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Synchronization between Kerr cavity solitons and broad laser
pulse injection

Daria A. Dolinina, Andrei G. Vladimirov

Abstract

The synchronization of a soliton frequency comb in a Kerr cavity with pulsed laser injection is
studied numerically. A neutral delay differential equation is used to model the light dynamics in the
cavity. This model allows for the investigation of both cases where the pulse repetition period is
close to the cavity round-trip time and where the repetition period of the injection pulses is close
to a rational fraction M/N of the round-trip time. It is demonstrated that solitons can exist in this
latter case, provided that the injection pulses are of a higher amplitude, which is directly propor-
tional to the number M . Furthermore, it is shown that the synchronization range of the solitons is
also proportional to the number M . The solitons excited by pulses with a period slightly different
from the M : N -resonance can be destabilized by the Andronov-Hopf bifurcation, which oc-
curs when the injection level at the soliton position decreases to M times the injection amplitude
corresponding to the saddle-node bifurcation in a model equation with uniform injection.

The dynamics of solitons in Kerr microcavities has emerged as one of the central areas of research
in nonlinear optics, driven by its profound implications for photonics and frequency comb technologies
[1, 2]. Kerr microcavities, which exploit the Kerr nonlinearity to compensate the chromatic dispersion,
enable the formation of the so-called temporal cavity solitons (TCS) - stable, self-reinforcing wave
packets that propagate without changing shape [3, 4]. These solitons are critical to many applications
ranging from high-precision metrology [5, 6] to telecommunications [7] and beyond [8, 9].

A novel approach to control soliton dynamics in optical microcavities is pulsed (synchronous) pumping
[10]. Unlike continuous wave (CW) pumping, which maintains a constant energy input, pulsed injection
is synchronized with the cavity round-trip time, introducing periodic energy perturbations and requiring
much less energy to excite the TCS. This technique significantly affects soliton formation, their tempo-
ral position, stability, and bifurcations, resulting in diverse and complex dynamic behavior [11, 12, 13].
Pulsed injection has been shown to facilitate the generation of single solitons, soliton crystals, and
chaotic states, expanding the toolkit for manipulating light in microcavities.

A standard method for modeling an optical microcavity with synchronous pumping is based on the
application of the Lugiato-Lefever equation (LLE) [14]. The aforementioned approach was recently
employed to demonstrate that in the absence of frequency mismatch between the repetition rate of
the broad injection pulses and the inverse cavity round trip time, the stationary TCS is located at the
top of the pulse when the pulse peak intensity is less than a specific pitchfork bifurcation threshold and
is shifted to a position on the pulse periphery above this threshold [11, 12, 13, 15]. The introduction
of frequency mismatch results in the stationary soliton position being determined by balancing the
drift introduced by the mismatch with that due to the injection gradient. In order to describe the TCS
motion in the presence of frequency mismatch and injection gradient, the soliton drift equation was
proposed [16, 17], which is valid when the limit of small frequency mismatch and gradient is appli-
cable. Nevertheless, the drift equation is insufficient for describing the bifurcation mechanism of TCS
desynchronization as a function of increasing mismatch. As demonstrated in Ref. [18] the desynchro-
nization of the system occurs via an Andronov-Hopf bifurcation when the repetition rate of the broad
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injection pulse is close to the cavity round trip time. This phenomenon typically precedes the saddle-
node bifurcation predicted by the drift equation and occurs when the injection level at the TCS position
is reduced to the value corresponding to the saddle-node bifurcation in the LLE with CW injection.

Although the LLE approach is widely used for the analysis of soliton dynamics in optical microcavities,
this approach is not free from certain limitations. In particular, it is not applicable to the study of TCS
synchronization when the injection pulse repetition period is close to a multiple of the cavity round-trip
times. Therefore, here we use an alternative model of an optical microcavity based on the neutral delay
differential equation (NDDE) [19]. In contrast to the LLE, this model incorporates a sole independent
time variable and is applicable to any ratio M : N of cavity round-trip frequency and pulse repetition
rate. In this study, we employ the NDDE model to investigate the impact of injection frequency detuning
on TCS dynamics, with a particular focus on scenarios where the ratio M : N approaches a rational
number, with integer M and N . Our findings indicate that, akin to 1 : 1 case, the TCS solutions can
be exited with arbitrary M and N , although this process may necessitate much higher injection pulse
peak powers. Starting from the NDDE model we derive an analog of the drift equation describing the
slow time evolution of the soliton position and investigate how the synchronization range depends on
the M : N ratio.

