a small parameter and
consider the coupling function

nε(u) = 1 + εu.

Further let A2
ετε = n4

εm̃(u), so that a = ε−2

m
.

Our goal is to show that, as ε ↓ 0, on compact subsets ΛR in frequency space with R < ∞ fixed
but arbitrary, we quantitatively recover the intermediate surface diffusion law (1.7) from the third-order
versions in Proposition 5.5. To this end, it suffices to determine the leading-order asymptotic behaviour
of ζ(λ) = ζε(λ) for λ ≤ R as ε ↓ 0.

Coefficients of the second-order intermediate law. Let us first identify the parameters ω, δ in (1.7)
for the present choice of coefficient functions in the limit ε ↓ 0. For ε = 0, the above choice of
coefficients reduces to n ≡ 1 and A2(u)τ(u) = m̃(u) = m(u)

1−u2 , meaning that (cf. (1.8))

ω =

∫ +1

−1

A(u)2τ(u)
√

1− u2 du =

∫ +1

−1

m(u)√
1− u2

du =
4

δ
.

Thus, in this case, the propagation operator derived in Assertion 1.1 takes the form

GΓ = −σ(δ Id− 4

δ
∆Γ)−1∆Γ, (5.26)

corresponding to

ζ(λ) = σλ
(
δ +

4

δ
λ
)−1

, λ ∈ Λ. (5.27)

Solution to third-order fractional laws for ε > 0. The functions m and m are kept independent of
ε and are even. Hence,

α(±1) = ±2

δ
, δ = 4

( ∫ 1

−1

m du
)−1

.
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The solution f = fλ, ζ = ζ(λ) to (5.10) with λ = λk (see also (5.12)) is obtained by replacing λ by
(ε
√
λ)2 in the calculations of Section 5.2.3 and observing that n′′ = 0. It takes the form

f(u) =
( b1

ε1/2λ1/4
f+(u)e−ε

√
λα(1) +

b2

ε1/2λ1/4
f−(u)e−ε

√
λα(1)

)
ζ (5.28)

with b1, b2, ζ to be determined, where

f+(u) =
1

ε1/2λ1/4
eε
√
λα(u), f−(u) =

1

ε1/2λ1/4
e−ε
√
λα(u).

We now proceed similarly as in Section 5.2.3 with the exception that here we need to compute all error
terms explicitly up to the relevant order, since we are interested in quantitative results for λ ≤ R.

We first determine b = (b1, b2)T . Notice that

a∂uf = ε−2
(
b1e−ε

√
λ(α(1)−α(u)) − b2e−ε

√
λ(α(1)+α(u))

)
ζ.

Letting

Mε := ε−2

(
1 −e−2ε

√
λα(1)

e−2ε
√
λα(1) −1

)
,

we find that b is determined by Mεb = p, where p1 = c(1) =: c+, p2 = c(−1) =: c− with c = n
n′

(cf. (5.18)). Abbreviating r := e−2ε
√
λα(1), the inverse matrix M−1

ε of Mε can be written as

M−1
ε :=

ε2

1− r2

(
1 −r
r −1

)
.

Therefore

b = M−1
ε p =

ε2

1− r2

(
c+ − rc−
rc+ − c−

)
. (5.29)

We now impose the constraint
[
n
n′
f
]1
−1

= σ, which determines ζ . In view of (5.28), it reads as

ζ√
λε

(
c+[b1 + b2r]− c−[b1r + b2]

)
= σ.

Inserting the formula (5.29) for b and rearranging terms, this amounts to

ζ√
λ

ε

1− r2

(
(c2

+ + c2
−)(1 + r2)− 4c+c−r

)
= σ, (5.30)

with c± = ε−1 ± 1, r = e−2α(1)ε
√
λ.

For consistency, observe that c+[b1 + b2r] − c−[b1r + b2] > 0 whenever λ > 0. To determine the
dominant behaviour of ζ for λ ≤ R and 0 < ε�R 1, we abbreviate µ := 2α(1) and note that

r = e−ε
√
λµ = 1− ε

√
λµ+

1

2
ε2λµ2 +OR(ε3),

r2 = e−2ε
√
λµ = 1− 2ε

√
λµ+ 2ε2λµ2 +OR(ε3).
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Inserting these expansions as well as c± = ε−1 ± 1 into (5.30), and simplifying terms, we infer

ζ

2λµ

(
8 + 2µ2λ+OR(ε)

)
= σ.

