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Subcritical annulus crossing in spatial random graphs
Emmanuel Jacob, Benedikt Jahnel, Lukas Lüchtrath

Abstract

We consider general continuum percolation models obeying sparseness, translation invari-
ance, and spatial decorrelation. In particular, this includes models constructed on general point
sets other than the standard Poisson point process or the Bernoulli-percolated lattice. Moreover,
in our setting the existence of an edge may depend not only on the two end vertices but also on a
surrounding vertex set and models are included that are not monotone in some of their parame-
ters. We study the critical annulus-crossing intensity λ̂c, which is smaller or equal to the classical
critical percolation intensity λc and derive a condition for λ̂c > 0 by relating the crossing of an-
nuli to the occurrence of long edges. This condition is sharp for models that have a modicum of
independence. In a nutshell, our result states that annuli are either not crossed for small inten-
sities or crossed by a single edge. Our proof rests on a multiscale argument that further allows
us to directly describe the decay of the annulus-crossing probability with the decay of long edges
probabilities.

We apply our result to a number of examples from the literature. Most importantly, we exten-
sively discuss the weight-dependent random connection model in a generalised version, for which
we derive sufficient conditions for the presence or absence of long edges that are typically easy to
check. These conditions are built on a decay coefficient ζ that has recently seen some attention
due to its importance for various proofs of global graph properties.

1 Introduction and main results

The standard objects studied in continuum percolation theory are random graphs G on the points of a
homogeneous Poisson point process on Rd of intensity λ > 0. The spatial embedding of the vertices
enters the connection probability in a way that spatially close vertices are connected by an edge with a
higher probability than those farther apart. This is typically done in a monotone manner, i.e., increasing
λ leads to more edges on average.

The central question in percolation theory is whether there exists a non-trivial critical Poisson intensity
λc ∈ (0,∞) such that the connected component or cluster of the origin (added to the graph if
necessary) is infinite with a positive probability for all λ > λc, but is finite almost surely for λ < λc. We
call the regime (0, λc) the subcritical (percolation) phase and (λc,∞) the supercritical (percolation)
phase. The ergodicity of the model ensures the almost-sure existence of an infinite cluster in G if
λ > λc and the almost-sure absence of such a cluster if λ < λc, respectively. Further, an existing
infinite cluster is typically (but not always) unique [6, 7].

In dimensions d ≥ 2 percolation models often contain a supercritical phase [39] and proving a non-
trivial phase transition λc ∈ (0,∞) reduces to showing λc > 0. As an example, consider the sparse
Boolean model in which each vertex is the centre of a ball with an independent and identically dis-
tributed volume of finite expectation. Each pair of vertices is connected by an edge if their associated
balls intersect. In order to show λc > 0 for this model, Gouéré introduced the alternative critical
annulus-crossing intensity λ̂c [15], which is the smallest λ for which the probability of finding a path
starting in the centred ball B(r) and ending outside the ball B(2r) is bounded from zero for all r.
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Put differently, for λ > λ̂c, annuli of radii r and 2r are crossed. By monotonicity λ̂c ≤ λc, and the
existence of a subcritical annulus-crossing phase implies a subcritical percolation phase. Despite the
elegance of the proof of λ̂c > 0, another advantage in looking at annuli is that the method immediately
quantifies the decay of the annulus-crossing probability and further deduces the tail of the Euclidean
diameter of a typical subcritical cluster. In recent works, the equality of λ̂c and λc for the Boolean
model has been studied [1, 13, 9] and λ̂c = λc was shown with some technical exceptions if the balls
are generated by Pareto distributed radii [9].

We build on the work in [15] and study annulus crossings for general spatial random graphs on the
vertices of stationary point processes. We show that λ̂c > 0 whenever correlations are weak at large
distances and the occurrence of certain long edges is unlikely for small intensities. On the contrary, if
long edges are likely for all intensities then λ̂c = 0. Our results show that the existence of a subcritical
annulus-crossing phase is strongly related to the long-range properties of a model. In fact, strong long-
range effects can remove a subcritical annulus-crossing phase entirely. Indeed, in many situations,
either annuli are crossed with a single edge or are not crossed at all for small intensities. Put differently,
λ̂c = 0 is often equivalent to the presence of ‘long edges’. However, the long edges alone can typically
not remove the subcritical percolation phase. Unlike in the Boolean model, in models with many long
edges both intensities are therefore not always the same. More precisely, some of the models we
consider have

0 = λ̂c < λc,

however it is unclear whether any of our models could feature the property 0 < λ̂c < λc. Let us
mention that we do not require the graphs to be monotone in λ and λ̂c may not be the unique phase
transition. However, λ̂c > 0 still implies λc > 0 and our results give an easy condition for the existence
of a subcritical phase.

We apply our results to an extensive list of examples from the literature. The most important model
class we discuss is a generalisation of the weight-dependent random connection model [18]. This
class contains many well-established models with heavy-tailed degree distributions and/or long-range
interactions, and is an active field of research. We derive ‘easy checkable’ conditions for λ̂c > 0
and λ̂c = 0, respectively. These conditions rest on quantifying, on a polynomial scale, the amount
of vertices located in large balls being incident to edges equally long as the ball’s radius. Although
slightly differently derived, as we allow for more correlated models, the found exponent coincides
with the one introduced in [32, 33, 34] to describe the cluster-size decay in large but finite supercritical
components when many long edges are present. The exponent extends and specifies the notion of the
effective decay exponent introduced [20, 40], which makes a model comparable to classical long-range
percolation [45] and has for instance been used to identify the existence of supercritical percolation
phases in one dimension [20] or to prove continuity of the percolation function in regimes with many
long edges [40]. In conclusion, all these works combined underline the significance of long-edges and
long-range interactions on a graphs connectivity properties.

We explain our general framework in Section 1.1 and formulate our main results in Section 1.2. We
discuss the weight-dependent random connection model in detail in Section 2. In Section 3 we ex-
emplary discuss additional and more correlated examples. Finally, we give the proofs of our results in
Section 4. Throughout the manuscript, we use the standard Landau notation as well as the convention
that f � g stands for f = Θ(g). We further denote by ]A the cardinality of a countable set A and by
|x| the Euclidean norm of x ∈ Rd. Additional notation used in the manuscript is introduced where it is
needed first.
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Subcritical annulus crossing 3

1.1 Framework

In this section, we define the basic properties of all considered graphs. We aim to study countably
infinite (undirected) random graphs embedded into Rd in a wide spectrum that not only contains the
classical models of continuum percolation but models from other contexts as well. More precisely, we
consider a graph G = (V ,E ) whose vertices are given via a simple, stationary point process on Rd

of intensity λ > 0. Edges are drawn with probabilities depending on the vertices locations, the point
cloud around the vertices and additional features of the vertices. Let us first give the basic properties
of G we will always assume for all models throughout the manuscript without further mentioning them.

(G1) The locations of the vertices in V are given by a locally finite, stationary, and simple point
process on Rd of intensity λ > 0. That is, the intensity measure is the Lebesgue measure
multiplied by λ [35]. Note that this refers to the location of the vertices only and the vertices may
carry additional marks or weights. In fact, in most examples, vertex marks are needed to model
a vertex’ attraction or influence in some way. Throughout the manuscript, we denote vertices by
x ∈ V . For a vertex x ∈ V we denote its location by x ∈ Rd. Although V refers to the whole
vertex set and may contain additional markings, we still write x ∈ V ∩ A for a vertex x with
location x ∈ A ⊂ Rd.

(G2) We assume that G is translation invariant. That is, G and G + x have the same distribution
for each x ∈ Rd, where G + x is the graph constructed on the points of V + x. That is, the
connection mechanism does not change if the location of each vertex is shifted by x.

(G3) The graph G is locally finite. That is, all vertices have finite degree, almost surely. Further,
the connection probability is monotone decreasing in the vertices’ distance in the sense that
the probability of two given vertices being connected by an edge decreases if their Euclidean
distance is increased.

We denote the underlying probability measure by Pλ and write Eλ for the associated expectation
operator.

Remark 1.1. Our setup can easily be adapted to vertex sets based on infinite subsets of Zd. In that
case, translation invariance is with respect to shifts x ∈ Zd and the subset is to be generated via
some stationary site-percolation process. Here, the intensity is simply given via λ := P(o ∈ V ).
The standard example is Bernoulli site-percolation with retention parameter λ ∈ (0, 1], [22]. We will
discuss other and more correlated examples in Section 3. We only require one technical assumptions
for our proof to work. Instead of working with the Euclidean norm, we have to work under the norm
|| · ||∞ on the lattice in order to guarantee appropriate scalings of annulus boundaries. However,
due to equivalence of norms, this causes no lack of generality. To keep notation concise, we will only
use the point process notation and the Euclidean norm throughout the manuscript. We comment in
Remark 4.1 after the proof of our main theorem on the changes that have to be made when replacing
the point process with a percolated lattice.

Another graph property satisfied by many models in the literature is monotonicity in λ. Although, we
already mentioned that not all of the considered models are monotone, we shall see that the mono-
tonicity property allows for stronger statements. We call an event E increasing if for all realisations
ω ∈ E and any other realisation ω′ with V (ω) ⊂ V (ω′) and E (ω) ⊂ E (ω′), we have ω′ ∈ E . Here,
V (ω) denotes the vertex set and E (ω) the edge set of ω. We say that G is monotone if

for all λ < λ′ and any increasing event E , we have Pλ(E) ≤ Pλ′(E). (Mon)
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Properties related to long-range effects. Having dealt with the more standard properties, we next
discuss more specific properties subject to long-range effects of the graph. This aspect is crucial for
our main result relating the presence or absence of long edges to the non-existence or existence
of a subcritical annulus-crossing phase. Let us first specify some notation and properly introduce
the critical annulus-crossing intensity. To this end, denote by B(x, r) the Euclidean ball of radius r
centred at x, where B(r) = B(o, r) represents the ball centred at the origin o. Denote further by
B(x, r)c = Rd \ B(x, r) the complement of a ball and let x ∼ y be the event that vertices in
V located at x and y are connected by an edge in G . The event that x and y are connected by a
self-avoiding path is denoted by x←→ y. Similarly,

A←→ B :⇔ ∃x ∈ A ∩ V ,y ∈ B ∩ V : x←→ y

is the event that two measurable setsA andB are connected by a path, meaning there exists a vertex
in each respective set that lies on the same path. We define the critical annulus-crossing intensity by

λ̂c = inf
{
λ > 0: lim sup

r→∞
Pλ
(
B(r)←→ B(2r)c

)
> 0
}
.

If λ̂c > 0, the defining probability converges to zero for all λ < λ̂c. However, if the graph is not
monotone, this does not imply that the limit of said probability is bounded from zero for all λ > λ̂c.
In fact, there could in principle be another phase (λ1, λ2) such that λ̂c < λ1 < λ2 ≤ ∞ and
Pλ
(
B(r) ←→ B(2r)c

)
→ 0 for all λ ∈ (λ1, λ2). Monotonicity in the sense of (Mon) on the other

hand clearly guarantees λ̂c to be the unique such critical point.

Finally, let us introduce the main properties of G that quantify the long-range interactions. Typically,
there are two ways in which these interactions can arise. One is through the presence of long edges
in the graph that connect vertices far apart from each other. The other is via correlations of the local
configurations of the graph across distant regions. Naturally, both factors can strongly influence the
crossings of certain annuli. While the main scope of this manuscript lies on the effects of long edges,
we also deal with correlations of the latter type for full generality. More precisely, let us denote by
G ∩ B(x, r) the subgraph of G induced by the vertices located in B(x, r), and define the local
annulus-crossing event by

G(x, r) :=
{
B(x, r)←→ B(x, 2r)c in G ∩B(x, 3r)

}
. (1)

In other words, the annulus with inner and outer radii r and 2r centred in x is crossed by the graph
using only vertices and edges within B(x, 3r). We abbreviate G(o, r) = G(r). For our purpose, we
require the correlations between two such local annulus-crossings to be sufficiently weak at greater
distances.

Definition 1.2 (Mixing). We say that G is mixing for λ > 0 if, for all |x| ≥ 10, we have

lim
r→∞

∣∣Covλ
(
1G(r),1G(xr,r)

)∣∣ = 0. (M )

We denote this property by Mλ. We say that the graph is uniformly mixing for λ > 0, denoted by
M λ, if, for any |x| ≥ 10, we have

lim
r→∞

sup
λ′<λ

∣∣Covλ′
(
1G(r),1G(xr,r)

)∣∣ = 0. (M )

In some situations we require a polynomial decay of the correlations. If this is the case, we say that G
is polynomially mixing for λ with exponent ξ = ξλ < 0 if, for any |x| > 2, we have

lim sup
r→∞

log
∣∣Covλ

(
1G(r),1G(xr,r)

)∣∣
log r

≤ ξ (PM )
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and denote this property by PM ξ
λ.