1 Model equation

The NDDE model of a Kerr cavity can be represented in the following form [19]:(
A+ ϵa∂tA+ ϵ2

a2 − ib

2
∂ttA

)
e−iϵ2α|A|2/2−iϵ2θ/2 =

e−ϵ2
(
Aτ − ϵa∂tAτ + ϵ2

a2 + ib

2
∂ttAτ

)
eiϵ

2α|Aτ |2/2+iϵ2θ/2 + ϵ2η(t), (1)

where A(t) is the complex field envelope and t is the time variable, Aτ = A(t − τ), where τ is
the cold cavity round-trip time. The coefficients a and b are the first- and second-order dispersion
coefficients, respectively, α is the Kerr coefficient, θ is the detuning between the injection frequency
and the frequency of a cavity mode, η(t) is the laser injection term and ϵ describes small round-trip
cavity losses. In the limit ϵ→ 0 the NDDE model Eq. (1) can be reduced to the LLE [19]. Furthermore,
it can be easily generalized to account for higher order dispersion terms by including higher order
derivatives. We consider the injection in the form of pulses

η(t) = p sin2k(1+ic)

(
π

Tinj
t

)
. (2)

where p is the amplitude of the pulses, Tinj is the repetition period of the injection pulses, integer k
defines the width of the pulses and the term c defines the chirp of the pulse. In the following, the width
of the injection pulse is selected in a manner that ensures it is smaller than the cavity round trip time
and significantly larger than the TCS width.

As shown in [19] the equation (1) can exhibit stable TCS solutions under uniform pumping η(t) = pu.
In the mean-field limit, ϵ → 0, these TCSs coincide with those of the LLE. Unlike the LLE, where
the TCS period is fixed by the periodic boundary condition, in the NDDE model the TCS repetition
period depends on the parameters of Eq. (1). This period slightly exceeds the delay time τ and can be
estimated as Ts ≈ τ + 2ϵa + O(ϵ2). Synchronization of the TCS with the external pulsed injection
can take place when the repetition rate of injection pulses becomes close to one of the resonances,
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in other words when
1

Ts
:

1

Tinj
≡ Tinj : Ts ≈ M : N with integers M and N . In this context,

the M : N notation is employed to denote the corresponding resonances under consideration. Fig. 1
shows the TCS synchronization when M : N = 8 : 1 as an example. One can see that the solution
train is Tinj-periodic and TCSs repeat themselves M = 8 round trips in the cavity. It can be seen
from Fig. 1(c) that the TCS power decreases due to the cavity losses during the cavity round-trips
between the injection pulses, where the intensity of these pulses is very small. The calculation of
Fig. 1(a) involved a greater loss parameter than that used for Fig. 1(b). Consequently, the reduction
in TCS power between the injection pulses is more pronounced in the former figure. The panel (c)
demonstrates the spectra of the TCS from the panel (a) and the injection pulses.
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Figure 1: Solitons locked by the injection pulses with Tinj ≈ 8Ts in cases ϵ = 0.1 (a) and ϵ = 0.01
(b). Black and red lines with the corresponding axes show TCS intensity |A|2 and injection intensity
η2, respectively. The spectrum of TCS and injection pulses from (a) panel (c). Ã(ω) and η̃(ω) are
the Fourier transforms of A(t) and η(t) respectively. Cavity parameters are: a = b = α = κ = 1,
θ = −3.5, and τ = 50. Injection pulse parameters: c = 0, p = 8pu, and k = 128, where pu = 1.9
and Ts ≈ 50.02 are the injection level and soliton period in the CW-pumped NDDE.

2 Numerical results

Let us start our analysis with the pulse period close to the resonance 1 : 1. The synchronization of
the TCS with the pulsed pumping means that the soliton period becomes equal to the injection pulse
period Tinj , so we look for the periodic solution of (1) with period Tinj . To find such solutions we
solve the boundary value problem with the periodic condition A(0) = A(Tinj) using the package
DDE-BIFTOOL [20], which contains MATLAB routines for numerical bifurcation analysis of systems
of delay differential equations. As an initial guess, the TCS solution under uniform pumping Au with
the period Ts is taken which converges to the final solution by Newton’s iterations. The continuation
of the TSC solution along the period Tinj is then performed with the DDE-BIFTOOL, which uses the
pseudo-arclength method for continuation along the chosen parameter.

