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Uniqueness and regularity of weak solutions of a drift-diffusion
system for perovskite solar cells

Annegret Glitzky, Matthias Liero

Abstract

We establish a novel uniqueness result for an instationary drift-diffusion model for perovskite solar
cells. This model for vacancy-assisted charge transport uses Fermi–Dirac statistics for electrons
and holes and Blakemore statistics for the mobile ionic vacancies in the perovskite. Existence of
weak solutions and their boundedness was proven in a previous work. For the uniqueness proof,
we establish improved integrability of the gradients of the charge-carrier densities. Based on esti-
mates obtained in the previous paper, we consider suitably regularized continuity equations with
partly frozen arguments and apply the regularity results for scalar quasilinear elliptic equations by
Meinlschmidt & Rehberg, Evolution Equations and Control Theory, 2016, 5(1):147-184.

1 Introduction

Perovskite materials have outstanding optical and electronic properties [24]. They have the advan-
tages of adjustable band gap, high absorption coefficient, long exciton diffusion length, excellent car-
rier mobility and low exciton binding energy. Using layers made from the family of halide perovskites
in solar cell concepts has shown a considerable potential for high performance and low production
costs in solar cells. In recent years, the power conversion efficiency of perovskite solar cells in the
laboratory has raised rapidly from 3.8 % in 2009 to 25.5 % in 2021, see [26]. In 2023, the highest ef-
ficiency perovskite-silicon tandem solar cell had a power conversion efficiency of 29.1%, see also [1].
However, a number of challenges like stability and durability issues remain before they can become a
competitive commercial technology.

The crystal structure of perovskite materials is of the form ABX3, where A and B represent cations and
X is an anion. Typically, these ions can move and vacancies remain in the lattice, but their mobility is
much lower compared to the mobility of electrons and holes. As one aspect, the diffusion engineering
of ions and charge carriers for stable efficient perovskite solar cells turns out to be an important task
[6, 20].

In [4], a drift-diffusion model for the vacancy-assisted charge transport in perovskite solar cells was de-
rived. It describes the heterostructure composed by classical semiconductor materials and perovskite
materials. It consists of continuity equations for electrons, holes, and different kinds of vacancies in
the perovskite material that are self-consistently coupled to a Poisson equation. Using Fermi–Dirac
statistics for electrons and holes and Blakemore statistics for the vacancies, to prevent an unrealistic
accumulation of the latter, is motivated in [4]. We refer to Section 2 for a brief summary of the model
equations. Numerical analysis for a finite-volume discretized version of the model is presented in [2].
Moreover, analytical investigations concerning the existence and boundedness of weak solutions of
the instationary problem are performed in [3]. A related model for memristor devices, restricted to the
setting of Boltzmann statistics and for one fixed domain, is treated in [18].
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A. Glitzky, M. Liero 2

The aim of the present paper is a uniqueness and regularity result for weak solutions of this drift-
diffusion system for perovskite solar cells under additional assumptions (see (A5) below) based on the
results in [3]. The outline of the paper is as follows. Section 2 introduces the drift-diffusion model for the
vacancy-assisted charge transport in perovskite solar cells. In Section 3, we formulate the assump-
tions for its analytical treatment, give the weak formulation of the model equations, and briefly summa-
rize already established analytical results concerning energy estimates, a priori estimates and exis-
tence results. Our main results, i.e., the uniqueness result Theorem 4.1 and the higher regularity of the
solution (Theorem 4.4), are demonstrated in Section 4. The proof is based on an auxiliary regularity
result for scalar quasilinear parabolic equations that we present in Subsection 4.1. In Subsection 4.2,
we apply this result to verify the higher regularity result Theorem 4.4 for solutions of our coupled drift-
diffusion system that finally enables us to prove the uniqueness result in Subsection 4.3. Concluding
remarks are collected in Section 5.

2 Drift-diffusion modeling of perovskite solar cells

2.1 Drift-diffusion system

We consider a rescaled version of a drift-diffusion model derived in [4] describing the vacancy-assisted
charge transport in perovskite solar cells. Let Ω ⊂ Rd be the spatial domain of the solar cell and I
denote the index set of mobile carriers. Additionally to the movement of electrons and holes in Ω, we
take into account the migration of ionic vacancies from the index set I0 ⊂ I in Ω0 ⊂ Ω. We denote
the densities of electrons, holes, and ionic vacancies by ui, i ∈ I := {n, p} ∪ I0, where i = n and
i = p correspond to electrons and holes, respectively. The considered drift-diffusion model couples
a Poisson equation for the electrostatic potential ψ self-consistently to the continuity equations for the
densities ui

−∇ · (ε∇ψ) =

{
C + znun + zpup in (0,∞)× (Ω \ Ω0),

C + znun + zpup +
∑

i∈I0 ziui in (0,∞)× Ω0,
(2.1a)

∂ui
∂t
−∇ · (ziµiui∇ϕi) = G−R, i = n, p, in (0,∞)× Ω, (2.1b)

∂ui
∂t
−∇ · (ziµiui∇ϕi) = 0, i ∈ I0, in (0,∞)× Ω0, (2.1c)

where ε denotes a rescaled dielectric permittivity, zi the charge number of a species i ∈ I and C the
fixed doping density. Additionally, µi are the rescaled carrier mobilities and the generation/recombination
termsG andR in the continuity equations for electrons and holes (2.1b) are discussed in Subsection 2.3.
For the ionic vacancies i ∈ I0 we do not consider any reactions. The statistical relation connecting
the potentials ϕi and ψ to the charge-carrier densities ui is given by

ui = NiFi(zi(ϕi − ψ) + ζi) = NiFi(vi + ζi), where vi = zi(ϕi − ψ), i ∈ I, (2.2)

with the effective densities of state Nn and Np for electrons and holes, the maximal density of vacan-
cies Ni, i ∈ I0, the chemical potentials vi and ζi := ziEi, i ∈ I , where Ei is the band-edge energy.
The statistics function Fi will be discussed in Subsection 2.2. Note that in comparison to the model
in [4], we rescaled the electrostatic potential ψ and the quasi Fermi potentials ϕi by the thermal volt-
age UT = kBT/q (kB is Boltzmann’s constant, T the (constant) temperature and q the elementary
charge). Moreover, the chemical potentials vi and the band-edge energies Ei are rescaled by kBT .
And we multiplied the dielectric permittivity ε by UT/q and the mobilities µi by UT . This rescaling was
already used in [3], where the existence of weak solutions of the system (2.1) was proved.
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2.2 Statistical functions

The statistical functions for electrons and holes in classical (inorganic) semiconductors are given by
the Fermi–Dirac integral of order 1/2 (see e.g., [25])

F1/2(z) =
2√
π

∫ ∞
0

ξ1/2

exp(ξ − z) + 1
dξ, for z ∈ R (2.3)

i.e., Fn = Fp = F1/2. For small to moderate carrier densities, the Fermi–Dirac integral of order
1/2 can be approximated by the exponential function (Boltzmann statistics), i.e., F1/2(z) ≈ ez, see
[25]. Our analysis and the results in [3] are not restricted to these specific choices, but work under the
following general assumptions on the statistical functions

(i) Fi ∈ C1(R), lim
z→−∞

Fi(z) = 0, lim
z→+∞

Fi(z) = +∞,

(ii) z ≤ c(1 + Fi(z)) for z ∈ R+,

(iii) 0 < F ′i(z) ≤ Fi(z) ≤ ez for z ∈ R,

i = n, p. (2.4)

The accumulation of too many vacancies is physically unrealistic, as it would destroy the crystal struc-
ture. Limiting adequately the vacancy concentration can be done via a proper choice of the statistical
function. In [4], the use of the Fermi–Dirac integral of order −1 (which corresponds to Blakemore
statistics FB,γ function with γ = 1)

F−1(z) = FB,1(z), where FB,γ(z) =
1

e−z + γ
for z ∈ R, (2.5)

i.e., Fi = F−1 for all i ∈ I0 is motivated and proposed. In our analytical investigations, we assume
that the statistics function of the ionic vacancies satisfies the following properties

(i) Fi ∈ C2(R), lim
z→−∞

Fi(z) = 0, lim
z→+∞

Fi(z) = 1,

(ii) F ′i(z) < Fi(z) < ez for z ∈ R.,

(iii) F ′′i (z) < 0,
|F ′′i (z)|
F ′i(z)

< 1 for z ∈ R+,

(iv) 1 < (ezF ′i(z))−1 < c, for z ∈ R+,

i ∈ I0. (2.6)

Note that the Fermi–Dirac integral of order 1/2 and the Boltzmann statistics satisfy the properties (2.4)
while the Fermi–Dirac integral of order −1 satisfies (2.6), see also [3].

