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Reversible saddle-node separatrix-loop bifurcation
Oleksandr Burylko, Matthias Wolfrum, Serhiy Yanchuk

Abstract

We describe the unfolding of a special variant of the codimension-two Saddle-Node Separatrix-
Loop (SNSL) bifurcation that occurs in systems with time-reversibility. While the classical SNSL
bifurcation can be characterized as the collision of a saddle-node equilibrium with a limit cycle,
the reversible variant (R-SNSL) is characterised by as the collision of a saddle-node equilibrium
with a boundary separating a dissipative and a conservative region in phase space. Moreover,
we present several reversible versions of the SNIC (Saddle-Node on Invariant Circle) bifurcation
and discuss the role of an additional reversible saddle equilibrium in all these scenarios. As an
example, we provide a detailed bifurcation scenario for a reversible system of two coupled phase
rotators (a system on a 2D torus) involving a R-SNSL bifurcation.

1 Introduction

When modelling real-world processes using finite-dimensional dynamical systems, particularly ordinary
differential equations, multiple parameters are inevitable. The choice of these parameters can signifi-
cantly influence the system dynamics. Consequently, it is essential to examine how the properties of
the dynamical system depend on these parameters. This has led to the development of bifurcation
theory [21, 26, 11, 1] and the discovery of various bifurcations such as Andronov-Hopf, saddle-node,
transcritical, pitchfork, or homoclinic bifurcations. These bifurcations explain fundamental mechanisms
of qualitative changes that can occur in the dynamics as the parameters are varied. They are classified
as codimension-one bifurcations, which means they are “expected to occur when one parameter is
varied” and they occur on codimension-one surfaces in the parameter space.

The codimension-two bifurcations occur on codimension-two surfaces in the parameter space, so they
are not observed as “frequently” as the codimension-one bifurcations [26, 8]. At least two parameters
should be adjusted to observe such points. However, it is now well established that codimension-two
bifurcations play an essential role as organizing centres for the dynamics. For generic systems, all
local (cusp, Bautin (or generalised Hopf), Bogdanov-Takens or fold-Hopf) and many of the global
codimension-two bifurcations are well understood. In systems with an additional structure, such as
(generalised) symmetry [17, 18, 32], or reversibility, the situation is completely different. Depending on
the specific geometric configuration of the symmetry and the degenerate objects in phase space, the
bifurcations come in many different versions implying different dynamical effects and having different
unfoldings in parameter space.

The focus of this work is a reversible version of a classical codimension-two global bifurcation, the
Saddle-Node Separatrix-Loop (SNSL) [40, 10, 13]. In the literature, the SNSL bifurcation is also
known as the non-central saddle-node homoclinic point [26, 2]. The SNSL can be understood as
the simultaneous occurrence of two codimension-one scenarios: a saddle-node bifurcation and a
homoclinic loop that is connecting a stable and an unstable separatrix of the saddle-node. While
the unfolding of the classical SNSL (see Fig. 4) is well known [40, 10, 13], we will present here a
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Reversible Saddle-Node Separatrix Loop (R-SNSL) bifurcation where the underlying dynamical system
has additionally a specific time-reversal symmetry.

Reversibility is a feature that often occurs in real physical systems, and it also possesses some
remarkable properties [35, 37, 41, 49, 45, 29, 31, 52, 22, 5, 30, 50, 12, 43, 20, 6, 7]. For example, such
systems can have conservative-dissipative dynamics, where the phase space is divided into dissipative
and conservative regions [37, 48, 19, 47, 38, 7].

Let us briefly recall the concept of reversible systems. We say that the system

ẋ = F (x), x ∈ X, (1)

has a time-reversal symmetry [41, 28] if there exists an involutionR of the phase space X satisfying

F (R(x)) = −R(F (x)) (2)

andR2 = Id. In particular, time-reversibility implies thatR(x(−t)) is a solution of (1) if x(t) is. The
subspace

FixR = {x ∈ X : R(x) = x} (3)

plays an important role in understanding the dynamics and phase space geometry of time-reversible
systems. Note that, in contrast to the usual symmetry subspaces, FixR is not dynamically invariant
for (1). Reversible systems have some properties that distinguish them from both dissipative and
Hamiltonian systems.