The branch of TCSs synchronized with the injection pulses of period close to the resonance 1 : 1
and amplitude p = pu is shown by the yellow line in Fig. 2(a). The horizontal axis shows the period
mismatch ∆ = Tinj − Ts in dimensionless units of time. To recalculate them in dimensional time it

is necessary to use a relation ∆′ =
nL

cτ
∆, where n is the refractive index, L is the length of the

resonator, c is the speed of light and τ is the dimensionless cold cavity round-trip time. It can be
observed that the TCS peak intensity is maximal when the two periods coincide, ∆ ≈ 0. The reason
for this is the injection gradient which pushes the soliton towards the center of the pulse, where the
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Figure 2: Soliton peak intensity as a function of ∆ = NTinj −MTs for M : N resonances, where
N = 1 and M = 1, 2, 3, 4, 8, are shown by yellow, green, purple, red, and blue lines, respectively
(a). Floquet multipliers responsible for soliton destabilization before (green crosses) and after (red
crosses) the Andronov-Hopf bifurcation point for M = 1 (b). ϵ = 0.01, other cavity parameters are
the same as in Fig. 1. Injection pulse parameters: c = 0, p = Mpu, Tinj = (MTs +∆) /N and
k = 2M2 for M = 1, 2, 3, 4, 8 respectively, where pu = 1.9 and Ts ≈ 50.02. Solid (dashed) lines
indicate stable (unstable) solutions. Black dots show Andronov-Hopf bifurcation points.

amplitude of the injection is at its maximum [11, 12, 13]. Strictly speaking, the maximal peak intensity
is slightly shifted from ∆ = 0. The discrepancy is due to the slight discrepancy between the TCS
period and the calculated value of Ts. The latter was determined using a constant injection rate of
η = p, which did not take into account the non-zero curvature of the injection at the top of the injection
pulse. Given that the injection pulse is significantly broader than the TCS, the resulting change in
period is negligible. A non-zero value of ∆ results in the TCS drifting away from the top of the injection
pulse. This leads to a decrease in the TCS peak power. Depending on the sign of ∆ the soliton
either lags or leads the pulse with each cavity round-trip. The drift can be compensated by means
of injection gradient locking the TCS position. However, if the drift caused by ∆ is too large, there
is no periodic TCS solution. Therefore, the branch of solutions is limited by minimum and maximum
values of ∆ corresponding to saddle-node bifurcations. One can see that the branch of periodic TCS
solutions is slightly asymmetric with respect to ∆ → −∆ (|min(∆)| > |max(∆)|). This asymmetry
is a consequence of the slight asymmetry inherent to the NDDE solitons. As the mean-field limit
is approached, where the parameter ϵ tends to zero, the asymmetry diminishes. Conversely, as ϵ
increases, the asymmetry becomes more pronounced.

In order to examine the stability of the synchronized Tinj-periodic solutions and to conduct an asymp-
totic analysis of the TCS motion, it is helpful to reformulate Equation (1) as a system of delay algebraic-
differential equations:

∂tA = B

∂tB = C

0 =

(
A+ ϵaB + ϵ2

a2 − ib

2
C

)
e−iϵ2α|A|2/2−iϵ2θ/2−

e−ϵ2κ

(
Bτ − ϵaBτ + ϵ2

a2 + ib

2
Cτ

)
eiϵ

2α|Aτ |2/2+iϵ2θ/2 − ϵ2η(t), (3)
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The system can be reformulated in a more general form, as follows:

W∂tX⃗ = F⃗ (X⃗, X⃗τ , η(t), ϵ), (4)

where W is 3 × 3 diagonal matrix with the diagonal elements (1, 1, 0), X⃗ = (A,B,C)T , and
X⃗τ = (Aτ , Bτ , Cτ )

T .

