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Fixation of leadership in non-Markovian growth processes
Tejas Iyer

Abstract

Consider a model where N equal agents possess ‘values’, belonging to N0, that are
subject to incremental growth over time. More precisely, the values of the agents are
represented by N independent, increasing N0 valued processes with random, independent
waiting times between jumps. We show that the event that a single agent possesses
the maximum value for all sufficiently large values of time (called ‘leadership’) occurs
with probability zero or one, and provide necessary and sufficient conditions for this to
occur. Under mild conditions we also provide criteria for a single agent to become the
unique agent of maximum value for all sufficiently large times, and also conditions for
the emergence of a unique agent having value that tends to infinity before ‘explosion’
occurs (i.e. conditions for ‘strict leadership’ or ‘monopoly’ to occur almost surely).
The novelty of this model lies in allowing non-exponentially distributed waiting times
between jumps in value. In the particular case when waiting times are mixtures of
exponential distributions, we improve a well-established result on the ‘balls in bins’
model with feedback, removing the requirement that the feedback function be bounded
from below and also allowing random feedback functions. As part of the proofs we
derive necessary and sufficient conditions for the distribution of a convergent series of
independent random variables to have an atom on the real line, a result which we believe
may be of interest in its own right.

1 Introduction

1.1 Background and motivation

In various circumstances, it is of interest to model the dynamics of values of various agents
subject to growth over time. As the values of agents grow it may be the case that they can
leverage their value to grow at a faster rate, leading to reinforced growth and ‘rich-gets-richer’
effects. In such a situation a natural question is whether or not a ‘leader’ forms: a single agent
that eventually obtains and retains maximal value for all sufficiently large times.

Such a model is ubiquitous. One of the first, well-known, applications was to economics, where
one might consider agents to be companies, with ‘values’ representing wealth [1, 2]. In this
case, ‘leadership’ may indicate the formation of a company with dominant market share, or even
the formation of ‘monopolies’ [11]. In other applications, one may consider agents representing
political policies, with ‘leadership’ representing the formation of a most popular policy (called
institutional ‘stickiness’ in [36]). In modelling neuron development, agents might also represent
neurites, before the formation of a ‘leader’, that is, the specification of an axon [23].

In previous applications, these dynamics have been modelled by ‘balls-in-bins’ processes [11]
(also known as non-linear urns [15] or, originally, as generalised urn processes [18, 33]). In
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T. Iyer 2

these processes, agents are represented by a fixed number of urns, and the values of agents,
encoded by the number of balls the associated urn contains. The rate of ‘growth’ is measured
by a feedback function f : N0 Ñ p0,8q. Then starting from a given initial condition, at each
discrete time-step, one selects an urn containing j balls (say) with probability proportional to
fpjq, and adds a ball to it.

This model generalises the classical Pólya-Eggenberger urn scheme [13] – the case fpjq “ j
– and thus was first introduced under the name ‘generalised urns’ in [18]. It was later re-
introduced under the name ‘balls-in-bins’ in [11], however, we use the latter terminology to
avoid confusion with other generalisations of the Pólya-Eggenberger urn scheme (e.g. [21]).

In these processes, strict leadership (known as ‘eventual leadership’ in [28]) occurs if there is
a unique urn containing the maximum number of balls for all but finitely many time-steps. On
the other hand monopoly (a term coined in [11]), occurs if for all but finitely many time-steps,
a single urn is chosen for new additions of balls. A well-known result, as stated in [28], is the
following:

Theorem (From [11, 23, 26, 31, 27, 28]). In the balls-in-bins process, with feedback function
f : N0 Ñ p0,8q, regardless of the initial conditions of the process:

� Monopoly occurs with probability zero or one. Moreover, monopoly occurs with proba-
bility one if and only if

ř8

j“1 1{fpjq ă 8.

� If the feedback function f is bounded from below, strict leadership occurs with proba-
bility zero or one. Moreover, strict leadership occurs with probability one if and only if
ř8

j“1 1{fpjq2 ă 8.

The first result concerning monopoly comes from Rubin’s argument (presented in [9]). On the
other hand, the result regarding strict leadership was first proved in the case fpjq “ pj ` 1qp
in [23], and generalised by subsequent works of Oliveira and Spencer [27, 28, 29]. Thus, if
fpjq “ pj ` 1qp, for p P p0,8q - corresponding to instance of the model studied in, for
example, [7, 11, 23] - the model exhibits phase-transitions at the values p “ 1 and p “ 1{2
respectively, corresponding to whether or not monopoly, or strict leadership occur.

It is worth noting that the conditions on summability of
ř8

j“0 1{fpjq and
ř8

j“0 1{fpjq2 ap-
pear more widely in other models of reinforcement, where f , informally, represents the degree
of reinforcement. The condition of summability of

ř8

j“0 1{fpjq, appears as a condition for
‘explosion’ in first-passage percolation in trees [35], in ‘fixation’ of edge-reinforced random
walks [9, 38, 34], and in ‘connectivity transitions’ of growing trees of the ‘generalised pref-
erential attachment’ type [30, 19, 20]. On the other hand, the condition of summability of
ř8

j“0 1{fpjq2 also arise in the context of growing generalised preferential attachment graphs;
in criteria for the emergence of the emergence of a ‘persistent hub’. In these latter models, a
persistent hub represents a node in the graph whose degree is the largest for all but finitely
many time-steps in the evolution of the network [10, 14, 5].

A common approach to analyse the balls-in-bins model, and other similar models is via a
continuous time embedding. This approach dates back to Athreya and Karlin in a related
model [3], but was first exploited in the context of the balls-in-bins model by Rubin [9]. One
considers the collection of urns as a continuous time Markov process, with the number of
balls in a particular urn increasing from j to j ` 1 independently at rate fpjq. The embedded
Markov chain recovers the original balls-in-bins model. The continuous time representation
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immediately gives meaning to condition on the summability of
ř8

j“0 1{fpjq, as a necessary
and sufficient condition for explosion of the pure-birth process associated with the number of
balls in a particular urn.

There is a large literature related to the balls-in-bins model, concerning properties such as the
limiting proportion of balls in certain urn [18, 33, 2, 15, 17], the emergence of ‘weak monopoly’,
that is, an urn whose limiting ‘market share’ tends to one [15], and the number of balls of
‘losing type’ when monopoly occurs [16]. Other results are concerned with properties such as
the probability of monopoly, or leadership by an urn when one varies the initial conditions of
the urns [26, 29, 28, 27]. A number of generalisations of the model have also been studied,
including, models with varied feedback functions across different urns [15, 25], models where
the number of balls replaced is asymmetric [17], time-dependent models, with random numbers
of balls added at each time-step [32, 39], and interacting urn models [8, 24, 37]. We also remark
that there is a large literature on urns that generalise the Pólya-Eggenberger urn scheme in
other ways, for example [3, 21, 4, 22].

However, one limitation of the balls-in-bins model, and its extensions in the literature is that
they are Markov processes. Moreover, in many contexts, one might regard the continuous
time embedding of this model as more realistic in modelling the growth of values of agents:
if values represent the wealth of companies, the times when ‘growth’ take place often occurs
in continuous time, rather than in discrete time-steps. However, in these applications it is not
desirable to require exponentially distributed waiting times between jumps, as this may not al-
ways be realistic. This motivates the present study: the analysis of more general non-Markovian
processes which generalise the balls-in-bins model, where the waiting times in the underlying
continuous time process are independent but not necessarily exponentially distributed.

1.2 Contributions of this paper and overview

The contributions of this paper are the following:

� In Theorem 1.4 we derive necessary and sufficient conditions for leadership to occur
with probability zero or one in these more general competing growth processes, in other
words, conditions for a single agent to have maximum value for all but finitely many
time-steps. Moreover, in Theorem 1.4 and Corollary 1.8 we provide sufficient criteria for
monopoly and strict leadership to occur with probability zero or with probability one.
Unlike leadership, the latter two properties are not zero-one events in general, as shown
in Remark 1.6.

� In Theorem 1.13 we prove an important auxiliary result which may be of independent
interest: necessary and sufficient criteria for the distribution of a convergent sum of
independent random variables to have no atom on the real-line. Another auxiliary result,
Proposition 1.16, shows that when a series of independent random variables fails to
converge, and the summands are symmetric, the partial sums associated with the series
cross the origin infinitely often.

� The results from Theorem 1.4 shed new light on the summability of
ř8

j“0 1{fpjq2 in
regards to the balls-in-bins process scheme, showing that this condition arises when
analysing the convergence of certain random series in Theorem 1.4. In particular, applying
Theorem 1.4 leads to a new result regarding strict leadership in balls-in-bins schemes
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in Theorem 1.10, allowing for the feedback function to be random, and showing that it
need not be bounded from below.

Section 1.3 contains the formal description of the model and the main results related to
the model: Theorem 1.4, Corollary 1.8 and Proposition 2.1. It also contains auxiliary results
on random series that may be of independent interest: Theorem 1.13 and Proposition 1.16.
Section 1.4 deals with applications to the ‘balls-in-bins’ scheme, providing a formal overview
of that model, and the main result in Theorem 1.10. Section 2 includes the proofs of the
results appearing in this article, with sub-sections that can generally (aside from a few global
definitions) be read independently of each other.

