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A spatial model for dormancy in random environment
Helia Shafigh

Abstract

In this paper, we introduce a spatial model for dormancy in random environment
via a two-type branching random walk in continuous-time, where individuals can switch
between dormant and active states through spontaneous switching independent of the
random environment. However, the branching mechanism is governed by a random
environment which dictates the branching rates. We consider three specific choices for
random environments composed of particles: (1) a Bernoulli field of immobile particles,
(2) one moving particle, and (3) a Poisson field of moving particles. In each case, the
particles of the random environment can either be interpreted as catalysts, accelerating
the branching mechanism, or as traps, aiming to kill the individuals. The different be-
tween active and dormant individuals is defined in such a way that dormant individuals
are protected from being trapped, but do not participate in migration or branching.

We quantify the influence of dormancy on the growth resp. survival of the population
by identifying the large-time asymptotics of the expected population size. The starting
point for our mathematical considerations and proofs is the parabolic Anderson model
via the Feynman-Kac formula. Especially, the quantitative investigation of the role of
dormancy is done by extending the Parabolic Anderson model to a two-type random
walk.

1 Introduction and main results

1.1 Biological Motivation

Dormancy is an evolutionary trait that has developed independently across various life forms
and is particularly common in microbial communities. To give a definition, we follow [BHS21]
and refer to dormancy as the ability of individuals to enter a reversible state of minimal
metabolic activity. The collection of all dormant individuals within a population is also often
called a seed-bank. Maintaining a seed-bank leads to a decline in the reproduction rate, but it
also reduces the need for resources, making dormancy a viable strategy during unfavourable
periods. Initially studied in plants as a survival strategy (cf. [C66]), dormancy is now recog-
nized as a prevalent trait in microbial communities with significant evolutionary, ecological,
and pathogenic implications, serving as an efficient strategy to survive challenging environ-
mental conditions, competitive pressure, or antibiotic treatment. However, it is at the same
time a costly trait whose maintenance requires energy and a sophisticated mechanisms for
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switching between active and dormant states. Moreover, the increased survival rate of dor-
mant individuals must be weighed against their low reproductive activity. Despite its costs,
dormancy still seems to provide advantages in variable environments. For a recent overview
on biological dormancy and seed-banks we refer to [BHLWB21].

The existing stochastic models for dormancy can be roughly categorized into two approaches:
population genetic models and population dynamic models. While the first approach as-
sumes a constant population size and focusses on the genealogical implications of seed-
banks, the latter is typically concerned with individual-based modelling through the theory
of branching processes. Following a brief example in the book [HJV07], a two-type branch-
ing process (without migration) in a fluctuating random environment has been introduced
in [BHS21], which served as a motivation for this paper. In [BHS21], the authors consider
three different switching strategies between the two types (dormant and active), namely the
stochastic (or: spontaneous; simultaneous) switching, responsive switching and anticipa-
tory switching. In the latter two strategies, individuals adapt to the fluctuating environment
by selecting their state (dormant or active) based on environmental conditions via e.g. an
increased reproduction activity during beneficial phases and a more extensive seed-bank
during unfavourable ones (resp. vice versa). In contrast, the stochastic switching strategy,
which remains unaffected by environmental changes, proves especially advantageous dur-
ing catastrophic events, as it, with high probability, ensures the existence of dormant individ-
uals, which may contribute to the survival of the whole population, when a severely adverse
environment might eradicate all active ones. As an example, it is estimated that more than
80% of soil bacteria are metabolically inactive at any given time, forming extensive seed-
banks of dormant individuals independent of the current conditions (cf. [JL11] and [LS18]).
This makes the understanding of the stochastic switching strategy an interesting and impor-
tant task.

1.2 Modelling Approach and Goals

The aim of this paper is to investigate the stochastic switching strategy in order to quan-
titatively compare the long-term behaviour of populations with and without this dormancy
mechanism.

Inspired by the Galton-Watson process with dormancy introduced in [BHS21], our first goal
was to extend this model to a continuous-time spatial model on Zd.It is worth noting that spa-
tial models for dormancy have already been considered in the setting of population genetics
(cf. [GdHO22]), where the population consists of different genetics types being inherited from
parents to children. In such models, the total population size is fixed, so that the questions
that arises are not about the extinction and survival of the whole population but rather about
the evolution of the fraction of the different types. Notably, one of the goals in [GdHO22] is
to determine criteria for co-existence resp. clustering of types in the limit of large population
sizes. Another similar population genetics model, but this time with a (static) random en-
vironment, has been introduced in [dHN], in which the authors investigate the influence of
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dormancy again on co-existence and clustering. To the best of our knowledge, correspond-
ing spatial models for dormancy in the setting of population size models are still missing,
such that the extension of the branching process in [BHS21] seems to be a natural step.
At the same time, there is a large repertoire of branching random walk models in random
environment in the literature (cf. [K20a] for a survey), even though none of them incorporates
dormancy. Hence, by introducing a continuous-time spatial model with migration, branching
resp. extinction driven by a random environment, as well as a Markovian switching between
the two states active and dormant, we bridge the gap between (non-spatial) two-type branch-
ing processes with dormancy on one side, and spatial branching random walks in random
environments (without dormancy) on the other side of the existing literature. Especially, our
main interest lies in a quantitative comparison of the population size of our model to those of
existing branching random walk models without dormancy.

1.3 Description of the Model

In our model, the population lives on Zd and consists of two different types i ∈ {0, 1} of
particles, where we refer to 0 as dormant and to 1 as active. Let η(x, i, t) be the number
of particles in spatial point x ∈ Zd and state i at time t ≥ 0, which shall evolve in time
according to the following rules:

■ at time t = 0, there is only one active particle in 0 ∈ Zd and all other sites are vacant;

■ all particles act independently of each other;

■ active particles become dormant at rate s1 ≥ 0 and dormant particles become active
at rate s0 ≥ 0;

■ active particles split into two at rate ξ+(x, t) ≥ 0 and die at rate ξ−(x, t) ≥ 0,
depending on their spatial location x and on time t, where both ξ+ and ξ− are random
fields;

■ active particles jump to one of the neighbour sites with equal rate κ ≥ 0;

■ dormant particles do not participate in branching, dying or migration.

Write η0(x, i) := η(x, i, 0) = δ(0,1)(x, i) and Pη0 for the corresponding probability mea-

sure with start in η0. Then (η,Pη0) describes a Markov process on NZd
. In the following, we

abbreviate ξ(x, t) := ξ+(x, t)−ξ−(x, t) for the balance between branching and dying and
refer to ξ as the underlying random environment.
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Figure 1: The evolution in every single point. Active individuals are subject to migration,
branching and switching to dormant. Dormant individuals can only get active.

Let

u(x, i, t) := Eη0 [η(x, i, t)] (1.1)

denote the expected number of particles in x ∈ Zd and state i ∈ {0, 1} at time t with initial
condition

u(x, i, 0) = δ(0,1)(x, i).

Note, that the expectation is only taken over switching, branching and dying and not over the
random environment ξ. If we average over ξ as well, what we will denote in the following by
⟨·⟩, then we refer to

⟨u(x, i, t)⟩ = ⟨Eη0 [η(x, i, t)]⟩

as the annealed number of particles in x ∈ Zd and in state i ∈ {0, 1} at time t.

1.4 Choices of the Random Environment

In this paper we are going to consider three specific choices of the random random environ-
ment ξ which derives the evolution of the particles:

1 Bournoulli field of immobile particles. Place in each point x ∈ Zd independently and
with probability p ∈ (0, 1) one single particle which does not exhibit any movement.
This results in a stationary field of immobile particles with a Bernoulli distribution over
Zd.

2 One moving particle. Here the random environment is dynamic and consists of one
single particle starting in the origin and moving around according to a simple symmet-
ric random walk with jump rate 2dρ.
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3 Poisson field of moving particles. At point x ∈ Zd, independently and according to a
Poisson distribution with intensity ν, place a random number of particles. The particles
move independently of each other, each performing a simple symmetric random walk
with jump rate 2dρ. This setup generates a field of moving particles starting from a
Poisson cloud.

Clearly, for each of the choices above, ξ is a non-negative number, which results always in
an positive balance between branching and killing. To allow for negative rates as well, we
multiply ξ with some factor γ ∈ [−∞,∞) and will consider γξ as the underlying random
environment. Thus, each of our three choices can be either interpreted as a field of traps,
which corresponds to γ < 0, or catalysts, if γ > 0. In the first case, active individuals will
die with rate |γ| if they encounter one of the traps, whereas they branch into two with rate γ
in the presence of catalysts in the latter case.

1.5 Results

Recall the number of particles u(x, i, t) in point x ∈ Zd and state i ∈ {0, 1} at time t,
as defined in (1.1). The quantity we are interested in at most in the current paper is the
annealed total number of particles

⟨U(t)⟩ :=
∑
x∈Zd

∑
i∈{0,1}

⟨u(x, i, t)⟩ , (1.2)

which turns into the annealed survival probability up to time t for γ < 0. Our results con-
cern the large-time asymptotics of ⟨U(t)⟩ in case of both positive and negative γ and for
the three specific choices of the random environment mentioned above. Our first theorem
quantifies the asymptotic behaviour of ⟨U(t)⟩ if the environment consists of a Bernoulli field
of particles:

Theorem 1.1. Let ξ be chosen according to (1) and d ≥ 1.

(a) If γ = −∞, then the annealed survival probability converges to 0, as t → ∞, and
obeys the asymptotics

log ⟨U(t)⟩ = −cd (log(1− p))
2

d+2

(
κs0

s0 + s1

) d
d+2

t
d

d+2 (1 + o(1)), t→ ∞,

(1.3)

for some constant cd depending only on the dimension d.

(b) If γ ∈ (0,∞), then the annealed number of particles satisfies

lim
t→∞

1

t
log ⟨U(t)⟩ = γ − s1 −

(γ + s0 − s1)
2 − s0s1√

γ2 + 2γ(s0 − s1) + (s0 + s1)2
. (1.4)
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Our second theorem deals with the case of one moving particle:

Theorem 1.2. Let ξ be chosen according to (2).

(a) If γ ∈ (−∞, 0), then the annealed survival probability converges to 0 in the dimen-
sions d ∈ {1, 2}, as t→ ∞, and satisfies the asymptotics

⟨U(t)⟩ =


2
√

(s0 + s1)(s0(ρ+ κ) + s1ρ)√
πs0|γ|

1√
t
(1 + o(1)), d = 1,

4π(s1ρ+ s0(ρ+ κ))

s0|γ|
1

log(t)
(1 + o(1)), d = 2

(1.5)

as t→ ∞.

In dimensions d ≥ 3 the annealed survival probability admits the limit

lim
t→∞

⟨U(t)⟩ = 1

1 + |γ|Gd

∈ (0, 1)

for a constant Gd ∈ (0,∞).

(b) If γ ∈ (0,∞), then for all d ≥ 1, the annealed number of particles satisfies

lim
t→∞

1

t
log ⟨U(t)⟩ = sup

f∈ℓ2(Zd×{0,1}),∥f∥2=1

(A1(f)− A2(f)− A3(f)) +
√
s0s1

(1.6)

where

A1(f) :=γf(0, 1)
2,

A2(f) :=
1

2

∑
i∈{0,1}

∑
x,y∈Zd,x∼y

(iκ+ ρ)(f(x, i)− f(y, i))2,

A3(f) :=
∑
x∈Zd

√
s0s1(f(x, 1)− f(x, 0))2 +

∑
i∈{0,1}

∑
x∈Zd

sif(x, i)
2.

Finally, we establish the asymptotics of ⟨U(t)⟩ for the third choice of the environment,
namely a Poisson field of moving particles:

Theorem 1.3. Let ξ be chosen according to (3).