Let us mention that |x| ≥ 10 in the definition ensures that the balls of radius 3r subject to the two
local annulus crossing events are disjoint and of order r apart. This is the important property for our
proof to work and the particular choice |x| ≥ 10 could be replaced by any other bound guaranteeing
it.

Many important models from the literature actually have the following independence assumptions in
their construction, which immediately yields (Mon) as well as M λ and PM ξ

λ for all λ > 0 and
ξ ≥ −∞.

Definition 1.3 (Independent setting). We call the following setup the independent setting: Let the
underlying point process have independent increments and is thus either given by a Poisson point
process, cf. [35, Thm. 6.12], or by a Bernoulli site-percolated lattice. Further, for a given collection of
mutually different vertex pairs {x11 ,x12}, . . . , {xk1 ,xk2}, we have

Px11 ,x12 ,...,xk2
λ

( k⋂
j=1

{xi1 ∼ xi2}
∣∣∣V ) =

k∏
i=1

p(xi1 ,xi2), (Ind)

for a suitable, symmetric function p. Here, Px11 ,x12 ,...,xk2
λ denotes the law where the given points

x11 , . . . ,xk2 have been added to the graph in the Poisson point process case, or the law conditioned
on the event that said vertices survived the site percolation, respectively.

We stress that the above definition can be seen as combining three independence properties:

� The independent increments property of the vertex set itself.

� Given the vertex set, the independence of the occurrence of the edges {xi1 ∼ xi2} for every
unordered pair of vertices {xi1 ,xi2}.

� Given an unordered pair of vertices {xi1 ,xi2} in the vertex set, the independence of the prob-
ability p(xi1 ,xi2) of observing the edge from the surrounding vertex set.

The independent setting implies a natural coupling between the graph Gλ and Gλ′ for λ′ < λ, where
Gλ′ is obtained from Gλ by performing a site percolation with retention parameter λ′/λ. In other words,
we obtain Gλ′ by keeping each vertex of Gλ independently with probability λ′/λ, and further keeping
all existing edges between the remaining vertices. In this coupling Gλ′ is a subgraph of Gλ, and we
thus immediately obtain that the graph model is monotone.

The independent setting also implies both M λ and PM−∞
λ for all λ > 0, as for |x| > 2 the local

annulus crossing events G(r) and G(xr, r) are then independent and thus uncorrelated.

However, the independent setting does not allow for models on correlated vertex sets, cf. Sections 3.2
and 3.3, or models where the presence of an edge depends on vertices surrounding its end vertices,
cf. Section 2.2.1. In all these cases our results rely on the mixing assumptions M λ or PM ξ

λ.

Let us finally introduce properly the notion of long edges and their occurrence. For the scope of the
manuscript this is arguably the most interesting property as its influence on λ̂c is studied in greatest
detail.

Definition 1.4. We define for all r > 0 and c > 0 the presence of long edges event as

L(r, c) :=
{
∃ x ∼ y : |x| < r, |x− y| > cr

}
. (2)

DOI 10.20347/WIAS.PREPRINT.3148 Berlin 2024
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That is, we can find an edge of length at least cr in G with one end point being located in B(r). We
say that G has

Property Lλ if lim sup
r→∞

Pλ(L(r, c)) = 0 for all c > 0. (L )

If Property Lλ′ is uniformly fulfilled for all λ′ ≤ λ, we say that the graph has Property L λ. More
precisely, scrG has

Property L λ if lim sup
r→∞

sup
λ′≤λ

Pλ′(L(r, c)) = 0 for all c > 0. (L )

The Property L λ essentially says that finding long edges, i.e., edges of comparable length to the
radius of the ball in which we search, is unlikely. Property L λ says this remains true for all smaller
intensities. It can therefore be seen as a weak form of monotonicity (for small intensities). The following
simple properties make this heuristic description actually quite pertinent.

Lemma 1.5 (Properties of L λ).

(i) If the monotonicity assumption (Mon) is fulfilled, then L λ implies L λ.

(ii) If lim supr→∞ Pλ(L(r, c)) = 0 for some c > 0, then Property L λ holds.

(iii) If lim supr→∞ supλ′<λ Pλ(L(r, c)) = 0 for some c > 0, then Property L λ holds.

Proof. The first part of the claim is immediate. The second and the third part can be proven simulta-
neously. First note that, for all c′ > c, we clearly have L(r, c′) ⊂ L(r, c) and thus Pλ(L(r, c′)) ≤
Pλ(L(r, c)) for all λ. Consider now c′ < c. We can cover the ballB(r) with finitely many, say C , balls
of radius εr, where ε = c′/c. Here, it is important to note that the number of required covering balls
C does not depend on r. Using a union bound and translation invariance (G2) yields

Pλ(L(r, c′)) ≤ C Pλ(∃ x ∼ y : |x| < εr, |x− y| > c′r) = C Pλ(L(εr, c)),

for all λ. This concludes the proof.

An important consequence of the claim is that one only has to check the limit of Pλ(L(r, 1)) in order
to decide whether the Properties L λ and L λ hold or not.

1.2 Main results

Having established the framework and all necessary properties, we have now everything in place to
formulate our main results relating Property L λ with the positivity of λ̂c for a mixing graph.

Theorem 1.6 (Existence of subcritical annulus-crossing phase).

(i) If the uniform mixing Property M λ and the no-long-edges Property L λ hold for some λ > 0,
then λ̂c > 0.

(ii) If on the contrary Property L λ does not hold for any λ > 0, then λ̂c = 0.

Our result becomes strongest for monotone models in the independent setting.

Theorem 1.7. Assume the independent setting in the sense of Definition 1.3. Then we haveP1(L(r, 1)) �
Pλ(L(r, 1)) for all λ > 0. Further, Property L λ does not depend on λ and L 1 is equivalent to

λ̂c > 0.
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The above theorem essentially states that, in the independent setting, each annulus is either crossed
by a single edge or it is always possible to prevent the crossing by sufficiently reducing the intensity.
While we have equivalence of L 1 and λ̂c > 0 in that case, we present an example in Section 3.4
demonstrating that, in general, we cannot weaken either of the Properties L λ or M λ in Part (i) of
Theorem 1.6.

Having established λ̂c > 0 in the latter two theorems, we now have a closer look on the decay of the
probability of the annulus-crossing event within the subcritical phase.

Theorem 1.8. Assume λ̂c > 0, and that, for some λ < λ̂c, we have the polynomially mixing Prop-
erty PM ξ

λ for some ξ = ξλ < 0, as well as the existence of some ζ = ζλ < 0 such that

lim sup
r→∞

logPλ(L(r, 1))

log r
≤ ζ.

Then, we have

lim sup
r→∞

logPλ
(
B(r)←→ B(2r)c

)
log r

≤ ζ ∨ ξ.

The theorem states in words that (under polynomial mixing and polynomial decay of Pλ(L(r, 1))) the

annulus-crossing probability, defining λ̂c, decays at most polynomially, determined by either the rate
of mixing or the rate of decay of the long-edges probability. This particularly implies that the probability
of an annulus crossing and the probability of finding long edges both decay at the same speed at
least whenever Pλ(L(r, 1)) decays slower than r−ξ. This is, for instance, always the case in the
independent setting.

Furthermore, we note that the annulus-crossing event is closely related to the Euclidean diameter of
the components of the vertices located in B(r). Indeed, if the annulus crossing B(r) ←→ B(2r)c

occurs, then at least one vertex located in B(r) belongs to a component of Euclidean diameter no
less than r. The result becomes strongest, when neither ζ nor ξ depend on λ and the respective
properties hold through the whole subcritical annulus-crossing phase.

Relation to subcritical percolation. Let us relate our result to the classical percolation phase tran-
sition defined by

λc = inf
{
λ > 0: Pλ

(
∃ an infinite connected component in G ) > 0

}
.

Again, λc is only guaranteed to be the unique such phase transition if the graph is monotone with
respect to λ. Clearly, any existing infinite connected component must intersect infinitely many annuli,
due to stationarity and local finiteness; hence λ̂c ≤ λc.

Corollary 1.9 (Existence of a subcritical percolation phase). If the uniform mixing Property M λ and
the no-long-edges Property L λ hold for some λ > 0, then λc > 0.

We shall see in our examples that the reverse does not generally hold true. More precisely, we present
examples where λ̂c = 0 but still λc > 0. An interesting open question remains as to whether 0 <
λ̂c < λc is possible for some of the models discussed in this work.

In the following section, we apply our main results to a special but still large class of spatial random
graphs and derive adjusted conditions for the existence of subcritical phases.

DOI 10.20347/WIAS.PREPRINT.3148 Berlin 2024
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2 The weight-dependent random connection model

The weight-dependent random connection model (WDRCM) is a continuum percolation model that
was first introduced in [18] as a generalisation of the standard random connection model [42]. In
the latter, the connection probability is a decreasing function of the distance between the vertices
that are to be connected. In the weight-dependent version, however, vertices additionally carry i.i.d.
vertex marks that influence the connection probability, thus modelling the vertices’ attractiveness. This
allows for greater inhomogeneity in the model and notably includes models with power-law degree
distribution. By specifying how marks enter the connection probability, one can regain versions of
many established models from the literature and we present an extensive list below in Table 1.

To introduce the model formally, the WDRCM is the independent setting of Definition 1.3 where the
vertex set V is a standard Poisson point process on Rd × (0, 1); each Poisson point is located in Rd

and is independently marked uniformly on (0, 1). Two given vertices x = (x, ux) and y = (y, uy)
are then connected with probability

p(x,y) = ϕ(ux, uy, |x− y|d), (3)

where we assume that ϕ : (0, 1)× (0, 1)× (0,∞)→ [0, 1] is

(i) symmetric and non-increasing in the first two arguments and non-increasing in the third argument
and

(ii) integrable, i.e., ∫ 1

0

du

∫ 1

0

dv

∫ ∞
0

dr ϕ(u, v, r) <∞.

Note that the basic properties (G1) and (G2) are evident, while (ii) implies Property (G3). Property (i)
entails that vertices are more likely to be connected by an edge if they are located close to each other
or if they have small marks. Hence, smaller marks lead to higher degrees on average and the marks
can be thought of as the inverse weights of the vertices, giving the model its name. The analogy of a
small mark being equivalent to a strong influence is clearest in the special case of the age-dependent
random connection model, for which this parametrisation was first applied [16]. Here, marks represent
the vertices’ birth times, and an early birth time indicates an old, thus influential, vertex. Finally, recall
that the independent setting implies monotonicity and mixing, and hence an understanding of the
occurrence of long edges remains the missing ingredient to apply our main results.

2.1 Verifying the no-long-edges condition using the effective decay exponent.

In order to apply our results to WDRCMs, we need to verify the Properties L λ and L λ. In this context,
we can provide relatively simple sufficient conditions for verifying or excluding these properties, based
on natural exponents associated with the model. We begin with a heuristic explanation. Consider
the two sets B1 and B2 of vertices, where B1 consists of all vertices located within B(r) and B2

consists of those located in the annulus B(3r) \B(2r). We compute the expected number of edges
between these sets using Campbell’s formula as∫

B(r)

dx

∫
B(3r)\B(2r)

dy

∫ 1

0

du

∫ 1

0

dv ϕ(u, v, |x− y|d).

Note that all vertices in B1 and B2 are roughly distance r apart, so we may approximate |x− y| by
r, resulting in the order

r2d
∫ 1

0

du

∫ 1

0

dv ϕ(u, v, rd).
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A first naive approach would be to assume a Poisson structure of the edges and, as a result, estimating
the probability of finding an edge between the two regions as 1−exp(−r2d

∫ 1

0
du
∫ 1

0
dv ϕ(u, v, rd)).

However, an important contribution to this expectation may come from the strongest vertices —those
with lowest marks— which are rare but, when present, may connect to many long edges. Put differently,
the full expectation may not capture the likelihood of long edges adequately. We refer the reader to [20]
for a more detailed discussion on this matter.

To address this, we introduce a free parameter µ ∈ (−∞, 1) and instead count:

(i) the number of edges between ‘weak’ vertices with marks no smaller than r−d+dµ, and

(ii) the number of ‘strong’ vertices with marks no larger than r−d+dµ.

