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Bernstein-type and Bennett-type inequalities for unbounded
matrix martingales

Alexey Kroshnin, Alexandra Suvorikova

Abstract

We derive explicit Bernstein-type and Bennett-type concentration inequalities for matrix-valued
supermartingale processes with unbounded observations. Specifically, we assume that the -
Orlicz (quasi-)norms of their difference process are bounded for some @ > 0. As corollaries, we
prove an empirical version of Bernstein’s inequality and an extension of the bounded differences
inequality, also known as McDiarmid’s inequality.

1 Introduction

Non-asymptotic concentration inequalities play an essential role in a wide variety of fields, including
probability theory, statistics [Arcones) [1995], graph theory [Krebs|, [2018], machine learning [Lopez-Paz
et al.,[2014], theoretical computer science [Tolstikhin and Seldin, [2013], quantum statistics [Girotti et al.|
2023], etc. These inequalities provide crucial probabilistic bounds that facilitate rigorous analysis in
both theoretical and applied contexts. Key references for comprehensive surveys include the works by
Ledoux and Talagrand [1991], [Koltchinskiil [2011], Boucheron et al.|[2013].

This paper explores Bernstein-type and Bennett-type inequalities, which are pivotal in various research
domains. These concentration inequalities play a crucial role in the analysis of weakly dependent
observations [Merlevede et al.,[2009, [Banna et al., 2016], martingales [Dzhaparidze and Van Zanten,
2001}, [Troppl [2011], stochastic and empirical processes [Bechar, 2009, Baraud, 2010, [Hang and
Steinwart, [2017], and the concentration of matrices and operators [Mackey et al., 2014, [Minsker, |2017].

1.1 Related works

In the rest of the literature survey, we aim to highlight the significant milestones in the development
of Bernstein-type bounds. The survey is structured chronologically, providing a comprehensive under-
standing of the field’s evolution.

The early results, dating back to the beginning of the 20th century, deal mainly with bounded observa-
tions.

The celebrated Bernstein’s inequality—formulated by Sergei Bernstein in the late 1920s [Bernstein,
1927]—stands as a cornerstone in the theory of concentration inequalities. It guarantees an exponential
decay rate for the tail probabilities of the sum of independent bounded random variables.

Proposition 1.1 (Bernstein’s inequality (bounded case)). Let X1, ..., X,, be independent random
variables such that

EX;=0, X;<Kas, o’°:=)» EX}.
=1

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



A. Kroshnin, A. Suvorikova 2

Then forallt > 0
P X, >t| <exp{ ————— V.
(Sxze) s {5

Note that Bernstein also proposed going beyond the bounded case and considered the following
moment bounds,

plopo
EXfﬁgUip ol p=2,3,... 1)
with 03 = IEXE, and U; > 0 being some constant. This assumption is now known as Bernstein’s
moment condition. It ensures the sub-gamma behavior of X;, see Corollary 5.2 in Zhang and Chen

[2020]. However, further research on the unbounded case did not attract much attention until the
beginning of the 21st century.

The next famous result concerning bounded observations—derived by George Bennett in 1962 [Bennett,

1962]—presents a sharper version of Proposition|[1.1

Proposition 1.2 (Bennett’s inequality). Under assumptions of Proposition[1.1), it holds for allt > O that

& o? Kt
i=1
where h(z) = (1 + ) In(1 4+ x) — x forallx > 0.

Alongside independent observations, the dependent case also gained attention. So, in 1975, David
Freedman [Freedman, [1975] derived the famous martingale extension of Proposition|1.1

Almost in parallel, in 1976, Vadim Yurinskii generalized Proposition[1.1]to the case of random variables
in Banach spaces. He assumed the norm of observations to satisfy Bernstein’s moment condition
[Yurinskii, [1976].

Joel Tropp, in 2011, generalized Freedman'’s result to the case of matrix-valued martingales (see Propo-
sition[1.3). One year later, he got a result similar to Yurinsky’s one. Namely, he applied assumption
to the matrix-valued case (see Proposition[1.4).

In the following, we denote as Anax(X) the largest eigenvalue of X, as ||.X || the operator norm of X,
and as H(d) the space of d x d Hermitian matrices.

Proposition 1.3 (Theorem 3.1, [Tropp [2011]). Let X, ..., X,, € H(d) be a sequence adapted to a
filtration ¥ C ¥y C --- C F,,. Let Xy, satisfy forallk = 1,...,n

]E[Xk|Fk_1] = O, >\max<Xk) S K as.
Setforallk =1,...,n
k k
Sk = ZX“ Ek = Z]E [X?‘Fz_l} .
i=1 i=1
Then, for allt > 0 and o? > 0,

9 o? Kt
P (3k > 0: Apax(Sk) >t and | x| < 0%) < dexp _ﬁh =) (
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Bernstein-type and Bennett-type inequalities 3

Proposition 1.4 (Theorem 6.2, Tropp|[2012]). Let random matrices X1, . .., X,, € H(d) satisfy for all
k=1,...,n,alp=2,3,..., withsome K > 0 and positive-definite matrices 33,

|
EX, =0 EX’< %KHE,C.
Let

o =

S5,
k=1

(on (55) 21) v )

All the above results deal with bounded random variables or those satisfying Bernstein’s moment
condition. As one can see, the moment condition is too strong, especially in the case of random
matrices.

Then forallt > 0

The current study focuses on the unbounded case. To introduce the setting, we briefly recall the concept
of the Orlicz norm. The Orlicz function we use is

VYo(r) =" =1, a>0.
The ),,-Orlicz (quasi-)norm of a real-valued random variable X is

| X, = inf {t>0:]E@/Ja (@) < 1}. (2)

If o« > 1, || X ||, is @ norm. In particular, if ||.X ||, < 0o, X is sub-exponential, and if ||.X ||, < oo,
X is sub-Gaussian. Moreover, if 0 < a < 1, || X]||y, is a quasi-norm.

In 2008, Radoslaw Adamczak got the concentration result for unbounded empirical processes |[Adam/{
czak, 2008]. Being applied to a particular case of a sum of independent observations, it yields a
Bernstein-type deviation bound. The result holds under the assumption that the summands have finite
14-Orlicz (quasi-)norm for 0 < o < 1.

In 2011, Vladimir Koltchinskii obtained an extension of Proposition for a sum of independent
Hermitian matrices with bounded ),-Orlicz norm.

Proposition 1.5 (Theorem 2.7, Koltchinskii [2011]). Let X, ..., X,, € H(d) be independent random
matrices. Fix o > 1. Suppose, forallk = 1,...,n, and some K > 0,

EX, =0, max <||||X,€||||W2 E||Xk||2> < K. 3)
Set

o? =

S EX:
k=1

Then, there exists an absolute constant C' > ( such that, for allt > 0,

= 1 t2
P Xill>t] <2dexpq ——= ~ 0.
( Z ) { C 52 +tK (log "Kg)l/ }

k=1 o2
Many excellent results deal with the Bernstei-type bounds under different settings, e.g., [van de Geer
and Lederer, 2013, |Gao et al., 2014]; we recommend |Boucheron et al.|[2013] for other references.
However, they are beyond the scope of the current study.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



A. Kroshnin, A. Suvorikova 4

1.2 Main results

In this work, we consider a matrix-valued supermartingale difference sequence 0 = X, Xy, ..., X, €
H(d) adapted to a filtration (F;)?, (Fo := {£2, 0} is the trivial o-algebra), i.e., E||X;|| < oo and
E[X;|F;_1] < Oforalli =1,...,n.Setforany k =1,...,n

k
i=1

Clearly, (S;)!, is a matrix supermartingale adapted to (F;)! ;.