(a) If γ ∈ [−∞, 0), then the annealed survival probability converges exponentially fast
to 0 as t→ ∞ in all dimensions d ≥ 1 and obeys the asymptotics
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log ⟨U(t)⟩ =


−4ν

√
ρs0

(s0 + s1)π

√
t(1 + o(1)), d = 1,

−4ν
ρπs0
s0 + s1

t

log (t)
(1 + o(1)), d = 2,

−λd,γ,ρ,ν,s0,s1t(1 + o(1)), d ≥ 3,

(1.7)

as t→ ∞, for some constant λd,γ,ρ,ν,s0,s1 > 0 depending on all the parameters.

(b) If γ ∈ (0,∞), then for all dimensions d ≥ 1 the annealed number of particles
satisfies the double-exponential asymptotics

lim
t→∞

1

t
log log ⟨U(t)⟩ = sup

f∈ℓ2(Zd),∥f∥2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

ρ(f(x)− f(y))2

 .

(1.8)

1.6 Relation to the Parabolic Anderson Model

Recall the number of particles u(x, i, t) in point x ∈ Zd and state i ∈ {0, 1} at time t as
defined in (1.1). It is already known (cf. [BYZ13]) that u : Zd×{0, 1}× [0,∞) → R solves
the partial differential equation

d
dt
u(x, i, t) = iκ∆u(x, i, t) +Qu(x, i, t) + iγξ(x, t)u(x, i, t), t > 0,

u(x, i, 0) = δ(0,1)(x, i),
(1.9)

where

Qu(x, i, t) := si(u(x, 1− i, t)− u(x, i, t))

and ∆ is the discrete Laplacian

∆f(x) :=
∑

y∈Zd,x∼y

[f(y)− f(x)]

acting on functions f : Zd → R, such that

∆u(x, i, t) :=
∑

y∈Zd,x∼y

[u(y, i, t)− u(x, i, t)].

We call (1.9) the parabolic Anderson model with switching. If we consider a one-type branch-
ing random walk with only active particle evolving under the same evolution rules except of
the switching mechanism, starting from one single particle in the origin, then in is well-known
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and has been shown first in [GM90] that the corresponding expected number of particles
solves the Parabolic Anderson model (without switching)

d
dt
u(x, t) = κ∆u(x, t) + γξ(x, t)u(x, t), t > 0, x ∈ Zd

u(x, 0) = δ0(x), x ∈ Zd.

The parabolic Anderson model has been studied intensely during the past years and a com-
prehensive overview of results can be found in [K16]. One of the most powerful tools and
often the starting point of the analysis of the PAM is the Feynman-Kac formula

u(x, t) = EX
x

[
exp

(∫ t

0

γξ(X(s), t− s) ds

)
δ0(X(t))

]
, (1.10)

where EX
x denotes the expectation over a simple symmetric random walk X with start in x

and generator κ∆. In other words, the Feynman-Kac formula asserts that the time evolution
of all particles can be expressed as an expectation over one single particle moving around
according to the same migration kernel and with a varying mass, representing the population
size. As we can see on the right hand-side of (1.10), the mass of X changes exponentially
depending on the random environment ξ. Note, that if γ < 0, then the right hand-side of
(1.10) lies in [0, 1] and represents the survival probability of a single particle up to time t.
Now, since the Feynman-Kac formula is a mighty tool for the study of the parabolic Anderson
model, it is only natural to pursue an analogous formulation in case of our two-type process
with switching. To this end, let α = (α(t))t≥0 be a continuous-time Markov process with
state space {0, 1} and generator

Qf(i) := si(f(1− i)− f(i)) (1.11)

for f : {0, 1} → R. Conditioned on the evolution of α, we define a continuous-time random
walk X = (X(t))t≥0 on Zd which is supposed to stay still at a time t, if α(t) = 0, or
perform a simple symmetric walk with jump rate 2dκ, if α(t) = 1. In other words, the joint
process (X,α) is the Markov process with the generator

Lf(x, i) := iκ
∑
y∼x

(f(y, i)− f(x, i)) + si(f(x, 1− i)− f(x, i)) (1.12)

for x ∈ Zd, i, j ∈ {0, 1} and a test function f : Zd × {0, 1} → R. Note, that the random
walk X itself is not Markovian due to the dependence on α. Then, we call (X,α) a regime-
switching random walk (cf. [YZ10] for the continuous-space version) and interpret X as a
particle which is active at time t, if α(t) = 1, and dormant otherwise. Then, given a fixed
realization of ξ, the formal solution of (1.9) is given by the Feynman-Kac formula

u(x, i, t) = E(X,α)
(x,i)

[
exp

(∫ t

0

γα(s)ξ(X(s), t− s) ds

)
δ(0,1)(X(t), α(t))

]
, (1.13)

whereE(X,α)
(x,i) denotes the expectation over the joint process (X,α) starting in (x, i) (cf. [BYZ13]).

Thus, the study of our two-type branching process can be reduced to the analysis of only
one particle with the same migration, branching and switching rates.
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1.7 Related Results

The parabolic Anderson model without switching has been a topic of great interest during
the past years. For a recent overview of results related to the classical model as well as
many extensions we refer to [K16]. In this section we recall few results according to the
parabolic Anderson model on Zd which are most relevant for and most related to our mod-
els. Let us start with the case γ < 0, i.e. with the case of a trapping random environment.
The first model is best known as random walk among Bernoulli obstacles and is the analo-
gous version of our model (1) without switching, i.e. the time-independent potential ξ, which
represents the traps or obstacles, is Bernoulli distributed with some parameter p > 0. After
getting trapped, the random walk with generator κ∆ dies immediately, which corresponds to
the hard trapping case γ = −∞. It has been shown in [A95] using a coarse graining tech-
nique known an method of enlargement of obstacles that the annealed survival probability
up to time t decays asymptotically as

exp
(
−cd(log(1− p))

2
d+2 (κt)

d
d+2 (1 + o(1))

)
, t→ ∞, (1.14)

with the same constant cd as in (1.4). In the setting of time-dependent potentials, the case
of one moving trap with generator ρ∆ with soft killing (γ ∈ (−∞, 0)) has been studied
in [SW11] for which it has been proven that the survival probability of a random walk with
generator κ∆ among this mobile traps has the asymptotics

2
√
ρ+ κ√
πγ

1√
t
(1 + o(1)), d = 1,

4π(ρ+ κ)

|γ| log(t)
(1 + o(1)), d = 2,

1− Gd(0)

ρ+ κ+ |γ|Gd(0)
, d ≥ 3,

(1.15)

for t → ∞ where Gd denotes the Green’s function of a random walk with generator ∆.
Hence, in dimension d ∈ {1, 2}, the survival probability converges polynomially to zero,
where the rate of convergence depends on all the parameters ρ, κ and γ, whereas in di-
mensions d ≥ 3 the survival probability converges to some number in (0, 1) and depends
on the averaged total time spent in the origin, represented by the Green’s function, as well.
Finally, the case of a Poisson field of moving traps with the random potential according to (3)
has been investigated in [DGRS11]. Here, the survival probability of the random walk with
jump rate 2dκ is known to decay asymptotically as

exp

(
−4ν

√
ρ

π

√
t(1 + o(1))

)
, d = 1,

exp

(
−4νρπ

t

log (t)
(1 + o(1))

)
, d = 2,

exp(−λd,γ,ρ,νt(1 + o(1))), d ≥ 3,

(1.16)
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for some λd,γ,ρ,ν > 0, in both case of hard and soft trapping rates γ ∈ [−∞, 0).1 That
the survival probability, at least in dimensions d ∈ {1, 2}, seems to be independent of the
jump rate κ of the individuals, is due to the fact that the asymptotics (1.16) come from the
behaviour that the individuals stay in the origin throughout the time, which corresponds to
κ = 0.

In the case γ > 0 of catalysts, the analogous version without switching of our first model
regarding Bernoulli distributed immobile catalysts is covered in [BK01] as an example of a
static bounded potential ξ. Although the results in [BK01] are held very general, applying
them to the Bernoulli potential yields that

lim
t→∞

1

t
log ⟨U(t)⟩ = γ, (1.17)

which come from the behaviour that the individuals find a region full of catalysts and stay
there the whole time, such that they can continue branching throughout the time.

For the case of one moving catalyst with jump rate 2dρ, is has been shown in [GH06] that
the annealed number of particles increases exponentially as well and the exponential growth
rate it given by the variational formula

lim
t→∞

1

t
log ⟨U(t)⟩ = sup

f∈ℓ2(Zd),∥f∥2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

(κ+ ρ)(f(x)− f(y))2

 .

(1.18)

A similar result but with double-exponential growth has been proven in [GdH06] for the case
of a Poisson field of moving catalysts, where the limit

lim
t→∞

1

t
log log ⟨U(t)⟩ = sup

f∈ℓ2(Zd),∥f∥2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

ρ(f(x)− f(y))2

 .

(1.19)

has been shown to be finite in all dimensions d ≥ 1. The absence of κ is due to the fact
that it is most favourable for the population growth if the individuals stay immobile, which
corresponds to κ = 0. Moreover, is has been shown in [GdH06] that there are cases,
where already the quantity 1

t
log ⟨U(t)⟩ converges to a finite limit, namely in the transient

dimensions d ≥ 3 under the assumption that 0 ≤ γ
ρ
≤ Gd(0)

−1, where Gd(0) denotes the
Green’s function again.

1.8 Discussion

In this section, we discuss the extent to which the stochastic dormancy strategy, as defined
in our model, affects the long-time dynamics of the population. Let us start with the case of

1In [DGRS11] the authors have considered slightly different migration rates resulting in slightly different
prefactors in the asymptotics, namely the normalized Laplacian 1

2d∆ instead of ∆. For better comparison, we
stated (1.16) in case of the non-normalized Laplacian ∆.
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catalytic random environments. Recall from (1.17) that if the environment is chosen accord-
ing to a static Bernoulli field, then in the analogous model without dormancy the population
grows exponentially fast in time t with rate γ. Theorem 1.1.(b) asserts that the population
growth still occurs exponentially in t when dormancy is incorporated; however, the growth
rate is no longer γ any more but rather a smaller constant, as seen from (1.4). Indeed, an
easy calculation shows that

s1 +
(γ + s0 − s1)

2 − s0s1√
γ2 + 2γ(s0 − s1) + (s0 + s1)2

> 0

for all γ, s0, s1 > 0, such that the growth rate is strictly decreased after incorporating the
stochastic dormancy strategy. It is worth mentioning that this effect comes from the proba-
bility for large deviations of the time spent in the active state. Indeed, as we will see later in
the proofs, (1.4) can also be expressed as

lim
t→∞

1

t
log ⟨U(t)⟩ = γ − inf

[a∈[0,1]
{I(a) + γ(1− a)},

where I is a non-negative and strictly convex function defined as

I(a) = −2
√
s0s1a(1− a) + (s1 − s0)a+ s0. (1.20)

Next, note that the population only grows in those time intervals in which the individuals are
active. Now, on one hand, we have a law of large numbers for the fraction of time spent
in the active state, which asserts that the average time proportion each individual spends
in the active state equal s0/(s0 + s1) with probability one. On the other hand, as we will
prove in Section 2, there is a large deviation principle asserting that for any other fraction of
time a ∈ [0, 1], the probability of spending a · t time units in the active state up to time t
decays exponentially in t for t → ∞, where the decay rate depends on the proportion a.
This decays rate is nothing but the function I defined in (1.20). Hence, (1.4) tells us that the
original growth rate γ is decreased by γ multiplied with the proportion 1− a of time spent in
the dormant state on one hand, as there is no reproduction in this case, and by I(a) on the
other hand, as it represents the probabilistic cost to spend exactly the proportion a of time
in the active state. At the end, this probabilistic cost has to be weighed against the positive
contribution to reproduction, such that I(a) + γ(1− a) has to be optimized over α.