To determine the stability of the synchronized TCS solution X⃗0(t) = X⃗0(t+Tinj) one must substitute

a perturbed solution X⃗(t) = X⃗0(t)+ϕ⃗(t) into Eq. (3) and linearize this equation around X⃗0(t). Then
the resulting linear equation for the small perturbation ϕ⃗ is:

W∂tϕ⃗(t) = L(t)ϕ⃗(t) +M(t)ϕ⃗(t− τ), (5)

where L(t) = ∂X⃗F⃗ and M(t) = ∂X⃗τ
F⃗ are Tinj-periodic Jacobian matrices with respect to X⃗

and X⃗τ . In accordance with Floquet theory, the solutions ϕ⃗(t) of the Tinj-periodic system (5), which

satisfy the relation ϕ⃗(t+Tinj) = µϕ⃗(t), are the eigenfunctions and µ are the corresponding complex

multipliers. Floquet multipliers are essential for characterizing the stability of the solution X⃗0. If the
absolute value of the Floquet multiplier, |µ|, is not greater than one, the perturbation, ϕ⃗(t), will not
grow with time. In the case of the uniform injection η(t) = pu = const, Eq. (1) exhibits the time
shift symmetry and the linear stability of the TCS necessitates that, with the exception of the neutral
multiplier µ = 1, which corresponds to this symmetry, all the absolute values of the Floquet multipliers
remain below one. The nonuniform injection breaks the time-shift symmetry and eliminates the neutral
multiplier from the TCS spectrum.

In Fig. 2(a) the stable (unstable) TCS solutions are represented by solid (dashed) curves. As can
be observed, an increase (decrease) in ∆ leads to a destabilization of the TCS before reaching the
maximum (minimum) value of ∆ corresponding to a saddle-node bifurcation. An examination of the
Floquet multipliers reveals that the destabilization is due to an Andronov-Hopf bifurcation when two
complex conjugate multipliers cross the unit circle |µ| = 1, as shown in Fig. 2(b). This result is similar
to that obtained using the LLE model in Ref. [18].

The main advantage of the NDDE model (1) over the LLE is that it is applicable in the case where
the soliton is not pumped on every round-trip. In Fig. 2(a) different branches of synchronized TCS
solutions correspond to the situation when the injection pulse arrives every M th round-trip with M =
1, 2, 3, 4, 8 and is close to M : 1 resonances. To maintain an approximately constant pulse width for
varying integer values ofM andN , the power k in Eq. (2) was chosen so that the coefficient π2k/T 2

inj

in the second term of the Taylor expansion sin2k (πt/Tinj) ≈ 1−π2kζ2/T 2
inj at ζ = t−Tinj/2 = 0

was independent of M and N . Consequently, for Tinj ≈M/NTs, we choose k = 2M2/N2 so that
the injection stays at small ζ of the form |η(ζ)| ≈ p (1− 2π2ζ2/T 2

s ) with Ts ≈ 50.02. As one can
see in Fig. 2(a) the TCS can be synchronized to the injection pulse even with M > 1. It follows
from this figure that to excite TCSs with approximately the same peak power as that obtained with
p = pu and M = 1 using injection pulses with larger repetition periods Tinj ≈ MTs (M > 1), the
amplitude of the injection pulses should be M times larger, p = Mpu. It is seen that all the curves
for different M and p = Mpu are similar and look like a scaling of the curve for M = 1. Note that
we consider only the periodic solutions in the vicinity of the M : N resonances with moderate M ,
which are the most interesting from a practical point of view. The complex dynamical regimes beyond
the synchronization region are left for future investigation.

To gain insight into the rationale behind proportionally increasing the injection amplitude relative to
the period Tinj to achieve a TCS with equivalent peak power, we examine the case of M = 2. The
asymptotic approach is applied in a manner analogous to that utilized in deriving the LLE from the
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NDDE model, as detailed in reference [19] (see also Ref. [21]). Let us assume that the TCSs are
synchronized to the injection pulses with a period Tinj ≈ 2Ts. Furthermore, let the detuning from the
resonance 2 : 1 be zero, which means that every second TCS sits on top of an injection pulse. In
accordance with the aforementioned approach, we may express a stationary TCS solution to Eq. (1)
in the form A(t) = A0(t0) + ϵA1(t0) + ϵ2A2(t0) +O(ϵ3), where t0 = ωt with ω = 1− 2ϵa/τ +
(2ϵa/τ)2 + O(ϵ3). These expansions are then substituted into Eq. (1) and the resulting terms are
collected according to their respective powers of the variable ϵ. In zero order of the parameter ϵ, the
solution is found to be τ -periodic A0(t0) = A0(t0 − τ). The first-order terms are collected, yielding
the result that A1(t0) = A1(t0 − τ). In the second order of the parameter ϵ, the result is