1.3 Model description and main results

We consider a finite family of N0 valued growth processes with independent waiting times be-
tween jumps. Suppose we have A ě 2 agents labelled by the elements of rAs :“ t1, . . . , Au. To
each a P rAs, we associate an identically distributed sequence of mutually independent random
variables pX paq

j qjPN, taking values in r0,8q. Each agent a P rAs has a value va : r0,8q Ñ N
such that, the value of a at time t, vaptq, increases over time. The quantity X paq

k is the time
taken for the value of a to increase from k ´ 1 to k, and the agent a begins with a value of
vap0q. Thus, given the initial value vap0q, for k P N0 we have

vaptq “ vap0q ` k if and only if
vap0q`k
ÿ

j“vap0q`1
X paq

j ď t ă

vap0q`k`1
ÿ

j“vap0q`1
X paq

j .

We are interested in the vector of values of agents as time evolves, until, possibly, an agent
reaches infinite value. To do so, we set τ0 :“ 0. Then for each n P N, we define

τn :“ inf
#

t ě 0:
A
ÿ

a“1
vaptq ě n

+

.

We are generally interested in the discrete process pvapτnqqaPrAs,nPN0 , which represents the
evolution of values in the system as the total sum of values of agents increases. We call this
a competing growth process.

Remark 1.1. The main reason for analysing the process pvapτnqqaPrAs,nPN0 , and not the con-
tinuous time process pvaptqqaPrAs,tPr0,8q, is that we may have limnÑ8 τn ă 8, i.e., explosion
may occur. In many applications, there may be a total cap on the total possible sum of ‘val-
ues’. For example, if the agents represent companies, there may be a cap on the total possible
wealth that may exist. Thus, more relevant is the behaviour of the model before ‘resources’
run out – i.e., the behaviour before explosion.

Remark 1.2. As far as we are aware, the general process pvapτnqqaPrAs,nPN0 has not been
studied in the literature before. However, this process generalises the balls-in-bin process in
a similar manner to the way trees associated with Crump-Mode-Jagers branching processes
generalise ‘preferential attachment trees’ - see, for example, [19]. There is a large amount of
literature concerning Crump-Mode-Jagers branching processes.

Definition 1.3. With regards to the process pvapτnqqaPrAs,nPN0 :
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� We say leadership occurs if for some a P rAs, we have maxa1PrAs va1pτnq “ vapτnq for all
but finitely many n.

� We say strict leadership occurs, if for some unique a P A, maxa1PrAs va1pτnq “ vapτnq
for all but finitely many n.

� Finally, we say monopoly occurs if there is a unique a P A such that limnÑ8 vapτnq “ 8.

Clearly the occurence of monopoly implies strict leadership, which in turn implies leadership.

The results in this paper involve criteria related to convergence of random series. Recall that,
given a sequence of mutually independent random variables pSjqjPN, by the Kolmogorov 0-1
law, the series

ř8

j“1 Sj either converges almost surely or diverges almost surely. Necessary and
sufficient conditions for this convergence are provided by the classical Kolmogorov three series
theorem - see Section 1.5. Note also, that divergence of a series

ř8

j“1 Xj of non-negative
terms is equivalent to

ř8

j“1 Xj “ 8.

The first main result is a classification of leadership in the process pvapτnqqaPrAs,nPN0 . Sup-
pose that pXjqjPN, pX

1
jqjPN denote generic, independent sequences with pXjqjPN „ pX

1
jqjPN „

pX p1q
j qjPN.

Theorem 1.4. In the process pvapτnqqaPrAs,nPN0 , we have the following:

1 Leadership occurs with probability zero or one. Moreover, leadership occurs with proba-
bility one if and only if the random series

ř8

j“1pXj ´X
1
jq converges almost surely.

2 If
ř8

j“1 Xj diverges almost surely, then monopoly occurs with probability zero. On the
other hand, if

ř8

j“1 Xj converges almost surely, and either

2.1 For any a ‰ a1 P rAs, Dj ą vap0q^ va1p0q such that Xj has no atom on r0,8q, or,
2.2 For any sequence pcjqjPN P r0,8qN , we have

ř8

j“1 P pXj ‰ cjq “ 8,

then monopoly occurs with probability one.

3 If the series
ř8

j“1pXj ´X
1
jq converges almost surely, and, for any a ‰ a1 P rAs

8
ÿ

k“1
P

¨

˝0 ď
k
ÿ

j“va1 p0q`1
pX 1

j ´Xjq ´

va1 p0q
ÿ

j“vap0q`1
Xj ă Xk`1

˛

‚ă 8, (1.1)

strict leadership occurs with probability one.

Remark 1.5. Convergence of random series have been used in proving sufficiency of the
condition

ř8

j“0 1{fpjq2 for leadership in the balls-in-bins model (see, for example [23, 28]).
The main technicality of this article lies in extending these criteria to the general setting,
using Theorem 1.13 – the proof is comparatively much simpler when we can assume that
distribution of one of the Xj has no atom on r0,8q. Meanwhile, in the proof of necessity,
we use Proposition 1.16 – the techniques used for this direction in the balls-in-bins model
(or related preferential attachment models), involving normal approximation or approximation
by Brownian motion [23, 28, 10, 5], do not extend to the general setting where variances of
waiting times may not exist.
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Remark 1.6. Item 1 of Theorem 1.4 shows that leadership occurs with probability 0 or 1
in general. This does not seem to be immediately clear from applying, for example, standard
zero-one laws. Moreover, it is actually the case that monopoly and strict leadership are not zero-
one events in general, this is the content of Proposition 2.1, stated and proved in Section 2.2.
Intuitively, the added requirement of having a ‘unique’ leader removes the zero-one property.
In addition, note that leadership is a property that does not depend on the initial condition,
whereas this is not the case for monopoly or strict leadership.

Remark 1.7. In the definition of pvapτnqqaPrAs,nPN0 the sequences pX paq

j qjPN are identically
distributed across a P rAs. We believe it may be possible to extend the results, to some extent,
to the case where the sequences pX paq

j qjPN are independent, but not identically distributed,
random variables, but do not endeavour to do this here. Such processes would generalise
balls-in-bins-models with asymmetric feedback (see, e.g., [25]).

The following corollary provides criteria for strict leadership which may be easier to verify:

Corollary 1.8. In the process pvapτnqqaPrAs,nPN0 , if the series
ř8

j“1pXj´X
1
jq converges almost

surely,
ř8

j“1 P
`

Xj ´X
1
j ‰ 0

˘

“ 8, and, for any ε ą 0
8
ÿ

j“1
P pXj ą εq ă 8, (1.2)

then strict leadership occurs with probability one.

1.4 Applications to balls-in-bins models

As previously mentioned, a particular instance of the model pvapτnqqaPrAs,nPN0 is the balls-
in-bins model with, possibly random feedback function (see also Proposition 2.5 for explicit
proof). Suppose one begins at time zero with A urns, puap0qqaPrAs, with each uap0q P N,
representing the number of balls that urn contains. To each urn a P rAs is a mutually in-
dependent sequence of random variables pFapjqqjPN0 , where, for each a, a1 P rAs, we have
pFapjqjPN0 „ pFa1pjqqjPN0 .

Definition 1.9. Given an initial condition puap0qqaPrAs, and the collection of random variables
pFapjqqaPrAs,jPN0 , the balls-in-bins process with feedback puapnqqaPrAs,nPN0 is the discrete time
Markov process defined recursively as follows.

1 At time 0, sample the random variables pFapuap0qqqaPrAs.

2 At time n` 1, given the collection puapnqqaPrAs, and pFapuapnqqqaPrAs, sample an urn a
with probability

Fapuapnqq
řA
a“1 Fapuapnqq

.

Set uapn`1q “ uapnq`1, and for a1 ‰ a, set ua1pn`1q “ ua1pnq. Sample Fapuapn`1qq.

Suppose pF pjqqjPN0 , pF 1pjqqjPN0 denote generic, independent sequences of independent ran-
dom variables with pF pjqqjPN0 „ pF 1pjqqjPN0 „ pFapjqqjPN0 , for a P rAs. Suppose that the
events of leadership, strict leadership and monopoly from Definition 1.3 are defined analogously
for the balls-in-bins model with feedback puapnqqaPrAs,nPN0 .
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Theorem 1.10. In the balls-in-bins model with feedback puapnqqaPrAs,nPN0 , with feedback
function given by pF pjqqjPN0 , we have the following statements:

1 Monopoly occurs with probability zero or one. Moreover, monopoly occurs with proba-
bility one if and only if

ř8

j“0 1{F pjq ă 8 almost surely.

2 Strict leadership occurs with probability zero or one. Moreover, strict leadership occurs
with probability one if and only if

ř8

j“0 1{F pjq2 ă 8 almost surely.

Remark 1.11. Whilst Item 1 of Theorem 1.10 has not been stated in the context with
random feedback functions before, the proof of Item 1 uses essentially the same argument as
that from Rubin [9]. However, we include its proof for completeness. Moreover, as mentioned
in Remark 1.5 one of the directions of Item 2 uses similar ideas to [23, 28], but the general
result requires novel techniques.