Continuing with one moving catalyst and comparing (1.6) to (1.18), we see that the popula-
tion again grows exponentially in t and the rate is affected by all the involved mechanisms.
While the first term in the variational formula (1.18) shows that branching with rate γ occurs
whenever the distance between individuals and catalytic particles is equal to 0, the term
γf(0, 1)2 appearing in (1.8) has the interpretation that in case of dormancy, individuals can
only branch with rate γ if, first, the distance between them and the catalyst is equal to 0,
and second, if they are in the active state 1. To highlight another difference, we see that the
only probabilistic cost that appears in the variational formula (1.18) is the one coming from
the movement of the individuals (with rate 2dκ) as well as of the catalyst (with rate 2dρ),
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H. Shafigh 12

whereas in (1.6) besides the movements appearing in the term A2, also the exchange be-
tween states, represented by A3, has to be taken into account. The additional term

√
s0s1

comes from a change of measure , which will be clarified in Section 2.

In case of a Poisson field of moving catalysts, we see that our asymptotics (1.8) is on a
double-exponential scale and equals the variational formula (1.19) for the corresponding
model without dormancy. In other words, although the stochastic dormancy strategy slows
down the population growth due to the lack of reproduction in dormant phases in the first two
choices of the environment, this inactivity does not seem to influence the population growth
at all, if the moving catalysts start from a Poisson cloud. As will be revealed in Section 5,
this is due to the fact that if the individuals manage to find favourable regions with a high
density of catalysts, then the reproduction rate in the active state is on such a high scale,
namely double-exponentially in time t, that the exponential probabilistic cost to stay active
is negligible in comparison to the high positive outcome. Thus, the variational formula (1.8)
does not take dormancy into account and depends only on the branching rate and move-
ment of the catalysts. As we will see later in the proofs, the independence of κ arises from
the fact that it is most favourable for the population growth if the individuals stay immobile,
which corresponds to κ = 0, and matches the behaviour in the model without dormancy, as
mentioned in the last section.

Next, we discuss the case γ < 0 of trapping environments. Our results concerning this case
can be summarized more briefly, since they share a similarity regarding the dependence on
dormancy: At least in dimensions, in which we have an explicit expression for the asymp-
totic survival probability, we see that the latter is increased after incorporating the stochastic
dormancy strategy in comparison to the corresponding models without dormancy, and is
monotone in the average time s1/(s0 + s1) spent in the dormant state. Moreover, setting
s1 = 0 yields exactly the same asymptotics as for the models without dormancy, making
our results a generalization for arbitrary s1 ≥ 0. This is immediate clear for the Bernoulli
field of immobile traps in all dimensions, as comparing (1.3) and (1.14) shows. As will be
addressed in the proof, formula (1.3) also indicates that the higher survival probability re-
sults from a time-change, since individuals can only move towards the immobile traps during
active phases. Therefore, if we only take into account those time intervals in which the indi-
viduals are mobile, which in average accounts for a proportion of s0/(s0 + s1) of the whole
time due to the law of large numbers, then (1.14) translates into (1.3). Note that here the law
of large numbers dictates the behaviour of the time spent in the active state and not the large
deviation principle, since the scale td/(d+2) is much smaller than the large deviation scale t.

The law of large number seems to play a role also in the case of one moving catalyst.
However, comparing (1.5) and (1.15) demonstrates that in this case the positive effect of
dormancy on the survival probability does not only come from a time-change. Rewriting the
pre-factor

2
√

(s0 + s1)(s0(ρ+ κ) + s1ρ)√
πs0|γ|

=
2
√

s0
s0+s1

κ+ ρ
√
π s0

s0+s1
|γ|
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Dormancy 13

of the polynomial asymptotics (1.5) in dimension d = 1 and comparing it to (1.15) suggests
that, although the time-change is still present as a pre-factor of the jump rate κ, the killing
rate γ is reduced as well, since the individuals are again only a proportion of s0/(s0 + s1)
of the time active and therefore vulnerable to the traps. For d = 2, we can see both effects
as well. Also the monotonicity of the survival probability in the average dormancy proportion
s1/(s0 + s1) becomes evident through a simple calculation.

Figure 2: Asymptotics of the annealed survival probability in case of one moving trap in
dimension 1 (left) and 2 (right) as a function of t for ρ = κ = s0 = γ = 1 and different
choices of s1.

Figure 3: Asymptotics of the annealed survival probability in case of a Poisson field of moving
traps in dimension 1 (left) and 2 (right) as a function of t for ρ = κ = s0 = γ = 1 and
different choices of s1.

We see similar effects also in case of a Poisson field of moving traps by comparing (1.7)
to (1.16), where the reduction of the exponential decay rate by factor

√
s0/(s0 + s1) in di-

mension 1 and by factor s0/(s0 + s1) in dimension 2 comes from the law of large numbers
as well, whereas in the dimensions d ≥ 3 the large deviation principle dictates the asymp-
totics due to the joint time scale t. The (surprising) independence of the survival probability
of the killing rate γ as well as the jump rate κ has been discussed in [DGRS11] for the
corresponding model without dormancy and underlies the same reasons in our case.
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To summarize, for γ > 0 the number of particles up to time t is either unchanged or reduced
due to dormancy in our models, while for γ < 0, at least in those cases in which an explicit
expression is given, the survival probability is increased with dormancy and is monotone in
the average time spent in the dormant state.

1.9 Outline

The rest of this paper is organized as follows. In section 2 we will convert our branching
model into a switching random walk via the Feynman-Kac formula in order to obtain a more
convenient representation of ⟨U(t)⟩. Further, we will collect some results related to the
distribution and large deviations of the local times of α. Section 3, 4 and 5 respectively are
dedicated to the proofs of our main Theorems 1.1, 1.2 and 1.3 respectively.

2 Preparatory facts

2.1 Feynman-Kac formula

As discussed in the introduction, our dormancy model is motivated by population dynamics
and initially defined as a two-type branching random walk with Markovian switching between
the types. However, all our proofs and considerations are founded on the Feynman-Kac
formula (1.13), which serves as the cornerstone for the subsequent steps throughout the
remainder of this paper. Note that our choices of our dynamic random environments (2) and
(3) are reversible in time, in the sense that (ξ(·, t))0≤t≤T is equally distributed to (ξ(·, T −
t))0≤t≤T , for all T > 0. Hence, taking the expectation with respect to ξ and changing the
order of integrals, we can write

⟨U(t)⟩ =
∑
x∈Zd

∑
i∈{0,1}

E(X,α)
(x,i)

[〈
exp

(∫ t

0

γα(s)ξ(X(s), t− s) ds

)
δ(0,1)(X(t), α(t))

〉]

=
∑
x∈Zd

∑
i∈{0,1}

E(X,α)
(x,i)

[〈
exp

(∫ t

0

γα(s)ξ(X(s), s) ds

)
δ(0,1)(X(t), α(t))

〉]

= E(X,α)
(0,1)

[〈
exp

(∫ t

0

γα(s)ξ(X(s), s) ds

)〉]
=

〈
E(X,α)

(0,1)

[
exp

(∫ t

0

γα(s)ξ(X(s), s) ds

)]〉
. (2.1)
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Dormancy 15

Especially, U(t) can also be interpreted as the solution ũ in point (0, 1, ·) of the partial
differential equation

d
dt
ũ(x, i, t) = iκ∆ũ(x, i, t) +Qũ(x, i, t) + iγξ(x, t)ũ(x, i, t), t ≥ 0,

ũ(x, i, 0) = 1

with Qũ(x, i, t) = si(ũ(x, 1 − i, t) − ũ(x, i, t)), which differs from (1.9) only in the initial
distribution. From now on, we will work with the representation (2.1). Note, that (2.1) also
holds for the static choice (1), as ξ does not depend on time.

2.2 Large deviation principle for α

In this section we establish a large deviation principle for the normalized local times

1

t
Lt(i) =

1

t

∫ t

0

δi(α(s))ds

of α in state i ∈ {0, 1}. Where such a principle is already well-known in the literature for
discrete-space Markov processes with symmetric transition rates (cf. [K20, Theorem 3.6.1
and Remark 3.6.4]), the corresponding large deviation principle in case of asymmetric rates
is still missing. In our case, we can obtain the probability for large deviations directly by
computing the exact distribution of the local times in:

Lemma 2.1. For all s0, s1 > 0 the probability density function of the local times (Lt(1))t>0

of α in state 1 is given by

P(Lt(1) ∈ dy) =s1e
−s0t−(s1−s0)y

(
∞∑
k=0

(s0s1y(t− y))k

k!k!

(
s0y

k + 1
+ 1

))
.

Proof. Let N(t) be the number of jumps of the Markov chain α up to time t > 0 when α
starts in state 1. We denote by ai, i ∈ N, the waiting times of transitions from 0 to 1 and by
bi those from 1 to 0 such that ai resp. bi are independent and exponentially distributed with
parameter s0 resp. s1. If N(t) is even, α will be in state 0 after the last jump before t. Then

P(Lt(0) ∈ dy,N(t) = 2k) =P

(
k∑

i=1

ai ∈ dy,
k∑

i=1

ai + bi < t, bk+1 > t−
k∑

i=1

(ai + bi)

)

=

∫ t−y

x=0

P

(
k∑

i=1

bi ∈ dx,
k∑

i=1

ai ∈ dy, bk+1 > t− x− y

)

=

∫ t−y

0

sk1x
k−1e−s1x

(k − 1)!

sk0y
k−1e−s0y

(k − 1)!
e−s1(t−x−y) dx dy

=
(s0s1)

k

(k − 1)!k!
e−s1t−(s0−s1)y(t− y)kyk−1
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for y ∈ [0, t] and therefore

P(Lt(1) ∈ dy,N(t) = 2k) =
(s0s1)

k

(k − 1)!k!
e−s0t−(s1−s0)y(t− y)k−1yk.

In case of an odd number of jumps, where α is in state 1 after the last jump before t, the
joint distribution of Lt(1) and N(t) reads

P(Lt(1) ∈ dy,N(t) = 2k + 1) =

∫ t−y

x=0

P

(
k+1∑
i=1

bi ∈ dy,
k∑

i=1

ai ∈ dx, ak+1 > t− x− y

)

=
sk0s

k+1
1

k!k!
e−s0t−(s1−s0)y(t− y)kyk.

The claim follows after summing over all k ∈ N. □

Making use of the exact distribution of the local times of α, we are able to establish the
following large deviation principle:

Corollary 2.2 (LDP for local times of α). For all choices of the transition rates s0, s1 ≥ 0,
the normalized local times

(
1
t
Lt(1)

)
t≥0

of α in state 1 satisfy a large deviation principle on

[0, 1] with rate function I : [0, 1] → R given by

I(a) = −2
√
s0s1a(1− a) + (s1 − s0)a+ s0. (2.2)

Proof. This follow immediately from lemma 2.1. Indeed, for all t > 0 and a ∈ [0, 1] we can
write

Pα
1 (Lt(1) ∈ d(at)) = e−s0t−(s1−s0)at

(
s0s1at

k + 1
+ s1

)
I0(2t

√
s0s1a(1− a))

where I0(x) =
∑∞

k=0

( 1
4
x2)

k

k!k!
is the modified Bessel function with parameter 0, which can

also be written as

I0(x) =
1

π

∫ π

0

ex cos(θ) dθ. (2.3)

Hence,

I(a) =− lim
t→∞

1

t
logPα

1 (Lt(1) ∈ d(at))

=s0 + (s1 − s0)a− lim
t→∞

1

t
log

(∫ π

0

et2
√

s0s1a(1−a) cos(θ) dθ

)
Now, ppplying the method of Laplace for integrals (cf. [K20, Corollary 1.3.2]) to the repre-
sentation (2.3) yields

lim
t→∞

1

t
log

(∫ π

0

et2
√

s0s1a(1−a) cos(θ) dθ

)
= max

θ∈[0,π]
2
√
s0s1a(1− a) cos(θ) = 2

√
s0s1a(1− a)
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and thus

I(a) = s0 + (s1 − s0)a− 2
√
s0s1a(1− a).

□

Remark 2.3. Note, that the rate function I is strictly convex and, as an easy calculations
shows, attends its unique minimizer at amin =

s0
s0+s1

. This implies a law of large numbers for
the proportion of time spent in the active state, i. e.

lim
t→∞

1

t
Lt(1) =

s0
s0 + s1

Pα- almost surely.