2.3 Generation-recombination rate and photogeneration

According to [8], we use for the generation-recombination term R in (2.1b) the expression

R = r(·, un, up)
(
1− eϕn−ϕp

)
with r(·, un, up) = r0(·, un, up)unup. (2.7)

Following [4], the function r is given by the sum of all recombination processes relevant in photo-
voltaics like radiative and trap-assisted Shockley-Read-Hall recombination. In the simplest case, the
photogeneration rate G is considered to be constant in time and one assumes a Beer-Lambert gen-
eration profile in the vertical direction xvert, i.e., G(x) = FphαG e−αGxvert for x = (x, xvert), where
Fph denotes the incident photon flux and αG a material absorption coefficient.

DOI 10.20347/WIAS.PREPRINT.3142 Berlin 2024



A. Glitzky, M. Liero 4

2.4 Initial and boundary conditions

We prescribe for all densities initial values

ui(0) = u0
i in Ω, i = n, p, ui(0) = u0

i in Ω0, i ∈ I0. (2.8)

For the formulation of boundary conditions we decompose ∂Ω into the set of Ohmic contacts ΓD
and the semiconductor-insulator interface ΓN . Ohmic contacts like semiconductor-metal interfaces are
modeled by Dirichlet boundary conditions

ψ = ψD, ϕi = ϕD, i = n, p, on (0,∞)× ΓD. (2.9a)

Semiconductor-insulator interfaces are described by no-flux boundary conditions

ε∇ψ · ν = µiui∇ϕi · ν = 0, i = n, p, on (0,∞)× ΓN , (2.9b)

where ν denotes the outer normal vector. At the boundary of the perovskite domain ∂Ω0 with outer
normal vector ν0 we suppose no normal flux of ionic vacancies

µiui∇ϕi · ν0 = 0 on (0,∞)× ∂Ω0, i ∈ I0. (2.9c)

3 Analysis of the instationary drift-diffusion model

3.1 Notation and assumptions on the data

In our estimates, positive constants, depending at most on the data of our problem, are denoted by c.
In particular, we allow them to change from line to line. We work with the Lebesgue spaces Lp(Ω) and
the Sobolev spaces W 1,p(Ω), p ∈ [1,∞], and H1(Ω) = W 1,2(Ω). For p ∈ [1,∞], we define the
spaces W 1,p

D (Ω) as the closure of the set {y|Ω : y ∈ C∞0 (Rd), suppy ∩ ΓD = ∅} in the Sobolev

space W 1,p(Ω) and W−1,p
D (Ω) := W 1,p′

D (Ω)∗, where 1/p+ 1/p′ = 1.

We study the drift-diffusion model under the assumptions

(A1) Ω,Ω0 ⊂ R2 are bounded Lipschitz domains, Ω ∪ ΓN is regular in the sense of
Gröger [16], ΓD, ΓN ⊂ Γ := ∂Ω are disjoint subsets such that ΓD ∪ ΓN = Γ
and ΓD is closed and mes(ΓD) > 0, Ω0 ⊂ Ω, Ωn = Ωp := Ω, Ωi := Ω0, i ∈ I0.

(A2) Fi fulfill (2.4) for i = n, p, Fi fulfill (2.6) for i ∈ I0,
Ni, µi ∈ L∞(Ωi), 0 < N ≤ Ni ≤ N, 0 < µ ≤ µi ≤ µ a.e. in Ωi, ζi = const, i ∈ I ,
and C, ε ∈ L∞(Ω), 0 < ε ≤ ε a.e. in Ω, zn = −1, zp = 1, zi ∈ Z, i ∈ I0,
vD0 := ψD, ϕD ∈ W 1,∞(Ω).

(A3) G ∈ L∞(R+;L∞+ (Ω)),
R = r(·, un, up)

(
1− eϕn−ϕp

)
, such that r(·, un, up) = r0(·, un, up)un up, where

r0 : Ω× [0,+∞)2 → R is a Carathéodory function with
0 ≤ r0(·, un, up) ≤ r for all (un, up) ∈ [0,+∞)2 and a.a. x ∈ Ω.

(A4) u0
i ∈ L∞(Ω), 0 < u ≤ u0

i ≤ u a.e. in Ω, i = n, p,
u0
i ∈ L∞(Ω0), 0 < u ≤ u0

i ≤ ui < Ni a.e. in Ω0, i ∈ I0.

In the following, we suppress in the writing the spatial position x in the terms r and r0.
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3.2 Weak formulation

We introduce the functions ei : R→ (0,∞), i = n, p, and ei : R→ (0, 1), i ∈ I0, for the statistical
relations

ei(y) = Fi(y + ζi), i ∈ I. (3.1)

The inverse functions e−1
i are well-defined on (0,∞) for i = n, p, and on (0, 1) for i ∈ I0. From As-

sumption (A2), we obtain the following relation between the densities ui and the associated chemical
potentials vi

ui = Niei(vi) = NiFi(vi + ζi), vi = e−1
i ( ui

Ni
) = F−1

i ( ui
Ni

)− ζi,
∇ ui

Ni
= F ′i(vi + ζi)∇vi = e′i(vi)∇vi.

(3.2)

We define the function spaces

V := V 3
D × V

#I0
0 , VD := {y ∈ H1(Ω) : y|ΓD = 0}, V0 = H1(Ω0),

H := VD × L2(Ω)2 × L2(Ω0)#I0 , Z := H1(Ω)× L∞(Ω)2 × L∞(Ω0)#I0 ,

U :=
{
u ∈ V ∗D × L∞(Ω)2 × L2(Ω0)#I0 : lnui ∈ L∞(Ω), i = n, p,

0 < ess inf
x∈Ω0

ui/Ni ≤ ess sup
x∈Ω0

ui/Ni < 1, i ∈ I0

}
,

where #I0 denotes the number of elements of the set I0.