The main result, Theorem 2.7] shows that one can obtain a combination of Bernstein- and Bennett-type
deviation bounds on maxy¢(p] Amax (Sk ). All constants are computed explicitly. We note that the result
can be extended to the case of rectangular matrices using dilations (see, e.g., [Paulsenl [2002]).

The validity of the result depends on assumptions about the behavior of the observations X;. Specifically,
we assume the conditioned Orlicz norm, || Amax(X;)+|Fi—1||4.. is bounded. As far as we know, this is
a new concept, so we explain it below.

Conditioned Orlicz norm. Let us fix a probability space ({2, F, IP). We denote by I { E'} the indicator
of an event E € I. Given a sub-o-algebra of events § C I and a random variable X € R, let y1x|g
be a conditional distribution of X w.rt. G;i.e. fx|g is a G-measurable random measure on R such that
for any Borel set A C R

uxis(A) =P[X € AlS] =E[L{X € 4}|9] as.

see Chapter 2, §7 in the book by |Shiryaev|[2016].

We define the conditional Orlicz norm of X as the norm of the conditional distribution X |Fs
IXTE [, =[x,

i.e. this is a G-measurable random variable w — || ttxr(w)]| . - Here, abusing notations, we denote
by the norm of a measure p the norm of a r.v. distributed according to p. It can be explicitly written,

e.g., as
X
| XF],, = sup t]I{E {@ba (u>'F} > 1} a.s.,
“ 1eQ,t>0 t

where Q is the set of rational numbers. As Q is countable and dense in IR, one can see that this is
indeed a random variable, and it coincides with || z.x ¢ (w) ||y, a.s.

Corollaries. To demonstrate the applicability of Theorem we derive two corollaries: an empirical
Bernstein inequality and a version of McDiarmid inequality.

Empirical Bernstein-type bound. Bernstein-type bounds rely on the true variance of the observations,
while empirical Bernstein-type inequalities, in contrast, incorporate a data-driven variance estimator
[Peel et al.} 2010, Martinez-Taboada and Ramdas|, [2024]. The latter ones play an essential role in the
theoretical analysis of machine learning algorithms [Audibert et al., [2007, [Mnih et al., 2008, Maurer and
Pontil, 2009, |Shivaswamy and Jebaral, 2010} Tolstikhin and Seldinl, [2013].

Corollary[3.3|presents an empirical Bernstein-type bound for the case of i.i.d. matrix-valued observations.
To the best of our knowledge, this result is novel.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



Bernstein-type and Bennett-type inequalities 5

McDiarmid’s inequality. McDiarmid’s inequality provides a powerful tool for bounding the deviations of
functions of independent random variables from their expected values. Specifically, it addresses the
functions satisfying the bounded property.

Let ) be a measurable space and let f: J™ — R be such that there exist Uy, ... U,, € R, satisfying

sup |f(y17 e Yie1, Yis Yig1, - - 7yn) - f(yh s 7y’i—17yz,'7yi+1a s 7y7l)| S Ul
yiey

forally € V".

McDiarmid’s inequality (see, e.g., (1.3) in|McDiarmid et al.|[1989]) ensures that if Y7,...,Y,, € )V are
independent and if f satisfies the above properties than

2
P ¥ B Y 2 ) S { -2 |

Many works develop McDiarmid inequalities under extended settings [Kutin, 2002, [Rio, 2013, |Zhang
et al.,|2019]. Among the recent results on the concentration of dependent and unbounded observation,
one should mention the work by [Maurer and Pontil [2021]. The authors propose a Bernstein-type
generalization of McDiarmid’s inequality for functions with sub-exponential differences.

Corollary and Corollary present Bernstein-type McDiarmid inequalities for functions whose
differences have bounded v/,,-Orlicz norm. We compare the results with those by Maurer and Pontil
[2021].

Organization of the paper

Section [2| presents the main result and several straightforward corollaries. It also examines the tail
behavior of the bounds and compares the main result with those discussed in the Introduction. Section|[3]
contains all corollaries. Finally, Section [4] collects the main proofs. Auxiliary results are collected in the
Appendix.

Accepted notations

Spaces and sets. We denote as H(d) the space of all d-dimensional Hermitian matrices. H, (d) C
H(d) is the set of positive semi-definite Hermitian matrices. H , (d) C H(d) is the set of positive-
definite Hermitian matrices. Further, we denote the integer indices as [n] = {1,...,n}.

Norms. Let || A|| be the operator norm of a matrix A.

Functions. From now on, we set for any x € R

logz = max(Inz,1), =z, :=max(z,0).

Let [[E] be the indicator of an event E (i.e., I[F] is a random variable). Respectively, I ; denotes the
indicator function of a set F.

Further, we define functions ¢: R — Rand h: (—1,00) — R as

o(t) =e' —1—t, h(z)=1+2)In(l+z)—2. (4)

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



A. Kroshnin, A. Suvorikova 6

Note that A is the convex conjugate of ¢.

Now, let f be a scalar function. For any d x d diagonal matrix A = diag(Ay, ..., Ag), we define
F(A) = diag (f\)s ., F(M))-
Respectively, given a matrix A € H(d) with a spectral decomposition A = UAU*, we set
F(A) = UF(A)U",

We also recall the transfer rule. Let forany x € I C R, f(z) < g(z). If all eigenvalues of A belong to
I, then f(A) < g(A).

2 Bernstein- and Bennett-type inequalities for unbounded matrix
martingales

This section presents the core Bernstein- and Bennett-type bounds for matrix supermartingales. Recall
that we formulate them in terms of a difference sequence defined in Section|1.2

Theorem 2.1. Let0 = X, Xy, ..., X,, € H(d) be a supermartingale difference sequence adapted
to a filtration (F;)_, with Fg = {£2,0}.

Fix « > 0 and set for all i € [n]

Ei =E [X?‘szl} 5 U'L = H)\max(Xi)+|File¢a~

Leto > 0,U > K > 0 be such that, with probability at least 1 — p,

Amas (Z EZ) <o® ) UP<U? maxU <K, (5)
=1 =1

1€[n]

Let
(41og L)Y/ ifa>1,
z = /o
[§1n§+4(1n%)+} , ifa < 1.