Further, if we choose s := s0 = s1 equally, the rate function becomes

I(a) = s− 2s
√
a(1− a) = s(1− 2

√
a(1− a)) = s(

√
a−

√
1− a)2

which is the well-known large deviation rate function in the case of symmetric transition rates
(cf. [K20, Theorem 3.6.1 and Remark 3.6.4]).

The next lemma shows that if we look at the exponential moments of the normalized local
times

(
1
t
Lt(1)

)
t≥0

of α with a smaller exponential rate than t, then the best
(
1
t
Lt(1)

)
t≥0

can do in order to maximize the exponent, is to take its long-term average:

Lemma 2.4. Let (f(t))t≥0 be a sequence of positive real numbers with limt→∞ f(t) = ∞
and limt→∞

f(t)
t

= 0. Then, for any continuous and bounded function F : [0, 1] → R,

lim
t→∞

1

f(t)
logEα

1

[
ef(t)F(

1
t
Lt(1))

]
= F

(
s0

s0 + s1

)
.

Proof. For the lower bound, fix δ > 0 and let G be some open ball around x0 := s0
s0+s1

such that F (x0) − δ ≤ infG F (x0) ≤ F (x0) + δ. Then we use the law of large numbers
for the sequence

(
1
t
Lt(1)

)
t≥0

to obtain

lim inf
t→∞

1

f(t)
logEα

1

[
ef(t)F(

1
t
Lt(1))

]
≥ lim inf

t→∞

1

f(t)
log

(
ef(t) infa∈G F (a)Pα

1

(
1

t
Lt(1) ∈ G

))
≥ inf

a∈G
F (a) + lim inf

t→∞

1

f(t)
logPα

1

(
1

t
Lt(1) ∈ G

)
≥F (x0)− δ.

For the upper bound, the boundedness of F by some M > 0 gives

Eα
1

[
ef(t)F(

1
t
Lt(1))

]
≤ef(t)(F (x0)+δ)Pα

1

(
1

t
Lt(1) ∈ Ḡ

)
+ ef(t)MPα

1

(
1

t
Lt(1) ∈ Gc

)
.
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Now, as

lim sup
t→∞

1

f(t)
logPα

1

(
1

t
Lt(1) ∈ Gc

)
= − lim sup

t→∞

t

f(t)
inf
a∈Gc

I(a) = −∞,

where I is the rate function defined in (2.2), and using the law of large numbers again as
well as the method of Laplace for sums, we deduce that

lim sup
t→∞

1

f(t)
logEα

1

[
ef(t)F(

1
t
Lt(1))

]
≤ max {F (x0) + δ,−∞} = F (x0) + δ.

The claim follows after letting δ → 0. □

Change of measure for α

One of the proof methods we will use in section 4 to obtain the representation (1.6) is the
Perron-Frobenius spectral theory for bounded self-adjoint operators, which we would like to
apply to the generator

L̄f(z, i) =
∑
y∼z

(iκ+ ρ)(f(y, i)− f(z, i)) + si(f(z, 1− i)− f(z, i)) (2.4)

of a Markov process (Z, α), where f : Zd×{0, 1} → R is a suitable test function. However,
this may be a problem, as the matrix Q defined in (1.11) is not symmetric and therefore the
generator (2.4) of (Z, α) is not self-adjoint. In order to fix this, we will use a result from
[PR02] which we formulate here for the convenience of the reader:

Lemma 2.5. Let α = (α(t))t≥0 be any Markov process on a finite state space M with
transition rates qij from state i ∈ M to j ∈ M. For a positive function h : M → (0,∞),
let α̃ = (α̃(t))t≥0 be another Markov process on M defined on the same filtered space
(Ω, (Ft)t≥0)) with transition rates q̃ij given by

q̃ij = qij
h(j)

h(i)

for i ̸= j and q̃ii = −
∑

k ̸=i qik
h(k)
h(i)

. Denote by Pα resp.Pα̃ the distribution of α resp. α̃.

Then Pα is absolutely continuous with respect to Pα̃ with the Radon-Nikodym derivative

dPα

dPα̃
|Ft =

h(α̃(t))

h(α̃(0))
exp

(
−
∫ t

0

Q̃h(α̃(s))

h(α̃(s))
ds

)
.

Proof. Cf. proof of [PR02, Theorem 4.2 and Proposition 5.1]. □

We can now apply 2.5 to build our favourite Markov process with symmetric rates out of α:
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Corollary 2.6. Let α̃ be a Markov process on {0, 1} with generator

Q̃f(i) :=
√
s0s1(f(1− i)− f(i)) (2.5)

for f : {0, 1} → R, and write Pα̃ for its distribution with start in state 1. Further, denote
by Pα the distribution of the Markov chain α with generator defined in (1.11) and start in 1.
Then,

dPα

dPα̃
|Ft = exp

(√
s0s1t− s0L̃t(0)− s1L̃t(1)

)
where we wrote L̃t(i) =

∫ t

0
δi(α̃(s)) ds for the local times of α̃ in state i ∈ {0, 1} up to

time t.

Proof. Define h : {0, 1} → R as h(0) =
√
s1 and h(1) =

√
s0. Conditioned on α̃(t) = 1,

this yields

dPα

dPα̃
|Ft =

h(α̃(t))

h(α̃(0))
exp

(
−
∫ t

0

Q̃h(α̃(s))

h(α̃(s))
ds

)

=exp

(
−L̃t(0)

√
s0s1(

√
s0 −

√
s1)√

s1
− L̃t(1)

√
s0s1(

√
s1 −

√
s0)√

s0

)
=exp

(
−L̃t(0)(s0 −

√
s0s1)− L̃t(1)(s1 −

√
s0s1)

)
=exp

(√
s0s1t− s0L̃t(0)− s1L̃t(1)

)
.

□

Remark 2.7. Especially, if (Z̃, α̃) is the Markov process with symmetric generator

L̃f(x, i) := (iκ+ ρ)
∑
y∼x

(f(y, i)− f(x, i)) +
√
s0s1(f(x, 1− i)− f(x, i))

for test functions f : Zd ×{0, 1} → R and if we write P(Z,α)
(0,1) resp. P̃(Z,α̃)

(0,1) for the distribution

of (Z, α) resp. (Z̃, α̃) with start in (0, 1), then

dP(Z,α)
(0,1)

dP̃(Z,α̃)
(0,1)

|Ft = exp
(√

s0s1t− s0L̃t(0)− s1L̃t(1)
)

as well, since the generator of Z , conditioned on α, equals that of Z̃ , conditioned on α̃, and
since α resp. α̃ is independent of Z resp. Z̃ .
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Hitting probabilities

The following lemma asserts that the hitting probabilities of the two-type switching random
walk (Z, α) defined in (2.4) can be expressed as time-changed hitting probabilities of a
simple symmetric random walk without switching:

Lemma 2.8. Let (Z, α) be the switching random walk with generator (2.4) and Z̃ a simple
symmetric rate random walk with generator ∆. Then, for any fixed realization of (α(t))t≥0,

PZ
y (∃s ≤ t : (Z(s), α(s)) = (0, 1)) = PZ̃

y (∃s ≤ Lt(1) : Z̃(ρs+ bκLs(1)) = 0),

where PZ
y resp.PZ̃

y denotes the probability with respect to Z resp. Z̃ with start in y.

Proof. Write

ψα(y, t) := PZ
y (∃s ∈ [0, t] : Z(s) = 0, α(s) = 1) = PZ

y (∃s ∈ At : Z(s) = 0)

for a fixed realization of α with At := {s ∈ [0, t] : α(s) = 1}. Note, that

ψα(y, t) =

∫ t

0

PZ
y (Z(s) = 0)1{α(s)=1} ds

and let Nt denote the number of jumps of α till t and write s1, s2, · · · , Nt for the jump
times of α and τk := sk − sk−1 for the corresponding waiting times, such that At =
[0, s1] ∪ [s2, s3] ∪ · · · ∪ [sNt , t] and

ψα(y, t) =

∫ s1

0

PZ
y (Z(s) = 0) ds+

∫ s3

s2

PZ
y (Z(s) = 0) ds+ · · ·+

∫ t

sNt

PZ
y (Z(s) = 0) ds

where we w.l.o.g. assume that Nt is even. For each k-th intervall, starting with the intervall
[s2, s3], we use a linear substitution of the integration variable to obtain that each integration
interval starts with the endpoint of the previous one, i.e.

ψα(y, t) =

∫ s1

0

PZ
y (Z(s) = 0) ds+

∫ s3−s2+s1

s1

PZ
y (Z(s) = 0) ds

+ · · ·+
∫ ∑Nt+1

j=0 (−1)j+1sj

∑Nt−1
j=0 (−1)j+1sj

PZ
y (Z(s) = 0) ds

=

∫ t−
∑ 1

2Nt
j=0 τ2j

0

PZ
y (Z(s) = 0) ds

=

∫ Lt(1)

0

PZ
y (Z(s) = 0) ds
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with Nt + 1 := t, where we used that the sum
∑ 1

2
Nt

j=0 τ2j corresponds to the waiting times
of α in state 0. Now, we use the fact that the end point Z(s) has the same distribution as
Z̃(ρs+ κLs(1)), given α, which yields

ψα(y, t) =

∫ Lt(1)

0

PZ̃
y (Z̃(ρs+ κLs(1)) = 0)ds

= PZ̃
y (∃s ≤ Lt(1) : (Z̃(ρs+ κLs(1)) = 0).

□

3 Proof of Theorem 1.1

This section is dedicated to the proof of Theorem 1.1. For this, let ξ = (ξ(x))x∈Zd be a static
field built out of Bernoulli distributed particles, i. e. , for each x ∈ Zd the random variable ξ(x)
is independent and Bernoulli distributed with P(ξ(x) = 1) = p = 1−P(ξ(x) = 0). As the
random environment is static, we only have to average over the movement of the switching
random walk X and the initial distribution of the Bernoulli field in order to determine the
long-term behaviour of ⟨U(t)⟩. Thus, the proof of theorem 1.1 is based on a time-change
combined with existing results regarding the behaviour of random walks (without switching) in
a Bernoulli field of particles. More precisely, let X̃ be a simple symmetric random walk with-
out switching and with generator κ∆. Then it is well-known that, conditioned on (α(s))s≤t,
the endpoint X(t) is equal to X̃(Lt(1)) in distribution. This will be the starting point of the
following proof:

Proof of Theorem 1.1

For (x, i) ∈ Zd × {0, 1} let

ℓt(x, i) :=

∫ t

0

δ(x,i)(X(s), α(s))ds

denote the local time of the process (X,α) in (x, i). Then, for an arbitrary γ ∈ [−∞,∞),
we can rewrite ⟨U(t)⟩, using the independence of the Bernoulli distribution in each spatial
point x ∈ Zd, as

⟨U(t)⟩ =

〈
E(X,α)

(0,1)

[
exp

(∑
x∈Zd

γ · ξ(x)ℓt(x, 1)

)]〉

=E(X,α)
(0,1)

[∏
x∈Zd

(
peγℓt(x,1) + 1− p

)]

=E(X,α)
(0,1)

[
exp

(∑
x∈Zd

log
(
peγℓt(x,1) + 1− p

)
1{ℓt(x,1)>0}

)]
.
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Now, let γ = −∞. Then the annealed survival probability up to time t reads

⟨U(t)⟩ = E(X,α)
(0,1)

[
exp

(∑
x∈Zd

log (1− p)1{ℓt(x,1)>0}

)]
= E(X,α)

(0,1)

[
(1− p)

∑
x∈Zd 1{ℓt(x,1)>0}

]
.

Recall, that the walkX can only move in the active state 1 such that each newly visited point
x ∈ Zd is crossed by X for the first time in state 1. Therefore,∑

x∈Zd

1{ℓt(x,1)>0} =
∑
x∈Zd

1{ℓ̄t(x)>0} =: R(t),

where we write ℓ̄t(x) for the projection of ℓt(x, i), i ∈ {0, 1}, on the first component and
denote by R(t) the range of the random walk X up to time t, i.e. , the number of all distinct
visited points up to time t by X . Changing the order of the expectations yields

⟨U(t)⟩ = Eα
1EX

0

[
(1− p)R(t)

]
= Eα

1EX̃
0

[
(1− p)R̃(Lt(1))

]
,

where EX̃
0 denotes the expectation with respect to X̃ and R̃(t) the range of X̃ up to time t.