(i) For an equilibrium in FixR, its stable and unstable manifolds are related byR. Therefore, they
have the same dimension. Also elliptic equilibria are possible.

(ii) Equilibria outside FixR come in pairs related byR and have opposite stability properties.

(iii) There can be structurally stable homoclinic orbits limiting to equilibria in FixR. Also structurally
stable saddle-saddle connections between pairs of equilibria related byR are possible.

The main results of the present paper can be briefly summarized as follows.

� We give the necessary conditions for two possible types of the R-SNSL bifurcation (see Fig. 2)
and prove essential properties of their unfoldings.

� We show that the R-SNSL scenario must contain an additional saddle equilibrium located in
FixR.

� While the SNSL bifurcation can be roughly described as a collision of a limit cycle with a saddle-
node equilibrium, the R-SNSL is characterised by the collision of a saddle-node equilibrium with
the boundary between a dissipative and a conservative region in phase space.

� As an example, we describe in detail the unfolding of the R-SNSL bifurcation in a system of two
coupled active rotators.
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Reversible saddle-node separatrix-loop bifurcation 3

2 Reversible saddle-node separatrix-loop bifurcation

The bifurcations we are going to investigate can all be described by a general reversible planar system

dx

dt
= f(x, µ), x ∈ R2, (4)

with smooth f and parameters µ = (µ1, µ2) from some open set M ⊂ R2 containing (0, 0), which
will be used to unfold the codimension-2 bifurcation points. We will now give several assumptions
that introduce the general geometric setting and specify the degeneracy assumptions introducing the
bifurcations.

(H1) [Time-reversibility with one dimensional fixed space.] For all µ ∈M , there exists an involution
R with f(R(x)) = −R(f(x)) such that the fixed subspace

FixR = {x ∈ R2 : R(x) = x}

is one-dimensional. Without loss of generality, we may assume that

R : (x1, x2) 7−→ (x1,−x2) (5)

for all µ ∈ R2. In this case

FixR = {(x1, x2) : x2 = 0}. (6)

(H2) [Existence of a saddle-node equilibrium.] There exists a one-dimensional family µsn ⊂M with
a nondegenerate saddle-node equilibrium xsn /∈ FixR. Without loss of generality, we may
assume this happens at µ1 = 0, i.e., µsn = (0, µ2) and that the Jacobian Df(xsn) has the
eigenvalues λ1 = 0, λ2 < 0. Moreover, we assume a generic unfolding of the saddle-node by
µ1 such that for µ1 < 0 there are two equilibria: a saddle x̄s with λ1 > 0 and a node x̄n with
λ1 < 0, while there are no equilibria for µ1 > 0.

(H3) [Existence of a generic heteroclinic connection.] For all µ = (0, µ2) ∈M , the centre-unstable
manifold W cu(xsn) of the saddle-node xsn intersects FixR.

(H4) [Existence of a non-generic heteroclinic connection.] For all µ ∈M , there is a reversible saddle
equilibrium xs ∈ FixR. At µ = (0, 0), the intersection

W ss(xsn) ∩W u(xs) (7)

is not empty. This global bifurcation is unfolded by the parameter µ2 in the following way. For
µ1 = 0 and µ2 < 0, the manifold W u(xs) misses W cs(xsn) and follows along W cu(xsn). For
µ1 = 0 and µ2 > 0, the manifold W u(xs) lies inside W cs(xsn), i.e., it approaches xsn along
the centre-stable direction.

Note that the image R(xsn) is also a saddle-node equilibrium, but with second eigenvalue λ2 >
0. Assumption (H3) implies the existence of a robust heteroclinic connection from xsn to R(xsn).
Assumption (H4) requires that the connection from R(xsn) back to xsn is given as a structurally
unstable heteroclinic chain that involves non-central connections with an intermediate reversible saddle
equilibrium xs.
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(ii)

(i)

Figure 1: Illustration of assumptions (H1)-(H4) for R-SNSL bifurcations. Fixed subspace FixR
according to (H1) (purple). Saddle-node equilibrium according to (H2) with centre-stable manifolds (blue).
Generic intersection of its centre-unstable manifold (red) with FixR according to (H3). Reversible
saddle equilibrium with stable and unstable manifold (green). The non-generic heteroclinic connection
(7) and its unfolding by µ2 at a Poincaré section (dashed) according to (H4) is given in the boxes in
the right row. The two different cases are distinguished by the fact that for µ = (0, 0) the reversible
trajectories close to W u(xs) (purple shaded region) can be outside (i) or inside (ii) of W cs(xsn) (blue
shaded region).