On average, there are of order

I(µ, r) := r2d
∫ 1

r−d+dµ
du

∫ 1

r−d+dµ
dv ϕ(u, v, rd)

such edges between weak vertices, and of order rdµ such strong vertices. We then select a µ that
minimises the combined contributions. More precisely, we define

ψ(µ) := lim sup
r→∞

log
( ∫ 1

r−d+dµ
du
∫ 1

r−d+dµ
dv ϕ(u, v, rd)

)
d log r

(4)

and
ζ := sup{µ ∈ (−∞, 1) : µ < 2 + ψ(µ)}. (5)

It is worth noting here that ψ is a non-increasing function with values in [−∞,−1]. Thus, ζ is well-
defined, and I(ζ, r) + rdζ yields the smallest order in r. Furthermore, for any µ > ζ , we have by
monotonicity of ϕ in the mark arguments

rd
∫ 1

r−d+dµ
dv ϕ(r−d+dµ, v, rd) ≤ 1

1−rd(ζ−µ) r
−dµI(µ, r) < 1,

for large r. This indicates that a vertex in B1 with mark u = r−d+dµ will, on average, only connect
by a long edge to fewer than one weaker vertex in B2 with mark no smaller than u. Conversely,
a vertex with mark u = r−d+dµ with µ < ζ will typically be incident to more than one long edge
with weaker target vertex. This characteristic naturally motivates the definition of ζ as it essentially
estimates the expected number of vertices in B1 incident to at least one long edge with weaker
target vertex. This very definition is actually used in [34, 32] to introduce the parameter ζlong, which
quantifies the cluster-size decay of finite components in supercritical WDRCMs in the regimes when
long edges appear frequently (ζlong > 0). It can be verified that we always have ζlong = ζ . However, our
alternative definition of ζ is more transparent for our approach and heuristics, particularly facilitating
the generalisations to more correlated models in Section 2.2 below.

We further elaborate on the heuristic link between ζ and Pλ(L(r, 1)). Suppose first that ζ < 0. In this
case, the expectation above is approximately rdζ � 1, implying that the probability of finding a long
edge is bounded by rdζ , yielding Property L λ.

Suppose now that ζ > 0. Then, the expectation above is approximately rdζ � 1, so we typically
expect to find many long edges. Assuming sufficient continuity to have ζ = 2 + ψ(ζ) for simplicity,
then long edges should only be absent if either

(i) no vertex has mark smaller than r−d+dζ , which occurs with probability roughly exp(−rdζ), or
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(ii) there is no edge between ‘weak’ vertices with larger marks

If we accept that the empirical distributions of these weaker vertices marks approximates rd1[r−d+dζ ,1]

well enough, then the number of such edges should be given by a Poisson random variable with mean
I(ζ, r). Thus, the probability of finding no such edge is roughly exp(−rd(2+ψ(ζ))) = exp(−rdζ).
Formalising these heuristics, we obtain the following theorem.

Theorem 2.1 (Subcritical annulus-crossing phases for WDRCMs). Let G be the weight-dependent
random connection model.

(i) If ζ < 0, then

lim sup
r→∞

logP1(L(r, 1))

log r
= dζ

and thus λ̂c > 0. Moreover, for all λ < λ̂c, we have

lim sup
r→∞

logPλ
(
B(r)←→ B(2r)c

)
log r

= dζ.

(ii) If ζ > 0, then

lim inf
r→∞

logP1(¬L(r, 1))

rdζ
< 0.

In particular, L λ does not hold for any λ > 0 and thus λ̂c = 0.

We give the proof of Theorem 2.1 in Section 4.2.

Remark 2.2. Let us comment on the above result.

(a) An equivalent statement to Part (ii) is that, for some constant c > 0, the event L(r, 1) occurs
with probability at least 1 − exp(−crdζ) for some arbitrarily large values of r. Additionally, if the
lim sup defining ψ matches its lim inf, then the lim inf in Part (ii) can also be replaced by a
lim sup or simply a lim. That is, L(r, 1) occurs with probability at least 1 − exp(−crdζ) for all
large values of r. Similarly, under this condition, in all statements of Part (i), one can replace the
occurring lim sup by lim inf or lim.

(b) To apply our results effectively, we assume ζ 6= 0. The case where ζ = 0 is more intricate
and may be described as weakly scale invariant, akin to the scale-invariant regime in long-range
percolation. In this regime, results can depend heavily on specific details of the model, so universal
results may not hold. While for many models ζ = 0 aligns with boundary regimes, the age-
dependent random connection model [16] is an important example that has ζ = 0 for a whole
non-empty parameter regime, independently of the profile-function, cf. Figure 1 below. For a more
detailed discussion on the weakly scale invariant case, we refer the reader to [20].

The theorem highlights the importance of determining the value of ζ and, in particular, whether ζ is
positive or negative. Let us define

δ+eff := −ψ(0+) and δ−eff := −ψ(0−),

the limit from the right and left respectively of the absolut value of ψ at zero. Then δ−eff > 2 implies
ζ < 0, while δ+eff < 2 implies ζ > 0. If ψ is continuous at zero, we can simply define

δeff := δ+eff = δ−eff = −ψ(0) = − lim sup
r→∞

log
( ∫ 1

r−d
du
∫ 1

r−d
dv ϕ(u, v, rd)

)
d log r

.
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The parameter δeff was first introduced in [20] as the effective decay exponent in order to derive the
existence or absence of supercritical percolation phases in one-dimensional WDRCMs. It was further
used in [40] to prove continuity of the percolation function in the δeff < 2 regime. The motivation for
introducing δeff comes from the observation that the smallest vertex marks among the vertices in B1

and B2 (defined as above as ball and annulus, respectively) are typically of order r−d, suggesting
that the probability of two randomly picked vertices in B1 and B2 being connected by an edge scales
like r−dδeff .

This leads to a natural analogy with a classical long-range percolation model, where each pair of
verticesx,y is independently connected by an edge with probability proportional to |x−y|−dδeff , which
justifies the term effective decay exponent for δeff. Our results demonstrates that this simple exponent
δeff largely dictates the principal behaviour of the model and distinguishes the two universality classes,
analogous to classical long-range percolation [45, 42]. However, while δeff captures the model’s overall
behaviour, it may lack precision for finer results such as explicit tail bounds. In particular, the specific
manner in which vertex marks contribute can be too nuanced to be fully characterised by δeff alone
leading us to the finer exponent ζ .

It is worth noting that the two universality classes according to strong (ζ > 0) or weak (ζ < 0)
long-range effects, are insufficient to fully describe all global properties accurately. Indeed, while ζ
effectively captures the overall occurrence of long edges, it does not capture their precise connectivity.
Specifically, in some models the ζ > 0 phase includes parameter regimes with λc > 0 as well as
those with λc = 0 [21]. Detecting such a change of behaviour requires a deeper understanding and
control over the inhomogeneities arising from the marks.

Finally, let us note that although we have exclusively assumed vertex locations as governed by a
Poisson point process throughout the section, all results remain applicable a Bernoulli site-percolated
lattice. In this case, the integrals over vertex locations should be replaced by sums.

2.1.1 The interpolation model

We apply the previously established results and, in particular, derive values of ζ for a specific yet
general instance of the WDRCM. More precisely, we discuss the interpolation model first introduced
in [20] as a model that contains and interpolates between many important and well-established models
from the literature. Recall that V is given by a standard Poisson point process on Rd× (0, 1) and that
we denote vertices by x = (x, ux). In the interpolation model, edges are drawn independently given
V with probability

p(x,y) = ϕ(ux, uy, |x− y|d) = ρ
(
g(ux, uy)|x− y|d

)
, (6)

where ρ : (0,∞)→ [0, 1] is an integrable and non-increasing profile function and

g : (0, 1)× (0, 1)→ (1,∞), (s, t) 7→ (s ∧ t)γ(s ∨ t)α, (7)

for γ ∈ [0, 1), α ∈ [0, 2 − γ), is the interpolation kernel. Note that the interpolation kernel g is
non-increasing and symmetric in both arguments. It is straightforward to deduce that the interpolation
model is a WDRCM with all required properties. Further, regardless of the profile-function, the degree
distribution of the interpolation model follows a power law if either γ > 0 or α > 1, see [37].

Let us now examine the profile function more closely. Two types have been established in the literature:
The long-range profile function ρ(x) := p(1 ∧ |x|−δ) for δ > 1 or the short-range profile function
ρ(x) := p1{0 ≤ x ≤ 1}. Here, p ∈ (0, 1] can be used to simultaneously introduce Bernoulli
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Table 1: Various choices for γ, α and δ for the weight-dependent random connection model and the models they represent
in the literature together with their ζ < 0 phases and the value of ζ within. Here, to shorten notation, δ = ∞ represents
models constructed with ρ being the indicator function.

Parameters ζ < 0 iff ζ = Names and references

γ = 0, α = 0, δ =∞ always −∞ Gilbert’s disc model [14],
random geometric graph [41]

γ = 0, α = 0, δ <∞ δ > 2 2− δ random connection model [38, 42],
long-range percolation [45]

γ > 0, α = 0, δ =∞ γ < 1 1− 1
γ Boolean model [23, 15],

scale-free Gilbert graph [25]

γ > 0, α = 0, δ <∞ δ > 2, γ < δ−1
δ (1− δ−1

γδ ) ∨ (2− δ) soft Boolean model [17, 29]

γ = 0, α > 0, δ =∞ α < 1 −∞ ultra-small scale-free geometric
network (α > 1) [51],
weak-kernel model [18, 37]

γ > 0, α = γ, δ ≤ ∞ δ > 2, γ < 1
2

δ(2γ−1)
2δγ−1 ∨ (2− δ) scale-free percolation [8, 10],

geometric inhomogeneous
random graphs [5]

γ > 0, α = 1− γ, δ ≤ ∞ never not applicable age-dependent random
connection model [16]

bond-percolation. However, we will mainly assume p = 1 as it does not qualitatively affect our results.
As summarised in Table 1, the interpolation model can be used to describe versions of many well-
established models. This model has the huge advantage that it describes these models with only
four real parameters and allows for easy comparisons and couplings. A similar, yet slightly different,
parameterisation has also been studied, for instance, in [49, 34, 32]; in Table 2 we present a translation
between the two parameterisations.

Table 2: Translation of parameters in kernel-based spatial random graphs and the classical WDRCM.

parameters in [32, 34] parameters here and in [18, 21, 40]

τ − 1 1/γ
α δ
σ α/γ

The following proposition summarises the values ζ for the interpolation model with a long-range profile
function. However, the according results for a short-range profile can simply be derived by sending
δ →∞. Its proof is given in Section 4.2.

Proposition 2.3. For the interpolation model with a profile function with δ > 1, we have

ζ = max
{

2− δ, 1− δ−1
γδ
, δ(α+γ−1)
δ(α+γ)−1

}
.

In particular, we have

(i) ζ < 0, if δ > 2, γ < 1− 1/δ, and α < 1− γ,

(ii) ζ = 0, if δ ≥ 2 and either γ < 1− 1/δ and α = 1− γ, or γ = 1− 1/δ and α ≤ 1− γ = 1/δ,
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age-dependent
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random connection model

δ−1
δ

1
δ

1
δ
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0
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< 0
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1)

δ(α+
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1 <
0

Figure 1: Phase diagram in γ and α for the interpolation model constructed with a long-range profile with δ > 2. The
ζ < 0 phase is shaded in grey while the ζ > 0 phase is not shaded. Both phases show the values of ζ in the according
parameter regimes. The solid lines mark the phase transition ζ = 0. Dashed lines represent no change of behaviour.

(iii) ζ > 0 in all the remaining cases.

Our findings are summarised in Figure 1 for δ > 2 when ζ < 0 is possible. We further apply Part (i)
to various models from the literature in Table 1.

Next, let us take a closer look into the subcritical annulus-crossing phase. As the WDRCM takes place
in the independent setting, Theorem 1.7 implies that λ̂c > 0 is equivalent to P1(L(r, 1)) → 0. This
is particularly the case when ζ < 0. For the interpolation model it is additionally easy to see that all
lim sup are actual limits so that the statements of Theorem 2.1 can be formulated using only lim, cf.
Remark 2.2. Then, not only P1(L(r, 1)) � rdζ → 0 but also the annulus-crossing event decays at the

same speed and one might expect that the subcritical behaviour within the phase (0, λ̂c) is driven by
Pλ(L(r, 1)) and thus explained by ζ alone. To get more involved, let us examine two characteristics
of typical clusters. As already mentioned below Theorem 1.8, the probability of the annulus-crossing
event also determines the largest Euclidean diameter of the clusters inB(r). In the classical WDRCM
this further applies to the tail of the Euclidean diameter of the typical cluster of the origin when the
origin is added with a uniformly distributed vertex mark to the graph. Hence,

Poλ(∃x : |x| > r,o←→ x) ≤ Pλ
(
B(r)←→ B(2r)c

)
� Pλ(L(r, 1)).