For a fixed realization of α, the inner expectation is nothing but the survival probability of the
simple random walk X̃ among Bernoulli traps up to the (deterministic) time Lt(1), to which
we can apply the well-known result from [A95] asserting that

EX̃
0

[
(1− p)R̃(Lt(1))

]
= exp

(
−cdκ

d
d+2 (log(1− p))

2
d+2Lt(1)

d
d+2 (1 + o(1))

)
(3.1)

as t→ ∞, where the constant cd is given by

cd := (d+ 2)d
2

d+2
−1λ

d
d+2

d

and λd denotes the principal Dirichlet eigenvalue of −∆ on [−1, 1]d ⊆ Rd. Finally, applica-
tion of lemma 2.4 finishes the proof of part (a).

Now, let γ > 0. Then

⟨U(t)⟩ = E(X,α)
(0,1)

[
exp

(∑
x∈Zd

log
(
peγℓt(x,1) + 1− p

)
1{ℓt(x,1)>0}

)]

= E(X,α)
(0,1)

[
exp

(∑
x∈Zd

(
log(p) + log

(
eγℓt(x,1) +

1− p

p

))
1{ℓt(x,1)>0}

)]

= E(X,α)
(0,1)

[
pR(t) · exp

(∑
x∈Zd

log

(
eγℓt(x,1) +

1− p

p

)
1{ℓt(x,1)>0}

)]
.
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Using the asymptotics (3.1) of the first term in the expectation (with 1−p replaced by p) and
time-change again, we can lower-bound

⟨U(t)⟩ ≥E(X,α)
(0,1)

[
pR(t) · exp

(∑
x∈Zd

log
(
eγℓt(x,1)

)
1{ℓt(x,1)>0}

)]
=Eα

1EX̃
0

[
pR̃(Lt(1)) exp (γLt(1))

]
=Eα

1

[
exp

(
γLt(1)− cdκ

d
d+2 log(p)

2
d+2Lt(1)

d
d+2 (1 + o(1))

)]
, t→ ∞.

Now, recall the large deviation principle 2.2 for the normalized local times 1
t
Lt(1) of α in 1

with rate function I defined in (2.2). Using Varadhan’s lemma (cf. [K20, Theorem 3.3.1]), we
can deduce

lim
t→∞

1

t
log ⟨U(t)⟩ ≥ sup

a∈[0,1]
{γa− I(a)} = γ − inf

a∈[0,1]
{(1− a)γ + I(a)} ,

as t→ ∞, since the term

Lt(1)
d

d+2 = t−
2

d+2

(
1

t
Lt(1)

) d
d+2

vanishes on scale t for t→ ∞. On the other hand, for large t, we can upper-bound

⟨U(t)⟩ ≤E(X,α)
(0,1)

[
pR(t) · exp

(∑
x∈Zd

log

(
2max{eγℓt(x,1), 1− p

p
}
)
1{ℓt(x,1)>0}

)]
=E(X,α)

(0,1)

[
(2p)R(t) · exp (γLt(1))

]
=Eα

1

[
exp

(
t

(
γ
1

t
Lt(1)− t−

2
d+2 cdκ

d
d+2 log(2p)

2
d+2

(
1

t
Lt(1)

) d
d+2

(1 + o(1))

))]
,

as t→ ∞, using the same considerations as before. The second term in the expectation is
again negligible on the time scale t for t→ ∞ and thus

lim
t→∞

1

t
log ⟨U(t)⟩ ≤ γ − inf

a∈[0,1]
{(1− a)γ + I(a)} .

For an explicit expression, we calculate the minimizer of the function f(a) = (1−a)γ+I(a)
and find that

γ − inf
a∈[0,1]

{(1− a)γ + I(a)} = γ − s1 −
(γ + s0 − s1)

2 − s0s1√
γ2 + 2γ(s0 − s1) + (s0 + s1)2

.

DOI 10.20347/WIAS.PREPRINT.3136 Berlin 2024



H. Shafigh 24

4 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, in which the underlying environment ξ is dynamic and
consists of one single particle moving independently of X . More precisely, ξ is the Markov
process on {0, 1}Zd

given by

ξ(x, t) = δx(Y (t)),

where Y = (Y (t))t≥0 is a continuous-time simple symmetric random walk on Zd with jump
rate 2dρ for a constant ρ > 0 and starting in the origin. Hence,

⟨U(t)⟩ = EY
0 E

(X,α)
(0,1)

[
exp

(
γ

∫ t

0

δ(0,1)(X(s)− Y (s), α(s)) ds
)]

, (4.1)

where EY
0 denotes the expectation with respect to Y . Set Z := X − Y . Then (Z, α) has

the generator

L̄f(z, i) =
∑
y∼z

(iκ+ ρ)(f(y, i)− f(z, i)) + si(f(z, 1− i)− f(z, i))

for z ∈ Zd, i, j ∈ {0, 1} and a test function f : Zd × {0, 1} → R, and thus

⟨U(t)⟩ = E(Z,α)
(0,1)

[
exp

(
γ

∫ t

0

δ(0,1)(Z(s), α(s)) ds
)]

=: v(0, 1, t). (4.2)

Especially, the new potential ξ̃(z, i) := δ(0,1)(x, i) does not depend on the time any more.
Using the Feynman-Kac formula, we further see that (4.2) is the solution to{ d

dtv(y, i, t) = (iκ+ ρ)∆v(y, i, t) +Qv(y, i, t) + γ · δ(0,1)(y, i)v(y, i, t), t > 0

v(y, i, 0) = i,

(4.3)

with (y, i) = (0, 1). In the following, we shall use either of the representations (4.1), (4.2)
or (5.10), depending on what is to be proven. We start with the proof of theorem 1.2(a) and
show theorem 1.2(b) separately, as different methods are used in the case γ < 0 and γ > 0
respectively.

Proof of Theorem 1.2(a)

Let γ ∈ (−∞, 0) and denote by p(y, i, t) the probability density function of the switching
diffusion (Z, α) with start in (0, 1). Then we get the representation

v(0, 1, t) = 1 + γ

∫ t

0

p(0, 1, s)v(0, 1, t− s) ds, (4.4)
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to which we want to apply the Laplace transform. Denoting by v̂1(λ) resp. p̂1(λ) the Laplace
transform of v(0, 1, t) resp. p(0, 1, t), and solving (4.4) for v̂1(λ), we arrive at

v̂1(λ) =
1

λ
· 1

1− γp̂1(λ)
. (4.5)

Our next aim is therefore to compute p̂1(λ). For this, note that the probability density function
p satisfies the system of equations

d
dt
p(y, 1, t) = (κ+ ρ)∆p(y, 1, t) + s0p(y, 0, t)− s1p(y, 1, t)), t > 0,

d
dt
p(y, 0, t) = ρ∆p(y, 0, t) + s1p(y, 1, t)− s0p(y, 0, t), t > 0,

p(y, i, 0) = δ(0,1)(y, i).

(4.6)

Forth order systems of the form (4.9) with two different diffusion constants have been studied
in [AH79]. For the convenience of the reader, we will include the first steps and ideas to
calculate the solution of (4.6). We denote by p̂i(y, λ) the Laplace transform of p(y, i, ·) and
apply this to (4.6), using the initial condition, to obtain the new system

0 =(κ+ ρ)∆p̂1(y, λ)− (λ+ s1)p̂1(y, λ) + s0p̂0(y, λ) + δ0(y), (4.7)

0 =ρ∆p̂0(y, λ)− (λ+ s0)p̂0(y, λ) + s1p̂1(y, λ), (4.8)

which, after solving (4.8) for p̂1(y, λ) and applying this to (4.7), translates in to the forth-order
equation(
∆2 −

(
s1 + λ

κ+ ρ
+
s0 + λ

ρ

)
∆+

(s1 + λ)(s0 + λ)− s0s1
(κ+ ρ)ρ

)
p̂0(y, λ) =

s1
(κ+ ρ)ρ

δ0(y).

(4.9)

Forth order systems of the form (4.9) are known to have the solution

p̂0(y, λ) =
s1

2(κ+ ρ)ρ(a2 − b2)

(
1

a
ea|y| − 1

b
eb|y|
)
,

in dimension d = 1, where

a, b = −

√
λ(κ+ ρ) + s1ρ+ s0(κ+ ρ)±

√
κ2 + 2λκ(s1ρ− s0(κ+ ρ)) + (s1ρ+ s0(κ+ ρ))2√

2ρ(κ+ ρ)
.

Using the relation between p̂1(y, λ) and p̂0(y, λ) and inserting y = 0 we obtain

p̂1(0, λ) =
−(λ+ s0 + ρab)

2ρ(κ+ ρ)ab(a+ b)
∼ 1√

λ
· s0

2
√

(s0 + s1)(s0(ρ+ κ) + s1ρ)
, λ→ 0,
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as long and tedious calculations show. In dimension d = 2 we proceed in a similar way to
find

p̂1(0, λ) ∼
s0

4π(s1ρ+ s0(κ+ ρ))
log

(
1

λ

)
, λ→ 0.

Thus, we deduce from (4.5) that

v̂1(λ) ∼


1√
λ

2
√
(s0 + s1)(s0(ρ+ κ) + s1ρ)

s0|γ|
, d = 1,

4π(s1ρ+ s0(κ+ ρ))

s0|γ|λ log
(
1
λ

) , d = 2,

as λ→ 0. Using the Littlewood-Hardy Tauberian theorem we finally arrive at

v(1, 0, t) ∼


2
√

(s0 + s1)(s0(ρ+ κ) + s1ρ)√
πs0|γ|

1√
t
, d = 1,

4π(s1ρ+ s0(κ+ ρ))

s0|γ| log(t)
, d = 2,

as λ→ ∞. Next, let d ≥ 3 and denote by

Gd(x, i) :=

∫ ∞

0

pd(x, i, t) dt

the Green’s function of (Z, α) in (x, i), which has the probabilistic representation

Gd(x, i) = E(Z,α)
(x,i)

[∫ ∞

0

δ(0,1)(Z(s), α(s)) ds

]
.

Hence, for all (x, i) ∈ Zd × {0, 1} the quantity

v(x, i) := lim
t→∞

v(x, i, t) = E(Z,α)
(x,i)

[
exp

(
γ

∫ ∞

0

δ(0,1)(Z(s), α(s)) ds

)]
lies in (0, 1). Moreover, v solves the boundary value problem{

0 = (iκ+ ρ)∆v(x, i) + γδ(0,1)(x, i)v(x, i), (x, i) ∈ Zd × {0, 1},

1 = lim∥x∥→∞ v(x, i), i ∈ {0, 1},

and can therefore be written as

v(0, 1) = 1 + γ

∫ ∞

0

pd(0, 1, t)v(0, 1) dt = 1 + γv(0, 1)Gd(0, 1)
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in point (0, 1). Solving for v(0, 1) gives

v(0, 1) =
1

1− γGd(0, 1)
.

The survival probability converges therefore to a non-trivial limit in (0, 1) in all dimensions
d ≥ 3. □

We now continue with the case γ > 0 of catalysts. Recall the two-state Markov chain α̃
with symmetric generator (2.5). Before proving theorem 1.2(b), we need two statements that
are highly inspired by [GH06, Lemma 2.2 and Lemma 2.3]:

Lemma 4.1. Let r(t) = t log2(t), Qr(t) = [−r(t), r(t)]d ∩ Zd and V : Zd × {0, 1} → R
a bounded function. Further, abbreviate

At :=

∫ t

0

V (Z(s), α̃(s)) ds.

Then, the following holds true:

(a) As t→ ∞,

E(Z,α̃)
(0,1)

[
eAt
]
= (1 + o(1))

∑
z∈Zd

E(X,α̃)
(0,1) E

Y
z

[
eAt · δ0(Y (t))1{X(t)∈Qr(t)}

]
.