A2(t0)− A2(t0 − τ) = η̃ (t0)− (1− iθ)A0(t0) + iα|A0(t0)|2A0(t0) + ib∂t0t0A0(t0) (6)

with η̃ (t0) = η (t). In the case of uniform injection η̃(t0) = const all TCSs are identical and have
the period Ts in the variable t corresponding to the period τ in the variable t0. Hence A2(t0) is
also τ -periodic, the left-hand side of Eq. (6) is zero, and the amplitude A0 satisfies the stationary
LLE obtained by equating the right-hand side of Eq. (6) to zero. However, when the injection period
becomes twice as large as Ts, the repetition period of the TCS also increases twice. Similarly, the
second order correction period A2 also becomes twice larger, A2(t0) = A2(t0 − 2τ). Let the time
moment t0 = ts correspond to the peak of the amplitude A0 sitting on the top of the injection pulse. If
we set t0 = ts and t0 = ts − τ in Eq. (6) we obtain:

A2(ts)− A2(ts − τ) = η1 − (1− iθ)A0(ts) + iα|A0(ts)|2A0(ts) + ib∂t0t0A0(ts), (7)

A2(ts − τ)− A2(ts − 2τ) = η2 − (1− iθ)A0(ts) + iα|A0(ts)|2A0(ts) + ib∂t0t0A0(ts), (8)

where η1 = η̃(ts) = p is the amplitude of the injection pulse, η2 = η̃ (ts − τ), and A0(ts) =
A0(ts− τ) due to the τ -periodicity of A0. Summing up Eqs. (7) and (8), dividing the result by 2, using
2τ periodicity of A2, and taking into account that the injection is present only on one cavity round-trip
from two, η2 = 0, we get

p

2
− (1− iθ)A0(ts) + iα|A0(ts)|2A0(ts) + ib∂t0t0A0(ts) = 0,

It follows from this equation that in order to obtain the same TCS peak amplitude A0(ts) using one
pulse per two cavity round-trips, one needs twice the injection pulse amplitude p as in the case of
one pulse per one cavity round-trip. Note that this property holds in the mean field limit, ϵ → 0, and
assumes that the injection pulse is much wider than the TCS so that the injection is approximately
constant across the soliton. With the deviation from the ϵ→ 0 limit the TCS intensity decays on every
round-trip between the injection pulses. Fig. 1 demonstrates how TCSs change between the injection
pulses for ϵ = 0.1 in panel (a) and for ϵ = 0.01 in panel (b) when the TCS is pumped every 8th
round-trip. The figure shows that the TCS peak intensity stays almost the same for ϵ = 0.01 and
changes more noticeably at higher ϵ = 0.1.

3 Asymptotic drift equation

As was shown in previous works [11, 12] for zero period mismatch the stationary position of the
synchronized TCS is at the centre of the injection pulse (if p < pc, where pc is the value of the
injection amplitude at which pitchfork bifurcation occurs). A small period mismatch shifts the stationary
TCS position away from the centre of the pulse and such a shift results in a decrease of the soliton
intensity. The drift equation for determining the TCS position relative to the injection pulse, based on
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Figure 3: Injection amplitude η(ts) at the soliton position ts as a function of the period mismatch ∆ for
the parameters from Fig.2(a) (a). Same as in (a), but only for 1 : 1 resonance and for ϵ = 0.05 (b).
CW and peak TCS intensity dependence on the amplitude of the uniform injection η = pu (c).

the given period mismatch, was derived for the LLE model in [12]. An analogous equation can be
derived for the NDDE model. To obtain such an equation we use a perturbative approach and look for
the solution of the Eq. (3) in the form X⃗(t) = X⃗0(ξ), where ξ = t+ ts(t)− V t. Here, ts is a slowly
varying TCS coordinate, ∂tts = O(δ), V = O(δ) is the small drift velocity due to the frequency
mismatch, and X⃗0(t) is the TCS solution of Eqs. (3) under uniform pumping η = pu, corresponding
to the injection value at the soliton position pu = η(ts)/M . The drift velocity can be expressed as