Furthermore, the tail of the Euclidean diameter can provide bounds on the cardinality of the cluster of
the origin as the Poisson point process is well-concentrated. This relation becomes particularly strong
for the standard Boolean model (α = 0, δ →∞). More precisely, it is shown in [15] that for all λ < λ̂c,

Pλ
(
]{x : o←→ x} > rd

)
� Pλ

(
∃x : |x| > r,o←→ x

)
� Pλ(L(r, 1)).

Further, it was recently shown that λc = λ̂c for all but at most finitely many values of γ [9]. The potential
exclusion of finitely many values of γ results from the techniques applied in the proof, though it is
widely believed that both phase transitions are always the same. These findings combined appear to
strengthen the above idea and suggest that even the whole subcritical behaviour of the Boolean model
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can be described solely by the tail of the long-edges event. However, this is not the case in general.
For instance, consider long-range percolation, i.e., γ = α = 0 together with a long-range profile.
Thus, λ̂c = 0 whenever δ < 2 according to Proposition 2.3. However, it is well-known that λc > 0 for
all δ > 1, see [39], implying 0 = λ̂c < λc. For δ > 2 and λ < λ̂c our results yield the polynomial
decay with exponent 2 − δ as a bound for the Euclidean diameter and the cardinality of the origin’s
component. However, the actual tail exponent of the Euclidean diameter is 1 − δ due to [29] while
the cardinality is light-tailed [39]. Thus, describing the subcritical phase solely via annulus crossings
is no longer accurate due to the long-range effects inherent in the model. The same can further be
observed in the soft Boolean model, a model that interpolates between the classical Boolean model
and long-range percolation. For a detailed discussion on this model, we refer the reader to [29]. This
of course does not give insights into the already mentioned question as to whether 0 < λ̂c < λc

is possible. It is also of interest to determine whether the subcritical tail distribution of diameter and
cardinality as mentioned above is generally governed by P1(L(r, 1)) for any kernel combined with
a short-range profile or whether this is specific to the Boolean model, as well as the correct type of
connection for an accurate description of the subcritical phase if this is not the case.

2.2 Generalisations

The previous results of this section and particularly Theorem 2.1 apply our main results to the classi-
cal WDRCM. The results get particularly strong as the classical model takes place in the independent
setting of Definition 1.3. Our main results however allow for generalisations towards more correlated
models. There are two natural ways to implement correlations into the framework of the WDRCM: ei-
ther by replacing the underlying Poisson point process with a correlated point process or by extending
the connection mechanism in a way that the presence of an edge additionally depends on vertices sur-
rounding its end vertices. Here, we focus on the latter approach and stick with the Poisson process for
vertex placement, but we also provide examples of correlated vertex sets in the Sections 3.2 and 3.3.
Both effects could, of course, be combined, though we have chosen not to, focusing on presenting the
essential concepts in a concise way.

The setting of the generalised WDRCM is as follows: The vertex set V remains a standard Poisson
point process on Rd×(0, 1). Given V , a pair x = (x, ux),y = (y, uy) ∈ V of vertices is connected
by an edge with probability

p(x,y,V \ {x,y}) = p(y,x,V \ {x,y}),

where we assume that p is invariant under translations. We further impose the following homogeneity
condition when p is integrated with respect to the underlying Poisson point process: For two determin-
istically given vertices x and y, we have

Eλ[p(x,y,V )] = ϕλ(ux, uy, |x− y|d), (8)

where ϕλ : (0, 1) × (0, 1) × (0,∞) → [0, 1] is an integrable function that is symmetric in the ver-
tex marks arguments. Note that these deterministically given vertices are no elements of the Poisson
point process almost surely. Put differently, the occurrence of an edge between any two vertices does
additionally depend on (potentially) the entire vertex set. However, the connection probability between
two given vertices x and y resembles, on average, the connection probability of the same fixed ver-
tices in a classical WDRCM. Nevertheless, the annealed connection function ϕλ now depends on λ
and we no longer assume monotonicity in the vertex marks arguments. It is thus clear that our basic
Assumptions (G1)–(G3) are always satisfied but one further has to verify one kind of mixing condition
and monotonicity (if needed) separately for each connection rule p.
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In this paragraph, we focus on identifying instances of the models, where long edges are absent.
To this end, we demonstrate that the results previously derived can be adapted in a straightforward
manner. We define, in the same way as in (4) and (5),

ψλ(µ) := lim sup
r→∞

log
( ∫ 1

r−d+dµ
du
∫ 1

r−d+dµ
dv ϕλ(u, v, r

d)
)

d log r
,

as well as
ζλ := sup

{
µ ∈ (−∞, 1) : µ < 2 + ψλ(µ)

}
,

noting that both quantities now depend on λ. The following results shows that our heuristic explained
above remains valid when long edges are rare.

Theorem 2.4. Let G be a generalised weight-dependent random connection model

(i) If ζλ < 0, then

lim sup
r→∞

Pλ(L(r, 1))

log r
≤ dζλ.

(ii) If there exists λ′ > 0 such that G has the uniform mixing Property M λ′ and ζλ′ := sup{ζλ : λ <
λ′} < 0, then

lim sup
r→∞

sup
λ<λ′

Pλ(L(r, 1))

log r
≤ dζλ′

In particular, we have λ̂c > 0.

(iii) Assume λ̂c > 0, and for some λ < λ̂c the polynomially mixing Property PM ξ
λ for some ξλ as

well as ζλ < 0. Then,

lim sup
r→∞

logPλ
(
B(r)←→ B(2r)c

)
log r

≤ d(ζλ ∨ ξλ).

Let us mention that the upper bounds in Theorem 2.1 are special cases of those in Theorem 2.4.
Specifically, with the previously notation of ζ in (5), we have ζλ ≡ ζ . One of the reasons why we
only derive upper but not lower bounds is due to not assuming any monotonicity in the vertex marks
arguments of ϕλ. Nonetheless, the results imply some kind of monotonicity. Indeed, ζλ < 0 suggest
that either vertices with smaller marks are more powerful or the marks play no influential role on the
connection probability.

Let us finally emphasise that throughout Sections 2, 2.1 and 2.2 we have explicitly used the Euclidean
distance in the connection functions and in the derivation of the tail exponent ζ . This essentially makes
the model rotationally invariant. However, the rotation invariance is never used in our proofs and we
could easily replace the Euclidean norm by any other norm and adapt our results. In fact, to ensure
translation invariance it suffices to assume connection probabilities of the type ϕ(ux, uy, x − y) and
our results still remain true as long as there is a way to translate x − y into some form of distance
allows for meaningful definitions of ψ and ζ .

2.2.1 The soft Boolean model with local interferences

We provide an example of a graph that is a generalised WDRCM but no classical WDRCM, which
satisfies polynomial mixing and ζλ < 0. The idea is to combine the soft Boolean model [17, 29]
with local interference and noise in the spirit of SINR percolation [11, 48, 30]. The model has three
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(a) Soft Boolean model (b) Soft Boolean model with local interference

Figure 2: Examples for the soft Boolean model, Figure 2a, and the soft Boolean model with local interference, Figure 2b,
on the same 150 vertices sampled from a Poisson point process of intensity λ = 0.04. For the edge probabilities, the
parameters γ = 0.65, δ = 2.7, and β = 0.3 are used. Hence, ζ > 0 for the soft Boolean model but ζ < 0 for the model
with local interference.

parameters: γ ∈ (0, 1), δ > 1 and β ∈ [0, 1), and the construction is as follows: Each vertex
x = (x, u) has a sphere of influence with radius u−γ/d. The larger the sphere of influence, the
more attractive the vertex is to other vertices. Further, the sphere of influence may be enlarged by
additional long-range effects with exponent δ > 1. This setup so far is precisely the soft Boolean
model contained in the classical WDRCM discussed above, cf. Table 1 and [17, 29]. Additionally, each
vertex now has a sphere of interference with radius u−β/d. The vertices within this sphere distract the
vertex x and complicate its edge creation, cf. Figure 2. More precisely, for a given vertex x = (x, ux),
let us introduce the random variable

N β(x,V ) := ]
{
y ∈ V : |x− y|d ≤ s−β

}
.

The graph G is then generated, given V , by connecting x = (x, ux) and y = (y, uy) with probability

p(x,y,V \ {x,y}) = 1{ux<uy}
1 ∧ u−γδx |x− y|−dδ

1 + N β(x,V \ {x,y})
+ 1{ux≥uy}

1 ∧ u−γδy |x− y|−dδ

1 + N β(y,V \ {x,y})
.

(9)

Corollary 2.5 (Soft Boolean model with local interference). Let γ < 1, δ > 1 and β ∈ [0, 1). The
soft Boolean model with local interference (9) has Property PM ξ

λ with parameter ξ = d(1 − 1/β)
for all λ. Further,

ζλ ≡ ζ = (2− δ) ∨ 1−δ(1−γ)−β
γδ−β .

In particular, ζλ < 0 if δ > 2 and γ < (δ + β − 1)/δ. Thus, we have λ̂c > 0 in this case, and for all

λ < λ̂c,

lim sup
r→∞

logPλ
(
B(r)←→ B(2r)c

)
log r

≤ d
(
(δ − 2) ∨ 1−δ(1−γ)−β

γδ−β ∨ (1− 1/β)
)
.

If we choose β = 0, each sphere of interference has radius one. Hence, the model reduces to
a version of the soft Boolean model with additional yet ultimately insignificant fluctuations on large
scales. Indeed, for β = 0 the identified ζ < 0 phase aligns with the results found for the soft Boolean
model. For a phase diagram illustrating the ζ < 0 phase of the model with local interference see
Figure 3.
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Figure 3: Phase diagram for γ and δ for the soft Boolean model with local interference. Represented from left to right the
phase transition for ζ < 0 for ξ = 0, 0.3, 0.6, 0.9.

3 Further examples

We briefly discuss additional examples and generalisations of the previous section. We do not examine
these models in as much detail as the WDRCMs but illustrate, by example, how the derived results can
be applied to models that involve more than one vertex weight or are constructed on more correlated
point sets.

3.1 Ellipses percolation

Ellipses percolation is a percolation model first introduced in 2017 [47] as a generalisation of the
classical Boolean model with random radii. The vertices are given through a standard Poisson point
process of intensity λ > 0 in the plane. Each vertex is centre of an ellipse with a uniform direction,
minor axis equal to one and a heavy-tailed major axis. More precisely, each vertex x is assigned an
independent direction πx, distributed uniformly on [−π/2, π/2), and another independent vertex mark
Rx, distributed according to a Pareto distribution with parameter 2/γ > 0. Here, the parametrisation
is chosen to be consistent with that above. Each vertex x it thus associated with the ellipse, centred
in x ∈ R2 with minor axis of length 1, major axis of length Rx, and orientation πx. We connect
any pair of vertices by an edge if their associated ellipses intersect. This model can be seen as a
generalisation of the standard Boolean model where the circles around each vertex are replaced by
the described ellipses. However, it is worth noting that using ellipses introduces additional correlations
into the model. These additional correlations have interesting effects, some of which we comment
on below. Note that the model is translation invariant and takes place in the independent setting of
Definition 1.3. The model is locally finite for all γ < 2 [47], and monotone in the sense of (Mon).

Corollary 3.1 (Ellipses percolation). Consider ellipses percolation described above for γ > 0 and
λ > 0.

(i) If γ < 1, then λ̂c > 0 and for all λ < λ̂c, we have for an appropriate constant C > 0,

Pλ(L(r, 1)) ≤ λCr2(1−1/γ)

as well as

lim
r→∞

logPλ
(
B(r)←→ B(2r)c

)
logPλ(L(r, 1))

= 1.
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(ii) If γ > 1, then λ̂c = 0.

The proof can be found in Section 4.2. We briefly compare our result with the findings in [47]. It is
shown in the Theorems 1.1.2 and 1.2.2 therein that the model is locally finite but contains no subcritical
percolation phase for 1 < γ < 2. This aligns with our result, as λc = 0 implies λ̂c = 0. For the
standard Boolean model it is impossible to be locally finite while having λc = 0 at the same time. Only
if additional long-range edges are introduced, such a behaviour can be achieved [21]. This implies
that some sort of long-range behaviour is entailed in ellipses percolation. Indeed, in [24] a comparison
between ellipses percolation and long-range percolation is used to derive chemical distances in the
1 < γ < 2 regime. Conversely, our result states λ̂c > 0 and thus implies λc > 0 for γ < 1,
which also aligns with the findings in [47]. Hence, except potentially for the boundary regime γ = 1,
we find that the two critical intensities are either both positive or both zero. This is unlike the other
long-range models studied in the previous section, all of which contained a parameter regime with
λ̂c = 0 < λc. The question of whether a Boolean model with arbitrary convex grains can have
λc = 0 while still being locally finite is explored in detail in the recent preprint [19]. The results therein
include but are not limited to generalisations of ellipses percolation to higher dimensions together with
additional correlations between the axes. Whether λc > 0 implies λ̂c > 0 in all these models remains
an interesting open question that we leave for future work.