(b) As t→ ∞,∑
y∈Qr(t)

E(X,α̃)
(0,1) E

Y
0

[
eAt · δy(X(t))δy(Y (t))

]
= (1 + o(1))

×
∑
y∈Zd

E(X,α̃)
(0,1) E

Y
0

[
eAt · δy(X(t))δy(Y (t))

]
Proof. Note that At ∈ [0,Mt] with M := sup(x,i)∈Zd×{0,1} V (x, i). Then,

E(Z,α̃)
(0,1)

[
eIt
]
=
∑
z∈Zd

E(X,α̃)
(0,1) E

Y
0

[
eAtδz(Y (t))

]
=
∑
z∈Zd

E(X,α̃)
(0,1) E

Y
z

[
eAtδ0(Y (t))

]
using Fubini and a time reversal for Y . In order to prove part (a) we have to check that

a(t) :=

∑
z∈Zd E(X,α̃)

(0,1) E
Y
z

[
eAtδ0(Y (t))

]
−
∑

z∈Qr(t)
E(X,α̃)

(0,1) E
Y
z

[
eAtδ0(Y (t))1{X(t)∈Qr(t)}

]
∑

z∈Zd E(X,α̃)
(0,1) EY

z [eAtδ0(Y (t))]
,

converges to zero as t → ∞. which is done in a similar way as in the proofs of [GH06,
Lemma 2.2], such that we only highlight the differences. Splitting Zd in Qr(t) and it’s com-
plement, upper-bounding eAt by eMt and using a time reversal for Y again, we obtain the
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bound

a(t) ≤
eMt

(
PY
0 (Y (t) /∈ Qr(t)) + P(X,α̃)

(0,1) (X(t) /∈ Qr(t)

)
PY
0 (Y (t) = 0)

=
eMt

(
PY
0 (Y (t) /∈ Qr(t)) + Pα̃

1PX̃
0 (X̃(L̃t(1)) /∈ Qr(t)

)
PY
0 (Y (t) = 0)

, (4.10)

where X̃ is a simple symmetric random walk without switching and with generator κ∆ and
L̃t(1) denotes the local time of α̃ in state 1 up to time t. Now, [GM90, Lemma 4.3] asserts
that

PY
0 (Y (t) /∈ Qr(t)) ≤ 2d+1e−r(t) log( r(t)

dρt )+r(t)

such that for our choice of r(t) and for sufficiently large t,

PY
0 (Y (t) /∈ Qr(t)) ≤ e−r(t),

as a quick estimation shows. Analogously,

Pα̃
1PX̃

0

(
X̃(Lt(1)) /∈ Qr(t)

)
≤Pα̃

1

[
2d+1 exp

(
−r(t) log

(
r(t)

dκL̃t(1)

)
+ r(t)

)]
=2d+1e−r(t)(log( r(t)

dκ )−1)Eα̃
1

[
exp

(
r(t) log(L̃t(1))

)]
≤2d+1e−r(t)(log( r(t)

dκ )−1).

Thus, we have again

Pα̃
1PX̃

0

(
X̃(L̃t(1)) /∈ Qr(t)

)
≤ e−r(t)

for sufficiently large t. This shows that the nominator of (4.10) converges exponentially in t
to zero, whereas its dominator converges only polynomially. Hence, a(t) → 0 for t→ ∞.

In order to prove part (b), we define

b(t) :=

∑
y/∈Qr(t)

E(X,α̃)
(0,1) E

Y
0

[
eAtδy(X(t))δy(Y (t))

]
∑

y∈Zd E(X,α̃)
(0,1) EY

0 [eAtδy(X(t))δy(Y (t))]

and proceed in a similar way to obtain the upper bound

b(t) ≤
eMt

(
P(X,α̃)
(0,1) (X(t) /∈ Qr(t))PY

0 (Y (t) /∈ Qr(t))
)

P(X,α̃)
(0,1) (X(t) = 0)PY

0 (Y (t) = 0)
. (4.11)

From the proof of part (a) we already know that the nominator decays exponentially in t as
t→ ∞. Moreover,

P(X,α̃)
(0,1) (X(t) = 0) = Pα̃

1PX̃
0 (X̃(L̃t(1)) = 0),
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where PX̃
0 (X̃(L̃t(1)) = 0) decays polynomially in L̃t(1). Hence, lemma 2.4 asserts that

Pα̃
1PX̃

0 (X̃(L̃t(1)) = 0) = PX̃
0

(
X̃

(
s0

s0 + s1
t

)
= 0

)
for sufficiently large t. Thus, the dominator of the right hand-side of (4.11) decays polynomi-
ally in t and therefore b(t) → 0 as t→ ∞. □

We are now ready to prove theorem 1.2(b).

Proof of Theorem 1.2(b)

Let α̃ be the two-state Markov chain with symmetric generator Q̃ defined in (2.5) and denote
by ℓt(x, i) resp. ℓ̃t(x, i) the local times of (Z, α) resp. (Z, α̃) in (x, i) up to time t. Then,
combining the representation (4.2) with corollary 2.6 and remark 2.7, the annealed number
of particles up to time t reads

⟨U(t)⟩ =E(Z,α)
(0,1)

[
exp

(
γ

∫ t

0

δ(0,1)(Z(s), α(s)) ds

)]
=E(Z,α)

(0,1) [exp (γℓt(0, 1))]

=E(Z,α̃)
(0,1)

[
exp

(√
s0s1t− s0L̃t(0)− s1L̃t(1) + γℓ̃t(0, 1)

)]
=E(Z,α̃)

(0,1)

exp
√

s0s1t− s0
∑
y∈Zd

ℓ̃t(y, 0)− s1
∑
y∈Zd

ℓ̃t(y, 1) + γℓ̃t(0, 1)


=e

√
s0s1tE(Z,α̃)

(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]
(4.12)

where we define

V (z, i) := −s0δ0(i)− s1δ1(i) + γδ(0,1)(z, i)

for (z, i) ∈ Zd × {0, 1}. Let us start with the upper bound, which is done in a similar way
as in the proof of [GH06, Theorem 1.2]. Applying lemma 4.1(a) yields

E(Z,α̃)
(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]
=(1 + o(1))

∑
z∈Zd

E(X,α̃)
(0,1) E

Y
z

[
exp

(∫ t

0

V (X(s)− Y (s), α̃(s)) ds

)
δ0(Y (t))1{X(t)∈Qr(t)}

]
≤(1 + o(1))

∑
z∈Zd

E(X,α̃)
(0,1) E

Y
z

[
exp

(∫ t

0

V (X(s)− Y (s), α̃(s)) ds

)
1{X(t)−Y (t)∈Qr(t)}

]
=(1 + o(1))

∑
z∈Zd

E(Z,α̃)
(z,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)
1{Z(t)∈Qr(t)}

]
. (4.13)
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Denote with (·, ·) the inner product in ℓ2(Zd×{0, 1}) with corresponding norm ∥ · ∥ and let

λ := supSp(L̃+ V )

be the largest eigenvalue of the bounded and self-adjoint operator L̃ + V . Then, applying
the spectral representation to the right hand-side of (4.13) and proceeding in the standard
way we obtain the upper bound

E(Z,α̃)
(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s))ds

)]
≤(1 + o(1))

(
e(L̃+V )t1Qr(t)

,1Qr(t)

)
≤(1 + o(1))etλ∥1Qr(t)

∥2

≤(1 + o(1))etλ|Qr(t)|
=(1 + o(1))etλ(2t log2(t))d.

As (2t log2(t))d grows only polynomially, we have

lim
t→∞

1

t
logE(Z,α̃)

(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]
≤ λ.

For the lower bound, we proceed as proof of [GH06, Theorem 1.2] to obtain

E(Z,α̃)
(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s))ds

)]

≥ 1

|Qr(t)|

 ∑
y∈Qr(t)

E(X,α̃)
(0,1) E

Y
0

[
eAt/2δy(X(t/2)δy(Y (t/2))

]2

for At := exp
(∫ t

0
V (X(s)− Y (s), α̃(s) ds

)
. Then, applying lemma 4.1(b) yields

E(Z,α̃)
(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]

≥ (1 + o(1))

|Qr(t)|

∑
y∈Zd

E(X,α̃)
(0,1) E

Y
0

[
eAt/2δy(X(t/2)δy(Y (t/2))

]2

=
(1 + o(1))

|Qr(t)|

(
E(X,α̃)

(0,1) E
Y
0

[
eAt/2δ0(X(t/2)− Y (t/2))

])2
≥ (1 + o(1))

|Qr(t)|

(
e(L̃+V ) t

2 δ0, δ0

)2
.

Now, we restrict the operator L̃+V to finite boxesQn := ([−n, n]d∩Zd)×{0, 1} and apply
the Perron-Frobenius theorem for non-negative irreducible matrices to derive the existence
of a largest eigenvalue λn of L̃+ V on Qn := ([−n, n]d ∩ Zd)× {0, 1}, for which

lim
t→∞

1

t
logE(Z,α̃)

(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]
≥ λn

DOI 10.20347/WIAS.PREPRINT.3136 Berlin 2024



Dormancy 31

holds for every n ∈ N, and show that limn→∞ λn = λ. We omit the details as refer to the
proof of [GH06, Theorem 1.2]. Altogether, we have shown that

lim
t→∞

1

t
logE(Z,α̃)

(0,1)

[
exp

(∫ t

0

V (Z(s), α̃(s)) ds

)]
= λ,

where, according to the Rayleigh-Ritz formula, λ is given by

λ = sup
f∈ℓ2(Zd×{0,1}),∥f∥2=1

〈
(L̃+ V )f, f

〉
.

Let us calculate the inner product. We have

⟨V f, f⟩ = −s0
∑
x∈Zd

f(x, 0)2 − s1
∑
x∈Zd

f(x, 1)2 + γf(0, 1)2

and〈
L̃f, f

〉
=
∑

i∈{0,1}

∑
x∈Zd

(iκ+ ρ)
∑
y∼x

(f(y, i)− f(x, i))f(x, i)

+
√
s0s1(f(x, 1− i)− f(x, i))f(x, i)

=
∑

i∈{0,1}

d∑
j=1

(iκ+ ρ)
∑
x∈Zd

(f(x+ ej, i)− f(x, i))f(x, i)

+ (f(x, i)− f(x+ ej, i))f(x+ ej, i)−
∑
x∈Zd

√
s0s1(f(x, 1)− f(x, 0))2

= −1

2

∑
i∈{0,1}

(iκ+ ρ)
∑

x,y∈Zd,x∼y

(f(x, i)− f(y, i))2 −
∑
x∈Zd

√
s0s1(f(x, 1)− f(x, 0))2,

where the factor 1
2

comes from summing over ordered pairs (x, y). Now, recall from (4.12)
that

lim
t→∞

1

t
log ⟨U(t)⟩ =

√
s0s1 + λ

to conclude.

5 Proof of Theorem 1.3

In this chapter, we give a proof for Theorem 1.3 and consider a dynamic random environment
given by a field of independent random walks with equal jump rate 2dρ starting from a
Poisson cloud on Zd with intensity ν. More precisely, we define the potential ξ to be

ξ(x, t) =
∑
y∈Zd

Ny∑
j=1

δx(Y
y
j (t)),
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whereNy is a Poisson random variable with intensity ν > 0 for each y ∈ Zd and {Y y
j : y ∈

Zd, j = 1, · · · , Ny, Y
y
j (0) = y} is the collection of random walks with jump rate 2dρ > 0.

Our first lemma, which provides a more convenient representation of ⟨U(t)⟩, is an adapta-
tion of [GdH06, Proposition 2.1] to our setting for switching random walks:

Lemma 5.1. For all t ≥ 0 and all γ ∈ [−∞,∞),

⟨U(t)⟩ = E(X,α)
(0,1)

[
exp

(
νγ

∫ t

0

α(s)v(X,α)(X(s), s) ds

)]
, (5.1)

where v(X,α)(y, t) : Zd × [0,∞) → R is the solution of{ d
dtv(X,α)(y, t) = ρ∆v(X,α)(y, t) + γδ(X(t),α(t))(y, 1)v(X,α)(y, t), t > 0,

v(X,α)(y, 0) = 1
(5.2)

conditioned on a fixed realization of (X,α).