In [3], we considered a weak formulation of (2.1) in the form u′ + A(v, v) = 0, u = E(v),
u(0) = u0 with the variables v = (v0, vn, vp, (vi)i∈I0) := (ψ, (zi(ϕi−ψ))i∈I) (potentials) and
u := (u0, un, up, (ui)i∈I0) (densities) as well as operators A and E defined below (see also [9,
11, 14]). The first component u0 represents the total charge density of the device, i.e., the right-
hand side in (2.1a), and the initial value u0 := (u0

0, u
0
n, u

0
p, (u

0
i )i∈I0) is such that 〈u0

0, w〉VD =∑
i∈I
∫

Ωi
ziu

0
iw dx +

∫
Ω
Cw dx for all w ∈ VD. We recall that zn = −1, zp = 1, and zi, i ∈ I0,

stands for the charge number of the i-th vacancy species. In these variables, the problem reads

−∇ · (ε∇v0) =

{
C + znun + zpup, in (0,∞)× (Ω \ Ω0)

C + znun + zpup +
∑

i∈I0 ziui, in (0,∞)× Ω0

,

∂ui
∂t
−∇ · (µiui(∇vi + zi∇v0)) = G−R, ui = Niei(vi), i = n, p,

∂ui
∂t
−∇ · (µiui(∇vi + zi∇v0)) = 0, ui = Niei(vi), i ∈ I0,

(3.3)

where R = r(un, up)
(
1 − e−vn−vp

)
. The prescribed Dirichlet values are vDn := vD0 − ϕD, vDp :=

ϕD − vD0 = −vDn . In case of the ions, we do not have to prescribe a Dirichlet value, however, for a
unified notation, we set vD := (vD0 , v

D
n , v

D
p , (0)i∈I0). We introduce the operators E0 : vD0 + VD →

V ∗D, E : (vD + V ) ∩ Z → V ∗, and A : Z × (vD + V )→ V ∗ by

E(v) := (E0(v0), (Niei(vi))i∈I), 〈E0(v0), v0〉VD :=

∫
Ω

ε∇v0 · ∇v0 dx,

〈A(w, v), v〉V :=
∑
i∈I

∫
Ωi

Niei(wi)µi∇(vi + ziv0) · ∇(vi + ziv0) dx

+

∫
Ω

[r(Nnen(wn), Npep(wp))
(
1− e−wn−wp

)
−G](vn + vp) dx
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for all v ∈ V . The weak formulation of the drift-diffusion system (2.1), (2.8), (2.9) is

u′ + A(v, v) = 0, u = E(v) a.e. on R+, u(0) = u0,

u ∈ H1
loc(R+, V

∗), v − vD ∈ L2
loc(R+, V ) ∩ L∞loc(R+, Z).

(P)

3.3 Summary of analytical results for the drift-diffusion system

Next we give a very short overview on analytical results for Problem (P) obtained so far in [3]. They
concern energy estimates, solvability, and bounds of solutions.

Energy estimates. In the analysis of the drift-diffusion problem, entropy methods as in [9, 11, 19]
play an important part. In [3], we considered a free energy functional Ψ containing an electrostatic
contribution and a chemical part that is obtained from the statistical relations of the different types of
species. For states u = Ev ∈ V ∗ ∩ U , it has the form

Ψ(u) =

∫
Ω

ε

2
|∇(v0−vD0 )|2 dx+

∑
i∈I

∫
Ωi

∫ vi

vDi

[ui−Niei(y)]dy dx. (3.4)

For Blakemore statistics, ei = F−1(·+ ζi) = FB,1(·+ ζi), the chemical energy for an ionic vacancy
i ∈ I0 in (3.4) reads∫

Ω0

∫ vi

0

[ui−Niei(y)]dy dx =

∫
Ω0

(
ui ln

ui
Ni

+(Ni−ui) ln
(
1− ui

Ni

)
−uiζi+Ni ln(eζi +1)

)
dx,

which forces the ion vacancy density ui to stay in [0, Ni]. For arguments u = E(v) we find

‖un‖L1(Ω) + ‖up‖L1(Ω) +
∑
i∈I0

‖ui‖L1(Ω0) + ‖v0‖2
H1(Ω) ≤ c(1 + Ψ(u)). (3.5)

In [3, Theorem 4.1] the following energy estimate was obtained.

Theorem 3.1 ([3, Theorem 4.1]) Let (A1) – (A4) be fulfilled. Then there is a constant c > 0 such
that

Ψ(u(t)) ≤
(
Ψ(u(0)) + c

)
ect ∀ t > 0

for any solution (u, v) to Problem (P). Additionally, if the Dirichlet values are compatible with thermo-
dynamic equilibrium (meaning vD0 , ϕ

D = const) and if the generation rate G is identically zero, then
t 7→ Ψ(u(t)) is monotonically decreasing.

Moreover, for any solution (u, v) to (P) we have the conservation laws (see [3, Remark 4.1])∫
Ω0

ui(t) dx =

∫
Ω0

u0
i dx, i ∈ I0, for all t ∈ R+, ∀i ∈ I0.

Existence and boundedness of solutions. Under the Assumptions (A1) – (A4) the existence of a
solution to Problem (P) is verified by demonstrating the existence of solutions for any finite time interval
S := [0, T ]. We introduce the Problem

u′ + A(v, v) = 0, u = E(v) a.e. on S, u(0) = u0,

u ∈ H1(S, V ∗), v − vD ∈ L2(S, V ) ∩ L∞(S,Z).
(PS)
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Theorem 3.2 ([3, Theorem 5.1]) We assume (A1) – (A4). Then, for all T > 0, S := [0, T ], there
exists at least one solution to Problem (PS).

The proof of this existence result is based on the following steps: First, a regularized problem (PM) on
the time interval S is discussed, where the state equations as well as the reaction term are regularized
(with parameter M ). Solvability of (PM) is shown by time discretization, derivation of suitable a priori
estimates, and passage to the limit (see [3, Lemma 5.1 and Lemma 5.2]).

Then, we provide a priori estimates for solutions (uM , vM) to (PM) that are independent of M (see
[3, Lemma 5.6], here we use Moser techniques to get positive lower bounds for the carrier densities
uMi . Moreover, in [3, Lemma 5.5 and Lemma 5.7] upper bounds independent of M are derived for the
chemical potentials vMi , i ∈ I). Thus, a solution to (PM) is a solution to (PS), ifM is chosen sufficiently
large.

Theorem 3.3 ([3, Theorem 5.2]) We assume (A1) – (A4). Then, for all T > 0, S = [0, T ] there
exist c0(T ), c1(T ), c2(T ) > 0 such that for any solution (u, v) to Problem (PS)

c1(T ) ≤ ui(t) ≤ c0(T ) a.e. in Ω, i = n, p,

c1(T ) ≤ ui(t) ≤ c2(T )Ni a.e. in Ω0, i ∈ I0, ∀ t ∈ S.

Remark 3.1 In [3, Theorem 5.2], the upper bounds for electron and hole densities were obtained by
test functions of the form

2m
(
0, [( un

Nn
−K)+]2

m−1, [( up
Np
−K)+]2

m−1, (0)i∈I0
)
, m ≥ 1,

where K := max
{

maxi=n,p ‖ei(zi(ϕD − vD0 ))‖L∞(Ω),maxi∈I ‖u0
i /Ni‖L∞(Ωi)

}
and Moser-type

estimates. For i ∈ I , the positive lower bound for ui was established by test functions

−2m
[(

ln (ui/Ni) + K̂
)−]2m−1

ui/Ni

, m ≥ 1, where

K̂ := max
{

maxi=n,p ‖ln ei(vDi )‖L∞ ,maxi∈I ‖
(

ln(u0
i /Ni)

)−‖L∞ ,maxi∈I ln ei(0)
}

used sepa-
rately for the i-th continuity equation and Moser techniques. Finally, the upper bounds for the densities
of ionic vacancies strictly below Ni were (roughly speaking) obtained by applying the last line of (2.6)
and by means of test functions

2m
[
(evi − K̃)+

]2m−1
evi

e′i(vi)
, m ≥ 1, where K̃ := max

i∈I0
max

{
e‖e
−1
i (u0

i /Ni)‖L∞(Ω0) , e−ζi , 1
}

used separately for the i-th continuity equation together with a Moser iteration.