Then for any x > 0, it holds, with probability at least 1 — p — de™ — e * o < 1], that

4K
Ecn?)}( Amax(sk) <oV2x+ { ZX((K )2 >}
€l min < 2a2?, log ( (%) x
3K AU\ 4. 4\ =«
+— <2X +2In (—) +—In (—)) [a < 1] (Ben)
Q K « ae

and, moreover,

3
max Apax(Sk) < ov2x + - Kzx
ke[n) 4
l—a
K 4 4 4 Ta
+ K (QX +2In (—U) +—In (—)) I < 1]. (Ber)
« K « oe

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



Bernstein-type and Bennett-type inequalities 7

We postpone the proof to Section

Remark 2.2. Note that both bounds can be non-monotone w.r.t. o. Yet, as o is just an upper bound,
one can improve them.

1/

For simplicity, we consider the case o > 1. Setting 2’ == (4log )/, we get

4K
max Amax(Sk) < in o'V2x + =X —
k€] o'zo min {204(2/)0‘, log ((Ig—f) X>}

max Apax(Sk) < inf {0’\/&%— %Kz’x}.

k€[n] o'>0

Y

The same holds for 0 < « < 1 with the corresponding substitution of o by ¢’ to z.

Tail regimes. In this section we consider & > 1. The bound (Ben) has three tail regimes: sub-
Gaussian, sub-Poisson, and sub-exponential.

Sub-Gaussian. If (%)2 x < e,
max Amax (Sk) < 60V 2x. (7)

2 @
Sub-Poisson. If e < (£2)"x < e?**”,

m/?X )\max(Sk) S 3

Sub-exponential. If (%)2 x > e

The proofs are postponed to Appendix [Al

2.1 Comparison with other results

Bennett-type result for « — o0, Proposition [1.3] Recall that the classical Bennett’'s bound
corresponds to the case & = 400 (bounded case). Consider (Ben). If « — oo, then z — 1. This
yields az® — o0. Thus, one gets the sub-Poisson tail behavior (8) that coincides with the Bennett-type
bound from Proposition up to a multiplicative constant.

Bernstein for sub-gamma matrices, Proposition Bernstein’s moment condition is equivalent to

go (1) < 2
U, Uf
up to multiplicative constants (see p.103 in [Van Der Vaart et al. [1996]). Moreover, the proof of

Lemmal4.6|ensures that a bound on the Orlicz norm yields Bernstein’s moment condition. This, in turn,
yields Bernstein’s concentration inequality in the scalar case.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



A. Kroshnin, A. Suvorikova 8

This approach requires two-sided bounds on X; while Theorem requires only a one-sided one.
Furthermore, in the matrix setting, it is not apparent how to obtain Bernstein’s condition for non-isotropic
3% (i-e., for 32; with large condition number), except in the case of bounded or commutative random
matrices X,.

Adamczak’s result (o« < 1) [Adamczak[2008]. This work focuses on empirical processes. The
proof technique primarily builds upon the Klein—Rio bound [Klein and Rio| 2005], Hoffman—-Jargensen,
and Talagrand inequalities. As a result, the derived bound includes an additional multiplicative term that
arises naturally from these methods and is standard in the setting of empirical processes.

To illustrate the difference between our results and those of Adamczak, we consider a sum of indepen-
dent scalar random variables X, . .., X,,. The author uses truncation of X; at a certain constant level.
This yields a bound on a quantile of the tail term. The bound is proportional to ||max;e(,; | X;| Hwaxl/"‘
(see equation (11) in [Adamczak, 2008]). This bound is comparable to the quantile threshold 7 given by
(25) in the proof of Theorem 2.1

Koltchinkii’s bound (« > 1), Proposition[1.5] This setting by Vladimir Koltchinskii is the closest
to the current study setting. However, there are several differences. First, Theorem handles
dependent observations, while Proposition [1.5 assumes their independence. Further, our result is
one-sided: () requires ||| Xxl[[,, to be bounded, while our result relies only on the boundedness of
the || Amax (X )+l - Moreover, (3) depends on n, as it uses the upper bound n K instead of U?.
Finally, Koltchinskii derives only a Bernstein-type bound, while the current study presents a mixed
bound.

3 Corollaries

3.1 Straightforward corollaries

Theorem [2.1] entails two trivial corollaries. For the sake of brevity, we provide them only for o > 1.

Corollary 3.1. LetXy,...,X,, € H(d) be i.i.d. random matrices and
e 1/«
EX; <0, Mx(EX?) <0? [Daan(Xi)s ], <K, 2= <4log —) .
& )

Then, with probability at least 1 — de ™%,

)\max <12X1> SU\IQ_X+ ARz 2
n= n min{Qaza, log ((&) %)}

(e

S 1 H

The same holds for (Ber).

Proof. The proof is trivial. The assumptions of the Corollary ensure the validity of assumptions from
Theorem[2.1|with p = 0 and no?, nK? instead of o2, U2. O

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



Bernstein-type and Bennett-type inequalities 9

Corollary 3.2. Let X1, ..., X, be scalar random variables satisfying assumptions of Theorem|2.1]
with

o} =E[X]|Fis], o® =) of, U=|(X)+[Fiall,,.

X

Then with probability at least1 — p — e~

k

4K
max » X; <ov2x+ - 2 '
keln] <= min{20z2"‘, log ((%) X)}

The same holds for (Ber).

3.2 Empirical Bernstein bounds

This section presents modified bound (Ber). Namely, we replace o with its data-driven estimator &.

For the sake of simplicity, we focus on the case o > 1. However, one can obtain a similar result for
a < 1.

Corollary 3.3. LetXy,..., X, € H(d) be iid. with ¥ := E(X; — EX;)? and
Anax(B) < 0, [ Xs = EXy [y, < K.

Denote

)

- 1 - 1 — .
X =— X;, X=- X, —X)? 6% = dpax (2
X B X=X o ()

Ke)l/a.

G

and define 2 = z(K, 6; ) = (4log
Then for any x > 0 such that n > 8x, with probability at least 1 — 3de™%,

X —EXy| < &y/2= + 15K~
n n

The proof is in Section 4.2

3.3 McDiarmid inequality

In the following, we consider & > 1. Let )) be a measurable space and Y7, ..., Y,, € ) beindependent
random variables. Denote Y = (Y7,...,Y,) andset Y’ == (Y/,...,Y)) to be ani.i.d. copy of Y.

For all k € [n] define o-algebras

F—k ::U(}qa"'ayk—lay;i+17"-ayn)'

Let f: V™ — R be a measurable function. Denoting as y = (v1, - - ., ¥») € Y™ a non-random vector,
we define

fl(y) = f(y) —F f(yb e Yie1, ilﬂyi-l-la S 7yn)7

where [/ is the expectation w.r.t. Y.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024
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Corollary 3.4. Set
U= || 200 | Bl o? =E[f2(Y) | F_].

)

and let the following inequalities hold a.s.:

2 2 2 2
mkaXngKSU, ZUkSU, Zakga.
k k
Then, with probability at least 1 — e,

FY)—Ef(Y) <oyf2x" L 4 Ahex — (11)
n Kz) X)}

min {2&2“, log ((Jn“
Moreover, with probability at least 1 — e™*,

FY)=E f(Y) ga,/anzl +§sznzl. (12)

The proof is postponed to Section The next corollary specifies the result for the case of ) being a
normed space.