The assumptions (H1)–(H4) for the reversible saddle-node separatrix-loop (R-SNSL) bifurcation are
illustrated in Fig. 1. All together, they imply the existence of a reversible heteroclinic contour that contains
three equilibria: the saddle-node xsn, its imageR(xsn), and an additional reversible saddle equilibrium
xs. This geometric setting can also be found in systems with a phase space of higher dimension. In
this case, the assumptions have to be reformulated with respect to a two-dimensional centre manifold,
which should contain the two equilibria and have a one-dimensional intersection with FixR. To avoid
unnecessary technicalities, we restrict our presentation to the case of a two-dimensional phase space.
Before we discuss the details of the two singular cases depicted in Figs. 1 (i) and (ii) and the unfolding
of this singularity, we first collect some general consequences related to assumptions (H1)–(H4).

Lemma 1 (Implications of reversibility (H1)) Assume that system (4) has a reversibility as specified
in (H1). Then the following statements are true:

1. All trajectories x(t), t ∈ R, satisfying (4), belong to one of the following classes:

(i) Trajectories where the orbit γ = {x(t) : t ∈ R} does not intersect FixR.
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(ii) Trajectories where the orbit has a single intersection with FixR. They are called non-
periodic reversible orbits. If, in addition,

lim
t→±∞

x(t) ∈ FixR,

we call the orbit a reversible homoclinic. If x(t) ∈ FixR for all t ∈ R the orbit is a
reversible equilibrium.

(iii) Trajectories where the orbit has exactly two intersections with FixR. These are reversible
periodic orbits.

2. Any point in FixR lying on a periodic orbit lies in an open intervals of such points in FixR
and, hence, in a conservative region.

3. The boundaries of the intervals with periodic points in FixR are given by reversible saddle
equilibria or points on reversible non-periodic heteroclinic or homoclinic orbits.

Proof: First, we show that any non-constant trajectory x(t) with at least two intersections x(t1), x(t2) ∈
FixR and t1 < t2 is periodic and its orbit has exactly two intersections with FixR. We can assume
that for all t such that t1 < t < t2, we have x(t) /∈ FixR. Moreover, we can assume that, if there is
the next intersection at some t3 > t2, then |t1− t2| ≤ |t2− t3|. By reversibility, we can conclude from
the assumption x(t2) = R(x(t2)) that

x(t1) = x(t2 + t1 − t2) = R(x(t2 − t1 + t2)). (8)

Here, we used that for any reversible trajectory with x(0) ∈ FixR we have x(t) = R(x(−t)). Since
by assumption also x(t1) ∈ FixR, it follows from (8) that x(t2− t1 + t2) ∈ FixR. This implies that
t3 = t2 − t1 + t2 and x(t1) = x(t3), which proves that x(t) is periodic and its orbit intersects FixR
exactly twice.

Next, we show that an intersection of a non-constant trajectory x(t) with FixR is always transversal.
Indeed, at an intersection we have

f(x(t1)) = f(R(x(t1))) = −R(f(x(t1)))

and it follows that the first component of f(x(t1)), which is the component along FixR, vanishes.
Since x(t) was assumed to be non-constant, the second component does not vanish. This proves
transversality. From transversal intersection, we conclude that orbits with only one intersection are
non-periodic. All other cases from statement (1.) of the lemma are trivially satisfied.