Observing that µ = 4
δ
, we thus arrive at the following quantitative formula, for 0 < ε�R 1 small,

ζ(λ) = σλ
(
δ +

4

δ
λ+OR(ε)

)−1

, λ ∈ ΛR,

which reduces to (5.27) as ε ↓ 0. Thus, for bounded frequencies, we recover in the limit ε ↓ 0
the propagation operator (5.26) associated to the intermediate surface diffusion flow with the same
coefficients.

A Differential geometry

This appendix is a slight extension of [AGG12, Appendix], see also [PS16]. It serves to determine
higher-order corrections in the geometric quantities and transformed differential operators.

A.1 Geometric identities

The signed distance function d = d(x) to the smooth, closed hypersurface Γ b Rd satisfies in a
tubular neighbourhood of Γ the identity (cf. [PS16, Chapter 2.3.2])

∆d =
d−1∑
i=1

−κi ◦ p
1− κi ◦ p d

,

where {κi} denote the principle curvatures of Γ and p the orthogonal projection onto Γ.

Taylor expanding the right-hand side, for small |d|, gives for κi := κi ◦ p

d−1∑
i=1

−κi
1− κid

= −
d−1∑
i=1

κi −
d−1∑
i=1

κ2
i d−

d−1∑
i=1

κ3
i d

2 +O(|d|3).

Define

κΓ :=
d−1∑
i=1

κi, k2 =
( d−1∑
i=1

κ2
i

) 1
2 , k3 =

( d−1∑
i=1

κ3
i

) 1
3 .

The quantity κΓ is the mean curvature of Γ, and k2 equals the Frobenius norm |WΓ| =
(∑d−1

i=1 κ
2
i

) 1
2

of the Weingarten tensorWΓ.

In conclusion,

∆d = −κΓ ◦ p− |WΓ ◦ p|2d− k3
3 ◦ p d2 +O(|d|3).
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A.2 Transformations

For completeness, we briefly sketch the derivation of the well-established formulas used in the trans-
formation of spatial differential operators to the new, rescaled variables introduced in Section 2. The
presentation follows [AGG12, Appendix] and uses notations from Section 2.

Let γε(s, ρ) := γ(s) + ερν(s), ε ∈ [0, 1], and Gε = (gεij), where gεij = ∂iγ
ε · ∂jγε. Notice that

gεij = gεji for all i, j ∈ {1, . . . , d}. Abbreviate d′ = d−1. For all i ∈ {1, . . . , d′} it holds that gεid ≡ 0
due to ∂siν · ν = 0. Thus, the matrix Gε and its inverse take the block diagonal form

Gε =

(
Gε

d′×d′ 0d′

0Td′ ε2

)
, (Gε)−1 =

(
(Gε

d′×d′)
−1 0d′

0Td′ ε−2

)
,

where d′ = d− 1.

Differential operators in new coordinates. Let ρ = sd and U = u ◦ γε,J = j ◦ γε. Then the
differential operators in the reference coordinates determined by the parametrisation γε are given by

∇xu ◦ γε =
d∑

i,j=1

(gε)ij∂siU∂sjγ
ε =

d−1∑
i,j=1

(gε)ij∂siU∂sjγ
ε + ε−1∂ρU ν

= ∇γερU + ε−1∂ρU ν,

divx j ◦ γε =
d∑

i,j=1

(gε)ij∂sjγ
ε · ∂siJ = divγερ J + ε−1∂ρJ · ν.

Combined with basic geometric identities, the above formulas imply (2.3b).

Expansions. Let gij := g0
ij . Then

gεij = gij + ερ(∂siν · ∂sjγ + ∂sjν · ∂siγ) + ε2ρ2∂siν · ∂sjν
= gij + dr

(1)
ij + d2r

(2)
ij with d := d(γε(s, ρ)) = ερ,

where the coefficients r(l)
ij only depend on γ = γ(s). Hence, for suitable (r̃(l))ij, l = 1, 2, that only

depend on γ,

(gij)ε = gij + d(r̃(1))ij + d2(r̃(2))ij +O(|d|3), d := ερ.