Corollary 3.5. Let (), ||-||) be a normed space and assume Y1, .. .,Y,, are independent random
variables. Set

ell 1/
K=K, %= DIV, o?= B, == (1100 )
i€[n] i€[n]

Then, with probability at least 1 — e, the bounds and hold for f(y) = 11> vill.

The proof is in Section For completeness, we provide the results by Maurer and Pontil| [2021].

Proposition 3.6 (Theorem 4 in [Maurer and Pontil, 2021]). In the setting of Corollary[3.4,it holds for
«a = 1, with probability at least 1 — e™*, that

fOY)=E f(Y) < 2eU+/x + 2eKx.

Proposition 3.7 (Proposition 7 (i) in [Maurer and Pontil, 2021]). In the setting of Corollary[3.5 it holds
for « = 1, with probability at least 1 — e™*, that

D Y| —E|D_Y

Note that the bounds do not depend on o. Specifically, U is used as a proxy for o.

—E < 4eU+/x + 4eKx.

4 Proofs

4.1 Proof of Theorem [2.]

The proof relies on the Chernoff method for (super-)martingales introduced in [Freedman|[1975] and
further generalized by [Tropp| [2011] to the matrix case. For the sake of completeness, let us provide
it here with the proofs. We start with the following simple generalization of the Markov inequality to
supermartingales.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024



Bernstein-type and Bennett-type inequalities 11

Lemma 4.1. Let X, ..., X, be a non-negative supermartingale adapted to the filtration (F;)I"_,.
Then foranyt > 0
E X,
P{maxXiZt} < 0
i€[n] t

Proof. Define the events
k
Ay ={Xy >t}, By:= UAi7 Cr = Ay \ Br1
i=1
and the stopping time
T(w)=nAmin{k € [n| :w e Ax}, weR

(with convention min () = o). Since (a) (X;), is a supermartingale, (b) C1, . .., C, are disjoint,
and (¢) X, [[Cy] = X, 1[Cy] > tTI[Cy] by the definition of Ct,

(a) ®) . ¢ u
EXo>EX, 2EX, Y 1G] 2EY X, ICy
k=1

k=1

1€[n]

© &
>R tICy) = tP(B,) = tP {maXXi > t} .
k=1

O

The next proposition is a master bound in the core of the proof. It is a simplified version of [Tropp), 2011},
Theorem 2.3].

Proposition 4.2. Let (Y;)", C H(d) be a matrix-valued stochastic process adapted to the filtration
(F;),. Define

V, =InE [eY"
k
Zp=>» (Yi=V), k=0,...n

i=1

Fio1) €H(d), i=1,...,n,

Then for any A € H(d) it holds that
E [trexp{Z; — A}|Fp_1] < trexp{Zy_1 — A} as.forall k € [n], (13)
and
P {max)\max (Z, — A) > o} <tre A,

keln]

Proof. By Lieb’s theorem the function X — trexp {H + In X} is concave on H., , (d) for any fixed
H € H(d) [Lieb, 1973, Theorem 6], thus by Jensen’s inequality for all k € [n]

E[trexp{Z; — A}|Fy1] =E [tr exp {Zk—l —V,+1Ine¥* — A} ’Fk—l}
< trexp {Zk—l — Vi, +InE [eY‘“ |Fk_1} - A}
=trexp{Z;_1 — A} as.

DOI 10.20347/WIAS.PREPRINT.3146 Berlin 2024
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[see [Tropp, 2011 Corollary 1.5]. Then by Lemma[4.1]

P {iné[x)](tr eZr A > 1} < EtreZo 4 = tre 4.
en

Finally, if Amax (Zz — A) > 0, then tr eZ+~A > 1, thus the claim follows. O

In the next lemmata, we often use the following simple fact [see |[Freedman, 1975, Lemma 3.1].

Proposition 4.3. Function % extended at ) by continuity to L, is analytic and increasing on R.

Lemma 4.4. Fix A > 0, o > 0. Define the function

pralo) = (000) - B Y exp (a7} (14

Then for x > 0 it holds that

sign p) ,(x) = sign (v(Az) — az®).

where r(1)
u(t) = prr—cysL (15)
We postpone the proof to the appendix.
Lemma 4.5. Fix A\, > 0. Lety > 0 satisfy
v(\y) < ay®. (16)

Ifa <1, letT > 0 satisfy as well, i.e., v(A\T) < at®.

Then forallxz € Rincaseo > 1 and for all x < 7 in case o < 1 it holds that

(b(y);y) + praly) exp {25} Tlw >y,

p(A\x) < 2?

where p) () is defined by (14).

Proof. By the monotonicity of %
A A
o0 Tl < 3] < QP22 y < ) = 2200 1, < )
(A\y) y
Case @ > 1. Consider x > y. The monotonicity of % yields that
v( Az 1 1 v(A
0< (M) — o < o _ (Ayy)'
2¢(Az) 2¢(\y)
Thus,
xXr

v(Ax) —az® < — (v(\y) —ay®) < 0.

<
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Bernstein-type and Bennett-type inequalities 13

Therefore, by Lemmal4.4} p, . is decreasing on |y, c0). Since ¢(>‘yg > lim;_yg ﬂgt) = 5, we get
P, 7

1
(\y) 2

o)) = (ona) ~ 2V 1> )+ P g
= pralz)exp a2} 1o > o + O 1w > )
2(?()\1/)

< Praly) exp {$i} Iz >y|+ = )2 I[z > y].

Combining the above inequalities, we obtain the first result.

Case 0 < a < 1. Ify > 7, then we have a simple bound

d(Ar) < 552@ < x2%7

Now, if 0 < y < T, then, due to the convexity of v(x) (Lemma and the concavity of 2,

v(Ar) —ax® <0, y<zx<T

Thus, p, .. is non-increasing on [y, 7], and the second claim follows the same way as the first one. O

The next lemma ensures a bound on a matrix moment-generating function.

Lemma 4.6. Let X € H(d) be a random matrix such that
EX <0, EX*=3%, [Auax(X)4lly, =u < +oo,
for some v > 0.

Fix A\ > 0. Lety > 0 satisfy
v(Ay) < « <g> ) (17)

u
Ifa < 1, let Amax(X) < 7 a.s. for some T > 0 satistying (17), i.e. v(AT) < o (Z)“. Then

Eexp {AX} <1+ ¢<;2y)2 +2 (qb(/\y) - AzyZ) exp {— (%)a} I

Proof. By rescaling, it is enough to consider the case u = 1. First, we recall that the moment-generating
function satisfies

Eexp {A\X} =I+AEX+E (" —I-2X) x I+ E¢(A\X).