1.5 Auxiliary results on the convergence of random series

As the results of this paper rely heavily on criteria for convergence of random series of inde-
pendent random variables, we recall here the well-known Kolmogorov three series theorem:

Theorem (Kolmogorov three series theorem, e.g. [12, Theorem 2.5.8., page 73]). For a se-
quence of mutually independent random variables pSjqjPN, let C ą 0 be given. Then the series
ř8

j“1 Sj converges almost surely if and only if

8
ÿ

j“1
P p|Sj| ą Cq ă 8,

8
ÿ

j“1
E
“

Sj1|Sj |ďC

‰

ă 8 and
8
ÿ

j“1
Var

`

Sj1|Sj |ďC

˘

ă 8 (1.3)

Remark 1.12. Recall that, if
ř8

j“1 E rSjs ă 8 and
ř8

j“1 Var pSjq ă 8 then
ř8

j“1 Sj con-
verges almost surely - this is the Kolmogorov two series theorem. Note also that, if each Sj ě 0
almost surely, then one only needs to check convergence of the first two series in (1.3) - see
Proposition 2.4.

The proofs of Theorem 1.4 and Corollary 1.8 use Theorem 1.13 whilst the proof of Theorem 1.4
also uses Proposition 1.16. We believe that Theorem 1.13 may be of interest in its own right.

Theorem 1.13. Suppose that pYjqjPN is a sequence of mutually independent random variables
such that

ř8

j“1 Yj converges almost surely. Then the distribution of
ř8

j“1 Yj contains an atom
on R if and only if, for some collection pcjqjPN P RN

@j P N P pYj “ cjq ą 0 and
8
ÿ

j“1
P pYj ‰ cjq ă 8. (1.4)

Remark 1.14. Equation (1.4) in Theorem 1.13, together with the Borel–Cantelli lemma
shows that a convergent series of random variables

ř8

j“1 Yj contains an atom, if and only if,
the random variables pYjqjPN coincide with deterministic values pcjqjPN for all but finitely many
j.
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Remark 1.15. Note that, if the random variables pYjqjPN are symmetric, Equation (2.27) can
only be satisfied if

8
ÿ

j“1
P pYj ‰ 0q ă 8.

Indeed, Equation (2.27) implies that, for j sufficiently large, P pYj “ cjq “ P pYj “ ´cjq ą
1{2, which is impossible if infinitely many values of cj are non-zero.

Finally, we have the following useful proposition:

Proposition 1.16 (Divergence of series of symmetric random variables). Suppose that pSjqjPN
is a sequence of mutually independent, symmetric random variables. If

ř8

j“1 Sj diverges almost
surely, then

lim sup
nÑ8

n
ÿ

j“1
Sj “ 8 and lim inf

nÑ8

n
ÿ

j“1
Sj “ ´8 almost surely. (1.5)

2 Proofs of results

2.1 Notation

In what follows, it will be helpful to have explicit notation for the events of leadership, strict
leadership and monopoly. For an agent a P rAs, we define the events of leadership of a, Leada,
monopoly of a, Mona, and strict leadership of a, SLeada respectively by

Leada :“ tDN P N : @n ě N @a1 P rAs a1 ‰ a ùñ vapτnq ě va1pτnqu .

Mona :“ tDN P N : @n ě N vapτnq “ vapτNqu ,

and
SLeada :“ tDN P N : @n ě N @a1 P rAs a1 ‰ a ùñ vapτnq ą va1pτnqu .

Thus, leadership coincides with the event
Ť

aPrAs Leada, monopoly with
Ť

aPrAs Mona and strict
leadership with

Ť

aPrAs SLeada.

We assume throughout that ‘empty’ sums (for example
ř0
j“1 Xj) are zero. Moreover, given a

collection of events pEjqjPN in a probability space, we use the abbreviation “Ej i. o.” to denote
the event that infinitely many Ej occur, i.e.,

Ş8

n“1
Ť8

j“n Ej occurs.

2.2 Proofs of Theorem 1.4, Corollary 1.8 and Proposition 2.1

We start with the proof of Theorem 1.4, which is self-contained, except for usage of Theo-
rem 1.13 and Proposition 1.16. The proofs of Corollary 1.8 and Proposition 2.1 use ideas, and
sometimes notation, from the proof of Theorem 1.4.

Proof of Item 1 of Theorem 1.4. For Item 1, suppose, first, that
ř8

j“1pXj ´ X 1
jq converges

almost surely. We show that given any two agents, eventually one of them has a value that
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does not exceed the other, i.e. one is a ‘winner’. Thus, by iteratively ordering agents, we can
find a leader.

In this regard, suppose a, a1 P rAs are agents. Then we define

Winpa, a1q :“ tDN P N : @n ě N vapτnq ě va1pτnqu .

Note that Winp¨, ¨q leads to a transitive relation, in the sense that, for a, a1, a2 P rAs

Winpa, a1q XWinpa1, a2q Ď Winpa, a2q.

Our goal is to show that the relation is complete, that is,

P

˜

č

a‰a1

pWinpa, a1q YWinpa1, aqq
¸

“ 1, (2.1)

so that, by iteratively ordering elements, the event
Ť

aPrAs

Ş

a1‰a Winpa, a1q “
Ť

aPrAs Leada
occurs. For (2.1), suppose that a, a1 P rAs with a ‰ a1, and assume, without loss of gen-
erality, that vap0q ď va1p0q. Now, if limnÑ8 vapτnq ă 8 or limnÑ8 va1pτnq ă 8, note that
either Winpa, a1q occurs or Winpa1, aq occurs, depending on whether or not limnÑ8 vapτnq ě
limnÑ8 va1pτnq. Thus, we may assume that limnÑ8 vapτnq “ 8 and limnÑ8 va1pτnq “ 8.
There are now two cases. First, suppose that

ř8

j“1 P
´

X paq

j ‰ X pa1q

j

¯

“ 8. Then, noting that
the random variables Xj ´X

1
j are symmetric, by Theorem 1.13 and Remark 1.15, the almost

surely convergent sum
va1 p0q
ÿ

j“vap0q`1
X paq

j `

8
ÿ

j“va1 p0q`1

´

X paq

j ´X pa1q

j

¯

, (2.2)

contains no atom at 0, and thus is almost surely strictly positive or negative. Therefore, with
probability one, for all k sufficiently large,

either
k
ÿ

j“vap0q`1
X paq

j ă

k
ÿ

j“va1 p0q`1
X pa1q

j or
k
ÿ

j“va1 p0q`1
X pa1q

j ă

k
ÿ

j“vap0q`1
X paq

j . (2.3)

The partial sum
řk
j“vap0q`1 X

paq

j represents the time taken for the the value of a to reach k,
and similarly for a1. Thus (2.3) implies that one of a or a1 is a winner, i.e.,

P pWinpa, a1q YWinpa1, aqq “ 1.

As the finite intersection of almost sure events, (2.1) follows. If, however,
8
ÿ

j“1
P
´

X paq

j ‰ X pa1q

j

¯

ă 8,

then by the Borel-Cantelli lemma, X paq

j “ X pa1q

j for all but finitely many j. This implies that
eventually, the partial sums converging to (2.2) are constant: the convergent series has all but
finitely many terms equal to zero. Thus, for all k sufficiently large, either (2.3) holds, or

k
ÿ

j“vap0q`1
X paq

j “

k
ÿ

j“va1 p0q`1
X pa1q

j .
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As Winpa, a1qYWinpa1, aq also allows for the case that both a and a1 have the same values for
n sufficiently large, again, this implies P pWinpa, a1q YWinpa1, aqq “ 1, and thus implies (2.1).

For the converse direction of Item 1, suppose that
ř8

j“1pXj ´X
1
jq diverges almost surely, and

again, assume without loss of generality that vap0q ď va1p0q. Then by Proposition 1.16, with
probability one we have

lim sup
kÑ8

va1 p0q
ÿ

j“vap0q`1
X paq

j `

k
ÿ

j“va1 p0q`1

´

X paq

j ´X pa1q

j

¯

“ 8 and

lim inf
kÑ8

va1 p0q
ÿ

j“vap0q`1
X paq

j `

k
ÿ

j“va1 p0q`1

´

X paq

j ´X pa1q

j

¯

“ ´8.

Therefore, we have both
k
ÿ

j“vap0q`1
X paq

j ă

k
ÿ

j“va1 p0q`1
X pa1q

j for infinitely many k, and

k
ÿ

j“vap0q`1
X paq

j ą

k
ÿ

j“va1 p0q`1
X pa1q

j for infinitely many k.

This implies that P pWinpa, a1q YWinpa1, aqq “ 0, and, since a, a1 are arbitrary, that

P

˜

ď

aPrAs

Leada

¸

“ P

˜

ď

aPrAs

č

a1‰a

Winpa, a1q
¸

“ 0.

Proof of Item 2 of Theorem 1.4. Suppose that, for each a P rAs we define

σpaq :“
8
ÿ

j“vap0q`1
X paq

j , i.e., the ‘first time’ that a attains infinite value. (2.4)

Since rAs is finite, there must be some agent of infinite value as
řA
a“1 vapτnq Ñ 8, hence, by

definition of the times pτnqnPN.

τ8 “ lim
nÑ8

τn “ min
aPrAs

σpaq.

Now, for the first statement of Item 2, suppose that
ř8

j“1 Xj “ 8 almost surely. Then

P

˜

č

aPrAs

tσpaq “ 8u

¸

“ 1,

so that τ8 “ 8 almost surely. Since, for each a P rAs, the values X paq

j are finite, as the finite
sum of finite random variables, we have

k
ÿ

j“vap0q`1
X paq

j ă τ8 “ 8 for each k P N.
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Therefore, for each a P rAs, limnÑ8 vapτnq “ 8. As monopoly entails that there is only a
single agent with value tending to infinity, this implies that P

´

Ť

aPrAs Mona
¯

“ 0.