Smoothness of the first-return map on FixR together with transversality implies the existence of open
intervals with periodic points in FixR as stated in (2.). At the boundary of these intervals, the return
time has to become infinite. This implies that the trajectories through the boundary points are either
reversible equilibria or lie on reversible non-periodic homoclinics or heteroclinics, as stated in (3.). �

Definition 1 (SNIC in reversible systems (R-SNIC)) Let xsn be a saddle-node equilibrium as speci-
fied in (H1)–(H3). If also

W cs(xsn) ∩ FixR 6= ∅,

we call xsn a reversible saddle-node on invariant contour (R-SNIC).
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Lemma 2 (R-SNIC touching a conservative region) Let xsn be an R-SNIC. If one of the branches
of W ss(xsn) intersects FixR, then any small neighborhood of it contains reversible periodic orbits.
We say that xsn is an R-SNIC that touches the corresponding conservative region.

Proof: The two branches of W ss(xsn) provide the boundary of W cs(xsn). If one of the branches of
W ss(xsn) intersects FixR, then close to the intersection point in FixR we find points that are not in
W cs(xsn). Instead, their trajectories pass by xsn, follow along W cu(xsn) and, due to (H3), intersect
FixR a second time. According to Lemma 1 this implies that they are reversible periodic orbits,
constituting a conservative region. �

Theorem 1 (Two different types of R-SNSL) Assume that (H1)–(H4) are satisfied. Then the R-SNSL
bifurcation at µ = (0, 0) can be of two different types (see Figs. 1 (i) and (ii)):

(i) The family µsn = (0, µ2) of saddle-nodes xsn changes at µ = (0, 0) from an R-SNIC that
touches a conservative region (µ2 > 0) to a situation where this conservative region no longer
touches xsn. This happens if, close to the intersection W ss(xsn) ∩W u(xs), there are no orbits
in W cs(xsn) intersecting FixR.

(ii) The family µsn = (0, µ2) of saddle-nodes xsn changes at µ = (0, 0) from an R-SNIC that
touches a conservative region (µ2 < 0) to a situation where this conservative region has
disappeared. This happens if all orbits in W cs(xsn) and close to the intersection W ss(xsn) ∩
W u(xs) intersect FixR.

Proof: Assumptions (H1)–(H4) can be satisfied by two different configurations, which are shown in
panels (i) and (ii) of Fig. 1. The two cases are distinguished by the fact that for µ = (0, 0) the reversible
trajectories close to W u(xs) (purple shaded region) can be outside (i) or inside (ii) of W cs(xsn) (blue
shaded region). This implies that in the degenerate case at µ = (0, 0) close to the intersection
W ss(xsn) ∩W u(xs) in case (ii) there are orbits in W cs(xsn) (blue shaded region in Fig. 1) that also
intersect FixR close to xs (purple shaded region), while in case (i) there are no such orbits. However,
in both cases this situation is degenerate and changes under small variations of µ2. According to (H4),
the non-generic intersection W ss(xsn) ∩W u(xs) is unfolded in a way such that for µ2 > 0 W u(xs)
intersects W cs(xsn). In case (i) this implies that for µ2 > 0 there are also nearby orbits in W cs(xsn)
that intersect FixR, and according to Lemma 2 we can conclude that xsn is a R-SNIC that touches a
corresponding conservative region. Additionally, for µ2 > 0, there emerges a new region of reversible
heteroclinic connections fromR(xsn) to xsn. For µ2 < 0 the reversible orbits close to W u(xs) (purple
shaded region) still constitute a conservative region, but xsn lies no longer on the boundary of this
region. This proves the assertions in part (i) of the theorem.

In case (ii), the situation occurs that there are orbits sufficiently close to W ss(xsn) that intersect FixR
for µ2 < 0. Hence, we conclude that in this case an R-SNIC touches a corresponding conservative
region. However, for µ2 approaching zero from below, this conservative region becomes smaller and
smaller, and it vanishes completely for µ2 > 0 (see Fig. 3(i)). This proves the assertions in part (ii) of
the theorem. �

Theorem 2 (Codimension-1 bifurcations in the unfolding of R-SNSL) Assume that (H1) – (H4) are
satisfied. Then in any neighborhood of (µ1, µ2) = (0, 0) the following global codimension-one bifurca-
tions can be found:

� A heteroclinic saddle-saddle connection between xs and x̄s.
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� A heteroclinic orbit flip, where W u(xs) ∩W ss(x̄n) 6= ∅.