Further, we can apply Lemma[4.5|because its conditions are fulfilled,

E¢(AX) < E (%X2 + Pra(y) exp {X‘i})

A
(b(yzy) Y+ pra(y) Eexp { Amax(X)§ } I

P(Ay)

y2

<

< X+ 210)\,a(y>]:

By replacing y — £, ¥ — L ¥ and A\ — A\u, we get the result. O
y u u
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A. Kroshnin, A. Suvorikova 14

Lemma 4.7. Let X1,..., X, be non-negative r.v. adapted to the filtration (F;)"_,, « > 0, and
U, = HXz | Fi,lm € [0,00]. FixU > K > 0 and set

E, = {ZUE < U?, m?u]cUi < K}.

i€[n
=1

Then forany ™ > K

4 \e U2 1/.\e
P <{maXXi > 71N En> <2 <—) —2675(?) ) (18)
i€n] ae T
Moreover, if
AU\ 4 4\ "
TZK(Qx+21n<—>+—ln(—>) , (19)
K « ae
then
P ({maxXi >7}iN En) <e " (20)

Proof. First, we derive the key ingredient of the lemma, a bound on the indicator function H[s > t] for
anyt > 0ands > 0.

4
Lemmaensures e > (%)= t*. Thus, forany s >t > 0

2
4\ 1 s
I[s >t < (@) 2e Te (21)
Now define auxiliary events
k
E, = U?<U? maxU; < Ky €Fy, k€ln] (22)
K {; i€[k] } g [ ]

Notethat {2 = Fy D F1 D --- D E, D E,;1 = .

The union bound ensures

P({maxX; > 7} NE,) <Y PUXi > 7} E) <> PUX > 7} NE).
' k i
Now, we are to bound P ({X; > 7} N E;). In the following bound w.l.0.g., we consider all U; > 0 a.s.
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Bernstein-type and Bennett-type inequalities 15

Otherwise, one could consider instead of U; the upper bound U; + ¢ and let ¢ — 0. Notice that

PH{X;>71}nE)=ELX; >r7] -I[E]

g (é) (%)2—5(@)“42)%[&]

T

IS

_ <(£>2 (g; (@) 11E) E {e@')a

2

4 o N
< (—) %e—%(f) EUZI[E]. (23)
oe T
The last inequality holds because U; < K on E; and E [exp { (§)O‘} Fk1] < 2.
Now, we consider
SEGIE]=EY U2 (I[E] - 1[Eq)
k k=1 i=k
=EY |A[E]-T1[En]) ) U0
=1 k=1
(a) i
< UQEZ(]I[EJ—H[EHJ):UQEH[EJSUQ, (24)
i=1

where (a) holds because on any event L it holds Zle U? < U2 Combining and (24), we get
the first result (T8).

To get (20), one has to find T s.t.

2 4 U 1 /7\«
x>l — ) + (@) +2In [ = ——(—).
X_an<ae)+n()+ n<’7'> 2\K

a 4 4
<l> —41In (g) >2x+1In4d+ —1In (—)

K T « ae
This is equivalent to

(%)a+4ln (%) —41In (%) > 2x+ln4+gln (é) )

Asln4 > 1, U > K,and 7 > K, the second claim follows. O

Thus,

Now, we are ready to prove the main result.

Proof of Theorem|[2.1l Define

{Kmax{z, (2x+2ln (%)+§1n (i))l/a}, a<l1,
T =

ae

Kz, a > 1.
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Let F, be the event, where (§) holds. Set Y; := U;z < Kz on E,. Let

N = 200 (T)al < 200 4

3K \K =3K°
and consider 0 < A < \g. Then by Lemma |B.2]

}/;' «
v(AY;) < v(AKz2) < min{4,1.5AKz} < a2z =« <—) on E,.

Now, we set
s Xiv if o Z 1,
Xi =
X; L(—o0,r(X;), otherwise.

By construction, for all i € [n] one has X; < X; and X2 < X2, thus

EX? S EX?, ”)\maX(Xi)+ < U,

Yo

Moreover, if « < 1, then /\max()N(i)Jr < 7 by construction.

Denote X
S, = Z X,
i=1

By Lemma | using the monotonicity of (2) and the fact that In(X) is a monotone map on the cone
of positive-definite matrices (see, e.g., (2.8) in[Tropp|[2012]), we obtain

V:(A) =InE [exp {)\S(Z} F _1}

< ¢(§2Y>2 +2 (¢(AK) - Azyf) eXp{_ <§)Q}I

(W) & 2 o (G(AY:) N2 _ .
=2 3 +2U; 2 y? 5 exp{—z°}1

O(AK2) U? (AKz)?
=< Wz + K2 (¢(>\K ) —

The last inequality isdue to Y; = U;z < Kz on E,.

)exp{—zo‘}I on £,

Lemmaensures for all exp {2} > & (%)2 Therefore, for all k € [n]

k

> Vi) < 2¢((AK)Z) + QZ,—Z <¢(AKz) - ) exp {—2) I

(Ki) ( (MK 2) + 2 (qb(AKz) - @)) Ion E, (27)

(MK z2)?

Note that for any a > 0

t2 _t2 2t = 1+a)) o1 +a)t)
o +a(o-5) =5+ 140X 5 < rap = S
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thus for all k € [n]

2 D
Zvi(A) < (M) G on By, where M := 2Kz, (28)
Propositionwith Y, = \X;and A = ()\t - (%)2 ng(AM)) I yields that

P {géax)\max <)\Sk — ZV ) O} <trexp{—A}
= dexp{(%)QQb(/\M) - )\t} :

Note that

)\max()‘gk) < /\max (/\gk’ - ZVZ()‘) - A) + )‘max (Z V%(/\) + A> .

Moreover, yields on L,

maX Amax <ZV > <\,

thus

P ({max Amax(Si) > t} N Ep) < dexp { (%)2 & (AM) — )\t} . (29)

k€[n]

fa>1, )N(Z = X, and we immediately get §k = Si. Thus,

P {max Amax(Sk) > t} < P{E,} + dexp { (%)2 & (AM) — )\t} .

keln]

Consider 0 < a < 1. To get the bound on S;, one has to estimate the probability that )N(Z = X;
for all i and the event E,, is true. Note that, by construction, X; # X; iff A\yax(X;) > 7. Recall that
E, C E, with E,, coming from (22). Thus, due to the choice of 7 (25), by Lemma[4.7]

P({ak cn]: S # Sk}ﬂEp> :IP’({HZ’ cn]: X, #Xi}ﬁEp)
=P{3Ji € [n]: Apax(Xi) > 7} N E,)

<P ({max Amax(Xi)1 > 71N En) <e X

1€[n]

Combining this bound with (29), we get for v < 1

k€(n]

P {max Amas(Sk) > t} <P{E,} +e ™ +dexp { (%)2 & (AM) — At}
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Optimization over \. We have to minimize exp {(%)2 ¢ (AM) — )\t} w.rt. A Let & = A\ M,
then

A% o\ . M\? ¢ o2 Mt
0EASAo (M) O AM) = Mt = <M) Jmin ¢(¢) — (;) Mt——<ﬁ> 9o <g)
with g¢, coming from Lemma [B.7}

According to the previous bounds, it is enough to find ¢ = ¢(x), s.t.