Proof. The proof is similar to the proof of [GdH06, Proposition 2.1], but with the additional
component α. Write Eν for the expectation of a Poisson random variable with intensity ν. As
in [GdH06], we integrate out the Poisson system ξ to obtain

⟨U(t)⟩ =

〈
E(X,α)

(0,1)

[
exp

(
γ

∫ t

0

∑
k

δ(Y k(s),1)(X(s), α(s)) ds

)]〉

=

〈
E(X,α)

(0,1)

∏
k

[
exp

(
γ

∫ t

0

δ(Y k(s),1)(X(s), α(s)) ds

)]〉

= E(X,α)
(0,1)

∏
y∈Zd

EνEY
y

[
exp

(
γ

∫ t

0

δ(Y (s),1)(X(s), α(s)) ds
)]

= E(X,α)
(0,1)

∏
y∈Zd

Eν
[
v(X,α)(y, t)

]
.

Then, taking the expectation with respect to a Poisson random variable yields

⟨U(t)⟩ = E(X,α)
(0,1)

∏
y∈Zd

∑
n

(νv(X,α)(y, t))
n

n!
e−ν


= E(X,α)

(0,1)

∏
y∈Zd

exp
(
−ν(1− v(X,α)(y, t))

)
= E(X,α)

(0,1)

exp
−ν

∑
y∈Zd

w(X,α)(y, t)

 (5.3)
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for w(X,α) := 1 − v(X,α). Note, that for γ < 0, the quantity v(X,α)(y, t) represents the
survival probability of Y with start in y up to time t, where the (fixed) trajectory of X is seen
as a trap, which tries to capture Y with rate γ whenever it crosses the latter and if α takes
the value 1 in that moment. For γ > 0, v(X,α)(y, t) represents the number of particles build
out of one single particle starting in 0 which moves around with jump rate 2dκ and branches
into two, whenever it meets the random Walk X and if α equals to 1 at this time. Next, we
see that∑

y∈Zd

d
dt
w(X,α)(y, t) = −

∑
y∈Zd

d
dt
vX(y, t)

= −
∑
y∈Zd

(
ρ∆v(X,α)(y, t) + γδ(X(t),α(t))(y, 1)v(X,α)(y, t)

)
= −γα(t)v(X,α)(X(t), t),

which together with the initial condition
∑

y∈Zd w(X,α)(0) = 0 yields

∑
y∈Zd

w(X,α)(y, t) = −γ
∫ t

0

α(s)v(X,α)(X(s), s) ds.

Combined with (5.3), this proofs the claim. □

Before continuing our investigations regarding to the asymptotics of (5.1), we will first con-
sider the case κ = 0, i. e. , the case of an immobile particle X staying in 0 the whole time.
This idea is highly inspired by [GdH06] and [DGRS11] and will be extended here to the case
of switching random walks. For κ = 0 the equation (5.2) with X ≡ 0 reduces to{ d

dt
v(0,α)(y, t) = ρ∆v(0,α)(y, t) + γα(t)δ0(y)v(0,α)(y, t), y ∈ Zd, t > 0,

v(0,α)(y, 0) = 1, y ∈ Zd,
(5.4)

such that the annealed survival probability becomes

⟨U(t)⟩ = Eα
1

[
exp

(
νγ

∫ t

0

α(s)v(0,α)(0, s) ds

)]
. (5.5)

As we will see later, the following two propositions will help us with the general case κ ≥ 0:

Proposition 5.2. Let γ ∈ [−∞, 0) and κ = 0. Then, as t→ ∞,

log ⟨U(t)⟩ =


−4ν

√
ρs0

(s0 + s1)π

√
t(1 + o(1)), d = 1,

−4ν
ρπs0
s0 + s1

t

log (t)
(1 + o(1)), d = 2,

−λ̃d,γt(1 + o(1)), d ≥ 3,

(5.6)
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with

λ̃d,−∞ = inf
a∈[0,1]

{
s0 −

√
s0s1 +

(
s1 − s0 + 2dνρGd(0)

−1
)
a− 2

√
s0s1a(1− a)

}
,

where Gd(0) is the Green’s function of a simple symmetric random walk in 0, and

λ̃d,γ = inf
a∈[0,1]

{
s0 −

√
s0s1 +

(
s1 − s0 +

2dνρ
2dρ
|γ| +Gd(0)

)
a− 2

√
s0s1a(1− a)

}
for γ ∈ (−∞, 0).

Proof. We start with the case of hard traps, i. e. , γ = −∞, where the random walk X is
immediately killed after crossing one of the traps, if α takes the value 1 at this times. Then,
in an analogous manner as in (5.3), the annealed survival probability up to time t can be
written as

⟨U(t)⟩ = Eα
1

exp
−ν

∑
y∈Zd

ψα(y, t)

 , (5.7)

where

ψα(y, t) = PY
y (∃s ∈ [0, t] : Y (s) = 0, α(s) = 1)

which for γ = ∞ corresponds to the probability that Y has been killed up to time t, if
we consider 0 as a trap which is only open if α is equal to 1. Recall from Lemma 2.8 that
ψα(y, t) = ψ(y, Lt(1)) with

ψ(y, t) := PY
y (∃s ∈ [0, t] : Y (s) = 0)

the probability, that Y with start in y does not hit 0 up to time t, regardless of values of α,
which solves the differential equation

d
dt
ψ(y, t) = ρ∆ψ(y, t), t > 0, y ̸= 0,

ψ(0, t) = 1, t > 0,

ψ(y, 0) = 0, y ̸= 0.

Observe that due to the chain rule,

d

dt
ψ(y, Lt(1)) =

d

dt
Lt(1) ·

d

dt
ψ(y, ·)(Lt(1)) = α(t) ·∆ψ(y, Lt(1)).

Hence,

d

dt

∑
y∈Zd

ψα(y, t) =
∑
y∈Zd

α(t)∆ψ(y, Lt(1))− α(t)∆ψ(0, t)

= −α(t)ρ
∑
y∼0

(ψ(y, Lt(1))− ψ(0, Lt(1))

= −2dρα(t)(ψ(e1, Lt(1))− 1)

DOI 10.20347/WIAS.PREPRINT.3136 Berlin 2024



Dormancy 35

with e1 = (1, 0, · · · , 0)T the first unit vector, where we used the symmetry of the random
walk as well as the fact that

∑
y ∆ψα(y, t) = 0. Thus, setting ϕ(e1, t) := 1− ψ(e1, t),

∑
y∈Zd

ψα(y, t) =

∫ t

0

2dρϕ(e1, Ls(1))α(s)ds =

∫ Lt(1)

0

2dρϕ(e1, s)ds (5.8)

where we substituted Ls(1) in the last step. Now, the quantity ϕ(e1, t), which represents the
probability that a random walk with jump rate 2dρ and start in e1 does not hit the origin up to
time t, is known (see e.g. [L96]) to have the asymptotics

ϕ(e1, t) =



√
1

πρt
(1 + o(1)), d = 1,

π
log(t)

(1 + o(1)), d = 2,

Gd(0)
−1(1 + o(1)), d ≥ 3,

as t → ∞, where Gd is the Green’s function of a d-dimensional symmetric random walk
with generator ∆. Thus,

∑
y∈Zd

ψα(y, t) =


4
√

ρ
π

√
Lt(1)(1 + o(1)), d = 1,

4πρ Lt(1)
log(Lt(1))

(1 + o(1)), d = 2,

2dρGd(0)
−1Lt(1)(1 + o(1)), d ≥ 3,

(5.9)

as t → ∞. In the following, we distinguish between the recurrent dimensions d ∈ {1, 2}
on one side and the transient dimensions d ≥ 3 on the other side. Let us start with the case
d ≥ 3 and recall the large deviation principle for the normalized local times

(
1
t
Lt(1)

)
t≥0

of
α in state 1 from theorem 2.2 with rate function I given by (2.2), which has a unique zero at

s0
s0+s1

. As the function g : [0, 1] → R, x 7→ −νρGd(0)
−1x is continuous and bounded, we

can apply Varadhan’s lemma to deduce the limit

− lim
t→∞

1

t
logEα

1

[
exp

(
−ν 2dρ

Gd(0)
Lt(1)

)]
= inf

a∈[0,1]

{
I(a) +

2dνρ

Gd(0)
a

}
=: λ̃d,∞.

This establishes the asymptotics (5.6) for d ≥ 3. For d = 1, we apply lemma 2.4 with
f(t) =

√
t to obtain

lim
t→∞

1√
t
logEα

1

[
exp

(
−ν
√

8ρ

π

√
Lt(1)

)]
= −4ν

√
ρ

π

√
s0

s0 + s1
.

The case d = 2 is similar with f(t) = t/ log(t) and F (a) = −4νπρa. Next, we continue
with γ ∈ (−∞, 0). Recall the representation (5.5) of the annealed survival probability as
well as the solution v(0,α)(y, t) of (5.4), which is the survival probability of Y up to time t, if
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we interpret 0 as a trap which tries to kill Y with rate |γ| at time s if (Y (s), α(s)) = (0, 1).
Here, v(0,α) plays the analogous role of ϕα, and w(0,α) = 1− v(0,α) the role of ψα. Denote
by w(y, t) the killing probability of a random walk Y with start in y up to time t, if Y is killed
in 0 at rate γ independent of α, and v := 1− w, which solves the differential equation{

d
dt
v(y, t) = ρ∆v(y, t) + γδ0v(y, t), y ∈ Zd, t > 0,

v(y, 0) = 1, y ∈ Zd
. (5.10)

Then, applying lemma 2.8 again yields w(0,α)(y, t) = w(y, Lt(1)) and therefore

v(0,α)(y, t) = v(y, Lt(1)). (5.11)

In [DGRS11] it has been shown that v(0, t) has the asymptotics

v(0, t) =



1

|γ|

√
ρ

π

1√
t
(1 + o(1)), d = 1,

4πρ

|γ|
1

log(t)
(1 + o(1)), d = 2,

2dρ

2dρ− γGd(0)
(1 + o(1)), d ≥ 3,

(5.12)

as t→ ∞. Moreover,∫ t

0

α(s)v(0,α)(0, s) ds =

∫ t

0

α(s)v(0, Ls(1)) ds =

∫ Lt(1))

0

v(0, s) ds

as in (5.8). This yields

νγ

∫ t

0

α(s)v(0,α)(0, s)ds =



−4ν

√
ρ

π

√
Lt(1)(1 + o(1)), d = 1,

−4νπρ
Lt(1)

log(Lt(1))
(1 + o(1)), d = 2,

νγ
2dρ

2dρ− γGd(0)
Lt(1)(1 + o(1)), d ≥ 3,

for t→ ∞. In the dimensions d ∈ {1, 2}, we can apply Lemma 2.4 as in the case γ = ∞,
whereas in dimension d ≥ 3 Varadhan’s Lemma again tells us that

− lim
t→∞

1

t
logEα

1

[
exp

(
2dνρ

2dρ
γ

−Gd(0)
Lt(1)

)]
= inf

a∈[0,1]

{
I(a)− 2dνρ

2dρ
γ

−Gd(0)
a

}
=: λ̃d,γ.

This proofs the proposition for the case γ ∈ (−∞, 0). □

Remark 5.3. Note that in the first two dimensions the survival probability decays sub-
exponentially and does not depend on γ and in higher dimensions d ≥ 3 the asymptotics
for γ = ∞ are consistent with those of the case γ <∞, as limγ→∞ λ̃d,γ = λ̃d,∞.
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The next proposition deals with the case γ > 0 of catalysts, still under the assumption
κ = 0.