3.2 Models based on Cox processes

So far we have exclusively presented applications of our results towards models where the underlying
point cloud is given by Poisson point processes. However, our mixing Condition M λ not only allows
us to cover models where the edge-drawing mechanism is not strictly local, as seen in Section 2.2.1,
but models based on correlated point processes as well. For simplicity, we focus here on correlations
introduced by the vertices, assuming independent uniform markings as well as translation-invariant
connection probabilities of the form p(x,y) with∫

duo

∫
dx

∫
dux p((o, uo), (x, ux)) <∞. (10)

That is, only the end vertices of a potential edge are relevant in a translation-invariant and integrable
way. Put differently, we consider here the WDRCM based on more general point clouds. Let us however
note that of course also mixed versions can be considered where correlations are present in both the
vertex positions and the edge drawing mechanism.

To enable explicit computations, we further narrow our attention here to Cox point processes, i.e.,
Poisson point processes with a random intensity. Let us mention however that also other classes of
point processes such as many Gibbs point processes also satisfy Condition M λ. Their analysis in
this context is left for future work and we refer the reader to the associated literature respectively. In
this section, V is a (independent and uniformly marked) Cox point process, meaning a Poisson point
process on Rd with intensity measure λΛ, where λ > 0 and Λ is a random element of the space of
Borel measures on Rd, equipped with the evaluation-sigma-algebra. We assume that the distribution
of Λ is invariant under spatial shifts and that E[Λ([0, 1]d)] = 1. The annealed process (with respect
to the random environment Λ) is then stationary with intensity λ and simple if Λ contains no atoms
almost surely.

An interesting class of examples can be constructed for d = 2, where the directing measure Λ is
given by the edges of a random line process. More precisely, let S ⊂ R2 be a random segment
process, then Λ(A) = ν1(S ∩A), for all Borel sets A ⊂ Rd, where ν1 denotes the one-dimensional
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Hausdorff measure. The segment process can be given, for example, by the edges of an independent
Poisson–Voronoi tessellation or the rectangular line process, where lines are drawn perpendicular to
two independent Poisson processes on the x- and y-axis in R2. Let us highlight, that, due to the
local nature of the construction of the Poisson–Voronoi tessellation, the associated Cox point process
features (exponential) decorrelations, whereas the Cox point process based on the rectangular line
process does not possess this property (at least not along the axes). Alternatively, a large class of
examples can be constructed, where the directing measure is given by a random density with respect
to the Lebesgue measure, i.e., Λ(dx) = `xdx. For instance, the density (`x)x∈Rd can be defined as
`x = φ11{x ∈ Ξ}+φ21{x 6∈ Ξ}, where Ξ ⊂ Rd is a random closed set and φ1, φ2 ≥ 0. In turn, Ξ
could be, for example, given by an independent Poisson–Boolean model, with or without random radii
(viewed as a subset of Rd, not as a graph).

Let us mention that the percolation analysis for Boolean models based on Cox point processes has
seen some interest in recent years [27, 31, 26, 28], with results that essentially recover the nontrivial
percolation behaviour seen in the classical Poisson case. In this work, we extend this analysis by
considering not only Gilbert graphs based on Cox point processes, but also more general weight-
dependent graph structures, at least with respect to the subcritical annulus-crossing phase. We do not
consider concrete connection mechanisms or deal with the Property L λ here but solely focus on the
mixing condition as many possibilities for p have already been discussed in Section 2.

We now present an example of a non-trivial Cox point process featuring polynomial mixing in R2. For
this, consider Λ(dx) = `xdx with

`x = φ
∑
i∈I

1{|Yi − x| < ρi}, (11)

where φ > 0 and Y = ((Yi, ρi) : i ∈ N) is an independent homogeneous Poisson point process
with intensity one and i.i.d. marks ρi ≥ 0, distributed according to a Pareto distribution with tail index
β > 2. In words, `x is the number of Poisson–Boolean balls that overlap a location x and, since
β > 2, the parameter φ = φ(β) can be tuned in order for Λ to be normalised in the sense E[`o] = 1.
Then, we have the following result, whose proof can be found in Section 4.2:

Proposition 3.2 (Cox percolation). The model defined via (11) with the assumptions (10) on the edge-
drawing mechanism satisfies the Conditions (G1) – (G3) and is monotone in the sense of (Mon). In
particular, the model has the polynomially mixing Property PM ξ

λ for ξ = 2− β and all λ > 0.

3.3 Models based on worm percolation

After primarily focusing on continuum models, we now apply our results to an example of a lattice-
based model. While the case of independent Bernoulli site-percolated lattices is similar to the Poisson
process (cf. Remark 4.1), the objective here is to discuss a correlated lattice model based on per-
colation of worms [44]. The model is defined as follows. Fix a length distribution ` and an intensity
parameter ν > 0. We independently assign each site of Zd a Poisson number of worms with mean
ν. Each worm placed at x ∈ Zd draws an independent copy of ` and performs the corresponding
number of random walk steps. The vertex set V consists then of all sites of Zd visited by at least one
worm. Classically, the graph G is then constructed by adding all nearest-neighbour edges. An impor-
tant special case arises if ` is given by the geometric distribution with mean T ≥ 1 [36]. If we further
restrict to d ≥ 3 and set the intensity to ν = 2du/(T + 1) for some u > 0, we obtain finitary random
interlacements (FRI) with intensity u and walk length T , as introduced in [4]. The name comes from
the convergence in distribution of FRI to the standard random interlacements (RI) [46] with intensity
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2du as T → ∞. While RI always contain a unique infinite component for all u > 0, this is no longer
true for FRI. Intriguingly, there are parameter regimes where there are infinitely many infinite compo-
nents [4]. In [43], phase transitions is established for the presence and absence of infinite components
as T varies and u is fixed. Note that for fixed u, the model may not be monotone in T as increasing T
reduces the intensity on the one hand but increases average worm lengths on the other. To apply our
method, we, however, vary the intensity u for a fixed T , implying monotonicity.

We do not focus on the specific setting of FRI here but rather on the general setting of worm percolation
with intensity λ and arbitrary length distribution `. Using the notation of Remark 1.1, λ denotes the
probability that the origin is visited by at least one worm and we aim to detect a annulus-crossing phase
transition in this parameter. Note that the expected number of walks that traverse o is νE[`]P`o(H̃o =
∞), where P`o(H̃o = ∞) denotes the probability that a worm with step length distribution ` starting
in o never returns, see [12, 4]. Therefore, µ ∼ 1− e−µ ≤ λ ≤ Cν and λ can be appropriately varied
by adjusting ν whenever ` has finite expectation.

Before stating our result, we note that Condition L λ always holds (for nearest-neighbour edges) and
it remains to show that the mixing Condition M λ holds to prove a subcritical annulus-crossing phase.
Once the mixing property is established, one may consider more general connection rules allowing
for longer edges such as those introduced in Section 2 where the additional mark may or may not be
independent of `. We do not explore these generalisations here and focus on the standard example.
It is shown in [44] that λc > 0 if ` has finite variance in all dimensions and λc = 0 in dimensions
d ≥ 5 if the length distribution has infinite second moment with a slightly stronger tail assumption. For
annulus-crossings, however, the situation is quite different. While the results of [44] are independent
of the dimension (provided d ≥ 5, our findings depend on the dimension; a characteristic that has not
previously be shown in our analysis

Corollary 3.3 (Percolation of worms). Consider percolation of worms as described above.

(i) If ` has finite d-th moment, i.e.,
∑

n∈N n
d`{n} <∞, then λ̂c > 0, and

(ii) if ` has infinite d-th moment, i.e.,
∑

n∈N n
d`{n} =∞, then λ̂c = 0.

Let us briefly revisit the aforementioned random interlacements (RI), introduced in [46]. In this model,
a Poisson process of doubly infinite random walk trajectories on Zd, d ≥ 3 (modulo time shifts) with
some intensity parameter u > 0, is used as vertex set. RI then consist of all vertices visited by at
least one trajectory, along with the induced nearest-neighbour edges between visited vertices. For
a detailed introduction and construction we refer the reader to [12]. Since each trajectory forms an
infinite path, it is clear that RI percolate at all intensities u. Furthermore, they form a connected graph
for all u almost surely [50]. In particular, arbitrarily large annuli are crossed. The reason our result
does not apply here is because RI do not mix in our sense. Indeed, a random-walk trajectory that
crosses an annulus with radii r and 2r has a significant chance to also cross another such annulus at
distance r. As RI clearly contain no long edges, this example underlines the importance of our mixing
assumption. In the following section, we provide further examples showing that our assumptions can
generally not be weakened.

3.4 k-nearest neighbour percolation and other λ-independent models

One may question whether the assumption L λ (resp. M λ) could be relaxed and replaced by the
assumption {∀λ′ ≤ λ, L λ} (resp. M λ) in the statement of Theorem 1.6. We show that this is
not possible by discussing a simple class of models where the λ-dependence of the model is only
superficial. Consider any graph G1 = (V1,E1) on Rd obeying our settings, but defined only for λ = 1.
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Then, one may (re)define the model for λ 6= 1 by keeping the exact same graph structure, but scaling
all vertex locations by a factor λ−1/d. That is,

Vλ :=
{
λ−1/dx, x ∈ V1

}
, Eλ :=

{
{λ−1/dx, λ−1/dy}, {x, y} ∈ E1

}
.

This produces a model (Gλ : λ > 0) that is perfectly legitimate in our general settings. However, a
phase-transition in λ is clearly impossible. For example, let G1 be a classical WDRCM with no long
edges (i.e., L 1 is satisfied) but for which the annuli are crossed (still for λ = 1). With our definition
of Gλ, we immediately infer the Properties L λ and M λ for all values of λ (for mixing, note the model
satisfies the independent settings condition and thus has no relevant correlations), but still λ̂c = 0. It
is clear that this model does neither satisfy Monotonicity (Mon) nor L λ. Another interesting example
in this class of models is k-nearest neighbour percolation [2], which contains an infinite outgoing
component if k is large enough, independently of λ. This model also satisfies the Properties L λ

and M λ for every λ > 0, yet it neither satisfies refG:noLongEdgeUnifλ nor M λ for any λ > 0.

4 Proofs

4.1 Proofs of the results in Section 1.2

We give the proofs of our main Theorems 1.6, 1.7, and 1.8 in this section. We start with the proof
of Theorem 1.6 as the other results rest on either its proof or its statement. To this end, we adapt a
renormalisation technique developed by Gouéré for the Poisson–Boolean model [15].

Proof of Theorem 1.6. Let us start with the proof of Part (ii). Fix any λ > 0. Then, as L λ is not
satisfied, we have P(L(r, 3)) > c for all r ≥ 1. The event L(r, 3) implies the existence of an edge
connecting a vertex in B(r) to some vertex at distance at least 3r. The latter vertex is located outside
B(2r) by necessity. Therefore

Pλ
(
B(r)←→ B(2r)c

)
≥ Pλ(L(r, 3)) > c

and thus λ > λ̂c. As λ can be chosen arbitrarily small, this yields λ̂c = 0, proving Part (ii).

In order to prove Part (i) of the theorem, we have to show that λ̂c > 0 whenever G fulfils the Proper-
ties M λ′ and L λ′ for some λ′ > 0. Let us denote the annulus-crossing event by

E(x, r) =
{
B(x, r)←→ B(x, 2r)c

}
(12)

and abbreviate E(r) = E(o, r). Then the claim is equivalent to showing Pλ(E(r))→ 0, as r →∞,
for λ sufficiently small. To this end, we adapt the renormalisation scheme of [15]. Let us introduce two
additional events. Firstly, we let

F(r) := {∃x ∼ y : |x| < 2r, |x− y| > r/10} = L(2r, 1/20),

be the event that there is no edge longer than r/10 incident to a vertex located in B(2r). Secondly,
we recall the local annulus-crossing event G(x, r) with G(r) = G(o, r), introduced in (1). In words,
the event E(r) defines the annulus crossing subject to our main result. The event F(r) describes the
presence of long edges in the considered annulus. In particular, if F(r) is not fulfilled, any annulus
crossing cannot use far apart vertices. The event G(r) can then be seen as a localised variant of E(r)
when no such far apart vertex is used and any path leavingB(2r) thus ends inB(3r)\B(2r). Natu-
rally, G(r) ⊂ E(r). The main step in the renormalisation is then to argue that either long edges in the
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∂B(9.5r)
∂B(10r)
∂B(10.5r)

∂B(20r)

Figure 4: Sketch of (13) in d = 2. A path starting inside B(10r) and leaving B(20r), where no edge longer than r is
used. The red vertex on the path is close to the center of the red ball of the covering of ∂B(10r) and it is the starting point
for the event G (red balls). Further, the covering of the annulusB(10.5r) \B(9.5r) is indicated. The same applies to the
blue vertex on the path, which lies close to the center of the blue ball of the covering of ∂B(20r).

sense of F(r) are present or the localised annulus crossing event occurs twice almost independently
on a smaller scale due to the mixing property. To make this precise, let us denote by ∂B the boundary
of a set B ⊂ Rd. Let further I, J ⊂ Rd be two finite sets satisfying I ⊂ ∂B(10) and J ⊂ ∂B(20)
such that

∂B(10) ⊂
⋃
i∈I

B(i, 1/2), and ∂B(20) ⊂
⋃
j∈J

B(j, 1/2).