(2 s (22)

that is equivalent to

In view of Lemma[B.7] we choose

2 2

ht (M X), if x < xo,
t(x) ::{A; o? =0

o

with Xp = §0¢/(§0) — QZS(f())
Substituting Ao defined in (26)), we get for x > xq

t(x) = 3K <%>1QX < sh + 3K (2x+21n (%) + gln <i)>aﬂ[a < 1]. (30)

az® «

If x < xg, the bound (35) on h~1(-) yields

where the last inequality holds due to M = 5/3K z. We get by combining this bound with (30).

Finally, let us prove (Ber). First, we consider the case x < x( and apply the well-known bound on
h=H(),

h=(u) < V2u + %
This yields for x < xg

5Kz
9

X.

M
t(x) <ov2x+ 3X= oV 2x +

Combining this bound with for the case x > x( and using the inequality a.z® > 4, we get (Ber). O
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4.2 Proof of Corollary 3.3

Lemma 4.8. Under assumptions of Corollary|3.3, for any x > 0 andn > 2x it holds, with probability
at least 1 — 3de™*, that

. < 2x 4
o< (64| X-EXy) (1 5 ) + 3Kz\/;

Proof. The statement is trivial if ¢ < &. Now, consider the case 0 > 4. In the following, we will
construct the bound of the form o < (& + HX E X)) (14 C12)+ Cyy/Z, with Cy, Cy > 0 being
some constants.

To construct this bound, we will use the square-root trick. Let Q; == —(X; — IEXZ-)Q. First, we notice
that .
=" (X;,-EX X-EX;)?=—-= i — (X —EX;)%
S EX ) - (X DIELSEES
Thus,

o 1 __
- _EQ, :2+EZQZ»—]EQ1+(X—EX1)2.
This yields

~

02 = )\max(z) < )\max(z max < ZQ@ EQ > + )\max ((X - EXl)Z)
=52+ A max( ZQZ EQ1> +X-EX " (31)

Now we have to bound Ay ax (% >, Qi — ]EQl). We will use Theorem 1.4 from [Tropp| [2012]. Its
conditions are fulfilled, because all Q; are i.i.d., Q; < 0,and E Q; = —X, thus

/\max (Qz - EQI) S )\max(2> = 0-2‘

Theorem 1.4 in [Tropp, 2012] ensures that, with probability at least 1 — de™,
2 ,X
Amax ZQZ EQ:1 | < /2 nax (]E(Q1 ~EQ)) ) + Pl

2
< 20‘KZ\/> + O'QE (32)
3 n

The last inequality follows from Lemma|[B.5|that ensures the bound

EQ —-EQ)*=EQ? - (EQ,)’ < E(X;, -EX))* < g(aKz)2I.

Combining and (32), we get

<&+ |X-EXy| + 20Kz\/»+ §a2§

n
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(1 - 2—X> o? <5+ HX—EX1”2 +20Kz\/§.
3n n

Using a bound on the roots of a square inequality w.r.t. o, we get

1 . — 2 2Kz [x
US\/l—g—z(02+|‘X_EX1“ >+qﬁ

o+ || X -EX,|| 2Kz\/§
< ]
1— = T VT

3n

thus

Lemma'’s condition ensures 2 < £, thus

1 <1+ 2—X and L < §
— = - 3n 1—2 =2
Then
. — 2x 4 X
o< (64 |[K—EX) (”37) +§Kz\/g
Finally, 6 < o yields that z < Z. Thus, we get the result. O

Proof of Corollary[3.3 To bound HX -EX, || we use (in two sides) Corollary and Remark
This yields that, with probability at least 1 — 2de™,

— . x 3 X
[X-EX,| < inf {U, /25+4—1K2(K,g’;a)5}. (39)

In the case o0 < & we immediately obtain
_ X 3 X
X -EX;| <6y/2=+-Kz2=.
n 4 n

If o > &, it holds z < Z. Moreover, we notice that because of Lemma|B.3
0% = Apax(2) = Aax (E(Xy — E X4)?)

This ensures the result.

9 2/«
<BIX -EXiP<2(2) % - EXiIE, <26

This ensures & < V2K < V2K 3.

Now, we use Lemma Keeping in mind Lemma’s condition % < %, we get with probability at least

1 —3de™™
2x R — 4 Ix

. . 2x 13, 4 .
6+ V2KE ot DX - EX|| + 0 K2

VAN

IN

13w 42 [x\ .

13 = 5 . /x
+EHX—EX1H+§KZ\/2
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Now, using the above result and (Ber), we get

X —EX,| <oyf25 + 25"
n 4 n

o\[2= +|[X-EX,| - S, S @K% +3gsx

IN

12 n 3 4 n

S - 13 X 20v2+9  x
o2 H X —EX||- 520+ — 5 — K&
. X — 13 x 7. ..X
01/25+HX—EX1H-E-1/25+§Kzﬁ

13 X\ = R x 7 ..X
<1 - /25) X -EX| <ayf2X 4 Trs¥

Further, we recall that n > 8x and let ¢ := /2x/n < 1.

IN

IN

Thus,

13\ 134 1 26 24
1——t) =1 2 <1 2 _t<1+—t<—
( 12) +1—%— +1—§— HETHEET!
Thus, we get
26 /. x x 24 7 _x
X-—EXy|| < (14 —=4/2=|0y/2—+— =K:i-
| 1H—( 11 n)a n 112 n
52 84
<o 25+ 22 VaKE T RS
n 11 11
<04/2—+ 15Kz~
n n
O
4.3 Proofs of Corollaries 3.4 and 3.5
Let g(z1, ..., x,) be a measurable function on X", where X' is a measurable space.
Let I C [n]and I := [n] \ I. We denote
Z; if1 € I,
rrYyr) = 9\2), zi= .=
o(eryr) = 9(2) {yi .
Let I1,, be the set of all permutations of [n|, 7 € II,,: [n] — [n]. We denote
n(l) ={n(i):iel}, IC]In|
Lemma 4.9. LetY = (Y1,...,Y,) be a set of i.i.d. random variables on a measurable space ). Let
gi: Y" — R4, i € [n], be measurable and integrable functions, such that each g;(y1, . . . ,yn,) does

not depend on y; and

Z g:(Y)< M as.

i€[n]
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LetI C [n] and define
F[:O'({Y;ZGI})

Let I1,, be the set of permutations of [n|. Then it holds that

1 i n 4
E Z ZE[g”(i)(Y)’FW([Li—I])] <

mwell, i=1

The proof is postponed to the Appendix[C| Now, we are ready to prove the corollaries.