For the converse statement, suppose that
ř8

j“1 Xj ă 8 almost surely, and one of the state-
ments Item 2a or Item 2b from the theorem are satisfied. Then, for any a, a1 P rAs with a ‰ a1,
(by applying Theorem 1.13 if Item 2b is satisfied), the random variable

8
ÿ

j“vap0q`1
X paq

j ´

8
ÿ

j“va1 p0q`1
X pa1q

j

contains no atom on R, hence P pσpaq “ σpa1qq “ 0.

This implies P
´

Ş

a,a1PrAs,a‰a1 tσpaq “ σpa1qu
¯

“ 0, hence, almost surely, there exists a unique
a˚ P rAs such that, σpa˚q “ τ8. By uniqueness, for any a1 ‰ a˚, va1pτ8q ă 8, thus,
limnÑ8 va1pτnq “ ca1 , for some ca1 P N. This implies that Mona˚ occurs.

Proof of Item 3 of Theorem 1.4. For Item 3 of Theorem 1.4, note first that by Item 1 of
Theorem 1.4, P

´

Ť

aPrAs Leada
¯

“ 1. Any candidate for strict leadership must also be an
eventual leader of the process. Suppose then that for some a P rAs, Leada occurs, but SLeada
does not. Then there must be at least one a1 P rAs such that vapτnq “ va1pτnq for infinitely
many n P N, and since a is a leader, limnÑ8 vapτnq “ 8. Thus, there must be infinitely many
k such that

k
ÿ

j“vap0q`1
X paq

j ď

k
ÿ

j“va1 p0q`1
X pa1q

j ă

k`1
ÿ

j“vap0q`1
X paq

j . (2.5)

Therefore,

P

˜˜

ď

aPrAs

Leada

¸

z

˜

ď

aPrAs

SLeada

¸¸

ď P

¨

˝

ď

a‰a1

$

&

%

k
ÿ

j“vap0q`1
X paq

j ď

k
ÿ

j“va1 p0q`1
X pa1q

j ă

k`1
ÿ

j“vap0q`1
X paq

j i.o.

,

.

-

˛

‚

ď
ÿ

a‰a1

P

¨

˝0 ď
k
ÿ

j“va1 p0q`1
X pa1q

j ´

k
ÿ

j“vap0q`1
X paq

j ă X paq

k`1 i.o.

˛

‚. (2.6)

But then by Equation (1.1) and the Borel-Cantelli lemma, each summand on the right-side
of (2.6) is 0, hence proving the claim.

The proof of Corollary 1.8 follows similar logic to the proof of Item 3 of Theorem 1.4.

Proof of Corollary 1.8. Suppose that, with positive probability, for some a P rAs, Leada occurs
but SLeada does not. Then by (2.5), for some a1 ‰ a there exists infinitely many k such that

k
ÿ

j“va1 p0q`1
X pa1q

j ´

k
ÿ

j“vap0q`1
X paq

j ă X paq

k`1. (2.7)
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Now, by Equation (1.2), and the Borel-Cantelli lemma, for any ε ą 0 with probability 1,
X paq

k`1 ď ε for all but finitely many k. Assume, first that va1p0q ě vap0q. Then by (2.7), taking
limits as k Ñ 8, the almost surely convergent sum

8
ÿ

j“va1 p0q`1

´

X pa1q

j ´X paq

j

¯

`

va1 p0q
ÿ

j“vap0q`1

´

X pa1q

j ´X paq

j

¯

must equal zero, almost surely. But now, as
ř8

j“1 P
`

Xj ´X
1
j ‰ 0

˘

“ 8, Theorem 1.13 and
Remark 1.15 imply that the series above has no atom on R, this leads to a contradiction. The
case va1p0q ă vap0q is similar.

Finally, we prove Proposition 2.1, which shows that monopoly and strict leadership are not, in
general, zero-one events.
Proposition 2.1. We have the following:

1 There exists a process pvapτnqqaPrAs,nPN0 such that 0 ă P
´

Ť

aPrAs Mona
¯

ă 1.

2 There exists a process pvapτnqqaPrAs,nPN0 such that 0 ă P
´

Ť

aPrAs SLeada
¯

ă 1.

Proof of Proposition 2.1. For both examples we assume, for simplicity, that N “ 2 and
v1p0q “ v2p0q “ 0. For Item 1 of Proposition 2.1, we choose the values pXjqjPN such that
each Xj is concentrated on two values, with

Xj “

#

2´j with probability 1´ 1
pj`1q2

0 otherwise.

Then with σp1q, σp2q as defined in (2.4), note that σpaq ď 1 almost surely, for a P t1, 2u.
Following similar logic to the proof of Item 2 of Theorem 1.4, we have

P pMon1q ě P
ˆ

σp1q “ 1
2 , σp2q “ 1

˙

ě P

˜

 

X p1q
1 “ 0

(

X

˜

8
č

j“2

 

X p1q
j “ 2´j

(

¸¸

P

˜

8
č

j“1

 

X p2q
j “ 2´j

(

¸

“

˜

1
4

8
ź

j“2

ˆ

1´ 1
pj ` 1q2

˙

¸

8
ź

j“1

ˆ

1´ 1
pj ` 1q2

˙

ą 0

where we have used the independence of the values pX paq

j qaPt1,2u,jPN. The last inequality follows
from the fact that the infinite products consist of non-zero terms and

ř8

j“1
1

pj`1q2 ă 8. On
the other hand, by similar computations, we also have

P

˜˜

2
ď

a“1
Mona

¸c¸

“ P pσp1q “ σp2qq ě P pσp1q “ 1, σp2q “ 1q

ě P

˜

8
č

j“2

 

X p1q
j “ 2´j

(

¸

P

˜

8
č

j“1

 

X p2q
j “ 2´j

(

¸

“

˜

8
ź

j“1

ˆ

1´ 1
pj ` 1q2

˙

¸2

ą 0.
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Item 1 of Proposition 2.1 follows.

For Item 2 of Proposition 2.1, suppose that eachXj takes values in N. More concretely, suppose
Xj „ Geom ppjq for pj P p0, 1q, where Geom ppjq denotes the geometric distribution with
parameter pj. For leadership, by Item 1 of Theorem 1.4, we need

ř8

j“1pXj ´X
1
jq ă 8. Since,

in this case, P
`

|Xj ´X
1
j| ě 1

˘

“ P
`

Xj ‰ X 1
j

˘

, by the Kolmogorov three series theorem, it
must be the case that

8
ÿ

j“1
P
`

Xj ‰ X 1
j

˘

ă 8. (2.8)

Suppose we choose pj to satisfy (2.8), but also with each P
`

X p1q
j “ X p2q

j

˘

ą 0 (e.g. pj :“
p1´ 1

pj`1q2 q). Then this implies that

P

˜˜

2
ď

a“1
SLeada

¸c¸

ě P
`

@j P N X p1q
j “ X p2q

j

˘

“

8
ź

j“1

`

1´ P
`

X p1q
j ‰ X p2q

j

˘˘

ą 0, (2.9)

since
ř8

j“1 P
`

X p1q
j ‰ X p2q

j

˘

ă 8 and each P
`

X p1q
j ‰ X p2q

j

˘

ą 0. On the other hand,

P pSLead1q ě P
`

X p1q
1 ă X p2q

1
˘

P
`

@j ě 2 X p1q
j “ X p2q

j

˘

“ P
`

X p1q
1 ă X p2q

1
˘

8
ź

j“2

`

1´ P
`

Xj ‰ X 1
j

˘˘

ą 0,

where the final inequalities use similar logic to (2.9). Item 2 of Proposition 2.1 follows.

Remark 2.2. Suppose that all of the Xj are concentrated on a set where the distance between
any two points is bounded away from 0, and, for all a, a1 P rAs vap0q “ va1p0q. By using similar
ideas to the proof of Item 2 of Proposition 2.1 one can show that, if P

´

Ť

aPrAs Leada
¯

“ 1,

then 0 ă P
´

Ť

aPrAs SLeada
¯

ă 1.

2.3 Proof of Theorem 1.10

We first relate the balls-in-bins process to a particular case of the process pvapτnqqaPrAs,nPN0 .
Suppose that pF pjqqjPN0 is the feedback function associated with the balls-in-bins process.
Suppose pXjqjPN denotes a sequence of random variables with mixed distribution

Xj „ Exp pF pj ´ 1qq . (2.10)

Proposition 2.3. Suppose puapnqqaPrAs,nPN0 denotes a balls-in-bins process, with associated
function f , and pvapτnqqaPrAs,nPN0 denotes a competing growth process, with random variables
pXiqiPN distributed as (2.10). Suppose also that puap0qqaPrAs “ pvap0qqaPrAs, i.e., both have
the same initial conditions. Then

puapnqqaPrAs,nPN0 „ pvapτnqqaPrAs,nPN0 .

The proof of Proposition 2.3, along with Item 1 of Theorem 1.10 are straightforward extensions
of their analogues where pF pjqqjPN0 is deterministic (see, e.g., [27]). However, we include their
proofs for completeness.