Put differently, I and J induce a covering of the spheres ∂B(10) and ∂B(20) respectively with balls
of radius 1/2. Note that this particularly implies that the annulus B(10.5) \ B(9.5) is completely
covered by

⋃
i∈I B(i, 1) and the same is true for B(20.5) \ B(19.5) and the union

⋃
j∈J B(j, 1).

The above described key observation is then

E(10r) \ F(10r) ⊂
(⋃
i∈I

G(r · i, r)
)
∩
(⋃
j∈J

G(r · j, r)
)
, (13)

where we use the notation r · i for the product of r and i to put emphasis on the fact that i is an
element of Rd while r ∈ R. Equation (13) follows from the fact that on E(10r) \ F(10r), there exists
a path from a vertex located in B(10r) to some vertex located outside of B(20r) using no edges
longer than r. Therefore, at least one vertex of said path must lie within distance r/2 to the sphere
∂B(10r), and thus within distance r to some point in r · I . Put differently, this vertex is located in
B(r · i, r) for some i ∈ I . The path must then reach a vertex located in B(20r)c using only edges
shorter than r, and in particular it must first reach some vertex located in B(r · i, 3r) \ B(r · i, 2r)
passing only vertices located in B(r · i, 3r). Thus the localised annulus-crossing event G(r · i, r) is
satisfied. By a similar argumentation also G(r · j, r) occurs for some j ∈ J , justifying (13). The above
argument is sketched in Figure 4. As a result, we obtain

Pλ
(
E(10r) \ F(10r)

)
≤

∑
i∈I, j∈J

Pλ
(
G(r · i, r) ∩ G(r · j, r)

)
.
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Using translation invariance (G2), we infer, writing C1 = (]I)(]J),∑
i∈I, j∈J

Pλ
(
G(r · i, r) ∩ G(r · j, r)

)
≤ C1 max

i∈I,j∈J

(
Pλ
(
G(r · i, r) ∩ G(r · j, r)

))
≤ C1 max

i∈I,j∈J

(
Covλ(1G(o,r),1G(r·(j−i),r))

)
+ C1Pλ(G(r))2.

Now, as I and J are finite sets, we can use the mixing Property M λ′ and write

cov(r) := sup
λ<λ′

max
i∈I,j∈J

(
Cov(1G(o,r)1G(r·(j−i),r))

)
= o(1). (14)

Using G(r) ⊂ E(r), we hence obtain

Pλ(E(10r)) ≤ Pλ(F(10r)) + cov(r) + C1Pλ(E(r))2, (15)

which is key in showing Pλ(E(r))→ 0 for sufficiently small λ. Recall that we work under the Assump-
tion L λ′ for some λ′ > 0. Hence, Pλ(F(r)) → 0 uniformly for all λ < λ′. Therefore, there exists
r0 > 1 such that

C1

(
sup
λ<λ′

Pλ(F(r)) + cov(r)
)
≤ 1/4, for all r ≥ r0.

Let us define the following two functions on [r0,∞):

g(r) := C1

(
sup
λ<λ′

Pλ(F(r)) + cov(r)
)

and f(r) := fλ(r) = C1Pλ(E(r)), (16)

and choose
λ < λ′ ∧ 1

2C1 (10r0)dωd
, (17)

where ωd denotes the volume of the d-dimensional unit ball. Since λ < λ′, we have g(r) ≤ 1/4.
Further, since λ < 1/(2C1(10r0)

dωd), we have with Markov’s inequality

f(r) = C1Pλ(E(r)) ≤ C1Eλ[](V ∩B(r))] = C1 λ ωd r
d ≤ 1/2, (18)

for all r ∈ [r0, 10r0], where the second to last step follows from the fact that the intensity measure of
the underlying point process is the Lebesgue measure multiplied by λ. Additionally, (15) implies

f(r) ≤ g(r) + f(r/10)2 for all r ≥ 10r0. (19)

Together with the established bounds on f and g, we infer f(r) ≤ 1/2 for all r ≥ r0. This can for
instance easily be seen by proving inductively f(r) ≤ 1/2 for all r ∈ [10n−1r0, 10nr0]. Applying the
bound f ≤ 1/2 as well as (19) iteratively yields for all n ∈ N and r ∈ [r0, 10r0],

f(10nr) ≤ g(10nr) +
f(10n−1r)

2
≤ · · · ≤

n∑
j=1

g(10jr)

2n−j
+ 2−n−1.

Finally, for ε > 0, we can choose n large enough such that

n∑
j=1

g(10jr)

2n−j
≤ 1

4

n/2∑
j=1

2−n+j +
(

max
n/2≤k≤n

g(10kr)
) n∑
j=n/2

2−n+j ≤ 2−n/2 + 2 max
n/2≤k≤n

g(10kr) ≤ ε,

uniformly for r ∈ [r0, 10r0]. Therefore, Pλ(E(r)) = f(r)/C1 → 0 as r →∞ for all λ satisfying (17).
This concludes the proof of Part (i) and thus of Theorem 1.6.
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Remark 4.1. We performed the above proof for the continuum point process case. If the vertex lo-
cations are given by a lattice subset that fulfils the assumptions of Remark 1.1, the proof can be
performed in the same way. Firstly, the change of norm to || · ||∞ guaranties that the scaling properties
of the sets I and J remain true. More precisely, points that induce a covering of the sphere ∂B(c)
with radius 1/2 balls, also induce a covering of the sphere ∂B(cr) with radius r/2 balls. Secondly,
we use the given intensity measure to bound the function f in (18). However, as balls in Rd and Zd
have volume of the same order and only differ by a constant factor, the bound on f remains true once
the involved constants are adjusted by the definition of λ in Remark 1.1.

We continue with the proof of Theorem 1.8 as it builds on the arguments derived in the previous proof
and postpone the proof of Theorem 1.7 to the end of the section.

Proof of Theorem 1.8. Recall that we work under the assumption PM ξ
λ for some ξ = ξλ < 0 and

recall the decay exponent ζ = ζλ > 0 describing the polynomial decay of Pλ(L(r, 1)). As Pλ(E(r))
is a decreasing function in r, the claim of Theorem 1.8 is equivalent to showing that rs−1Pλ(E(r)) is
integrable for all s < ζ ∧ ξ, where E(r) denotes the annulus-crossing event as introduced in (12).
Note that the polynomial mixing condition can equivalently be written as∣∣Covλ

(
1G(r),1G(xr,r)

)∣∣ ≤ `λ(x, r)r
−ξ,

where r 7→ `λ(x, r) is a slowly varying function [3]. Hence, the mixing term in (14) now reads

cov(r) := covλ(r) ≤ `(r)r−ξ, where `(r) := `λ(r) =
∑

i∈I,j∈J

`(j − i, r).

Note that `(r) again is slowly varying. As above there exists r0 = r0(λ) such that the function

g(r) := g(r)λ = C1

(
Pλ(F(r)) + cov(r)

)
< 1/4

on [r0 > ∞). Recall further the function f = fλ from the previous proof. Essentially, we have
reestablished the same setting as above but now for the fixed value of λ instead of taking the supre-
mum over λ < λ′. By definition of g(r) and as Pλ(F(r)) � Pλ(L(r, 1)), we have that rs−1g(r) is
integrable for all s < ζ ∧ ξ. To prove the claimed integrability of Pλ(E(r)) = f(r)/C1, observe first

that f(r) = o(1) for λ < λ̂c. In particular, f(r) ≤ 10−s−1/2 for all r ≥ R/10 for some sufficiently
large R = Rλ ≥ r0. Following the arguments in [15], we find for S > 10R, using (19),∫ S

R

rs−1f(r)dr ≤
∫ S

R

rs−1f(r/10)2dr +

∫ S

R

rs−1g(r)dr

≤ 1
2

∫ S/10

R/10

rs−1f(r)dr +

∫ ∞
R

rs−1g(r)dr

≤ 1
2

∫ R

R/10

rs−1f(r)dr + 1
2

∫ S

R

rs−1f(r)dr +

∫ ∞
R

rs−1g(r)dr,

where we used the change of variables r 7→ r/10 together with the bound f(r) ≤ 10−s−1/2 in the
second step. Sending S →∞, the established integrability of rs−1g(r) then yields

1
2

∫ ∞
R

rs−1f(r) ≤ 1
2

∫ R

R/10

rs−1f(r)dr +

∫ ∞
R

rs−1g(r)dr <∞,

for all s < ζ ∧ ξ. This concludes the proof of Theorem 1.8.
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Next, we give the proof of Theorem 1.7 stating that the rareness of long edges and the positivity of λ̂c

are equivalent in the independent setting with monotonicity.

Proof of Theorem 1.7. Recall that in the independent setting, and for λ < λ′, the graph Gλ can be
constructed from Gλ′ by performing site percolation with retention parameter λ/λ′, as explained below
Definition 1.3. Hence, we have

Pλ(L(r, 1)) ≤ Pλ′(L(r, 1)).

as well as

Pλ(L(r, 1)) = Pλ′(∃x ∼ y : |x| < r, |x−y| > r,x,y survive percolation)
]
≥
(
λ
λ′

)2Pλ′(L(r, 1)).

Both inequalities combined prove the independence of L λ and L λ from λ and show that both prob-
abilities have the same tail. The equivalence of L 1 and λ̂c > 0 is then an immediate consequence of
Theorem 1.6.

4.2 Proofs of the results in Sections 2 and 3

In this section we prove the results established for the WDRCM and all the other examples.

Proofs of the results in Section 2.1.1

Recall first the framework of the WDRCM. In particular, recall that vertices x = (x, ux) are given via
a homogeneous Poisson point process on Rd × (0, 1) and recall the connection mechanism given
in (3). Key in proving the results for WDRCMs and particularly Theorem 2.1 is to properly relate the
tail behaviour of Pλ(L(r, 1)) with the exponent ζ derived in (5). To this end, we need some auxiliary
result about the involved vertex marks. Indeed, when we introduced ζ heuristically, we claimed that
the empirical distribution of the ‘weak’ vertices in a set of rd vertices should roughly be rd1[r−d+dζ ,1]

to argue that ζ describes the occurrence of long edges appropriately. Before giving the proof of The-
orem 2.1, we shall make this claim precise. Recall that, given the vertices’ locations, the associated
vertex marks form an independent collection of uniformly distributed random variables. We are thus
interested in some kind of regular behaviour of independent uniforms guaranteeing that the marks are
evenly distributed over the interval. To this end, consider a collection of independent random variables
U = (U1, . . . , Un) distributed uniformly on (0, 1) denote their joint distribution by P . We follow the
arguments of [20] and fix a parameter 0 < a < 1 and define for all i = 1, . . . , bn1−ac

Na
n(i) =

n∑
j=1

1

{
Uj ≤

i

bn1−ac

}
.

We say that U is a-regular if

Na
n(i) ≥ in

2bn1−ac
, ∀ i = 1, . . . , bn1−ac.

Since a simple calculation yields

E[Na
n(i)] =

in

bn1−ac
,

we have by the standard Chernoff bound for independent Bernoulli random variables

P
(
Na
n(i) < 1

2
E[Na

n(i)]
)
≤ e−c

′ina
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for some constant c′ > 0. Therefore, a union bound yields

P (U is not µ-regular) ≤ n1−ae−c
′na ≤ e−cn

a

, (20)

for some c < c′ and n large enough as a < 1. For a a-regular collection U , we can now gain bounds
on the empirical distribution function F of it. Namely, we have on the event of a-regularity for any
t ∈ (0, 1),

nF (t) =
n∑
i=1

1{ui ≤ t} ≥
bn1−ac∑
i=1

Na
n(i− 1)1

{
i− 1 < bn1−act ≤ i

}
= Na

n(btbn1−acc)

≥ nbtbn1−acc
2bn1−ac

≥ n

2

(
t− 1

bn1−ac

)
≥ n

3
(t− na−1).