Proof of Corollary[3.4, We set
Xi = E[fi(Y)[F:] = E[f (V) [F:] — E[f(Y)[Fii],

so that

ZXi:f(Y)_Ef<Y)'

Let A > 0. We consider an arbitrary permutation 7 and set

VI (A) = InE [exp {Af(Y) = E [f(Y)[Frp)] } [Frqri-n] -
By Proposition [4.2]it holds

E exp {Af(Y) -> W(A)} <1

Thus, Jensen’s inequality yields

Eexp{)\f ZV” }<—ZEeXp{)\f ZV” }
Moreover, ensures
Z V(A AKZ Z E [ 02 0| Frti 1)} +% (gb()\Kz) &> - ZE [UQ

Notice that the definitions of a? and U; are equivalent to

Ui2 - 0-12(}/)7 07,2<y) = Efi2(y17 s 7yi—17}/i7yi+17 s 7y'f7«)7
Ui = Ul(Y)7 Ul(y) = Hfl<y17 ce 7yi717YTi7yi+17 < 7yn)H1/;a

Now we apply Lemma [4.9|first setting g; = o2, and then setting g; = U?, and get

nIZZE |F7r(z 1]_n1—102a.s.,

n+1
] Z > EUZ|Frin)] < ——U%as.

Thus,
" PAKz)n+1 , 2 AK2)?*\ _an+1
mZZV STmE a O i <¢(AK) S| e U as.
The result follows immediately from Corollary [3.2] O
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Proof of Corollary[3.5 We set f(y) = ||>_, vi|| and notice, that

>V D Yi+Y!

J#

filY) = —FE

Applying the triangle inequality, we get

A < EY; = Y/ < 1Yl + EfYil|.

Thus,
| F=illy, < WYL+ ENYilll,, < 1YL, +EIY < 20[1%l, as
Similarly,
E[f2(Y)|[F.] <AE|Yi|® as.
The result follows from Corollary [3.4] 0
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Appendix A Tail regimes

To get (7)), we recall that az® > 4. The result holds due to

Ko\ 2
mI?XAmaX(Sk) < oV2x + EKZX <ov2x | 1+2¢/2 (—Z) x| <ovox <1 + 2\/2_6) < 60v2x.

g

Bound (8) holds due to

max Apmax (Sk) < oV2x + 4Kz x
k ( K_ 2x

2 4 (Ez

S (ﬁ) o A x
o In ((KT) x)
o2 K=z
< g o ( ) ;{ _g KZX2 ‘
Kzln(( Z) X> In <(%) X)

The last inequality is due to 1 Inz = In \/z < \/z —
Bound (9) holds due to

2K 2 K2\2 1 Kz2\2 6K
max)\maX(Sk)<a\/2X—|— : <;— 2(_7:) x+ —4 (_Z> x| < Zx.

The last inequality follows from

V2 + Ao :\/%< oz —|—2\/%><—

az® oz az®

The last inequality is due to /x > exp {az®} > eaz?, since © > exp {2az°}.

Appendix B Auxiliary results

Proof of Lemmal4.4. We consider only 2z > 0. Recall that ¢/(t) = e' — 1 = ¢(¢) + ¢, thus
(@) (Az)?

(¢'(A\x) — A\x) exp {—2*} — ax®! <q§()\x) -

A(
(2600 — 2 (9000) - C25) ) exp ()
= (50

) exp {—z"}

AP \e) —az®? (x)
(\z)?/2 Pral):

Since ¢(A\x) > (O)? , Pre(x) > 0, and hence
2 3

sen ) = sion (g™ ey~ o) = (G )
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Lemma B.1. The function f(t) := % extended at 0 by continuity as f(0) = 2, is increasing on R

Proof. To prove the monotonicity of f, one has to show that f is continuous at 0, and f’(¢) > 0 for all
t # 0.

Note that
tle! —1)  t(t+o(t))

et —t—1 £ +o(t2)

hence it can be continuously extended at 0 as f(0) = 2.

ft) =

=2+o0(1), t =0,

The first derivative is
1+ e —et(2+2)

/
f(t) = 20)
Consider u(t) = 1 + € — e'(2 + ?), its derivative is
2
u'(t) = e'(2e' — 2t — 2 — %) = 2¢! (gb(t) — 5) :
By Proposition sign <gb(t) — %) = sign(t), thus u attains a global minimum at ¢ = 0 and
u(t) > u(0) = 0 forall t # 0. Therefore, f'(t) > O forall ¢ # 0. O

Lemma B.2. The function v(t), extended at 0 by continuity as v(0) = 3, is increasing and strictly
convex on R. Moreover, foranyt € R

v(t) < max{4, 1.5t}.

Proof. Note that gb(t) t( _ t)
t e —1-—
U(t) = t2 = t t2 .
o) —L et—1-t—L

To prove the strict convexity of v, one has to show that v and v are continuous at 0, and v”(¢) > 0 for

all t # 0. Note that
t (% + o(t2))
~ 7/
£+ o(t3)
hence it can be continuously extended at 0 with v(0) = 3. The first derivative is
o) +td'(t)  to(t)?
2 2
oW =3 (e -5)
(842 vt + D)+ o) (248 +oth) —t (5 + 2 +o(t))
3 2
(% + o(t?))
(528 +00) (5 5-ro) 1 (£ )
6
&+ o(t9)
(3L +21— %ﬂ@+dﬁ):t@+dﬁ):1
5_66 + o(t6) 416 4+ o(t5) 4

u(t) = =34o0(1), t—0,

V' (t) =

2

thus it is also continuous at 0 with v/(0) = ;.
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The second derivative is

V'(t) = —————— (t' 4+ 8t* — 24 + 4(* + 6) cosh ¢t — 24t sinht) .

4(a(t) = 5)" A

By Proposition sign (gb(t) — %) = sign(¢), thus the first term is positive for any ¢ # 0.

Now, we show that w is positive as well. We explicitly compute

uM (t) = 4t (> +4 —4cosht + tsinht),

D(t) = 4(3t* + 4 + (t* — 4) cosh t — 2t sinh t),
u®(t) = 4(6t + (t* — 6) sinht),
W (t) = 4(6 + (t> — 6) cosh t + 2t sinh t),
5)(t) = 4(4t cosht + (t* — 4) sinh t),
9)(t) = 4t(tcosht + 6sinh t) = 4t? cosh t + 24t sinh ¢.

Since tsinh¢ > 0 and cosht > 1 forall t # 0, one immediately obtains that u(®)(t) > 0, ¢ # 0.
Moreover, u(?(0) = O foralli = 0,...,5. By Taylor's theorem, this ensures that «(t) > 0 for all
t, with the only global minimum «(0) = 0. Thus, v”(t) > 0 for all ¢ # 0, and therefore v is strictly
convex.

Finally,
: . —t* 4 o(t?)
Jm v =t )
5 1 o(t?)

hence lim;_, ., v/(t) = 0 and f is strictly increasing.

To get the last result, we consider f(t) = W Note that f is decreasing by Proposmonand v
is increasing by Lemma[B.2]

If tg = 2.68, v(to) < 1.5 and v(ty) < 4. Thus,
v(t) < minf{o(ty), tf(to)} < min{4,1.5¢}.