4 Uniqueness result and regularity properties

One main result of this paper is the uniqueness of the weak solution to the drift-diffusion system
for perovskite solar cells in Problem (P). Note that for the pure electronic charge transport (only van
Roosbroeck system for electrons and holes and I0 = ∅) the following results are known: In the case
of Boltzmann statistics, uniqueness of solutions holds (see e.g. [10, Theorem 5.1]). Note that in the
case of Boltzmann statistics and for homogeneous materials with constant coefficients, the diffusive
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term in the charge-carrier flux has the form µi∇ui whereas for more general statistical relations terms
of the form bi(ui)∇ui have to be handled to show uniqueness. For Fermi–Dirac statistics uniqueness
has been proven under unjustified ad hoc assumptions concerning the smoothness of solutions in
[9, Theorem 3.2]. Another uniqueness result for a special coupled system of one nonlinear parabolic
equation and one elliptic equation with more general statistical relations is derived in [13].

In addition to the Assumptions (A1) – (A4), needed already for the existence proof and for the deriva-
tion of the boundedness results of Theorem 3.3, we will suppose the following properties of the data
for our uniqueness result:

(A5) Ω and Ω0 are domains with Lipschitz boundary
(strong Lipschitz domains in the sense of Grisvard [15, Chapter 1.2]);
Ni = const, Fi ∈ C2(R), i ∈ I ;
uDi := Niei(v

D
i ), u0

i − uDi ∈ W
1,λ
D (Ω), i = n, p,

u0
i ∈ W

1,λ
D (Ω0), i ∈ I0, for some λ > 2;

r0 is locally Lipschitz continuous.

We recall that the subset of ∂Ωi, where Dirichlet boundary conditions are prescribed in the continuity
equations, is empty for the ionic vacancies i ∈ I0, we only set for a unified writing W 1,λ

D (Ωi) :=
W 1,λ(Ωi) and correspondingly uDi := 0 for i ∈ I0.

Now we are able to formulate the main result of our present paper that concerns the unique solvability
of Problem (P).

Theorem 4.1 Under the Assumptions (A1) – (A5) the Problem (P) has at most one solution.

Proof. For the proof of Theorem 4.1, it suffices to demonstrate that for any T > 0 and S := [0, T ],
we have the uniqueness of the solution to (PS) (see Theorem 4.2). Namely, if we would have two
different solutions (u1, v1) and (u2, v2) to Problem (P) then there would be some T0 > 0 and S0 =
[0, T0] such that (u1|[0,T0], v

1|[0,T0]) and (u2|[0,T0], v
2|[0,T0]) would be two different solutions to (PS0).

Therefore the desired result follows directly from Theorem 4.2 below. �

Theorem 4.2 We assume (A1) – (A5). Let T > 0 be arbitrarily given and S := [0, T ]. Then Problem
(PS) has at most one solution.

We start with a short outline of the proof of Theorem 4.2:

Step 1. Since Ni is constant (see (A5)), we obtain from (3.2) for solutions (u, v) to (PS) that ∇ui =
Nie

′
i(vi)∇vi and the diffusive part in the flux terms of the continuity equations in (3.3) can be rewritten

as

µiui∇vi = µi
ui
Ni

(e−1
i )′
( ui
Ni

)
∇ui = bi(ui)∇ui, where bi(ui) := µi

ui
Ni

(e−1
i )′
( ui
Ni

)
, i ∈ I.

According to the uniform positive lower and upper bounds for the concentrations ui guaranteed by
Theorem 3.3, we find constants b and b such that

0 < b ≤ bi(ui(t)) ≤ b a.e. in Ωi ∀t ∈ S, i ∈ I,

for all solutions (u, v) to (PS). Under Assumptions (A2) and (A5), for the given vDi ∈ W 1,∞(Ω) and
constant Ni, we define uDi := Niei(v

D
i ) ∈ W 1,∞(Ω) and obtain ui = ũi + uDi ∈ L2(S,H1(Ω)) ∩
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Uniqueness and regularity of weak solutions of a drift-diffusion system for perovskite solar cells 9

L∞(S, L∞(Ω)) with ũi := Niei(vi) − Niei(v
D
i ) ∈ L2(S,W 1,2

D (Ω)), i = n, p. (Note that for the
ionic vacancies we do not prescribe any Dirichlet conditions. Only for a unified notation we set uDi = 0,
i ∈ I0.) Thus, solutions (u, v) to (PS) fulfill∫ T

0

〈u′i, wi〉VD dt = −
∫ T

0

∫
Ω

(
(bi(ui)∇ui+ziµiui∇v0) · ∇wi +Q(un, up)wi

)
dx dt, i = n, p,∫ T

0

〈u′i, wi〉V0 dt = −
∫ T

0

∫
Ω0

(bi(ui)∇ui + ziµiui∇v0) · ∇wi dx dt, i ∈ I0,

for all wi ∈ L2(S,W 1,2
D (Ω)), i = n, p, and all wi ∈ L2(S,H1(Ω0)), i ∈ I0, respectively, with

Q(un, up) := r(un, up)
(
1− e−e

−1
n (un/Nn)−e−1

p (up/Np)
)
−G. (4.1)

In this setting, we will apply for each separate continuity equation the regularity theory for quasilinear
parabolic equations, see e.g., [22, 21, 17].

Step 2. The aim is to improve the integrability properties of ∇ui. We verify the existence of a q > 2
such that for all solutions (u, v) to (PS) and all s ≥ 1 we find ui ∈ Ls(S,W 1,q(Ωi)), i ∈ I , see
Theorem 4.4 in Subsection 4.2.

For this purpose, we exploit the regularity result [22, Theorem 5.3] for scalar quasilinear parabolic
equations, which is summarized in Subsection 4.1. We apply this result in Subsection 4.2, separately
to suitably regularized versions of the above continuity equations, i ∈ I , where ui in bi and in the drift
term are replaced by truncated densities. The cut-off is chosen in such a way that the truncations have
no effect for solutions due to Theorem 3.3. Moreover, in these regularized equations, the electrostatic
potential v0 in the drift term and the carrier densities un, up in the generation-recombination term
Q(un, up) are fixed by a solution (u, v) to (PS). Theorem 4.3 below guarantees a unique solution yi ∈
Ls(S,W 1,q

D (Ω)) (i = n, p) or yi ∈ Ls(S,W 1,q(Ω0)) (i ∈ I0) to the regularized continuity equation
(see Problem (Piq) below). This solution is also a solution in H1(S,W 1,2

D (Ωi)
∗) ∩ L2(S,W 1,2

D (Ωi))
to an auxiliary Problem (Pi2), see Subsection 4.2.

However, for any solution (u, v) to (PS) (where uDi = 0 for i ∈ I0) the function ũi = ui − uDi is also
a solution to the auxiliary Problem (Pi2), and we establish that yi = ũi has to hold (see Lemma 4.1).
Thus, we obtain the better integrability property of∇ui, which proves the assertion of Theorem 4.4 in
Subsection 4.2.

Step 3. Exploiting this improved regularity of ∇ui, we establish in Subsection 4.3 the uniqueness
result stated in Theorem 4.2 for the coupled system.

4.1 Higher regularity result for scalar quasilinear parabolic equations

Let us first recall a well-known regularity result for the linear elliptic situation due to Gröger. Let ρ :
Ω → R be a bounded, measurable function with 0 < ρ ≤ ρ(x) ≤ ρ a.e. in Ω. We define the linear

operator, denoted in the following by −∇ · ρ∇+ 1 : W 1,2
D (Ω)→ W−1,2

D (Ω), via

〈(−∇ · ρ∇+ 1)w,w〉W 1,2
D (Ω) :=

∫
Ω

(ρ∇w · ∇w + ww) dx for w,w ∈ W 1,2
D (Ω).