It follows that

∇γερU = ∇γU + d

d−1∑
i,j=1

(
gij∂sjν + (r̃(1))ij∂sjγ

)
∂siU +O(|d|2)

= ∇γU + d
d−1∑
i=1

ri∂siU +O(|d|2),

where ri :=
∑d−1

j=1

(
gij∂sjν + (r̃(1))ij∂sjγ

)
is tangential, i.e.

ν · ri ≡ 0, i = 1, . . . , d− 1.
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Likewise, we obtain

divγερ J = divγ J + d

d−1∑
i,j=1

(
gij∂sjν + (r̃(1))ij∂sjγ

)
· ∂siJ +O(|d|2)

= divγ J + d

d−1∑
i=1

ri · ∂siJ +O(|d|2),

where throughout d := ερ.
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[BLM22] A. Brunk and M. Lukáčová-Medvid’ová. Global existence of weak solutions to viscoelastic phase
separation: part II. Degenerate case. Nonlinearity, 35(7):3459–3486, 2022.

[BMST22] E. Bretin, S. Masnou, A. Sengers, and G. Terii. Approximation of surface diffusion flow: a second-
order variational Cahn-Hilliard model with degenerate mobilities. Math. Models Methods Appl. Sci.,
32(4):793–829, 2022.

[CENC96] J. W. Cahn, C. M. Elliott, and A. Novick-Cohen. The Cahn-Hilliard equation with a concentration
dependent mobility: motion by minus the Laplacian of the mean curvature. European J. Appl. Math.,
7(3):287–301, 1996.

[CT94] J. W. Cahn and J. E. Taylor. Surface motion by surface diffusion. Acta Met. Mat., 42(4):1045–1063,
1994.

[DO92] M. Doi and A. Onuki. Dynamic coupling between stress and composition in polymer solutions and
blends. Journal de Physique II, 2(8):1631–1656, 1992.

[EG96] C. M. Elliott and H. Garcke. On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math.
Anal., 27(2):404–423, 1996.

[EG97] C. M. Elliott and H. Garcke. Existence results for diffusive surface motion laws. Adv. Math. Sci.
Appl., 7(1):467–490, 1997.

[EGI01] J. Escher, Y. Giga, and K. Ito. On a limiting motion and self-intersections of curves moved by
the intermediate surface diffusion flow. In Proceedings of the Third World Congress of Nonlinear
Analysts, Part 6 (Catania, 2000), volume 47, pages 3717–3728, 2001.

DOI 10.20347/WIAS.PREPRINT.3149 Berlin 2024



Interface dynamics in viscoelastic phase separation 41

[EGI02] J. Escher, Y. Giga, and K. Ito. On a limiting motion and self-intersections for the intermediate
surface diffusion flow. J. Evol. Equ., 2(3):349–364, 2002.

[EI04] J. Escher and K. Ito. On the intermediate surface diffusion flow. In Free boundary problems (Trento,
2002), volume 147 of Internat. Ser. Numer. Math., pages 131–138. Birkhäuser, Basel, 2004.

[EMS98] J. Escher, U. F. Mayer, and G. Simonett. The surface diffusion flow for immersed hypersurfaces.
SIAM J. Math. Anal., 29(6):1419–1433, 1998.

[ES99] J. Escher and G. Simonett. Moving surfaces and abstract parabolic evolution equations, pages
183–212. Birkhäuser, Basel, 1999.

[GSK08] C. Gugenberger, R. Spatschek, and K. Kassner. Comparison of phase-field models for surface
diffusion. Phys. Rev. E (3), 78(1):016703, 17, 2008.

[GT01] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, 2001.

[LM89] S. Luckhaus and L. Modica. The Gibbs-Thompson relation within the gradient theory of phase
transitions. Arch. Rational Mech. Anal., 107(1):71–83, 1989.

[LMS16] A. A. Lee, A. Münch, and E. Süli. Sharp-interface limits of the Cahn-Hilliard equation with degen-
erate mobility. SIAM J. Appl. Math., 76(2):433–456, 2016.

[Peg89] R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser.
A, 422(1863):261–278, 1989.

[PS16] J. Prüss and G. Simonett. Moving interfaces and quasilinear parabolic evolution equations, volume
105 of Monographs in Mathematics. Birkhäuser/Springer, 2016.

[STDLM19] P. J. Strasser, G. Tierra, B. Dünweg, and M. Lukáčová-Medvid’ová. Energy-stable linear schemes
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