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Nonlinear interpolation inequalities with fractional Sobolev
norms and pattern formation in biomembranes

Janusz Ginster, Anastasija Pešić, Barbara Zwicknagl

Abstract

We consider a one-dimensional version of a variational model for pattern formation in biolog-
ical membranes. The driving term in the energy is a coupling between the order parameter and
the local curvature of the membrane. We derive scaling laws for the minimal energy. As a main
tool we present new nonlinear interpolation inequalities that bound fractional Sobolev seminorms
in terms of a Cahn–Hillard/Modica–Mortola energy.

1 Introduction

We consider a variational model for domain formation in biological membranes. We follow the hypoth-
esis that the existence of so-called lipid rafts is driven by a coupling between the local curvature of the
membrane and its local chemical composition. This ansatz forms the basis of a variational model from
[29] (see also [27, 39, 31, 38, 1, 35]) which builds on the classical Canham-Helfrich energy [7, 25]. We
focus here on a one-dimensional variant of that, namely

 (u, ℎ) ∶= ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + �

2
|ℎ′′|2 + Λuℎ′′

)

d1. (1.1)

Let us briefly explain the different terms, for a more detailed explanation we refer to the above ref-
erences or [23]. The function u ∈ W 1,2((0, 1); [−1, 1]) is the order parameter corresponding to the
local chemical composition. The values ±1 represent the pure variants, and we assume for simplicity
of notation that u can only take values in [−1, 1], corresponding to local mixtures of the components.
All our results can easily be generalized to functions with other L∞-bounds. To enforce some pattern
formation, we assume that u has average 0 (see (1.2) for the precise setting). The first two terms
of (1.1) are a Modica-Mortola/Cahn-Hillard-type energy [33] with a continuous double-well potential
W ∶ [−1, 1] → [0,∞) that has minima at {±1} (see Assumption 1.1 below for the precise condi-
tions), and a term penalizing changes between regions of different composition. The parameter b > 0
is related to the line tension. The function ℎ ∈ W 2,2(0, 1) is the height profile of the membrane, and
the parameters � and � > 0 are related to the surface tension and bending rigidity of the membrane.
The term ℎ′′ stands for the curvature of the membrane, which in a small-slope approximation is given
by the Laplacian of the profile function. The last term is the coupling term between the local composi-
tion (given by the order parameter u) and the local curvature of the membrane (given by the Laplacian
of ℎ). Note that this term can be negative. The parameter Λ > 0 weights the strength of the coupling.
Related coupling terms between the curvature and certain order parameters also occur in the study of
surfactants at interfaces between fluids (see e.g. [30, 3]).
The functional (1.1) is analytically challenging due to its nonconvex and nonlocal components. There-
fore, establishing explicit minimizers analytically in general parameter regimes is a difficult task. There
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is plenty of evidence that the interplay of all terms lead to interesting microstructures in certain param-
eter regimes (see e.g. [38, 29, 37, 19, 20, 21, 22]). Analytical studies of the functional (1.1), however,
have so far mostly focused on parameter regimes in which pattern formation is not expected (see
[23, 5, 24, 36]). We note, however, that for a related structurally simpler sharp-interface model, sub-
and supercritical parameter regimes for the energy have been identified explicitly in [4].
In this article, we follow the approach to study scaling laws for the infimal energy, that is, we deter-
mine the scaling behaviour of the infimal energy in terms of the problem parameters. This in particular
involves an ansatz-free lower bound for the minimal energy and the construction of test functions.
Roughly speaking, one would expect that for large values of the coupling parameter Λ, fine-scale
patterns are formed, while for small values of Λ, optimal structures are rather uniform. We make this
expectation precise in Theorem 1.3 in terms of scaling results, where it turns out that it is very subtle
to make the statement quantitative in terms of the parameters. A major difficulty in identifying scaling
regimes comes from the fact that due to the coupling term the energy can be negative. We focus here
only on the scaling behaviour but not on the explicit constants, although they could be tracked through
the proofs. Some (non-optimal) choices of constants will be included in A. Pešić’ Ph.D. thesis (currently
in preparation). We point out that in contrast to the sharp results from [4] for a simplified model, we do
not cover the full parameter range, and in particular, we leave it to future work to identify critical values
of the parameters where the qualitative behaviour of the energy changes.
We note that the functional (1.1) bears similarities to well-studied nonlocal functionals like the Ohta-
Kawasaki functional [34], where the nonlocality comes from a negative fractional Sobolev norm. It has
turned out that a useful tool in the proof of scaling laws for such models are interpolation inequalities
(see e.g. [10, 12, 13, 11, 17, 15, 28, 6]). We follow a similar approach and present various new non-
linear interpolation inequalities in arbitrary space dimensions, bounding fractional Sobolev norms in
terms of Modica-Mortola-type functionals (see Section 3). Some of these inequalities are in the spirit
of results from [9, 14], where higher order nonlinear interpolation inequalities are derived for classical
Sobolev seminorms, but the situation for fractional seminorms turns out to be more delicate (see Sec-
tion 1.1 for details). We believe that these inequalities are of independent interest and might be useful
also when considering high-dimensional versions of (1.1).
Additionally, we discuss existence and non-existence of minimizers, and show that in some cases
where one of the parameters vanishes, the infimum of the energy can be computed exactly (see
Section 5). The results underline that the qualitative behaviour of the functional comes from a subtle
interplay of all terms.