LemmaB.3. Foralla > 0,1t > 0, and p > 0 it holds

pla
< (ﬁ) ol
«e

Lett, be such that at{ > p. Then for allty > ;

4 —
the ™ < e

Proof. Taking the derivative, one gets

(tpe_ta)/ = (ptr~' —at* e ™™ = (p — at™)tP e,

&

Thus, the maximum of tPe™" is attained at at® = p, where

tpe—ta — (2)p/a 6—5 — <£>
(6% ae

The second result holds because (tpe_ta)/ < 0 for at® > p. O

ya
«

The first result follows.
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Lemma B.4. Let«,u,o > 0. Then it holds for z = z(u, o; ) coming from (6) that

2
SICH
g

4

a e* ruz\?2
235 (5)
16 \ o

Proof. Let us define A := max {%, 1}, so that

4 e 1/
= 1 4In A .
: [min{a, 1} " min{a, 1} i ]

Note that by Lemma|[B.3]

S (ae)‘l/a 4
(& - Z .
—\4

First, consider the case o« < 1. Then

fo 4 4/(1
¢ :exp{—1n3+41nA}:(f) A,
(6% [0 «

and combining two bounds, we get

e > <%>2/a 2. (E)”“ A% = (%2)2/& (Az)? > (%2)2 (Az)? = % (Az)?.

4 a

Now, consider the case o« > 1:

e”" =exp{4+4ln A} = e*A*

and thus y \ A
e 2/ e e
= (26 2.2A2>(-) 2(A2)? = < (A2).
¢ —<4) dredtz () @ M) =g 42)
The claim follows. O
Lemma B.5. Fix o > 0. Let a random matrix X € H(d) be such that u = HHX””w < oo and

02 = Anax(E X?). Then, with z = z(u, o; &) defined by (§),

5)
Amax (B X*) < g(auz)?
Proof. W.l.o.g. we can assume u = 1. Notice that

gt < 222 4 2t (|| > 2] = 2222 + ate el |z > 2]

< 2222 4 e el I]|w| > 2],
where the last inequality holds due to Lemmasince az® > 4. Thus, for ¥ = E X2, we get
EX* 5 228 + 2t " EelXI"T < (2262 + 22%¢ )L (34)

Finally, Lemma[B.4] ensures that
o

o 2 25
Amax(EX?) < 2202 + 22% 7" < 2%07 + §z4 (—) = g(az)Q.
z
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Lemma B.6. The inverse function of h(z) = (z + 1) In(z + 1) — z satisfies

2u

h=1(u) < V2 )
() < Vo oo

(35)

Proof. First, consider 0 < u < % Then

2
h_l(u)§\/2u+ggv2u+ Y )
3 log 2u

The first inequality is well-known (see, e.g., Proposition 8 by [Sen [2018]), and the second one ftrivially
follows from the fact that log 2u < 6.

Now we consider u > % As h(-) is increasing, the goal is to check

h(\/2u+ 2u2 )—uz().

log 2u
Notice that

b
ln(g+e3+1) > 1.

Thus, using the definition of A(-) and the inequality 10_g2u = In2u > 6, we get

2 2 2
—u+v2u+1 In —u+v2u+1 ~ 2 Vu—u
In 2u In 2u In 2u

S 2u ) 2u 2u
_ln2un In2u In 2u Y

2 2 2
= —Inln2u) — ——-1)] = 1-— 1+Inln2 )
U (ln2u (In 2u — InIn 2u) 90 ) u< ln2u( +Inln u))

Due to the concavity of the logarithm,

r — a

Inz <Ina+ Vr,a > 0,
a
and since In 2u > 6, we get
2 In2u — 6 1 2In6 _1+1In6
1+ Inln2u) < 1+In6+ — | = = < < 1.
1n2u(+nnu)_ln2u(+n * 6 ) 3+ln2u_ 3
The claim follows. O

Lemma B.7. Let

0<A<Ao
and set xo == Ao’ (Ao) — (o).
Then, it holds that
o (@) = {hl(x)_’ ) I:fm = o
to + I/\:O <z, ifz > .
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Proof. Notice that ¢(-) is strictly convex. Thus u(A) = At — ¢(\) is strictly concave and its max is
unique. Consider

N =t—¢N)=t+1—-e*=0.
Thus, the global max is attained at In(t + 1).

Taking into account the condition 0 < A < \g, we get
g(t) = Xt — ¢(X), A" = min{\,In(t + 1)}.

The critical pointis £y = e — 1 = ¢/()\g).
Ift <,
g(t) =tIn(t +1) — ¢(In(t + 1)) = h(t).

Thus, for all = < z, zo = h(to),

We also notice that substituting ¢y = e — 1 = ¢/(\) to h(ty), one gets
Ty = h(to) = )\Ogb/(A()) — ¢(A0)

Now consider t > 1,
9(t) = Aot — d(No)-

This yields

9o (¥ (@) = Ao - Ao To Ao

Finally, notice that

To _ Mo (Ao) — (o) 1_ o(Mo) 1
P(Ao) + o Ao’ (Ao) Aod'(Ao)
the last inequality follows from the bound ’\042/\@)0) > 2 dueto Lemma O

Appendix C Proof of Lemma

Proof of Lemmal4.9 LetY’ = (Y{,...,Y)) be an independent copy of Y (all Y; are i.i.d.). First, we
notice that

Ey [9x0)(Y)Frqi-)] = By gatsy (Ya(ioas Yainp) -

This yields

n! Z ZEY () (V) Fr(ri-ap] = By |Z Z () YVa(rri-1), Y/([i,n]))'

well, i=1 " =1 well,

Second, we notice that for j € I C [n]

9:(Y1, Y1) = 9;:(Yngy Y7 )
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since ¢;(z1, ..., z,) does not depend on z;. Thus, we get for a fixed i € [n]
Z Ity (Yaua)s Yo, n})) (i = Dl n —i)! Z Z%’(YDYT)
well, IC[n]: |I|=1 j€I

=(i—1)l(n—1)! Z Zgj(YJ,Yj’).

JC[n]: |J|=i—1 j¢J

Now let ov; == i for i € [n]. Combining the above results, we get

1 n
= 2 D E[0:0 ()| Frquio]

well, i=1
:n,ZZ—l n=itaid > gV Y+ (—a) 3 Y gi(¥iY7)
[I|=i j€I [I|=i—1 j#1
-1
SO SRR 9) SAURTER) ISUCEREN D 9 DIAURE
|[I|=i jel =0 |[I|=i j¢I
Now we notice that
1l — ! 1l — !
a;(i— 1Dl (n—1d) = M, (1—apq)il(n—i—1)! < M
n n
Thus,
I~ . .
—'Z%’(Z— 1)!(71_@)!2299‘(5@ Z 1 —aj)il(n —i—1)! ZZQJ (Y7, Y7)
i3 |I|=3 jel =0 |I|=i j¢I
il(n —1)
Il PODMIIUREED wp LT
[I|=i jeI [I|=i jgI
il(n —1)
—Z pa~ Y ey
[I|=3 j=1

Recall that by the Lemma’s condition it holds that 3 7" g](YI, YZ) < M as. Further, the number of

subsets of cardinality i is [{I C [n] : [I| = i}| = (" ) Thus, we get

z(n i)l

illn—1d)! (n n—+1
mZZE (i) (V) [Fr(r 1] < W(z')M: PR

mell i=1 =0
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