Proof: Consider first the situation for µ1 = 0. According to assumption (H4), for µ2 < 0 the manifold
W u(xs) missesW ss(xsn) and follows alongW cu(xsn). For µ1 = 0 and µ2 > 0, the manifoldW u(xs)
approaches xsn along the centre-stable direction. This means that in a local Poincaré section, the
intersection point of W u(xs) is located on either side of the intersection point of W ss(xsn), depending
on the sign of µ2 (small panels in Fig. 1). According to (H2) for small µ1 < 0, xs splits into the two
equilibria x̄s and x̄n. Correspondingly, W ss(xsn) is split into W s(x̄s) and W ss(x̄n). This results into
two intersection points with the local Poincaré section, which approach each other for µ1 → 0. Hence,
for fixed µ2 6= 0 and sufficiently small µ1 < 0, the intersection point of W u(xs) is located on either
side of this pair of intersection points, depending on the sign of µ2. Keeping now µ1 < 0 fixed and
varying µ2, the intersection point of W u(xs) consecutively will coincide with either point of this pair.
These intersections correspond to the two global codimension-one bifurcations in the statement of the
theorem. �

Theorem 3 (Conservative and dissipative regions at R-SNSL) Assume that (H1) – (H4) are sat-
isfied and (µ1, µ2) = (0, 0). Then any neighborhood of xsn contains dissipative and conservative
regions.

Proof: The strong stable manifold W ss(xsn) of the saddle-node equilibrium divides a small neigh-
borhood of xsn in two parts. The centre-stable manifold W cs(xsn) is a dissipative region, since all
trajectories in this neighborhood approach for t→∞ the saddle-node equilibrium. It remains to show
that the other region contains a conservative part. To this end, we consider the intersection ofW cu(xsn)
with FixR, which in (H3) is assumed to exist. As stated in the proof of Lemma 1, this intersection
has to be transversal. According to the λ-Lemma (see [34]), a neighborhood of this point in FixR
transported backward in time comes close to the strong stable manifold W ss(xsn). According to (H4),
W ss(xsn) coincides with W u(xs). Hence, in a small neighborhood of the intersection point we find
trajectories that have a second intersection with FixR close to xs. According to Lemma 1, this implies
the existence of reversible periodic orbits and a conservative region. �

In Figs. 2 and 3, we present the bifurcation diagram and the qualitatively different phase portraits in the
unfolding of the two cases of the R-SNSL bifurcation. The bifurcation diagrams are identical and in both
cases they contain a curve of saddle-node bifurcations and the two curves of global codimension-one
bifurcations given in Theorem 2, which emanate from the codimension-two point. Each figure includes
four structurally stable phase portraits (panels (b), (d), (f), (h)) and four phase portraits (panels (a), (c),
(g), (i)) at different codimension-one bifurcations separating the structurally stable regions. Conservative
and dissipative regions that intersect FixR and are close to the reversible heteroclinic contour given
in the assumptions are indicated by yellow and green shading.

As stated in Theorem 3, in the degenerate case µ = (0, 0) there is both a conservative and a
dissipative region close to the saddle-node equilibrium xsn. Note that these regions behave differently
in the two cases (i) and (ii). In case (i) there is a small reversible dissipative region that is present only
for certain perturbations (a)–(d) and vanishes in the degenerate situation µ = (0, 0). In the case (ii)
there is a small conservative region that is present only for certain perturbations (f), (h), (i) and vanishes
for µ = (0, 0).

According to Theorem 1, both unfoldings include a R-SNIC that touches a conservative region shown
in Figs. 2 (c) and 3 (i). The unfolding of this singularity is given in Figs. 2 (b,c,f) and 3 (h,i,f), respectively.
Note that the phase portrait of the R-SNIC in Fig. 3 (c) contains only a subset of orbits depicted in
Fig. 2 (c). Indeed, in the case (ii), we cannot conclude from assumptions (H1)–(H4) whether the lower
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(b)(a)

(i)(g)

(c)

(d)

(h)

(f)

d

b
f

h

c

i
g

R-SNSL (i)

a

Figure 2: Unfolding of the R-SNSL (i) bifurcation. The bifurcation diagram in the middle shows
four different regions separated by codimension-one bifurcations. Saddle-node bifurcation (magenta);
heteroclinic orbit flip (brown); heteroclinic saddle-saddle connection (orange). The corresponding
schematic phase portraits are given in panels (a)–(i). Conservative region (yellow shading); dissipative
region (blue shading); emerging dissipative region with reversible heteroclinics (darker shading).

branch of W ss(xsn) actually intersects FixR. The assumption (7) refers here to the other branch of
W ss(xsn).