(21)

Now observe, that the function G(t) = (t − na−1)/3 induces the finite measure dt/3 on (na−1, 1).
This particularly implies for all non-increasing functionsϕ(t) and an a-regular realisation u = (u1, . . . , un)

n∑
j=1

ϕ(uj) ≥ n

∫ ϕ(na−1)

0

dxF (ϕ−1(x)) ≥ n

3

∫ 1

na−1

dt ϕ(t), (22)

where ϕ−1 denotes the generalised inverse of ϕ. We have now everything in place in order to prove
Theorem 2.1.

Proof of Theorem 2.1. Let us start with the proof of Part (i) and assume ζ < 0. Note that Theorem 2.4
(that is independently proved below) implies

lim sup
r→∞

logP1(L(r, 1))

log r
≤ dζ.

As the WDRCM is monotone and takes place in the independent setting, we have λ̂c > 0 by Theo-
rem 1.7. Let us assume that we had already proved the corresponding lower bound

lim sup
r→∞

logP1(L(r, 1))

log r
≥ dζ. (23)

Then, for all λ < λ̂c by Theorem 2.4 and Lemma 1.5

lim sup
r→∞

logPλ(E(r))

logP1(L(r, 1))
≤ 1,

where E(r) again denotes the annulus-crossing event as introduced in (12). As P1(L(r, 1)) �
Pλ(L(r, 3)) ≤ Pλ(E(r)) by Lemma 1.5, we find the corresponding lower bound for the lim sup
of the long edge-probability and have thus established the claimed polynomial decay of the annulus-
crossing probability. It therefore remains to verify the lower bound (23). To this end, we fix the intensity
λ = 1 and consider the event

L̄(r) =
{
∃x ∼ y : x ∈ B(r), y ∈ B(3r) \B(2r)

}
⊂ L(r, 1).

We hence aim to show that for all µ < ζ arbitrarily close to ζ and sufficiently large r, we have

logP1(L̄(r)) ≥ dµ log r.

DOI 10.20347/WIAS.PREPRINT.3148 Berlin 2024



Subcritical annulus crossing 27

Fix such µ < ζ . We provide the claimed lower bound for the probability of L̄(r) by only considering
connections between two vertices with marks greater than r−d+dµ. Recall the integral

I(µ, r) = r2d
∫ 1

r−d+dµ
du

∫ 1

r−d+dµ
dv ϕ(u, v, rd).

By our definition of ψ in (4) and our assumption on µ, we have

lim sup
r→∞

log I(µ, r)

d log r
= 2 + ψ(µ) > µ.

We let ε := (2 + ψ(µ)− µ)/3 > 0 and split the integral according to the domain of integration into

I(µ, r) = I(1)(µ, r) + I(2)(µ, r) + I(3)(r),

where the integral I(1) runs over the domain {r−d+dµ < u < r−d+dε, u < v < 1}, I(2) over the
domain {r−d+dµ < v < r−d+dε, v < u < 1}, and I(3) over the domain {u, v ∈ [r−d+dε, 1]}. Let
us recall here that µ < 0 while ε > 0 to avoid confusion. Hence, by the Laplace principle, for at least
one j ∈ {1, 2, 3}, we must have

lim sup
r→∞

log I(j)(µ, r)

d log r
= 2 + ψ(µ). (24)

We have to consider the three cases associated to which j satisfies equation (24). Let us first assume
that it holds true for j = 1. We can then fix a sequence rn diverging to infinity such that I(1)(µ, rn) ≥
rdµ+2dε
n . We define

Φ(u) := rdn

∫ 1

r−d+dµn

dv ϕ(u, v, rdn)

and infer

rdn

∫ r−d+dεn

r−d+dµn

duΦ(u) ≥ I(1)(µ, rn) ≥ rdµ+2dε
n . (25)

Hence, there must exists u0 ∈ [r−d+dµn , r−dn ] such that u0Φ(u0) ≥ r−d+dµn . Indeed, if this was not
the case, we would infer

I(1)(µ, rn) ≤ rdµn

∫ r−dn

r−d+dµn

du

u
+ rdεn Φ(r−dn ) ≤ rdµn log r−dµn + rdµ+dεn ,

where we used monotonicity of ϕ in the vertex mark arguments and the assumed bound on uΦ(u).
This however contradicts (25) and thus yields the existence of u0. If there is more than one such u0,
fix any and observe that the probability of finding a vertex located in B(rn) with mark at most u0 is,
by standard Poisson process properties together with λ = 1,

1− exp
(
− ωdrdnu0

)
≥ ωd

2
rdnu0,

for large enough n (and thus rn). Conditioned on the existence of such a vertex, the number of
neighbours it has located inB(3rn)\B(2rn) is a Poisson random variable with parameter no smaller
than Φ(u0). This is immediate from the Poisson structure of neighbourhoods in the WDRCM [37]
and monotonicity of ϕ in the vertex marks arguments. Hence, the probability of forming at least one
connection from the given vertex to B(3rn) \B(2rn) is lower bounded by

1− exp
(
− Φ(u0)

)
= Ω(Φ(u0) ∧ 1).
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Hence, we find a constant c > 0, depending on model parameters and the dimension only, such that,
for all µ < ζ and sufficiently large rn, we have

P1(L̄(rn)) ≥ crdnu0(Φ(u0) ∧ 1) = c
(
rdnu0Φ(u0)

)
∧
(
rdnu0

)
≥ crdµn ,

as desired. Note that the case (24) for j = 2 follows from the exact same arguments by reversing the
roles of u and v.

It thus remains to consider the case where (24) is fulfilled for j = 3. To this end, recall ε = (2 +
ψ(µ) − µ)/3 ∈ (0, 1) introduced to divide the integration domain, where ε < 1 is a result of
only considering µ < ζ that are sufficiently close to ζ . Again, we want to establish the existence
of an edge between a vertex in B(r) and one in B(3r) \ B(2r). For this, let us denote by V1 =
{x1 = (x1, u1), . . . ,xN1 = (xN1 , uN1)} the vertices of V restricted to locations in B(r) and by
V2 = {y1 = (y1, v1), . . . ,yN2

= (yN2 , vN2)} those vertices with locations inB(3r)\B(2r). Here,
N1 and N2 are Poisson random variables with mean of order rd. Applying the Chernoff bound for
Poisson random variables, there are constants c′, c > 0, such that

P1(N1 < c′rd) + P1(N2 < c′rd) ≤ e−cr
d

. (26)

To easy notation, we treat c′ = 1 and additionally rd ∈ N in the following and denote by c > 0 and
C > 0 constants that may change from line to line. Further, we may assume without loss of generality
that the vertices in V1 and V2 may be indexed according to their lexicographic order. We now make use
of the previously introduced regularity of uniform random variables applied to the vertex marks in V1

and V2. For the parameter a = ε, we say that V1 is ε-regular, ifN1 ≥ rd and if the collection of vertex
marks u1, . . . , urd is ε-regular. Put differently, V1 is ε-regular, if it contains sufficiently many vertices
such the the first rd indexed vertex marks form a ε-regular collection in the above sense. The same
definition applies to V2 by replacing N1 with N2 and the marks ui with the marks vi. Applying (20)
and (26) yields

P1(¬L̄(r)) ≤ P1

(
¬L̄(r) ∩ {V1,V2 are ε-regular}

)
+ e−cr

d

+ 2e−cr
dε

≤ P1

(
¬L̄(r) ∩ {V1,V2 are ε-regular}

)
+ e−cr

dε

,
(27)

for all large enough r, where the last step follows from ε < 1. It remains to bound the probability on the
right-hand side. To this end, let us write A = {V1,V2 are ε-regular}. Note that the maximal distance
between any two vertices in V1 and V2 is bounded by 6r. As ϕ is decreasing in the third argument,
we infer

P1(¬L̄(r) ∩ A) ≤ P1

( rd⋂
i,j=1

{xi 6∼ yj} ∩ A
)
≤ E1

[
1A

rd∏
i,j=1

e−ϕ
(
ui,vj ,(6r)

d
)]

= E1

[
1A exp

(
−

rd∑
i,j=1

ϕ
(
ui, vj, (6r)

d
))]

≤ P1(A) exp
(
− Cr2d

1∫
r−d+dε

du

1∫
r−d+dε

dv ϕ
(
u, v, (6r)d

))
≤ P1(A) exp

(
− CI(3)(r)

)
.

(28)

Here, we have used (22) in the second to last step, and the fact that ζ < 0 implies that, for each
v, u ∈ (0, 1), the function r 7→ ϕ(u, v, rd) cannot decay slower than polynomially (with exponent
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d(ζ − 2)). Thus, the additional factor 6 in the second to last line’s integral cannot change the order of
I(3)(r). In particular, the constant C does not depend on ε.

We thus infer

P1(L̄(r, 1)) ≥ P1(L̄(r) ∩ A) ≥ P1(A)
(
1− exp(−CI(3)(µ, r))

)
for sufficiently large r. Taking the logarithms on both sides, using our assumption on I(3) as well as
P1(A) > 1/2 for large r yields the desired result and thus finishes the proof of Part (i).

In order to prove Part (ii), we only have to show the claimed tail for P1(L(r, 1)) as the other statements
are then immediate consequences of Theorem 1.7. Recall that we now have ζ > 0. The proof works
with similar argumentation as the one used in the j = 3 case above. Indeed, fix 0 < µ < ζ ≤ 1 but
arbitrarily close to ζ and replace the ε-regularity in the event A by µ-regularity. Then, for any ε > 0
small enough such that d(2+ψ(µ))−ε > 0, we have for large enough r that I(µ, r) ≥ rd(2+ψ(µ))−ε.
We infer with the same calculations performed in (28) for sufficiently large r

P1(¬L̄(r) ∩ A) ≤ P1(A) exp
(
− Cr2d

1∫
rdµ−d

du

1∫
rdµ−d

dv ϕ
(
u, v, (6r)d

))
≤ P1(A) exp

(
− Crd(2+ψ(µ))−ε

)
.

As ε can be chosen arbitrarily small, we can find for each µ < ζ some R ≥ 1 and a constant
C > 0 such that for all r > R, by combining the final calculation with (27) (but now with respect to
µ-regularity),

P1(L(r, 1)) ≥ P1(L̄(r)) ≥ 1− exp(−Crdµ).

This proves the claimed tail and thus Theorem 2.1.

We continue with the proof of Proposition 2.3 providing the values of ζ for the interpolation model,
defined in (6) and (7).

Proof of Proposition 2.3. Recall that the connection probability for two given vertices x = (x, ux) and
y = (y, uy) is given by 1 ∧ (g(ux, uy)|x− y|d)−δ, with g(ux, uy) = (ux ∧ uy)γ(ux ∨ uy)α, in the
interpolation model. We aim to derive the values of ζ . To this end, we calculate the defining integral
of ψ(µ) in (4), noticing that only those values of µ are relevant that sufficiently truncate the defining
integral, guaranteeing that only marks contributing to the tail (g(ux, uy)r

d)−δ are considered. We fix
such a µ and obtain by definition and the symmetry of g

r−dδ
1∫

r−d+dµ

dux

1∫
ux

duy u
−γδ
x u−αδy �


r−dδ

1∫
r−d+dµ

dux u
−γδ
x , if α < 1/δ,

r−dδ
1∫

r−d+dµ
dux u

1−γδ−αδ
x , if α > 1/δ.

(29)

Let us first assume α < 1/δ. If we assume additionally γ < 1/δ, we have ψ(µ) = δ and thus
ζ = 2− δ and thus ζ < 0 if δ > 2. For the case α < 1/δ but γ > 1/δ, we find

RHS of (29) = r−dδ
1∫

r−d+dµ

dux u
−γδ
x � rd(γδ−δ−1+µ(1−γδ)).
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We thus solve

ζ = 2 + ψ(ζ) ⇐⇒ ζ = 1 + γδ − δ + ζ(1− γδ) ⇐⇒ ζ = 1− (δ − 1)/(γδ)

and we obtain that ζ < 0 if δ > 2 and γ < 1− 1/δ, ζ = 0 if δ ≥ 2 and γ = 1− 1/δ, and ζ > 0 if
δ < 2 or γ > 1− 1/δ. Let us consider next the case α > 1/δ, which yields

RHS of (29) �

{
r−dδ, if 1

δ
< α < 2

δ
and γ < 2−αδ

δ
,

rd[δ(α+γ−1)−2+µ(2−δ(α+γ))], if α > 2
δ

or γ > 2−αδ
δ
.

In the first case, we again have ψ(µ) = δ and ζ = 2− δ. To deal with the second case, we solve

ζ = δ(α + γ − 1) + ζ(2− δ(α + γ)) ⇐⇒ ζ =
δ(α + γ − 1)

δ(α + γ)− 1
.