We include the proof of Proposition 2.3 for completeness.
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Proof of Proposition 2.3. We construct the process pvapτnqqaPrAs,nPN0 , and show it has the
same distribution as puapnqqaPrAs,nPN0 . Note that, by mutual independence of pFapjqqaPrAs,jPN0 ,
it makes no difference to the law of the total sequence puapnqqaPrAs,nPN0 if these are sampled
initially, or iteratively as in Definition 1.9. Therefore, in constructing pvapτnqqaPrAs,nPN0 , we
start by sampling one layer of randomness: the collection pFapjqqaPrAs,jPN0 . Then conditional
on these random variables, the values pX paq

j qaPrAs,jPN0 are mutually independent, exponential
random variables. Now, suppose that pFtqtě0 denotes the filtration generated by the process
pvaptqqaPrAs,tPr0,8q, given pFapjqqaPrAs,jPN0 . Then:

1 By assumption, we have pvap0qqaPrAs “ puap0qqaPrAs.

2 Recalling the times pτnqnPN, note that, for a P rN s, we have

P pvapτn`1q “ vapτnq ` 1q “ P
´

X paq

vapτnq`1 “ τn`1 ´ τn

¯

“ E
„

P
ˆ

X paq

vapτnq`1 “ τn`1 ´ τn

ˇ

ˇ

ˇ

ˇ

Fτn

˙

“ E
„

P
ˆ

X paq

vapτnq`1 “ min
aPrAs

!

X paq

vapτnq`1

)

ˇ

ˇ

ˇ

ˇ

Fτn

˙

“ P
ˆ

X paq

vapτnq`1 “ min
aPrAs

!

X paq

vapτnq`1

)

˙

. (2.11)

The third equality follows from the fact that remaining time τn`1´τn is given by the ‘minimum
time’ taken for an agent to increase in value, after the total sum of values is n. The fourth
equality follows from the memoryless property of the exponential distribution: for each a P
rAs, the distribution of X paq

vapτnq`1 is invariant under conditioning on Fτn . Indeed, either τn “
řvapτnq

j“1 X paq

j , in which case X paq

vapτnq`1 is independent of Fτn , or, τn ą
řvapτnq

j“1 X paq

j , hence, by
the memoryless property, for any c P r0,8q,

P

˜

X paq

vapτnq`1 ą

ˆ

τn ´

vapτnq
ÿ

j“1
X paq

j

˙

` c

ˇ

ˇ

ˇ

ˇ

X paq

vapτnq`1 ą τn ´

vapτnq
ÿ

j“1
X paq

j

¸

“ P
´

X paq

vapτnq`1 ą c
¯

,

from which the claim follows. Now, by the properties concerning minima of independent ex-
ponential random variables, the right side of (2.11) is equal to

Fapvapτnqq
řA
a“1 Fapvapτnqq

.

Thus, given pFapjqqaPrAs,jPN0 , pvapτnqqaPrAs,nPN0 follows the same transition probabilities as the
balls-in-bins process puapnqqaPrAs,nPN0 as defined in Definition 1.9. The result follows.

Proof of Item 1 of Theorem 1.10. Given Proposition 2.3, it suffices to show that the con-
ditions of Theorem 1.4 are satisfied for the sequences pXjqjPN, pXjqjPN defined according
to (2.10). For Item 1, note that by conditioning in the values of pF pjqqjPN0 , by the formula
for the expected value of an exponential random variable, we have

E

«

8
ÿ

j“1
Xi

ˇ

ˇ

ˇ

ˇ

pF pjqqjPN0

ff

“

8
ÿ

j“0
1{F pjq ă 8 almost surely,
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Fixation of leadership in non-Markovian growth processes 15

hence, by Item 2 of Theorem 1.4, P
´

Ť

aPrAs Mona
¯

“ 1. For the converse direction suppose

8
ÿ

j“0

1
F pjq

“ 8 almost surely. (2.12)

Then by using the formula for the Laplace transform of an exponential random variable, and
the inequality 1´ x ď e´x, we have

E
„

e´
ř8

j“1 Xj

ˇ

ˇ

ˇ

ˇ

pF pjqqjPN0



“

8
ź

j“0

F pjq

F pjq ` 1 “
8
ź

j“0

ˆ

1´ 1
F pjq ` 1

˙

ď e´
ř8

j“0
1

F pjq`1
(2.12)
“ 0,

almost surely. This implies that
ř8

j“1 Xj “ 8 almost surely, hence, again, by Item 2 of
Theorem 1.4, that P

´

Ť

aPrAs Mona
¯

“ 0.

For Item 2 of Theorem 1.10 we need an additional proposition and a lemma. Proposition 2.4 is
a strengthening of the Kolmogorov three series theorem when the summands are non-negative.

Proposition 2.4. Suppose that pSjqjPN is a sequence of mutually independent random vari-
ables taking values in r0,8q. Let C ą 0 be given. Then

ř8

j“1 Sj ă 8 if and only if

8
ÿ

j“1
P pSj ą Cq ă 8 and

8
ÿ

j“1
E
“

Sj1SjďC

‰

ă 8.

Proof of Proposition 2.4. Suppose that, for some C ą 0,

either
8
ÿ

j“1
P pSj ą Cq “ 8 or

8
ÿ

j“1
E
“

Sj1SjďC

‰

“ 8.

Then we already know from the Kolmogorov three series theorem that
ř8

j“1 Sj “ 8 almost
surely. For the other direction, we use the following theorem from [6].
Claim 2.4.1 ([6, Theorem 1]). Let Y be a random variable taking values in rm,M s. Then

Var pY q ď pM ´ E rY sqpE rY s ´mq.

The random variable Sj1SjďC takes values in r0, Cs, and clearly E
“

Sj1Sj

‰

ě 0. Therefore, by
Claim 2.4.1,

Var
`

Sj1SjďC

˘

ď CE
“

Sj1SjďC

‰

,

thus,
ř8

j“1 E
“

Sj1SjďC

‰

ă 8 implies that
ř8

j“1 Var
`

Sj1SjďC

˘

ă 8. The result, therefore,
follows from the Kolmogorov three series theorem.

Proposition 2.5. For the balls-in-bins model with feedback puapnqqaPrAs,nPN0 , defined in The-
orem 1.10, we have P

´

Ť

aPrAs SLeada
¯

P t0, 1u with P
´

Ť

aPrAs SLeada
¯

“ 1 if and only if
for all η ą 0

8
ÿ

j“0
P pF pjq ď ηq ă 8 and E

«

8
ÿ

j“0

1
F pjq2

1tF pjqąηu

ff

ă 8. (2.13)
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We are now ready to prove Item 2 of Theorem 1.10, we then prove Proposition 2.5 afterwards.

Proof of Item 2 of Theorem 1.10. By Propostion 2.5, we need only prove that the almost sure
convergence of

ř8

j“0
1

F pjq2
is equivalent to (2.13). But if Equation (2.13) is satisfied for all

η ą 0, it is, in particular, the case that, for all η ą 0

8
ÿ

j“0
P pF pjq ď

?
ηq “

8
ÿ

j“0
P
ˆ

1
F pjq2

ě η

˙

ă 8 and E

«

8
ÿ

j“1

1
F pjq2

1tF pjqąηu

ff

ă 8.

(2.14)
By Proposition 2.4, with C “ η, Equation (2.14) implies that

ř8

j“0
1

F pjq2
ă 8 almost surely.

On the other hand, again by Proposition 2.4, if
ř8

j“0
1

F pjq2
“ 8 almost surely, for some η ą 0

one of the two series in (2.14) must diverge, hence, for a possibly different η one of the two
series in (2.13) must diverge.

Finally, to prove Proposition 2.5, we use the following elementary lemma:

Lemma 2.6. Suppose that Y and Y 1 are exponentially distributed, with parameters r, r1
respectively. Then, for any C ą 0,

P p|Z| ą Cq “
r1

r ` r1
e´rc `

r

r ` r1
e´r

1c, (2.15)

and
E
“

Z21|Z|ďC
‰

“
2

r ` r1

ˆ

r1qpCrq

r2 `
rqpCr1q

pr1q2

˙

, (2.16)

where qpxq “ 1´ e´xp1` x` x2{2q. In particular,

E
“

Z2‰
“

2
r ` r1

ˆ

r1

r2 `
r

pr1q2

˙

. (2.17)

Proof of Lemma 2.6. Note that by Fubini’s theorem, for a non-negative random variable Y ,
and s ą 0

E rY s
s “ E

„
ż Y

0
sys´1dy



“ E
„
ż 8

0
sys´11Yěydy



“

ż 8

0
sys´1P pY ě yq dy. (2.18)

Moreover, if Z :“ Y ´ Y 1, then for all y ą 0

P
ˆ

Z ě y

ˇ

ˇ

ˇ

ˇ

Z ě 0
˙

“ P
ˆ

Y ě Y 1 ` y

ˇ

ˇ

ˇ

ˇ

Y ě Y 1
˙

“ e´ry,

and since P pZ ě 0q “ r1

r`r1
, for each y ě 0 we have P pZ ě yq “ r1

r`r1
e´ry. Writing Z “

Z1Zě0 ` Z1Ză0, this already yields (2.15) by symmetry. Finally, by applying (2.18) to the
random variable Y :“ Z10ďZďC , with s “ 2 we have

E
“

Z210ďZďC
‰

“
r1

r ` r1

ż C

0
2y

`

e´ry ´ e´rC
˘

dy “ 2r1
r ` r1

ˆ

1´ e´Crp1` cr ` pcrq2{2q
r2

˙

,

leading again, by symmetry to (2.16). Equation (2.17) follows from sending C Ñ 8.