We also denote the maximal restriction of −∇ · ρ∇ + 1 to any of the spaces W−1,q
D (Ω) (q > 2) by

the same symbol, −∇ · ρ∇+ 1.
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If the set Ω ∪ ΓN is regular in the sense of Gröger, the regularity result [16, Theorem 1] ensures
an exponent q0 > 2 such that −∇ · ρ∇ + 1 maps W 1,q

D (Ω) onto W−1,q
D (Ω) for all q ∈ [2, q0].

In particular, the operator is a topological isomorphism, and its inverse is Lipschitz continuous. We
emphasize that the exponent q0 only depends on the geometrical setting Ω ⊂ Rd, ΓN as well as ρ,
and ρ.

Next, we summarize the regularity result for scalar quasilinear parabolic equations, obtained in [22],
that we will apply to improve the integrability properties of the gradient of the charge-carrier densities
ui for solutions to (PS). We consider equations of the following form

y′(t)−∇ ·
(
θ(y(t))µ∇y(t)

)
+ y(t) = F(t, y(t)), y(0) = y0. (4.2)

The regularity result covers the geometric setting characterized by the following assumption.

Assumption (A) (see Assumptions 2.2, 2.4 in [22])
Let Ω ⊂ Rd be a bounded domain and ΓD be a closed subset of ∂Ω (which may be empty), and
ΓN := ∂Ω \ ΓD such that
i) If x ∈ ∂Ω \ ΓN , there is a domain Ux =: U with x ∈ U , such that U ∩ ΓN = ∅ and U ∩ Ω has
only finitely many connected components Y1, . . . , Yk, where x is a limit point of each Yj . Moreover, for
every j ∈ {1, . . . , k}, there exists a τj > 0, an open neighbourhoodUj of x satisfying Yj ⊆ Uj ⊆ U ,
and a bi-Lipschitz mapping φj defined on an open neighbourhood of Uj into Rd, such that φj(x) = 0,
φj(Uj) = τj{x ∈ Rd : ‖x‖∞ < 1}, φj(Yj) = τj {x ∈ Rd : ‖x‖∞ < 1, xd < 0}, and
φj(∂Yj ∩ Uj) = τj {x ∈ Rd : ‖x‖∞ < 1, xd = 0}.
ii) For each x ∈ ΓN there is an open neighbourhood Ux =: U of x, a number τx =: τ > 0 and a
bi-Lipschitz mapping φx =: φ from an open neighbourhood of U into Rd, such that φ(x) = 0 ∈ Rd,
φ(U) = τ{x ∈ Rd : ‖x‖∞ < 1}, φ(U ∩ Ω) = τ{x ∈ Rd : ‖x‖∞ < 1, xd < 0}, and
φ(∂Ω ∩ U) = τ{x ∈ Rd : ‖x‖∞ < 1, xd = 0}.

(a) If x ∈ ΓN , then U does not intersect ΓD, i.e., φ(ΓD ∩ U) = ∅.
(b) If x ∈ ΓN ∩ ΓD, then φ(ΓD ∩ U) = τ{x ∈ Rd : ‖x‖∞ < 1, xd = 0, xd−1 ≤ 0}.

iii) Each of the occurring mappings φ is volume-preserving.

Remark 4.1 In [21, Definition 1.3.12] a similar condition on the geometric setting as in Assumption
(A) is introduced, called volume-preserving generalized regular in the sense of Gröger. (But note that,
Gröger regularity in the original work [16] is formulated in terms of Ω ∪ ΓN ).

Furthermore, the assumptions concerning the right-hand side F in (4.2) are as follows.

Assumption (B) (see Assumption 5.1 in [22])
i) The function F : S × C(Ω) → W−1,q

D (Ω) is a Carathéodory function, i.e., F(·, y) : S →
W−1,q
D (Ω) is measurable for each y ∈ C(Ω) and F(t, ·) : C(Ω) → W−1,q

D (Ω) is continuous for all
t ∈ S.

ii) For s ∈ (1,∞), we assume that the superposition operator y 7→ [t 7→ F(t, y(t))] is continuous
from every bounded set of C(S × Ω) to Ls(S,W−1,q

D (Ω)) with

sup
y∈C(Ω)

‖F(·, y)‖Ls(S,W−1,q
D (Ω)) ≤ cF

for some constant cF > 0.

DOI 10.20347/WIAS.PREPRINT.3142 Berlin 2024



Uniqueness and regularity of weak solutions of a drift-diffusion system for perovskite solar cells 11

Remark 4.2 Note that the continuity condition in Assumption (B) is satisfied for a Carathéodory func-
tionF , if the boundedness property is fulfilled and for every η > 0 there exists a function Lη ∈ Ls(S)
such that

‖F(t, y1)−F(t, y2)‖W−1,q
D (Ω) ≤ Lη(t)‖y1 − y2‖C(Ω) f.a.a. t ∈ S,

where y1, y2 ∈ C(Ω) with ‖y1‖C(Ω), ‖y2‖C(Ω) ≤ η.

Theorem 4.3 (Theorem 5.3 in [22]) We assume (A) with d ≤ 3. Let µ be a measurable coefficient
function on Ω with µ ≤ µ ≤ µ a.e. in Ω. We suppose that θ : R → [θ, θ] with 0 < θ < θ is
Lipschitz continuous on bounded sets. Assume further that for some q > d the map −∇ · µ∇ +
1 : W 1,q

D (Ω) → W−1,q
D (Ω) is a topological isomorphism and let s > 2(1 − d

q
)−1 be such that

the initial value y0 is an element in the real interpolation space (W 1,q
D (Ω),W−1,q

D (Ω))1/s,s. Let F :

S × C(Ω) → W−1,q
D (Ω) satisfy the Assumption (B) for this s. Then there exists a global solution

y ∈ W 1,s(S,W−1,q
D (Ω)) ∩ Ls(S,W 1,q

D (Ω)) of the quasilinear equation (4.2). If F additionally fulfils
the assumptions in Remark 4.2 then this solution is unique.

Let us mention that Theorem 5.3 in [22] is originally formulated for the space dimension d = 3. A
consultation with the authors of the corresponding paper, J. Rehberg and H. Meinlschmidt, confirmed
the validity of their result also for space dimensions d ≤ 3.

Indeed, the necessity of d ≤ 3 is a bit hidden, it is needed to guarantee uniformity of the domains of
each of the operators y 7→ −∇ · θ(y)µ∇ + 1 for y ∈ W 1,q

D (Ω), which is only available for space
dimensions up to 3, see also [22, Lemma 5.5] and [7, Lemma 6.2].

For completeness, we briefly discuss this fact in the two-dimensional setting. The essential point is
ensuring for localized problems of the equation −∇ · (ϑµ∇y) + y = f with f ∈ W−1,q

D (Ω) for
some q ∈ [2,∞) that the new right-hand sides fj also belong to W−1,q

D (Ω) with the same exponent
q, provided that ϑ : Ω → R is a uniformly continuous function with 0 < θ ≤ ϑ ≤ θ on Ω.
More precisely, let us consider a finite coveringW1, . . . ,Wl of Ω and a subordinate partition of unity
η1, . . . , ηl on Ω, such that the localized equations read

−∇ ·
(
ϑµ∇(ηjy)

)
+ ηjy = fj, j = 1, . . . , l, (4.3)

where fj denotes the new right-hand side due to localization via ηj . If fj ∈ W−1,q
D (Ω), we can follow

the proof of [7, Lemma 6.2]. Then the small variation of the coefficient function ϑ on each of theWj ,
perturbation arguments, and Gröger’s localization technique ensure the uniformity of the domains of
each of the operators −∇ · θ(y)µ∇y + y needed in [22, Lemma 5.5].