The bifurcation diagram and the phase portraits in the unfolding show a great similarity to the classical
SNSL bifurcation. Before we describe the similarities and differences to the reversible case in detail, we
briefly recall some basic facts concerning this bifurcation. The saddle-node separatrix-loop bifurcation
has been first described in [40] and later supplemented with more details in [10, 13]. It is characterized
as a local saddle-node bifurcation in combination with a non-generic global reinjection entering along
the non-central direction of the saddle-node equilibrium. This is, why it is often called non-central
saddle-node homoclinic [2]. Its generic unfolding is sketched in Fig. 4. It is characterized by a curve of
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(a)

(d) (f)

(g) (h) (i)

(c)(b)

d

b
f

h

c

i
g

R-SNSL (ii)

a

Figure 3: Unfolding of the R-SNSL (ii) bifurcation. The bifurcation diagram in the middle shows
four different regions separated by codimension-one bifurcations. Saddle-node bifurcation (magenta);
heteroclinic orbit flip (brown); heteroclinic saddle-saddle connection (orange). The corresponding
schematic phase portraits are given in panels (a)–(i). Conservative region (yellow shading); dissipative
region (blue shading).

saddle-node bifurcations passing through the codimension-2 point and two curves of global bifurcations
emanating from this point. One of those is a usual homoclinic, i.e., the homoclinic to the saddle node
equilibrium continuates as a homoclinic to the saddle equilibrium that emerges in the saddle-node
bifurcation. The other is a heteroclinic orbit flip, where the global reinjection along the non-central
direction of the saddle-node equilbrium continuates as a non-central heteroclinic connection, entering
along the strong stable direction of the node. Roughly speaking, one can explain this bifurcation as a
periodic orbit colliding with a saddle-node equilibrium. Another characterization is that along a curve
of saddle-node bifurcations, this bifurcation marks up the transition from a SNIC to a usual non-SNIC
saddle-node.

Both these characterizations apply also to the reversible case. There, reversible periodic orbits come in
families, which constitute conservative regions. Hence, a collision of a saddle-node equilibrium can only
occur with the boundary of a conservative region. Such a boundary typically consists of connecting
orbits. In the simplest case, this can be a reversible homoclinic limiting to a reversible saddle equilibrium
(cf. panel (f) in Figs. 2 and 3). This explains, why the additional equilibrium xs is a necessary ingredient
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d

b

f

h

c

i
g

a

(i)(h)

(d)

(a)

(b) (c)

(g)

e
(e)

(f)

SNSL

Figure 4: Unfolding of the SNSL bifurcation. The bifurcation diagram in the middle shows four different
regions separated by codimension-one bifurcations. The corresponding schematic phase portraits are
given in panels (a)–(i). Magenta line and panels (c) and (i) – saddle-node bifurcation; brown curve and
panel (a) – heteroclinic orbit flip; orange curve and panel (g) – generic homoclinic.

for the R-SNSL scenario.

Similar to the classical SNSL bifurcation, also the R-SNSL necessarily involves the reorganization of
the global reinjection along a curve of saddle-node equilibria. While in the classical case this is just
a transition from SNIC to non-SNIC, the situation in the reversible case is more involved. In a planar
system with a reversibility as in (H1), the intersection

W cs(xsn) ∩ FixR

in general can consists of several open intervals, which can lead to arbitrarily complicated global
configurations. In particular, a R-SNIC can lead to the emergence of several new conservative regions
filled with reversible periodic orbits. We consider here only the reorganization at the edges of W cs(xsn),
given by the two branches of W ss(xsn) and trajectories in their neighborhood.