DOI 10.20347/WIAS.PREPRINT.3137 Berlin 2024



Fixation of leadership in non-Markovian growth processes 17

Proof of Proposition 2.5. We first show that
ř8

j“1pXj´X
1
jq converges under the assumption

that (2.13) is satisfied for all η ą 0. If F pjq, F 1pjq denote the respective rates of the exponential
random variables Xj`1, X

1
j`1, then the first sum in (2.13), and the Borel-Cantelli lemma imply

that only finitely many terms Xj`1, X
1
j`1 satisfy F pjq ď η or F 1pjq ď η. Thus, as a series

consisting, almost surely, of only finitely many non-zero terms,
8
ÿ

j“0

`

Xj ´X
1
j

˘ `

1tF pjqďηu ` 1tF 1pjqďηu
˘

converges, almost surely. (2.19)

On the other hand, the series
ř8

j“0
`

Xj ´X
1
j

˘

1tF pjq,F 1pjqąηu consists of summmands each
having mean zero, whilst by Equation (2.17) in Lemma 2.6

E
”

`

Xj`1 ´X
1
j`1

˘2 1tF pjq,F 1pjqąηu
ı

(2.20)

“ E
„

2
F pjq ` F 1pjq

ˆ

F 1pjq

F pjq2
`

F pjq

F 1pjq2

˙

1tF pjq,F 1pjqąηu


“ E
„

F pjq3 ` F 1pjq3

pF pjq ` F 1pjqqF pjq2F 1pjq2
1tF pjq,F 1pjqąηu



“ E
„

F pjq2 ´ F pjqF 1pjq ` F 1pjq2

F pjq2F 1pjq2
1tF pjq,F 1pjqąηu



ď E
„

2
F pjq2

1tF pjqąηu


,

where the second to last equality uses the factorisation x3`y3 “ px`yqpx2´xy`y2q. Thus,
if we assume that E

”

ř8

j“0
1

F pjq2
1tF pjqąηu

ı

ă 8, by the Kolmogorov two series theorem,
we deduce that

ř8

j“1pXj ´ X 1
jq1tF pjq,F 1pjqąηu converges, hence by (2.19), so does the sum

ř8

j“1pXj ´X
1
jq. In addition, using the inequality e´x ď 1

x2 , valid for all x ą 0, for any ε ą 0
we have, with η as defined in (2.13)

8
ÿ

j“1
P pXj ě εq ď

8
ÿ

j“0

`

P pF pjq ď ηq ` E
“

e´F pjqε1tF pjqąηu
‰˘

ď
1
ε2

8
ÿ

j“0
P pF pjq ď ηq `

1
ε2

8
ÿ

j“0
E
„

1
F pjq2

1tF pjqąηu


(2.13)
ă 8.

Using the smoothness of the exponential distribution, for each Xj, P
`

Xj “ X 1
j

˘

“ 0. Thus,
by Corollary 1.8, we have P

´

Ť

aPrAs SLeada
¯

“ 1.

Now, suppose instead that, for all η ą 0, Equation (2.13) is not satisfied. Suppose first that
for some η ą 0 we have

8
ÿ

j“0
P pF pjq ď ηq “ 8, i.e., by the Borel-Cantelli lemma, P pF pjq ď η i.o.q “ 1.

(2.21)
Observe that, by Lemma 2.6, for C ą 0 we have

P
`

|Xj`1 ´X
1
j`1| ą C

˘

“ E
„

1
F pjq ` F 1pjq

´

F 1pjqe´F pjqC ` F pjqe´F
1pjqC

¯



. (2.22)
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We also have

1
F pjq ` F 1pjq

´

F 1pjqe´F pjqC ` F pjqe´F
1pjqC

¯

1tF pjqďη,F 1pjqďηu

ě e´ηC
ˆ

F 1pjq

F pjq ` F 1pjq
`

F pjq

F pjq ` F 1pjq

˙

1tF pjqďη,F 1pjqďηu “ e´ηC1tF pjqďη,F 1pjqďηu,

whilst

1
F pjq ` F 1pjq

´

F 1pjqe´F pjqC ` F pjqe´F
1pjqC

¯

1tF pjqďη,F 1pjqąηu

ě
F 1pjq

F pjq ` F 1pjq
e´F pjqC1tF pjqďη,F 1pjqąηu

ą
η

F pjq ` η
e´F pjqC1tF pjqďη,F 1pjqąηu ě

1
2e
´ηC1tF pjqďη,F 1pjqąηu.

Thus, the previous two equations, on 1tF pjqďηu, we can bound the term inside the expectation
in (2.22) by

1
F pjq ` F 1pjq

´

F 1pjqe´F pjqC ` F pjqe´F
1pjqC

¯

1tF pjqďηu ě
1
2e
´ηC1tF pjqďηu (2.23)

Thus, by conditioning on the sequence pF pjqqjPN0 , by (2.21) and (2.23), for any C ą 0 we
have

8
ÿ

j“1
P
ˆ

|Xj`1 ´X
1
j`1| ą C

ˇ

ˇ

ˇ

ˇ

pF pjqqjPN0

˙

ě

8
ÿ

j“1

1
2e
´ηC

“ 8 almost surely.

Taking expectations, this implies that for C ą 0 we have
ř8

j“1 P
`

|Xj`1 ´X
1
j`1| ą C

˘

“ 8,
which implies, by the Kolmogorov three series theorem that

ř8

j“1pXj´X
1
jq diverges. By Item 1

of Theorem 1.4, we have P
´

Ť

aPrAs SLeada
¯

ď P
´

Ť

aPrAs Leada
¯

“ 0.

The other regime in which (2.13) is not satisfied is when, for some η ą 0

8
ÿ

j“0
P pF pjq ď ηq ă 8 but E

«

8
ÿ

j“0

1
F pjq2

1tF pjqąηu

ff

“ 8. (2.24)

Assuming (2.24), recall that by (2.19) convergence of
ř8

j“1pXj´X
1
jq is determined by conver-

gence of the series
ř8

j“0
`

Xj ´X
1
j

˘

1tF pjq,F 1pjqąηu. But now, by similar manipulations to (2.20),
we have

E
”

`

Xj`1 ´X
1
j`1

˘2 1tF pjq,F 1pjqąηu
ı

“ E
„

F pjq2 ´ F pjqF 1pjq ` F 1pjq2

F pjq2F 1pjq2
1tF pjq,F 1pjqąηu



“ E
„

1
F pjq2

1tF pjq,F 1pjqąηu


` E

«

ˆ

1
F 1pjq

1tF pjq,F 1pjqąηu
˙2

´ E
„

1
F 1pjq

1tF pjq,F 1pjqąηu
2
ff

ě E
„

1
F pjq2

1tF pjq,F 1pjqąηu


“ E
„

1
F pjq2

1tF pjqąηu


P pF 1pjq ą ηq , (2.25)
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Fixation of leadership in non-Markovian growth processes 19

where the second-to-last inequality follows from the non-negativity of the variance of a ran-
dom variable. But now, since

ř8

j“0 P pF 1pjq ď ηq ă 8, for all j sufficiently large, we have
P pF 1pjq ą ηq ě 1

2 , say. This fact, combined with (2.24) and the bound in (2.25) implies that

8
ÿ

j“1
E
”

`

Xj`1 ´X
1
j`1

˘2 1tF pjq,F 1pjqąηu
ı

“ 8,

which implies that the series
ř8

j“0
`

Xj ´X
1
j

˘

1tF pjq,F 1pjqąηu diverges, by the Kolmogorov three
series theorem. Therefore, again,

ř8

j“1pXj ´X 1
jq diverges, so that, again, by Item 1 of The-

orem 1.4 P
´

Ť

aPrAs SLeada
¯

“ 0.

2.4 Proof of Theorem 1.13

The heart of Theorem 1.13 lies in the following proposition.

Proposition 2.7. Suppose pSjqjPN is a sequence of mutually independent, symmetric random
variables, with

ř8

i“1 Si ă 8 almost surely. Suppose also that
ř8

i“1 P pSi ‰ 0q “ 8. Then

P

˜

8
ÿ

i“1
Si “ 0

¸

“ 0.

We first prove Theorem 1.13, then prove Proposition 2.7 over the rest of the section. For
Theorem 1.13, we also require the following lemmata

Lemma 2.8. Suppose that Y, Y 1 are i.i.d. random variables taking values in R. Then the
distribution of Y contains an atom in R if and only if P pY “ Y 1q ą 0.

Proof of Lemma 2.8. If for some c P R we have P pY “ cq ą 0, then

P pY “ Y 1q “ P pY ´ Y 1 “ 0q ě P pY “ c, Y 1 “ cq “ P pY “ cq2 .

On the other hand,
P pY ´ Y 1 “ 0q “ E

„

E
„

Y “ Y 1
ˇ

ˇ

ˇ

ˇ

Y 1


. (2.26)

If for all c ą 0, P pY “ cq “ 0, then the term inside the expectation in (2.26) is zero almost
surely, hence P pY ´ Y 1 “ 0q “ 0.

Lemma 2.9. Suppose that pYjqjPN and pY 1j qjPN are independent sequences of mutually in-
dependent random variables, with Yj „ Y 1j for all j P N. Then, the following statements are
equivalent:

1 For some collection pcjqjPN P RN,

@j P N P pYj “ cjq ą 0 and
8
ÿ

j“1
P pYj ‰ cjq ă 8.

DOI 10.20347/WIAS.PREPRINT.3137 Berlin 2024



T. Iyer 20

2 @j P N P
`

Yj “ Y 1j
˘

ą 0 and
ř8

j“1 P
`

Yj ‰ Y 1j
˘

ă 8.