V = N − MTs
Tinj

. Then, similarly to [12] we expand the injection in the soliton position ts and assume

that the injection gradient η′ts = ∂tη|t=ts is of order of δ, while the constant injection term equals pu.
As a result, in the first order of δ, we obtain a TCS drift equation similar to that reported in [11, 12]:

dts
dt

= V + ϵ2η′ts

〈
ψ⃗†

∣∣∣w⃗ξ〉〈
ψ⃗†

∣∣∣Wψ⃗
〉 , (9)

where ψ⃗ = ∂tX⃗ is the column vector neutral mode associated with the time translation symme-
try of Eqs. (1) and (3) with uniform injection pu. This mode is the Ts-periodic solution of the linear
equation (5) and corresponds to the Floquet multiplier µ = 1. The adjoint neutral mode ψ⃗† is the
Ts-periodic row vector solution of the equation ∂ts⃗†(t)W = s⃗†(t)L(t) + s⃗†(t+ τ)M(t+ τ) adjoint
to Eq. (5) [22]. Since only the third equation in the system (3) contains the perturbed injection term, the
first two components of the vector w⃗ are equal to zero, w⃗ = (0, 0, 1)T . The stationary TCS solution
exists when the right-hand side of Eq. (9) equals zero. Therefore, the maximum and minimum values
of the frequency mismatch parameter V , which can be compensated by the last term in Eq. (9), define
the range of stationary TCS existence.

As mentioned before, in our calculations the shape of the injection pulse remains approximately
the same for different M , and only the injection amplitude is changed proportionally to its period,

|η(ζ)| ≈ Mpu

(
1− 2π2ζ2

T 2
s

)
. Hence, the gradient term in Eq. (9) is also directly proportional to the

injection pulse amplitudeMpu. From this we can conclude that the width of the interval in V (and cor-
respondingly in ∆) where the TCS solution exists is also proportional to M . This can be clearly seen
in Fig. 2(a), where the curves computed with M > 1 look like the scaled in M versions of the curve
for M = 1. Furthermore, the points of TCS destabilization through an Andronov-Hopf bifurcation are
also scaled by M , although the local injection value η(ts)/M remains the same, see Fig. 3(a,b). This
value corresponds to the saddle-node bifurcation injection value in the uniform case η(ts)/M ≈ η0,
shown in Fig. 3(c). Such a result is in good agreement with Ref. [18], where this phenomenon was
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Figure 4: Soliton peak intensity as a function of ∆ for 1 : 2 (3 : 2) shown by yellow (purple) color (a).
Two possible periodic states with one (green dashed line) or two (black solid line) solitons excited by
the injection pulses with Tinj = Ts/2 (b). τ = 100 and Ts ≈ 100.02, other cavity and injection pulse
parameters are the same as in Fig. 2.

demonstrated and discussed for the LLE model.

Let us evaluate the quantitative accuracy of the predictions provided by Eq. (9). For this, we need to
compare the value ∆n calculated numerically with the analytically predicted value ∆a = V Tinj =

−ϵ2η′ts

〈
ψ⃗†

∣∣∣w⃗ξ〉〈
ψ⃗†

∣∣∣Wψ⃗
〉Tinj . As an example, we calculate ∆n and ∆a for the injection value η(ts) = 1.7

corresponding to the red dot in Fig. 3(b). First, we need to compute the neutral ψ⃗ and adjoint neutral ψ⃗†

modes for the uniform injection case with η(t) = pu = 1.7. To unambiguously define the adjoint mode
ψ†, the DAE system (3) was reformulated as a delay differential equation (DDE) system by introducing
Lorentzian spectral filter of width d−1 into the cavity, as described in [19]. The resulting system of
DDEs (Eq. (32) in Ref.[19]) converges to the original system (3) in the limit d → 0. Thus, the adjoint
neutral mode ψ⃗† is calculated from the DDE system in this limit. The values of the position ts and the
injection gradient η′ts are obtained from the shape of the injection pulse (2) for a given pu. Calculating
all modes and values for the parameters of Fig. 3(b) with pu = 1.7 we get ∆a ≈ 1.143× 10−4, while
the result of the numerical calculation is ∆n ≈ 1.239× 10−4. So the results differ by less than 10%.