An important result in [40, 13, 10] is the quadratic tangency at the SNSL point in parameter space of the
two curves of global bifurcation to the saddle-node curve. It has been shown by Melnikov technique and
reflects how the non-central manifold W ss(xsn) generically splits into the two non-central manifolds
W ss(x̄n) and W s(x̄s) when the underlying saddle-node equilibrium xsn splits into x̄n and x̄s. We
believe that this result can be adapted in a straightforward manner to the reversible case presented here,
but we refrained from elaborating the details in the present paper. Instead, we are going to underline
the relevance of this bifurcation scenario by presenting an example of two coupled oscillators, where
the R-SNSL bifurcation plays the role of an organizing centre for the dynamics.
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3 The R-SNSL bifurcation in a system of two coupled active rota-
tors

The model and its symmetries

To illustrate the R-SNSL bifurcation and its unfolding, we consider the following system of two coupled
active rotators. The rotators are counter-rotating and have an anti-reciprocal sinusoidal coupling:

φ̇1 = ω + sinφ1 + κ sin(φ1 − φ2), (9)

φ̇2 = −(ω + sinφ2)− κ sin(φ2 − φ1), (10)

where φ1, φ2 ∈ T1 = R/2πZ are phase variables and the function g(φ) = ω + a sin(φ) describes
the local dynamics of the individual rotators, moving in opposite directions. For |ω| > 1, both units
are in an oscillatory mode (rotation) while for |ω| < 1 they have a stable fixed point. The parameter κ
gives the strength of the coupling. Note that the anti-reciprocal coupling can induce oscillations of the
coupled system, where the individual oscillators do not perform full rotations, but oscillate around an
equilibrium position (libration).

The active rotator model (sometimes called the nonuniform oscillator model [44]) plays an important role
in electronics (phase-locked loops), mechanics, neuronal and biological systems [15], for the modelling
of Josephson junctions, and other systems. Systems of coupled rotators can be found in the work by
Shinomoto and Kuramoto [42] as well as in many later publications [25, 36, 53, 46, 27, 23, 33, 54, 14,
3, 16, 24, 39]. Reversible dynamics and bifurcations of a system of two coupled active rotators have
been studied in detail in [6].

The system (9)–(10) has a time reversal symmetry given by the action

R : (φ1, φ2, t) 7−→ (φ2, φ1,−t) (11)

with the invariant subspace
FixR = {(φ1, φ2) : φ1 = φ2} . (12)

The time reversibility of system (9)–(10) can be seen in the phase portraits of Fig. 6 as a reflection
around the line φ2 = φ1 with the subsequent reversal of all arrows in opposite directions. In addition,
system (9)–(10) possesses time-reversal parametric symmetries which are generated by the following
actions

γκ : (φ1, φ2, κ, t) 7−→ (π − φ1, π − φ2,−κ,−t). (13)

γω : (φ1, φ2, ω, t) 7−→ (φ2, φ1,−ω,−t), (14)

The presence of the symmetries (13) and (14) implies that the bifurcation diagram for (9)–(10) has
mirror symmetries with respect to the parameters κ and ω.

The R-SNSL bifurcation and its unfolding

This systems shows a R-SNSL point of type (i). The bifurcation diagram including the related codimension-
one bifurcation lines for system (9)–(10) is shown in Fig. 5. The corresponding phase portraits are
shown in Fig. 6.
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Figure 5: Bifurcation diagram for (9)–(10) in the parameter plane (κ, ω) in the neighborhood of
the R-SNSL point (e). Bifurcation curves: magenta (c),(i) – saddle-node, orange (g) – saddle-saddle
connection, brown (a) – homoclinic orbit flip.

The saddle-node bifurcation for the system (9)–(10) can be found analytically at

ω =
1

4κ
for |κ| > 1

2
√

2
. (15)

These expressions can be obtained as follows. From the equilibrium condition of (9)–(10), one can
derive

sin(φ1 + φ2) = 4ωκ for φ1 6= φ2,

which implies the necessary condition 4ωκ = ±1 for the saddle-node bifurcation. Furthermore, the
solvability condition φ1 6= φ2 implies that |κ| > 1

2
√
2
. This coincides with the fact that along the ellipse

4κ2 + ω2 = 1 a reversible pitchfork bifurcation [51, 6] takes place. At the codimension-two point of the
intersection of these two bifurcation curves, which is not contained in Fig. 5, the curve of saddle-nodes
meets FixR, is linked to its image under R, and the corresponding curve in the parameter plane
(κ, ω) ends.