Proof of Lemma 2.9. To show that the Item 1 implies Item 2, note that, if such a sequence
pcjqjPN is given, then P

`

Yj “ Y 1j
˘

ě P
`

Yj “ cj, Y
1
j “ cj

˘

“ P pYj “ cjq
2
ą 0. Moreover, by

the Borel-Cantelli lemma, we have

P
`

tYj ‰ cj i.o.u Y
 

Y 1j ‰ cj i.o.
(˘

“ 0.

Hence, almost surely, for all but finitely many j, Yj “ Y 1j “ cj. Again, by the Borel-Cantelli
lemma, it must be the case that

ř8

j“1 P
`

Yj ‰ Y 1j
˘

ă 8, hence Item 2 is satisfied.

On the other hand, suppose Item 2 is satisfied. Then, by the Borel-Cantelli lemma,

P
`

Yj ‰ Y 1j i.o.
˘

“ 0.

Now, if we first sample the sequence pY 1j qjPN, it must be the case that

P
ˆ

Yj ‰ Y 1j i.o.
ˇ

ˇ

ˇ

ˇ

pY 1j qjPN

˙

“ 0 almost surely.

But, by independence of pYjqjPN and pY 1j qjPN, this implies that there must be a sequence
pc1jqjPN, coinciding with the realisation of pY 1j qjPN, such that P

`

Yj ‰ c1j i.o.
˘

“ 0. By the
Borel-Cantelli lemma, this implies that

ř8

j“1 P
`

Yj ‰ c1j
˘

ă 8. As a result, P
`

Yj “ c1j
˘

ą 0
for all j ě j0, say. To form pcjqjPN, we set cj “ c1j for all j ě j0. For j ă j0, by applying
Lemma 2.8 we may choose values cj such that P pYj “ cjq ą 0.

Proof of Theorem 1.13. First note that, if pYjqjPN and pY 1j qjPN are independent sequences
of mutually independent random variables, and

ř8

j“1 Yj converges almost surely, then by
Lemma 2.8 applied to the sum

ř8

j“1 Yj, the distribution of
ř8

j“1 Yj has an atom if and only if
ř8

j“1pYj´Y
1
j q has an atom at 0. Now, by Lemma 2.9, it suffices to show that the distribution

of
ř8

j“1 Yj contains an atom on R if and only if

@j P N P
`

Yj “ Y 1j
˘

ą 0 and
8
ÿ

j“1
P
`

Yj ‰ Y 1j
˘

ă 8. (2.27)

If Equation (2.27) is satisfied, then we have

P

˜

8
ÿ

j“1
pYj ´ Y

1
j q “ 0

¸

ě P

˜

8
č

j“1

 

Yj ´ Y
1
j “ 0

(

¸

“

8
ź

j“1

`

1´ P
`

Yj ‰ Y 1j
˘˘

ą 0,

since
ř8

j“1 P
`

Yj ‰ Y 1j
˘

ă 8, and each P
`

Yj “ Y 1j
˘

ą 0.

If Equation (2.27) is not satisfied because, for some i, we have P pYi ‰ Yiq “ P pYi ´ Y 1i ‰ 0q “
1, by Lemma 2.8, Yi cannot have an atom on R. Therefore,

P

˜

8
ÿ

j“1
pYj ´ Y

1
j q “ 0

¸

“ P

˜

Yi “ Y 1i `
ÿ

j‰i

pY 1j ´ Yjq

¸

(2.28)

“ E

«

P

˜

Yi “ Y 1i `
ÿ

j‰i

pY 1j ´ Yjq

ˇ

ˇ

ˇ

ˇ

Y 1i `
ÿ

j‰i

pY 1j ´ Yjq

¸ff

“ 0,
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where the final equality in (2.28) follows from the fact that, since Yi has no atom, the term
inside the expectation in (2.28) is zero almost surely. Finally, if Equation (2.27) is not satisfied
because

ř8

j“1 P
`

Yj “ Y 1j
˘

“ 8, we can apply Proposition 2.7 to the sequence pSjqjPN :“
pYj ´ Y

1
j qjPN to again show that P

´

ř8

j“1pYj ´ Y
1
j q “ 0

¯

“ 0.

2.4.1 Proof of Proposition 2.7

We first prove the following:

Lemma 2.10. Suppose pSjqjPN is a sequence of mutually independent, symmetric random
variables, such that

ř8

j“1 Sj converges almost surely. Suppose that for each j P N, we have
P pSj “ 0q “ 0. Then

P

˜

8
ÿ

j“1
Sj “ 0

¸

“ 0.

Given Lemma 2.10, we are ready to prove Proposition 2.7

Proof of Proposition 2.7. We construct a random variable with the same distribution as series
ř8

i“1 Si in two stages. For each k P N, let Ik be a Bernoulli random variable such that
P pIk “ 1q “ P pSk ‰ 0q, and set I :“ tk P N : Ik “ 1u. By the Borel-Cantelli lemma, and
the assumption that

ř8

k“1 P pSk ‰ 0q “ 8, we have |I| “ 8 almost surely. Now, we define
random variables S̃i, i P N such that, for any measurable set A Ď Rzt0u we have

P
`

S̃i P A
˘

“

#

P pSi P Aq {P pSi ‰ 0q if P pSi ‰ 0q ą 0,
0 otherwise.

.

By construction, one can readily verify that we have
ř8

i“1 Si „
ř

iPI S̃i. In addition, since
each Si is symmetric, one can verify that S̃i is symmetric. Finally, after conditioning on the
random, almost surely infinite set I,

ř

iPI S̃i is a sum of symmetric, mutually independent,
almost surely non-zero random variables. Thus, by Lemma 2.10, we have

P

˜

8
ÿ

i“1
Si “ 0

¸

“ P

˜

ÿ

iPI
S̃i “ 0

¸

“ E

«

P

˜

ÿ

iPI
S̃i “ 0

ˇ

ˇ

ˇ

ˇ

I

¸ff

“ 0.

The proof of Lemma 2.10 is a bit more technical. The idea is that, since each Sk is symmetric,
if Sk contains an atom at c ‰ 0, Sk also contains an atom at ´c. By ‘flipping’ the value of Sk,
we have P

´

ř

j“1 Sj “ 0, Sk “ c
¯

“ P
´

ř8

j“1 Sj “ ´2c, Sk “ ´c
¯

. One can then leverage
this idea to show that the distribution of

ř8

j“1 Sj has ‘too many atoms’ to be a probability
distribution.

In order to prove Lemma 2.10, we introduce some notation with regards to the measures
describing random variables. For a random variable Y with values in R, we denote the measure
associated with Y by µY . Given a measurable set U , we denote by µY |U the restriction of the
measure µY to the set U . Then given Y , we define

AY :“
 

x P R : µY ptxuq ą 0
(

.
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Note that AY is at most countable, hence measurable. We can therefore define the quantities
µYdisc., µYcont. such that

µYdisc. :“ µY |AY
and µScont. :“ µY |Ac

Y
so that µY “ µYdisc. ` µ

Y
cont..

For a set A Ď R, and c P R, we also use the notation cA :“ tcx : x P Au.

Proof of Lemma 2.10. We first have the following claim

Claim 2.10.1. For each k P N we have

P

˜

8
ÿ

i“1
Si “ 0

¸

“ P

˜

8
ÿ

i“1
Si “ 0, Sk P ASk

¸

“ P

˜

8
ÿ

i“1
Si “ 0, |Sk| P A|Sk|

¸

.

Claim 2.10.1 readily implies that for each k P N

P

˜

8
ÿ

i“1
Si “ 0

¸

ď P
`

|Sk| P A|Sk|

˘

“ µSk
disc.pRq,

hence implies Lemma 2.10 if infkPN µSk
disc.pRq “ 0. Therefore, assume, in order to obtain a

contradiction, that P
`
ř8

i“1 Si “ 0
˘

ą 0, and, for simplicity of notation, set

p1 :“ P

˜

8
ÿ

i“1
Si “ 0

¸

, p2 :“ inf
kPN

µSk
disc.pRq, so that 0 ă p1 ď p2.

Claim 2.10.2. Suppose p1 ą 0. Then for any ε P p0, p1q, there exists sequences pckqkPN P
r0,8qN, pnkqkPN P NN with

c1 ą c2 ą ¨ ¨ ¨ ą 0, n1 ă n2 ă n3 ă ¨ ¨ ¨ , lim
kÑ8

nk “ 8;

such that, for each k P N we have

µ
|Sk|

disc.ppck`1, cksq ą µ
|Sk|

disc.pr0,8qq ´ p1 ` ε. (2.29)

For ε ą 0 and sequences pckqkPN P r0,8qN, pnkqkPN P NN satisfying the conditions of
Claim 2.10.2, we first observe that, for each nk we have

P

˜

8
ÿ

i“1
Si “ 0, Snk

P A|Snk
| X pck`1, cks

¸

ě ε. (2.30)

Indeed, if not, note that (2.29) implies that µ|Snk
|

disc. ppck`1, cks
cq ă p1 ´ ε. Therefore, by

Claim 2.10.1,

p1 “ P

˜

8
ÿ

i“1
Si “ 0, Snk

P A|Snk
| X pck`1, cks

¸

` P

˜

8
ÿ

i“1
Si “ 0, Snk

P A|Snk
| X pck`1, cks

c

¸

ă ε` p1 ´ ε “ p1,

DOI 10.20347/WIAS.PREPRINT.3137 Berlin 2024



Fixation of leadership in non-Markovian growth processes 23

a contradiction. Therefore, assume (2.30). For simplicity of notation, set Pk :“ A|Snk
| X

pck`1, cks. Note now that, for each k P N, exploiting the symmetry of the random variables
pSkqkPN, we have

ε ď P

˜

8
ÿ

i“1
Si “ 0, |Snk

| P Pk

¸

“
ÿ

xPPk

P

˜

8
ÿ

i“1
Si “ 0, |Snk

| “ x

¸

“ 2
ÿ

xPPk

P

˜

ÿ

i‰nk

Si “ ´x, Snk
“ x

¸

“ 2
ÿ

xPPk

P

˜

ÿ

i‰nk

Si “ ´x, Snk
“ ´x

¸

“ P

˜

8
ÿ

i“1
Si P p´2Pk Y 2Pkq

¸

.