We argue as follows: For y ∈ W 1,q
D (Ω) and ηj ∈ W 1,∞(Ω) with support in Wj , we find ηjy ∈

W 1,q
D (Ω). For C∞0 test functions φ and ηj ∈ W 1,∞

0 (Wj) we derive∫
Ω

ϑµ∇(ηjy) · ∇φ dx =−
∫

Ω

φϑµ∇y · ∇ηj dx+

∫
Ω

yϑµ∇ηj · ∇φ dx

+

∫
Ω

ϑµ∇y · ∇(ηjφ) dx.

Let Ω• := Ω ∩Wj and ΓD• := ΓD ∩Wj . We use the notation W 1,q
D•

(Ω•), which means W 1,q(Ω•)
if ΓD ∩Wj = ∅. Then fj in (4.3) has the form

fj = −µϑ∇y|Ω• · ∇ηj|Ω• + Ty + fηi ∈ W
−1,q
D•

(Ω•),
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where fηi : w 7→ 〈f, η̃jw〉H1
D(Ω) (the tilde denotes the prolongation of ηjw by zero on Ω) and Ty

denotes the form w 7→
∫

Ω•
yµϑ∇ηj · ∇w dx. Note that if Ω• is a Lipschitz domain we apply the

Sobolev embedding theorems, thus the term µϑ∇y · ∇ηj is generically in L2 and can be interpreted
as an element of W−1,q

D•
(Ω•) for q ∈ [2,∞). In summary we obtain fj ∈ W−1,q

D•
(Ω•), and fj ∈

W−1,q
D (Ω).

Remark 4.3 A statement for quasilinear equations clearer formulated for space dimension d = 2 and
d = 3 can be found in the dissertation of H. Meinlschmidt [21, Theorem 2.2.12]. For the domain and
the position of the boundary conditions it is assumed that Ω ∪ ΓD is volume-preserving generalized
regular in the sense of Gröger, compare [21, Definition 1.3.12].

Remark 4.4 Recently, the result of [22, Theorem 5.3] was extended in [17, Theorem 3.1] and exis-
tence and uniqueness of global-in-time solutions in the W−1,q

D - W 1,q
D -setting for abstract quasilinear

parabolic PDEs with non-smooth data and mixed boundary conditions, including a nonlinear source
term with at most linear growth was demonstrated (for d = 2 and d = 3). Subsequently, the authors
used a bootstrapping argument to achieve improved regularity, in particular Hölder-continuity, of these
global-in-time solutions for the abstract equation under suitable additional assumptions.

4.2 Application of the regularity result to the regularized continuity equations

For given vi ∈ L2(S,H1(Ω)) ∩ L∞(S, L∞(Ω)) and vDi ∈ W 1,∞(Ω) and constant Ni, we define
uDi := Niei(v

D
i ) ∈ W 1,∞(Ω) and obtain ui = ũi + uDi ∈ L2(S,H1(Ω)) ∩ L∞(S, L∞(Ω)) with

ũi := Niei(vi)−Niei(v
D
i ) ∈ L2(S,W 1,2

D (Ω)), i = n, p. For the ionic vacancies we do not prescribe
any Dirichlet conditions. Only for a unified notation we set uDi = 0, i ∈ I0.

Because of (A1), (A2), [16, Theorem 1] guarantees some π > 2 such that−∇·ε∇+1 : W 1,q
D (Ω)→

W−1,q
D (Ω) is a topological isomorphism for all q ∈ [2, π].

We recall that for solutions to (PS) it holds that ui ∈ C(S, L2(Ωi)), i ∈ I . (This is obtained by vi ∈
L2(S,W 1,2(Ωi))∩L∞(S, L∞(Ωi)) which leads by (A5) to∇ui = Nie

′
i(vi)∇vi ∈ L2(S, L2(Ωi))

2.
With uDi = Niei(v

D
i ) we find ui − uDi ∈ L2(S,W 1,2

D (Ω)), i = n, p. And from {ui − uDi ∈
L2(S,W 1,2

D (Ωi)) : (ui − uDi )′ ∈ L2(S,W−1,2
D (Ωi))} ⊂ C(S, L2(Ωi)) for i = n, p as well as

{ui ∈ L2(S,W 1,2(Ωi)) : u′i ∈ L2(S,W 1,2(Ωi)
∗)} ⊂ C(S, L2(Ωi)) for i ∈ I0 (see [12, p. 147]) we

find ui ∈ C(S, L2(Ωi)) for all i ∈ I .)

Using the Lipschitz continuous dependence of (−∇ · ε∇ + 1)−1 : W−1,π
D (Ω) → W 1,π

D (Ω) on the
right-hand side (see [16, Theorem 1]) and the continuous embeddingL2(Ωi) ↪→ W−1,π

D (Ωi) it follows
that v0 ∈ C(S,W 1,π(Ω)).

We rewrite the continuity equations in (PS) in the setting of Theorem 4.3. Let i ∈ I . With the truncated
densities (compare Theorem 3.3)

di(w) :=

{
max{c1(T ),min{w, c0(T )}}, i = n, p,

max{c1(T ),min{w, c2(T )Ni}}, i ∈ I0,

we introduce the functions

θi(y) :=
di(y+uDi )

Ni

(e−1
i )′
(di(y+uDi )

Ni

)
, i = n, p,

θi(y) :=
di(y)

Ni

(e−1
i )′
(di(y)

Ni

)
, i ∈ I0.
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Since the quantities (e−1
i )′ are bounded from below and above for arguments in [ c1(T )

Ni
, c0(T )

Ni
], i =

n, p, and in [ c1(T )
Ni

, c2(T )], i ∈ I0, we find 0 < θ < θ < ∞ such that θ ≤ θi(y) ≤ θ for all y ∈ R,

i ∈ I . Moreover, since ei ∈ C2(R), the truncated functions θi are Lipschitz continuous.

We fix an arbitrary solution (u, v) to (PS) and use the corresponding quantities v0(t), un(t), and up(t)
to define right-hand sides Fi : S × C(Ω)→ W−1,q

D (Ω) by

〈Fi(t, y), w〉
W 1,q′
D (Ω)

:= −
∫

Ω

{
(θi(y)µi∇uDi + µizidi(y + uDi )∇v0(t)) · ∇w

+Q(un(t), up(t))w − (ui(t)− uDi )w
}

dx ∀w ∈ W 1,q′

D (Ω),

i = n, p, with Q given in (4.1). For i ∈ I0 we introduce Fi : S × C(Ω0)→ W−1,q
D (Ω0),

〈Fi(t, y), w〉
W 1,q′
D (Ω0)

:= −
∫

Ω0

{
µizidi(y)∇v0(t)·∇w−ui(t)w

}
dx, ∀w ∈ W 1,q′

D (Ω0) i ∈ I0.

We intend to apply the result for a scalar quasilinear parabolic equation formulated in Theorem 4.3
separately for each of the continuity equations. We fix the exponent q > 2 as follows: By (A1), (A2),
[16, Theorem 1] ensures some q∗ > 2 such that −∇ · µi∇ + 1 : W 1,q

D (Ωi) → W−1,q
D (Ωi), i ∈ I ,

are topological isomorphisms for all q ∈ [2, q∗]. With λ from (A5), we now fix

q := min{λ, π, q∗} > 2. (4.4)

Separately, for each i ∈ I , we set in Theorem 4.3

Ω := Ωi, F := Fi, θ := θi, µ := µi, y0 = u0
i − uDi , s >

2q

q − 2
.

According to [22, Remark 2.5 iv)] and the additional Assumption (A5), Ωi admits bi-Lipschitzian bound-
ary charts which are volume preserving, and the Assumption (A) for Theorem 4.3 is fulfilled in our
geometrical setting.