The remaining two global bifurcation curves, the heteroclinic saddle-saddle connection (orange), and the
heteroclinic orbit flip (brown) can be obtained only numerically. A suitable numerical method calculating
an approximation for the connecting orbit by using projection boundary conditions is described in [4]
and implemented in [9]. Typical phase portraits for parameters on these curves are shown in Fig. 6 (g)
and Fig. 6 (a), respectively.

All phase portraits in Fig. 6 contain conservative (yellow) regions bounded by homo/heteroclinic cycles
and dissipative (white) regions. All of these conservative regions have the simplest structure, i.e., each
contains only a single centre-type equilibrium (as in Fig. 7 (a)). Note that this is not part of our general
assumptions (H1)–(H4), which refer only to the heteroclinic contour itself. Also a system of two coupled
active rotators can have more complex conservative regions containing both dissipative and other
conservative regions inside, in the case when the functions of the individual dynamics and the coupling
function contain higher harmonics. Schematic pictures of several possible more complicated structures
inside the heteroclinic contour are depicted in Fig. 7 (b,c).
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(g) (i)
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(f)

(h)

(d)

Figure 6: Different types of phase portraits for (9)–(10) in the phase space (φ1, φ2) ∈ [0, 2π]× [0, 2π].
Parameters from the correspondingly marked bifurcation curves and regions in Fig. 5. Structurally
stable phase portraits – (b), (d), (f), (h). Codimension-one situations – (a), (c), (g), (i). Codimension-two
R-SNSL point of type (i) – (e). Coloured regions: yellow – librations, green – rotations (conservative);
white and blue – dissipative regions. Equilibrium points: red — source, blue — sink, green — saddle,
magenta — centre. Degenerate equilibria are marked with two-coloured circles. Dashed purple line –
FixR.

4 Conclusions

With the R-SNSL (reversible saddle-node on separatrix-loop), we have described a codimension-two
bifurcation point that can occur in reversible dynamical systems. This bifurcation is characterised by the
simultaneous appearance of (i) a saddle-node away from the fixed subspace of the reversibility involution
and (ii) a structurally unstable heteroclinic contour containing the saddle-node, its symmetric image
under the involution transformation and their connections via the strong stable (unstable) manifolds to a
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(b) (c)(a)

Figure 7: Examples of schematic phase portraits of possible dynamics inside a conservative region.
(a) a single conservative region with a single elliptic equilibrium. (b) a saddle equilibrium with a reversible
homoclinic constitutes the boundary to a further dissipative region. (c) a saddle equilibrium with two
reversible homoclinics constitutes the boundary to two further conservative regions. Stable, unstable
and elliptic equilibria are marked in blue, red and magenta, respectively.

saddle equilibrium within the fixed subspace. Such a codimension-two point is shown to describe the
collision of a dissipative saddle-node equilibrium with a region of conservative dynamics. Thus, this
scenario describes how the two basic components of reversible dynamics, dissipative and conservative,
can interact.

The main elements in the unfolding of the R-SNSL conform to those in the unfolding of the classical
codimension-two SNSL point: a codimension-one curve of saddle-nodes and two branches of global
homoclinic or heteroclinic bifurcations. One of the most intriguing differences of the scenario we
describe from the classical one is that it induces in two different scenarios the emergence of regions of
phase space with conservative and dissipative dynamics, as well as regions foliated by heteroclinic
orbits.

Our example of phase oscillators shows that the R-SNSL bifurcation can occur for coupled oscillator
models where the coupling has the specific feature to be anti-reciprocal, i.e., the coupling terms have
the same form but different signs for both oscillators. As shown in [6], also small generic perturbations,
which break such a time reversal symmetry can induce interesting dynamical phenomena.
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