Now, since the sets ppck`1, cksqkPN are disjoint, the sets p´2Pk Y 2PkqkPN, are also disjoint.
Hence, by σ-additivity, we have

P

˜

8
ÿ

i“1
Si P R

¸

ě

8
ÿ

k“1
P

˜

8
ÿ

i“1
Si P p´2Pk Y 2Pkq

¸

ě

8
ÿ

k“1
ε “ 8,

a contradiction.

Proof of Claim 2.10.1. For a given Sk, suppose, in order to obtain a contradiction, that

P

˜

8
ÿ

i“1
Si “ 0, |Sk| P Ac

|Sk|

¸

“ P

˜

8
ÿ

i“1
Si “ 0, Sk P Ac

Sk

¸

ą 0.

Then by conditioning on the value of Sk (using the associated regular conditional probability
measure), and exploiting the mutual independence of the random variables pSiqiPN,

P

˜

8
ÿ

i“1
Si “ 0, Sk P Ac

Sk

¸

“ E

«

P

˜

8
ÿ

i“1
Si “ 0

ˇ

ˇ

ˇ

ˇ

Sk

¸

1SkPAc
Sk

ff

“

ż

B

P

˜

ÿ

i‰k

Si “ ´x

¸

dµSk
cont.pxq ą 0.

The latter equation implies that

µSk
cont.

˜#

x P B : P
˜

ÿ

i‰k

Si “ ´x

¸

ą 0
+¸

ą 0.

Since, for each y P R, we have µSk
cont.ptyuq “ 0, this implies that the set

#

x P B : P
˜

ÿ

i‰k

Si “ ´x

¸

ą 0
+

is uncountable; a contradiction because the law describing a random variable cannot have
uncountably many atoms. Claim 2.10.1 then follows.
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Proof of Claim 2.10.2. Let ε P p0, p1q be given. We construct pckqkPN, pnkqkPN inductively. For
the base case, we set n1 :“ 1, and suppose δ :“ p1 ´ ε. Then by the monotone convergence
theorem, there exists some c1 sufficiently large, such that

µ
|S1|
disc.pp0, c1sq ą µ

|S1|
disc.pr0,8qq ´

δ

2 , (2.31)

and similarly, since P pS1 “ 0q “ 0, by the dominated convergence theorem, there exists
c2 ă c1 sufficiently small that

µ
|S1|
disc.pp0, c2sq ă

δ

2 . (2.32)

Equations (2.31) and (2.32) together imply that µ|S1|
disc.ppc2, c1sq ą µ

|S1|
disc.pr0,8qq ´ δ. Now,

suppose we have constructed sequences c1 ą c2 ą ¨ ¨ ¨ ck`1, n1 ă n2 ă ¨ ¨ ¨nk satisfying the
requirements of the claim. For the inductive step, note that since

ř8

i“1 Si ă 8, we have
limnÑ8 P p|Sn| ą ck`1q “ 0. In particular, if we define

nk`1 :“ inf
"

j ą nk : P p|Sj| ą ck`1q ă
δ

2

*

, we have nk`1 ă 8.

By definition, this implies that µ|Snk`1 |
disc. pp0, ck`1sq ą µ

|Snk`1 |
disc. pr0,8qq ´ δ

2 ě p2 ´
δ
2 . Next,

to choose ck`2, similar to the base case, we fix nk`1 and choose ck`2 sufficiently small that
µ
|Snk`1 |
disc. pp0, ck`2sq ă

δ
2 .

2.5 Proof of Proposition 1.16

For Proposition 1.16, we use the following generalisation of the martingale convergence theo-
rem, for martingales with bounded increments.

Theorem 2.11 (See, e.g., [12, Theorem 4.3.1, page 194]). Let pYiqiPN be a martingale se-
quence, such that, for some C ą 0, for all k P N

|Yk`1 ´ Yk| ď C almost surely.

Let E1 :“ tlimnÑ8 Yn exists and is finiteu, and

E2 :“
"

lim sup
nÑ8

Yn “ 8

*

X

!

lim inf
nÑ8

Yn “ ´8
)

.

Then P pE1 Y E2q “ 1.

Proof of Proposition 1.16. First note that the event
!

lim supnÑ8
řn
j“1 Sj “ 8

)

is a tail
event with respect to the sequence of independent random variables pSjqjPN, hence by the
Kolmogorov 0-1 law occurs with probability 0 or 1. Note also that

#

lim sup
nÑ8

n
ÿ

j“1
Sj “ 8

+

“

#

lim inf
nÑ8

n
ÿ

j“1
´Sj “ ´8

+

,
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and hence, if the left side occurs with probability 1, so does the right. Since
řn
j“1´Sj „

řn
j“1 Sj, we deduce that the events

#

lim sup
nÑ8

n
ÿ

j“1
Sj “ 8

+

X

#

lim inf
nÑ8

n
ÿ

j“1
Sj “ ´8

+

and
#

lim sup
nÑ8

n
ÿ

j“1
Sj “ 8

+

Y

#

lim inf
nÑ8

n
ÿ

j“1
Sj “ ´8

+

(2.33)

coincide up to null sets. We now consider the various cases under which the Kolmogorov three
series theorem is not satisfied. Suppose first, that Equation (1.3) is not satisfied by having,
for each C ą 0,

8
ÿ

j“1
P p|Sj| ą Cq “ 8.

Then by the Borel-Cantelli lemma, and taking a countable intersection of almost sure events,
we have

P

˜

č

CPN
t|Sj| ą C i.o.u

¸

“ 1. (2.34)

As a result, for each fixed a, b P Z we have

P

˜

lim sup
nÑ8

Sj ď a, lim inf
nÑ8

n
ÿ

j“1
Sj ě b

¸

“ 0.

Indeed, if, with positive probability, lim supnÑ8
řn
j“1 Sj ď a and lim infnÑ8

řn
j“1 Sj ě b,

then with positive probability, there exists some N P N such that, for all n ě N ,
řn
j“1 Sj ě

b ´ 1 and
řn
j“1 Sj ď a ` 1. But, by (2.34), |Sj| ą |a| ` |b| ` 2 for infinitely many j almost

surely, so this cannot be the case. Therefore, by a union bound

P

˜

lim sup
nÑ8

n
ÿ

j“1
Sj ă 8, lim inf

nÑ8

n
ÿ

j“1
Sj ą ´8

¸

“ P

˜

ď

a,bPZ

#

lim sup
nÑ8

n
ÿ

j“1
Sj ď a, lim inf

nÑ8

n
ÿ

j“1
Sj ě b

+¸

ď
ÿ

a,bPZ
P

˜

lim sup
nÑ8

n
ÿ

j“1
Sj ď a, lim inf

nÑ8

n
ÿ

j“1
Sj ě b

¸

“ 0.

Therefore P
´!

lim supnÑ8
řn
j“1 Sj “ 8

)

Y

!

lim infnÑ8
řn
j“1 Sj “ ´8

)¯

“ 1, and Equa-
tion (1.5) follows from (2.33).

The other case where Equation (1.3) is not satisfied is when there exists C ą 0 such that

8
ÿ

j“1
P p|Sj| ą Cq ă 8, but

8
ÿ

j“1
E
“

S2
j1|Sj |ďC

‰

“ 8.

Now, by Borel-Cantelli, there are only finitely many terms Sj such that |Sj| ą C, and since
|Sj| ă 8 almost surely, these terms make only a finite contribution to lim supnÑ8

řn
j“1 Sj,
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and likewise, lim infnÑ8
řn
j“1 Sj. Therefore, it suffices to show that

P

˜

lim sup
nÑ8

n
ÿ

j“1
Sj1|Sj |ďC “ 8, lim inf

nÑ8

n
ÿ

j“1
Sj1|Sj |ďC “ ´8

¸

“ 1.

But now, if we set Mn :“
řn
j“1 Sj1|Sj |ďC , pMnqnPN is a martingale sequence, with |Mn ´

Mn´1| ď C. Therefore, by Theorem 2.11

P
ˆ

!

lim
nÑ8

Mn exists and is finite
)

Y

"

lim sup
nÑ8

Mn “ 8, lim inf
nÑ8

Mn “ ´8

*˙

“ 1.

Since by (2.33), both events in the probability occur with probability 0 or 1, we need only
show that the series

8
ÿ

j“1
Sj1|Sj |ďC does not converge almost surely.

But now, since
ř8

j“1 E
“

S2
j1|Sj |ďC

‰

“ 8 this follows from the converse direction of the Kol-
mogorov three series theorem.
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