Note that for the real interpolation spaces (W 1,q
D (Ωi),W

−1,q
D (Ωi))1/s,s we have the relations

W 1,q
D (Ωi) = W 1,q

D (Ωi) ∩W−1,q
D (Ωi) ⊂ (W 1,q

D (Ωi),W
−1,q
D (Ωi))1/s,s

⊂ W 1,q
D (Ωi) +W−1,q

D (Ωi),

see [5, Chapter I, 2] and thus by (A5), the functions y0
i = u0

i −uDi , i ∈ I , are admissible initial values
for Theorem 4.3.

Due to the definition of the Fi and the estimates for the solution (u, v) to (PS) from Theorem 3.3
(the bounds of the carrier densities and the fact that v0 ∈ C(S,W 1,π(Ω))) and the regularity of the
Dirichlet values uDi , we establish that Fi : S × C(Ωi) → W−1,q(Ωi) is a Carathéodory function
(measurability in t for each y ∈ C(Ω) and continuity in y,

‖Fi(t, y1)−Fi(t, y2)‖W−1,q
D (Ωi)

≤ c(‖∇uDi ‖Lq(Ωi) + ‖∇v0‖C(S,Lq(Ω)))‖y1 − y2‖C(Ωi)
(4.5)

and for all y1, y2 ∈ C(Ωi) with a constant c > 0 (not depending on t) for all t ∈ S), i ∈ I .
Furthermore, for s ∈ (1,∞), we can estimate for the superposition operator

‖Fi(·, y1(·))−Fi(·, y2(·))‖Ls(S,W−1,q
D (Ωi))

≤ c(‖∇uDi ‖Lq(Ωi) + ‖∇v0‖C(S,Lq(Ω)))‖y1−y2‖C(S×Ωi)
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for all y1, y2 ∈ C(S × Ωi).

Moreover, by the definition of Fi and the a priori estimates for the solution (u, v) to (PS), we verify the
boundedness result

sup
y∈C(Ω)

‖Fi(·, y)‖Ls(S,W−1,q
D (Ωi))

≤ c(s)
(
θµ‖uDi ‖W 1,q(Ωi) + µmax{c0(T ), C2(T )N}‖v0‖L∞(S,W 1,q(Ω))

+ rc0(T )2(1 + ee
−1
n (c0(T ))+e−1

n (c0(T ))) + 1 + ‖ui − uDi ‖L∞(S,L∞(Ωi))

)
≤ ĉ(s, T ).

Thus, Assumption (B) is fulfilled for all s, especially for s > 2q
q−2

. Therefore, in summary, Theorem 4.3,
Remark 4.2 and (4.5) guarantee for all i ∈ I unique solutions yi of the problems

yi ∈ W 1,s(S,W−1,q
D (Ωi)) ∩ Ls(S,W 1,q

D (Ωi)) such that

y′i(t)−∇ ·
(
θi(yi(t))µi∇yi(t)

)
+ yi(t) = Fi(t, yi(t)), yi(0) = y0

i .
(Piq)

Since the time interval S is finite, for our initial values y0
i ∈ W

1,q
D (Ωi) (see (A5) and (4.4)) we obtain

the integrability yi ∈ W 1,s(S,W−1,q
D (Ωi)) ∩ Ls(S,W 1,q

D (Ωi)) for all s ≥ 1.

On the other hand, we consider the following auxiliary Problems (Pi2) given in weak form

wi ∈ H1(S,W 1,2
D (Ωi)

∗) ∩ L2(S,W 1,2
D (Ωi)) such that

w′i(t) +Bi(t, wi(t)) = 0 a.e. in S, wi(0) = y0
i ,

(Pi2)

where

〈Bi(t, wi), wi〉VD

:=

∫
Ω

{
µiθi(wi)∇(wi + uDi ) · ∇wi + (wi − (ui(t)− uDi ))wi +Q(un(t), up(t))wi

+ µizidi(wi + uDi )∇v0(t) · ∇wi
}

dx, i = n, p,

〈Bi(t, wi), wi〉V0

:=

∫
Ω0

{
µiθi(wi)∇wi ·∇wi + (wi − ui(t))wi + µizidi(wi)∇v0(t) ·∇wi

}
dx,

i ∈ I0, with Q from (4.1) for the fixed solution (u, v) to (PS).

Then the solution yi to (Piq) is also a solution to Problem (Pi2), i ∈ I . Moreover, due to Assumption
(A5) and Theorem 3.3 the function ũi = ui − uDi is a solution to Problem (Pi2), too.

Lemma 4.1 We assume (A1) – (A5). Let yi denote the unique solution of y′i −∇ · (θi(yi)µi∇yi) +
yi = Fi(yi) and ũi = ui − uD with ui solving the continuity equation in (PS). Then, yi = ũi holds.

Proof. We test the equations in (Pi2) for the solutions ũi and yi by ũi − yi ∈ L2(S,W 1,2
D (Ωi)),
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respectively, subtract them, and obtain for i ∈ I

1

2
‖ũi(t)−yi(t)‖2

L2(Ωi)

=

∫ t

0

∫
Ωi

{
−µiθ(ũi)|∇(ũi−yi)|2 − (ũi−yi)2

− µi(θi(ũi)−θi(yi))∇(yi + uDi ) · ∇(ũi−yi)

−µizi(di(ũi+uDi )− di(yi + uDi ))∇v0 · ∇(ũi − yi)
}

dx ds

≤
∫ t

0

{
−min{1, µθ}‖ũi − yi‖2

H1(Ωi)

+ c‖ũi−yi‖Lβ(Ωi)‖∇(yi+u
D
i )‖Lq(Ωi)‖ũi−yi‖H1(Ωi)

+ c‖ũi−yi‖Lβ(Ωi)‖∇v0‖Lq(Ω)‖ũi−yi‖H1(Ωi)

}
ds

≤
∫ t

0

{
−min{1, µθ}‖ũi−yi‖2

H1(Ωi)

+ c‖ũi−yi‖2/β

L2(Ωi)
‖ũi−yi‖2−2/β

H1(Ωi)

(
‖∇(yi+u

D
i )‖Lq(Ωi) + ‖∇v0‖Lq(Ω)

)}
ds

≤ c

∫ t

0

{
‖ũi−yi‖2

L2(Ωi)

(
‖∇(yi+u

D
i )‖βLq(Ωi) + ‖∇v0‖βLq(Ω)

)}
ds ∀t ∈ S,

where 1/β + 1/q = 1/2. In the last but one estimate we used Gagliardo–Nirenberg’s inequality

‖w‖Lβ(Ωi) ≤ c‖w‖2/β

L2(Ωi)
‖w‖1−2/β

H1(Ωi)
, and in the last one we applied Young’s inequality. According

to Theorem 4.3 and (A5), yi + uDi ∈ Lβ(S,W 1,q(Ωi)), i ∈ I . Moreover, Theorem 3.3 and the
definition of q in (4.4) ensure that v0 ∈ Lβ(S,W 1,q(Ω)). Therefore, we obtain by Gronwall’s lemma
that ũi = yi, i ∈ I . �

Concluding, Lemma 4.1 yields the higher regularity of ui = ũi+u
D
i ∈ Ls(S,W 1,q(Ωi)) for all s ≥ 1,

i ∈ I , for the original solution (u, v) to Problem (PS). Note that due to our choice the exponent q is
uniform for all possible solutions (u, v) to Problem (PS). The arguments in Subsection 4.2 have proven
the following higher integrability result.