Proposition 5.4. Let γ ∈ (0,∞) and κ = 0. Then for all dimensions d ≥ 1 the annealed
number of particles satisfies the double-exponential asymptotics

lim
t→∞

1

t
log log ⟨U(t)⟩ = sup

f∈ℓ2(Zd),∥f∥2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

ρ(f(x)− f(y))2

 .

Proof. Recall the representation (5.1) as well as the solution v(0,α) to (5.4) for a fixed real-
ization of α, which can also be written as

v(0,α)(0, t) = EY
0

[
exp

(
γ

∫ t

0

α(s)δ0(Y (s))ds

)]
in point 0. Let

v(0, t) := EY
0

[
exp

(
γ

∫ t

0

δ0(Y (s))ds

)]
which plays the analogous role of the function v in the proof of Proposition 5.2, but now for
positive γ. In [GH06] it has been shown that

lim
t→∞

1

t
log v(0, t) = µ

where

µ := sup
f∈ℓ2(Zd),∥f∥2=1

γf(0)2 − 1

2

∑
x,y∈Zd,x∼y

ρ(f(x)− f(y))2


is the largest eigenvalue of the self-adjoint operatorH := ρ∆+γδ0 on ℓ2(Zd). Furthermore,
it is known from [GdH06] that µ is always positive in dimensions d = 1, 2 and

µ


= 0, 0 <

γ

ρ
≤ 1

Gd(0)
,

> 0,
γ

ρ
>

1

Gd(0)

in dimensions d ≥ 3, where Gd is the Green’s function of a simple symmetric random walk
with jump rate 2d. Next, we aim to compare v(0, t) to v(0,α)(0, t) by applying lemma 2.8
again in the same manner as in the proof of proposition 5.2, which yields

v(0,α)(0, t) = v(0, Lt(1)). (5.13)
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Hence, for κ = 0,

⟨U(t)⟩ =Eα
1

[
exp

(
νγ

∫ t

0

α(s)v(0, Ls(1)) ds

)]
= Eα

1

[
exp

(
νγ

∫ Lt(1)

0

v(0, s) ds

)]

=Eα
1

[
exp

(
νγ

∫ Lt(1)

0

eµs(1 + o(1)) ds

)]
= Eα

1

[
exp

(
νγ

µ
eµLt(1)(1 + o(1))

)]
as t→ ∞. Now, on one hand, we have the upper bound

⟨U(t)⟩ ≤ exp

(
νγ

µ
eµt(1 + o(1))

)
, t→ ∞,

and on the other hand,

Eα
1

[
exp

(
νγ

µ
eµLt(1)(1 + o(1))

)]
≥ exp

(
νγ

µ
eµt(1 + o(1))

)
Pα
1 (Lt(1) = t), (5.14)

as t → ∞. Now, recall the large deviation principle for for the normalized local times with
rate function I on scale t, which asserts that

lim
t→∞

1

t
logPα

1 (Lt(1) = t) = −I(1). (5.15)

Hence, combining (5.15) with (5.14),

lim
t→∞

1

t
log logEα

1

[
exp

(
νγ

µ
eµLt(1)(1 + o(1))

)]
≥ lim

t→∞

1

t
log log

(
exp

(
νγ

µ
eµt
)
Pα
1 (Lt(1) = t)

)
= lim

t→∞

1

t
log

(
νγ

µ
eµt + logPα

1 (Lt(1) = t)

)
= lim

t→∞

1

t
log

(
νγ

µ
eµt
)

= µ.

□

The next ingredient for the proof of our main result is the so called Pascal principle which
asserts that if we average over the environment, than the best the random walk X can do
in order to maximize its mass is to stay still in the starting point, which brings us back to the
case κ = 0. In the setting of a simple random walk without any switching component, this
has been proven in [DGRS11] and [GdH06] for γ < 0 and γ > 0 respectively. Therefore,
the question arises if the Pascal principle can still provide an upper bound also in our case of
a switching random walk, or if there is a better joint strategy of the random walk together with
the dormancy component α. The next lemma ensures that the Pascal principle still proves
best also in our case.
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Lemma 5.5. Recall v(X,α) as the solution to (5.2) and the solution v(0,α) of (5.4) for any
fixed realization of (X,α). Then, for all γ ∈ [−∞, 0), y ∈ Zd and t ≥ 0,∫ t

0

α(s)v(X,α)(X(s), s) ds ≥
∫ t

0

α(s)v(0,α)(X(s), s) ds

and for all γ ∈ (0,∞), y ∈ Zd and t ≥ 0,

v(X,α)(y, t) ≤ v(0,α)(0, t).

Proof. First, let γ ∈ [−∞, 0) and recall from (5.11) that v(0,α)(y, t) = v(y, Lt(1)). Now,

[DGRS11, Proposition 2.1] asserts that for any piecewise constant function X̂ : [0, t] → Zd

with a finite number of discontinuities,∫ t

0

vX̂(X̂(s), s) ds ≥
∫ t

0

v(0, s) ds

where vX̂ is the solution to{ d
dt
vX̂(y, t) = ρ∆vX̂(y, t) + γδX̂(t)(y)vX̂(y, t), y ∈ Zd, t > 0,

vX̂(y, 0) = 1, y ∈ Zd.
(5.16)

In a similar way as in (5.11), we see that if v(X̂,α) is the solution to
d
dt
v(X̂,α)(y, t) = ρ∆v(X̂,α)(y, t) + γα(t)δX̂(t)(t)v(X̂,α)(y, t), y ∈ Zd, t > 0,

v(X̂,α)(y, 0) = 1, y ∈ Zd,

then v(X̂,α)(y, t) = vX̂(y, Lt(1)), as X̂ is independent of α, and hence,∫ t

0

α(s)v(X̂,α)(X̂(s), s) ds =

∫ t

0

α(s)vX̂(X̂(s), Ls(1)) ds =

∫ Lt(1)

0

vX̂(X̂(s), s) ds

≥
∫ Lt(1)

0

v(0, s)ds =

∫ t

0

α(s)v(0, Ls(1))ds

=

∫ t

0

α(s)v(0,α)(0, s)ds.

Finally, conditioned on α, the random walk X is a piecewise constant function with a finite
number of discontinuities, such that we can replace X̂ with X .

Next, let γ > 0. The proof works along the same lines as in [GdH06, Proposition 2.2].
From this proof we already know that if pρ(x, y) denotes the probability density function of a
random walk with generator ρ∆ and start in 0, then

max
x∈Zd

pρ(x, y) = pρ(0, t)

DOI 10.20347/WIAS.PREPRINT.3136 Berlin 2024



H. Shafigh 40

for all t ≥ 0. Further, in [GdH06, Proposition 2.2] has been shown that h∗n → 0, n → ∞,
uniformly on compact intervals, where h∗n denotes the n-fold convolution of the function

h(t) := γpρ(0, t).

Since

v(X,α)(X(t), t) =1 + γ

∫ t

0

pρ(X(t)−X(s), t− s)α(s)v(X,α)(X(s), s) ds

≤1 + γ

∫ t

0

pρ(0, t− s)α(s)v(X,α)(X(s), s) ds

and

v(0,α)(0, t) =1 + γ

∫ t

0

pρ(0, t− s)α(s)v(0,α)(0, s) ds,

we have

v(X,α)(X(·), ·) ≤ 1 + h∗(αv(X,α)(X(·), ·)) (5.17)

as well as

v(0,α)(0, ·) = 1 + h∗(αv(0,α)(0, ·)). (5.18)

Hence,

v(0,α)(0, ·)− v(X,α)(X(·), ·) ≥ h∗n(α(v(0,α)(0, ·)− v(X,α)(X(·), ·))

by iteration and substraction of (5.17) and (5.18). As h∗n → 0 for n→ ∞, we can deduce

v(X,α)(X(·), ·) ≤ v(0,α)(0, ·)

for all realizations of (X,α). Altogether, we obtain

v(X,α)(y, t) =1 + γ

∫ t

0

pρ(y −X(s), t− s)α(s)v(X,α)(X(s), s) ds

≤1 + γ

∫ t

0

pρ(0, t− s)α(s)v(X,α)(X(s), s) ds

≤1 + γ

∫ t

0

pρ(0, t− s)α(s)v(0,α)(0, s)ds = v(0,α)(0, t),

as desired. □

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3

The proof can be summarized as follows: We will first show that the case κ = 0 considered in
the Proposition 5.2 and 5.4 provides a lower bound for the general case κ ≥ 0 in dimensions
d = 1, 2. This gives us together with the upper bound asserted in Lemma 5.5 the desired
asymptotics.

Let us start with the case γ < 0 of traps and show that the asymptotics of ⟨U(t)⟩ are
lower-bounded by (5.6) in dimensions d ∈ {1, 2}. We adapt the notations from the proof
of [DGRS11, Lemma 2.1]: Let Et be the event that none of the traps starts in a ball BRt

of radius Rt around 0, where we choose Rt to be t
ln(t)

for d = 1 resp. ln(t) for d = 2.

This event has the probability e−ν(Rt+1)d . Further, let Gt be the event that X with start in 0
stays inBRt up to time t. Analogously, we define G̃t to be the event that a simple symmetric
random walk X̃ without switching and with jump rate 2dκ stays in BRt up to time t. Then,
using time-change again,

P(Gt) = P(X,α)
(0,1) (X(s) ∈ BRt∀s ≤ t) = Pα

1PX̃
0 (X̃(s) ∈ BRt∀s ≤ Lt(1))

≥ Pα
1PX̃

0 (X̃(s) ∈ BRt∀s ≤ t) = P(G̃(t)) ≥ exp

(
ln(β)

t

R2
t

)
,

where the last inequality is known from [DGRS11] for some β > 0. Moreover, let Ft be the
event that each trap which starts outside BRt only intersects BRt during time periods where
α takes the value 0, i.e. , where X is dormant. Then, we can lower-bound

⟨U(t)⟩ ≥ P(Et)P(Ft)P(Gt).

Note that the event Ft differs from the analogous event appearing in the proof of [DGRS11,
Lemma 2.1], which was the event that each trap which starts outside BRt never enters BRt

up to time t. Here, making use of the protection provided by the dormancy mechanism, we
can relax this condition and only require that the traps stay outside of BRt whenever X is
active. In order to compute P(Ft) we first look at F̃t which shall denote the event that no
trap Y which starts in y ̸= 0 ever hits 0 at time points s with α(s) = 1. The probability of
this event is nothing but the survival probability of X in case κ = 0, which has been studied
in Proposition 5.2. Thus, P(F̃t) is asymptotically equal to (5.6). Comparing P(Ft) to P(F̃t)
exactly in the same way as in [DGRS11, Lemma 2.1], we find that these are asymptotically
equal. Finally, we compare the decay rates of all probabilities P(Et),P(Ft),P(Gt) for t →
∞ to conclude that the annealed survival probability is asymptotically lower bounded by
P(Ft) and hence (5.6).

Note, that we did not prove a lower bound in dimension d = 3, so that we can only deduce
the existence of a constant λd,γ,ρ,κ,s0,s1 ≥ λ̃d,γ which may depend on all the parameters.

We continue with the case γ > 0. The upper bound again follows from the Pascal principle
stated in Lemma 5.5. For the lower bound, we force the random walkX to stay in the starting
point 0 up to time t and use the fact that, for a simple symmetric random walk X̃ without
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switching and with jump rate 2dκ,

PX̃
0 (X̃(s) = 0∀s ∈ [0, t]) = e−2dκt.

Moreover, recall from Proposition 5.4 that

⟨U0(t)⟩ = exp

(
νγ

µ
eµt(1 + o(1))

)
, t→ ∞,

where U0(t) shall denote the number of particles up to time t in the case κ = 0. Hence,

lim
t→∞

1

t
log log ⟨U(t)⟩

≥ lim
t→∞

1

t
log log

(
exp

(
νγ

µ
eµt(1 + o(1))

)
· e−2dκt · Pα

1 (α(s) = 1∀s ∈ [0, t])

)
= lim

t→∞

1

t
log

(
νγ

µ
eµt(1 + o(1))− 2dκt− I(1)t

)
= µ,

where we used the large deviation principle for the local times of α with rate function I .
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