We infer ζ < 0, if δ > 2 and α + γ < 1, ζ = 0 if δ ≥ 2 and α + γ = 1, and ζ > 0 if δ < 2 or
α + γ > 1. This concludes the proof.

Proofs for the generalised version. We turn now to the proofs for the generalised version of the
WDRCM introduced in Section 2.2. Recall the framework and assumptions explained around (8) as
well as the generalisations of ψλ and ζλ.

Proof of Theorem 2.4. Let us start with the proof of Part (i). Thus we assume ζλ < 0 for some λ > 0.
Choose some ζλ/2 > µ > ζλ arbitrarily close to ζλ. We aim for an appropriate bound for the
probability of L(r, 3). To this end, define

L̃(r) := L̃(r, µ) =
{
∃ x ∼ y : x ∈ B(r) and y ∈ B(2r)c, ux ∧ uy ≥ |y|−d(1+µ)

}
and note that

L(r, 3) ⊂ L̃(r)∪
{
∃y ∈ V : y ∈ B(r)C, uy < |y|−d(1+µ)

}
∪
{
∃x ∈ V : x ∈ B(r), ux < r−d(1+µ)

}
.

By standard properties of the Poisson point process, the latter two events on the right-hand side have
probabilities of order

λ

∫
|y|>r

dy |y|−d(1+µ) = ωd
|µ|λr

dµ ≤ ωd
|µ|∧1λr

dµ and λ

∫
|x|<r

dx rd(1+µ) = ωdλr
dµ ≤ ωd

|µ|∧1λr
dµ.

Let us bound next the probability of L̃(r). Applying Mecke’s equation [35] and (8), we obtain

Pλ(L̃(r)) ≤ Eλ
[ ∑
x:x∈B(r)

∑
y:y∈B(2r)C

1{ux∧uy>|y|−d(1+µ)}p(x,y,V \ {x,y})
]

= λ2
∫

|y|>2r

dy

∫
|x|<r

dx

1∫
|y|−d+dµ

dux

1∫
|y|−d+dµ

duy Eλp(x,y,V )

= λ2
∫

|y|>2r

dy

∫
|x|<r

dx

1∫
|y|−d+dµ

dux

1∫
|y|−d+dµ

duy ϕλ(ux, uy, |x− y|d).

DOI 10.20347/WIAS.PREPRINT.3148 Berlin 2024



Subcritical annulus crossing 31

Now observe that |x| and |x− y| are of the same order for large r. Hence, we find a constant C > 1
such that for ε > 0 and all sufficiently large r, by definition of ψλ(µ),

Pλ(L̃(r)) ≤ Cλ2ωdr
d

∫
|x|>r

dx

1∫
|x|−d+dµ

dux

1∫
|x|−d+dµ

duy ϕλ(ux, uy, |x|d)

≤ Cλ2ωdr
d

∫
|x|>r

dx |x|d(ψ(µ)+ε)

≤ Cω2
dλ

2rd(2+ψ(µ)+ε).

As ε can be chosen arbitrarily small, we can find for all ζλ/2 > µ > ζλ some R > 1 such that for all
r > R

Pλ(L(r, 2)) ≤ (λ ∨ λ2)C
(
1 + 2

|ζλ|∧1

)
rdµ. (30)

This proves Part (i). In order to prove Part (ii), observe that in case of ζλ′ < 0, we can take the
supremum supλ<λ′ on both sides of (30) and note that the λ dependent constant remains finite. This
yields the claimed decay of the long event and particularly implies Property L λ′ . As further M λ′ by
assumption, λ̂c > 0 by Theorem 1.6. This proves Part (ii). Finally, Part (iii) is a consequence of Part (i)
and Theorem 1.8.

Before we turn to the proof of Corollary 2.5, recall the soft Boolean model with local interferences,
introduced in Section 2.2.1.

Proof of Corollary 2.5. We start by proving that the soft Boolean model with local interferences is
a generalised WDRCM. That is, we show that the connection rule (9) satisfies the integration condi-
tion (8). Firstly, we observe by the translation invariance of the Poisson point process that N β((x, u),V )
and N β((o, u),V ) have the same for all given coordinates (x, u) ∈ Rd × (0, 1). Secondly, since
N β((o, u),V ) is Poisson distributed with parameter λωdu−β , it is straight forward to deduce

Eλ
[ 1

1 + N β((o, u),V )

]
=

1− e−λωdu−β

λωdu−β
� uβ. (31)

Therefore, for two given vertices x = (x, ux) and y = (y, uy) with |x − y| = r, Condition (8) is
satisfied with

ϕ(ux, uy, r
d) = 1{ux<uy}

(1− e−λωdu
−β
x )(1 ∧ u−γδx r−dδ)

λωdu
−β
x

+1{ux≥uy}
(1− e−λωdu

−β
y )(1 ∧ u−γδy r−dδ)

λωdu
−β
y

.

We show next, that the model has PM ξ
λ with ξ = d(1− 1/β) for all λ > 0. We note initially that the

realisations of the underlying Poisson point process in the two disjoint balls are independent. Moreover,
a vertex located in B(3r) can only interfere an internal edge in B(xr, 3r) subject to G(xr, r) if
the sphere of interference of said vertex intersects B(xr, 3r). As the two balls are at distance cr,
this requires a mark smaller than (cr)−d/β (by definition of N β). Thus, by symmetry and Markov’s
inequality,

Covλ(1G(r),1G(xr,r)) ≤ 2Pλ(∃x ∈ B(r) ∩ V : ux < (cr)−1/β) ≤ 2ωdλ(cr)d(1−1/β).

DOI 10.20347/WIAS.PREPRINT.3148 Berlin 2024



E. Jacob, B. Jahnel, L. Lüchtrath 32

Note that 1 − 1/β − 1 < 0 as β < 1. To calculate ζ and identify the phase it is negative in, we
calculate by making use of (31)

n−dδ
1∫

n−d+dµ

duu−γδ+β � n−dδ ∨ nd(−δ−(1−µ)(1−γδ+β)).

Hence, ζ = 2− δ and ζ < 0 for δ > 2 if γ < (1 + β)/δ, as well as

ζ =
1− β − δ(1− γ)

γδ − β

otherwise. In the latter case, we have ζ < 0 if δ > 2 and γ < (δ + β − 1)/δ. The proof concludes
by applying Theorem 2.4.

Proofs of Section 3

Next, we prove the results about the examples in Section 3. We start with Corollary 3.1 stated in
Section 3.1 about ellipses percolation. We invite the readers to familiarise themselves with the model
again.

Proof of Corollary 3.1. As λc = 0 implies λ̂c = 0, the second part of the statement is a direct conse-
quence of [47, Theorem 1.2] where λc = 0 is shown for γ > 1. For the first part, we can make use
of [24, Lemma 2], which states

Pλ
(
∃x ∼ y : x ∈ B(r), y ∈ B(2r)C

)
≤ 1− exp

(
− λcr2(1−1/γ)

)
for some constant c > 0 and r ≥ 1. As L(r, 2) implies the event on the left-hand side and the

right-hand side converges to zero for γ < 1, we have λ̂c > 0 by Theorem 1.7, and the claimed decay
of the annulus-crossing probability by Theorem 1.8.

We now turn to the proof of Proposition 3.2 showing that Cox processes introduced in Section 3.2 can
be suitable candidates for correlated underlying point clouds.

Proof of Proposition 3.2. The fact that the Conditions (G1) and (G2) are satisfied is clear from the
construction. First, we verify mixing or more precisely PM ξ

λ for all λ > 0 for ξ = 2− β. To this end,
note that we can write

Pλ
(
G(r) ∩ G(xr, r)

)
= E[fr(ΛB(r))gr(ΛB(xr,r))],

where fr(ΛB(r)) = Pλ(G(r)|Λ) and gr(ΛB(xr,r)) = Pλ(G(xr, r)|Λ), and where we used the in-
dependence of the marked Poisson points as well as the fact that the edge-drawing is assumed to
be local by (10). Here, the notation ΛB(x,r) represents the fact that Λ is evaluated only in the area
B(x, r). Now, in order to control the correlation coming from the environment, consider the three
events

Ar = {∀Yi ∈ B((1 + ε)r) : ρi < εr}
Br = {∀Yi ∈ B(xr, (1 + ε)r) : ρi < εr}
Cr =

{
∀Yi ∈

(
B((1 + ε)r) ∪B((1 + ε)r)

)c
: ρi < (|Yi| ∧ |Yi − yr|)− r

}
,
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with ε = (|x| − 2)/2. Note that, since Y = ((Yi, ρi) : i ∈ N) is an i.i.d. marked Poisson point
process, the three events are independent as they refer to points in disjoint regions of R2. Moreover,
under the event Ar ∩ Br ∩ Cr, the random variables fr(ΛB(r)) and gr(ΛB(xr,r)) are independent.
Hence, by translation invariance, Markov’s inequality, and Mecke’s formula,∣∣Covλ

(
1G(r),1G(xr,r)

)∣∣ ≤ c1(Pλ(¬Ar) + Pλ(¬Br) + Pλ(¬Cr)) ≤ c2r
2−β,

as desired. For the Condition (G3), we use Mecke’s formula and Markov’s inequality to infer

Pλ(∃x : deg(x) =∞) = lim
n↑∞

Pλ(∃x ∈ B(n) : deg(x) =∞)

≤ lim
n↑∞

Eλ
[ ∑
Xi∈X∩B(n)

1{deg(x) =∞}
]

= λ lim
n↑∞

E
[ ∫

B(n)

Λ(dx)

∫ 1

0

dux Px,uxλ (deg(x) =∞|Λ)
]

≤ λ lim
n↑∞

lim
m↑∞

1

m
E
[ ∫

B(n)

Λ(dx)

∫
dux Eλx, rx

[ ∑
X∈V

1{X ∼ x}
∣∣∣Λ]]

= λ2 lim
n↑∞

lim
m↑∞

1

m
E
[ ∫

B(n)

Λ(dx)

∫
dux

∫
Λ(dy)

∫
duy p(x,y)

]
= λ2 lim

n↑∞
lim
m↑∞

1

m

∫
B(n)

dx

∫
dux

∫
dy

∫
duy p(x,y)E[`x`y].

Another application of Mecke’s formula as well as the normalisation assumption shows E[`x`y] ≤ 2
and thus translation-invariance of p yields∫

B(n)

dx

∫
dux

∫
dy

∫
duy p(x,y)E[`x`y]

≤ 2ω2n
2

∫
duo

∫
dx

∫
dux p((o, ro), (x, rx)),

which is finite by assumption. Hence, P(∃x : deg(x) =∞) = 0. Finally, the Condition (Mon) directly
follows from the standard monotone coupling for Poisson point processes once we have conditioned
on the environment.

Finally, we prove our result about worm percolation stated in Corollary 3.3.

Proof of Corollary 3.3. Recall worm percolation introduced in Section 3.3. Clearly, the model is trans-
lation invariant, locally finite, monotone, and always has Property L λ for all λ > 0 as we restricted
ourselves to nearest neighbour edges only. It therefore remains to proof mixing. In order to do so, we
argue similar as for the Boolean model with local interference and infer

Covλ(1G(r),1G(Bxr,r)) ≤ 2Pλ
(
∃x ∈ B(r) : a worm starting in x reaches B(xr, r)

)
≤ 2λrd`[r,∞),

which tends to zero as r → ∞ uniformly in λ whenever ` has finite d-th moment. Thus the model
has M λ for all λ in this case, and we find λ̂c > 0 by Theorem 1.6. Let us now assume that the
d-th moment of ` is infinite. We aim to show that at least one worm starting in B(r) manages to
reach B(2r)c and an annulus-crossing event thus occurs. To this end, consider the following thinning
process. Firstly, we remove each site of B(r) with probability 1− exp(−ν). That is, each remaining
site has assigned at least one worm. Exactly one independent worm is started in each of these sites
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and we keep only those sites whose worms manage to reach B(2r)c. As the probability of this to
happen is decreasing in the distance of the starting site to the target boundary, said probability is
bounded from below by P`o(o ←→ B(2r)c). By independence, the number of sites in B(r) surviving
the thinning process is bounded from below by a Binomial random variable with mean of order

rd(1− e−ν)P`o(o←→ B(2r)c) � rd
∑
n≥2r

P`=no

(
sup
k≤n
|Sn| ≥ 2r

)
`{n} � rd`[2r,∞).

Here, Sn denotes a simple random walk and P`=no the measure of a random walk, starting in the origin
and performing exactly n steps. The last step follows from the fact that for each fixed r, the probability
P`=no

(
supk≤n |Sn| ≥ 2r

)
is bounded from zero and tends to one as n→∞. As the right-hand side

diverges to infinity as r → ∞, at least one vertex in B(r) is going to survive the described thinning
procedure with probability approaching one. This concludes the proof.
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