Theorem 4.4 We assume (A1) – (A5). Then there exists an exponent q > 2 such that

v0 ∈ Ls(S,W 1,q
D (Ω)), ui ∈ Ls(S,W 1,q

D (Ωi)) ∩W 1,s(S,W−1,q
D (Ωi)), i ∈ I,

for all s ≥ 1 and for any solution (u, v) to Problem (PS). (Note our definition W 1,q
D (Ω0) = W 1,q(Ω0)

for all i ∈ I0.)

4.3 Uniqueness of solutions to (PS), proof of Theorem 4.2

Proof of Theorem 4.2
Step 1. As already mentioned at the beginning of Section 4, under Assumption (A5) also the charge-
carrier densities ui = Niei(vi) are functions inL2(S,H1(Ωi)), i ∈ I . Moreover, due to Theorem 3.3,
for solutions (u, v) to (PS) the functions bi(ui) := µi

ui
Ni

(e−1
i )′( ui

Ni
), i ∈ I , are well-defined and fulfil

0 < b ≤ bi(ui(t)) ≤ b a.e. in Ωi for all t ∈ S, i ∈ I . Since ei ∈ C2(R) and ei(z) > 0, we
obtain the local Lipschitz continuity of (e−1

i )′. This property then gives the Lipschitz continuity for the

DOI 10.20347/WIAS.PREPRINT.3142 Berlin 2024



A. Glitzky, M. Liero 16

bounded intervals of densities. Similarly, by (A5) we get the Lipschitz continuity of Q defined in (4.1)
for the bounded intervals of densities.

Step 2. Let (u, v) and (û, v̂) be two solutions to Problem (PS). We define the differences u := u− û
and v := v − v̂. Then, from the Poisson equations we obtain E0(v0(t))− E0(v̂0(t)) = u0(t) f.a.a.
t ∈ S and

‖v0(t)‖VD ≤ c
∑
i∈I

‖ui(t)‖L2(Ωi), (4.6)

where c is independent of t ∈ S.

Step 3. Testing u′ + A(v, v) = 0 and û ′ + A(v̂, v̂) = 0 by (0, (ui)i∈I) ∈ L2(S, V ) and using Q
from (4.1), we find the estimate

1

2

∑
i∈I

‖ui(t)‖2
L2(Ωi)

=

∫ t

0

{∑
i∈I

∫
Ωi

{
−bi(ui)|∇ui|2

−
((
bi(ui)−bi(ûi)

)
∇ûi + µiuizi∇v0 + µiûizi∇v0

)
· ∇ui

}
dx

+

∫
Ω

(
Q(û)−Q(u)

)
(un + up) dx

}
ds

≤
∑
i∈I

∫ t

0

∫
Ωi

{
−b|∇ui|2 + c|ui||∇ui|(|∇ûi|+ |∇v0|)

+ cûi|∇v0||∇ui|+ c|ui|2
}

dx ds ∀t ∈ S.

Exploiting q > 2 from Theorem 4.4 and setting s = β such that 1/s = 1/2 − 1/q, (4.6), and the

Gagliardo–Nirenberg inequality ‖y‖Ls ≤ c‖y‖2/s

L2 ‖y‖1−2/s

H1 for y ∈ H1(Ωi), we continue the estimate
via

1

2

∑
i∈I

‖ui(t)‖2
L2(Ωi)

≤
∑
i∈I

∫ t

0

{
− b‖ui‖2

H1 + c‖ui‖Ls‖ui‖H1(‖∇ûi‖Lq + ‖∇v0‖Lq)

+ c‖∇v0‖L2‖ui‖H1 + c‖ui‖2
L2

}
ds

≤
∑
i∈I

∫ t

0

{
− b‖ui‖2

H1 + c‖ui‖Ls‖ui‖H1(‖∇ûi‖Lq + 1)

+ c
∑
j∈I

‖uj‖L2‖ui‖H1 + c‖ui‖2
L2

}
ds

≤
∑
i∈I

∫ t

0

{
− b‖ui‖2

H1 + c‖ui‖2/s

L2 ‖ui‖2−2/s

H1 (‖∇ûi‖Lq + 1)

+ c
∑
j∈I

‖uj‖L2‖ui‖H1 + c‖ui‖2
L2

}
ds.

We apply Young’s inequality and establish the inequality∑
i∈I

‖ui(t)‖2
L2(Ωi)

≤
∑
i∈I

∫ t

0

c‖ui(t)‖2
L2(Ωi)

(‖∇ûi‖sLq(Ωi) + 1) ds.

Since ûi ∈ Ls(S,W 1,q(Ωi)) for i ∈ I by Theorem 4.4, we obtain by Gronwall’s lemma that ui = 0
meaning ui = ûi, i ∈ I . Finally, the inequality (4.6) guarantees for the electrostatic potentials v0 =
v̂0. Therefore, also u0 = û0, vi = v̂i for i ∈ I and (u, v) = (û, v̂) holds. This finishes the proof of
Theorem 4.2. �
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5 Concluding remarks

In this paper, we studied a vacancy-assisted charge transport model from an analytical point of view.
We demonstrated a new uniqueness result for a drift-diffusion model for perovskite solar cells. We
proved the uniqueness of weak solutions under the (restricting) Assumptions (A1) – (A5). For this
purpose, under the additional Assumption (A5) a novel higher integrability and regularity result for
weak solutions of the perovskite solar cell model was established. Let us collect some remarks:

1. A corresponding result can also be obtained for the more generalized situation, where the different
ionic vacancies live on different subdomains Ωi ⊂ Ω of the domain Ω with Ωi 6= Ωj for i 6= j ∈ I0.
The necessary results concerning existence and boundedness of solutions can also be obtained for
this situation, see [3, Section 6]. For the uniqueness result, we have to suppose that Ω, Ωi, i ∈ I0, are
domains with Lipschitz boundary in Assumption (A5). The result remains especially true if Ωi = Ω for
all i ∈ I . Then the setting of the paper on memristor devices [18] in two space dimensions is covered
by our result. However, there the situation in three space dimensions is handled with only one type of
ionic species (which is crucial for the analysis therein) with Boltzmann statistics for electrons, holes
and the ionic species but without generation/recombination and photogeneration. Whereas for this
system no uniqueness result is given in this paper, for the fast-relaxation limit (solutions of the station-
ary continuity equations for electrons and holes are substituted in the right-hand side of the Poisson
equation) in two space dimensions existence and weak-strong uniqueness analysis is performed in
[18].

2. In [13, p. 248] the condition that the function x 7→ e′′i (x)/e′i(x) is non-increasing for the statistical
relation ei plays an important role in the derivation of a uniqueness result for a special coupled sys-
tem consisting of a nonlinear parabolic equation and an elliptic equation. Note that the Fermi-Dirac
statistics (see e.g. the introduction in [13]) as well as Blakemore statistics FB,1 = F−1 possess this
property, in particular

F ′′−1(x)

F ′−1(x)
=

e−x(e−x − 1)

(e−x + 1)3

(e−x + 1)2

e−x
=

e−x − 1

e−x + 1
= 1− 2

e−x + 1
.

3. There are perovskite solar cell concepts consisting also of organic semiconductor materials [24].
E.g. in [23] the fullerene C60 was used as electron transport material. Thus, for the description of
charge transport in organic semiconductor materials, Gauss–Fermi integrals have to be used for the
statistical relation. According to [14, Subsec. 2.1], the Gauss–Fermi integrals fulfil similar essential
properties as the Blakemore statistics FB,γ for γ = 1 used in the discussion here. The techniques,
how to derive positive lower and upper bounds below the number of transport states for the organic
species can be found in [14, proofs of Lemma 4.3, Thm. 5.2]. In the spirit of [3, Section 6] solvability
and corresponding bounds for the densities could be realized. Thus, by the methods of the present
paper, a uniqueness result is to be expected in this setting, too.
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