Let us now consider the case N > 1, corresponding to the situation where there are N injection
pulses in M cavity round trips. In the case of 1 : 2 resonance, the injection period is Tinj ≈ 1/2Ts,
so there are two injection pulses per period Ts. Two injection pulses can either excite two solitons
or alternatively generate a single soliton, as shown in Fig. 4(b). These two scenarios correspond to
the TCS solution branches that coincide with the graphical precision when plotted in ∆ peak intensity
coordinates. These branches are represented by the yellow line in Fig. 4(a). This figure was calculated
with the same shape and amplitude of the injection pulse as Fig. 2(a). A comparison of the yellow
branches for resonances 1 : 2 in Fig. 4 and 1 : 1 in Fig. 2(a) reveals a striking similarity, with
both branches closely coinciding. This observation can be easily confirmed using the drift equation
(9), which shows that the maximum value of V corresponding to a saddle-node bifurcation remains
unchanged over 1 : N resonances for any integer N . Moreover, the same result holds for any fixed
value of M . In particular, the branch for the 3 : 2 resonance shown by the purple line in Fig. 4 is
similar to the one corresponding to the 3 : 1 resonance in Fig. 2(a).

In the results discussed above, only injection pulses with amplitudes below the pitchfork bifurcation
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threshold and without chirp are considered. However, it is important to emphasise that the synchro-
nization range is proportional to M , regardless of the value of the pump amplitude and regardless of
whether the pulses exhibit chirp or not. Figure 5(a) shows the solution branches for the case where
the pulse amplitude p exceeds the pitchfork threshold pc. Here, in contrast to the case p < pc where
only a single stable TCS exists at ∆ = 0, there are three TCSs at zero period mismatch above the
pitchfork bifurcation threshold, one unstable and two stable. The TCS branch calculated for the res-
onances 1 : 1 and 2 : 1 are proportional to each other. The same proportionality is preserved even
when the injection pulse is chirped, see Fig. 5(b).

P
ea

k
 in

te
n

si
ty

P
ea

k
 in

te
n

si
ty

Δ

a) b)

Δ

Figure 5: Soliton peak intensity as a function of ∆ for the resonance 1 : 1 (2 : 1) shown by red (green)
color for the case p = 2.1 > pc (a). Soliton peak intensity as a function of ∆ for the resonance 1 : 1
(2 : 1) shown by red (green) color in the presence of chirp, c = 0.5 for p = 1.9 < pc (b). Other cavity
and injection pulse parameters are the same as in Fig. 2.

4 Discussion

The synchronization of TCSs with pulsed laser injection in a Kerr cavity is considered using a neu-
tral delay differential equation model. Although the numerical integration of this model is more time-
consuming compared to a standard modelling approach based on the LLE, it allows us to study the
more complex synchronization scenarios, in particular those where the soliton is not pumped on every
round-trip. We show that if the TCS is pumped by injection every M th round-trip, the amplitude of the
injection pulses should be increased proportionally to the number M in order to excite a TCS with
approximately the same peak power. This means that the intensity of each pulse is increased by a
factor of M2, while the repetition frequency is reduced by a factor of M compared to the case where
a TCS is pumped on each round trip. On the other hand, the synchronization range is also increased
by a factor ofM . In other words, one would have to useM times more energy to get the TCS pumped
every M th round trip, but the synchronization region is also increased by a factor of M . Furthermore,
our results indicate that the synchronization region exhibits a proportional increase with respect toM ,
independent of the corresponding injection pulse amplitude at M = 1 and the presence of the chirp.

We have derived an asymptotic drift equation similar to that previously reported for the LLE [11, 12, 17].
This equation predicts the stationary soliton saddle-node bifurcation when the mismatch between the

DOI 10.20347/WIAS.PREPRINT.3140 Berlin 2024



D. A. Dolinina, A. G. Vladimirov 10

injection period and the TCS period is sufficiently large, but is not sufficient to estimate the TCS syn-
chronization range, which is limited by Andronov-Hopf bifurcations [18]. We have shown that when the
injection pulse period is close to M cavity round-trip times, this bifurcation occurs when the injection
level at the TCS position drops to the value Mη0, where η0 is the injection rate corresponding to the
saddle-node bifurcation of the NDDE with homogeneous injection. In addition, we considered a sce-
nario with multiple injection pulses during the cavity traversal time and showed that in this case the
synchronization range remains unchanged regardless of whether each pulse generates a soliton or
not.
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