The remainder of the paper is organized as follows. After setting some notation, we outline and discuss
our main results in Section 1.1 and state our scaling laws for (1.1) (Theorem 1.3) and the new non-
linear interpolation inequalities (Theorem 1.4). We sketch in particular how the latter are used in the
proof of the scaling law. After collecting some auxiliary results in Section 2, we prove the interpolation
inequalities involving fractional Sobolev seminorms in Section 3. Subsequently, we prove the scaling
law 1.3 in Section 4. Finally, in Section 5, we discuss existence of minimizers.

Notation. Throughout the note, we use the following notation. For d ∈ ℕ, we denote the d-dimensional
Lebesgue measure by d . We sometimes write dx for dd(x), and similarly for other integration vari-
ables. For k ∈ ℕ0 and p ∈ [1,∞), we set

W k,p
per ∶=

{

ℎ ∈ W k,p(0, 1) ∶ ∃ ℎ̃ ∈ W k,p
loc (ℝ) 1 − periodic such that ℎ = ℎ̃ ↾(0,1)

}

,

W k,p
per,vol ∶=

{

u ∈ W k,p
per ((0, 1); [−1, 1]) ∶ ∫

1

0
u d1 = 0

}

.

DOI 10.20347/WIAS.PREPRINT.3131 Berlin 2024



Nonlinear interpolation inequalities and pattern formation in biomembranes 3

When considering elements inW k,p((0, 1)), we always refer to their continuous representatives. Note
that for simplicity we restrict ourselves to the case ∫ 1

0 u d
1 = 0. Since the pure phases are repre-

sented by {u = ±1}, this setting can be seen as the case of equal volume fractions of the two phases.
Note that the functional (1.1) does not depend on ℎ itself but only on the derivative of ℎ. Hence, we can
without loss of generality assume that ∫ 1

0 ℎ d
1 = 0. Summarizing, we denote the set of admissible

pairs (u, ℎ) for the functional (1.1) by

 ∶=
{

(u, ℎ) ∈ W 1,2
per,vol ×W

2,2
per ∶ ∫

1

0
ℎ d1 = 0

}

. (1.2)

We focus here on periodic boundary conditions for h but we point out that, following the proofs,
similar results for the functional (1.1) can be shown for example for Neumann boundary conditions
ℎ′(0) = ℎ′(1) = 0. Finally, we use various light assumptions on the double-well potential W , see
their discussion in [10, Section 2] and Remark 1.2 below.

Assumption 1.1. (H1) There holds W ∈ C([−1, 1]; [0,∞)) with W −1(0) = {−1, 1}.

(H2) There is a constant cW > 0 such that for all x ∈ [−1, 1], we have cW min{|x±1|2} ≤ W (x).

(H3) There exists a constant c′W > 0 and a function � ∈ C1([−1, 1]) such that

�′(z) =
√

W (z), and |z1 − z2|2 ≤ c′W |�(z1) − �(z2)| for all z1, z2 ∈ [−1, 1].

Remark 1.2. Let us note that (H1) and (H2) hold for classical choices of double well-potentials W
such as

t↦ 1 − t2, t↦ (1 − t2)2 and t↦ −(1 − t) log(1 − t) − (1 + t) log(1 + t) + 2 log(2).

Moreover, note that (H1) and (H2) imply (H3). Indeed, (H2) implies for −1 ≤ z1 ≤ z2 ≤ 1 that

|�(z1) − �(z2)| ≥
√

cW ∫

z2

z1

min{1 ± t} dt =
√

cW ∫

z2

z1

(1 − |t|) dt

=
√

cW
(

z2 − z1 −
1
2
(

z22 sign(z2) − z21 sign(z1)
)

)

.

Assume first that sign(z2) = sign(z1). Without loss of generality, we consider sign(z2) = 1. Then

|�(z1) − �(z2)| ≥
√

cW (z2 − z1)
(

1 − 1
2
(z2 + z1)

)

=

√

cW
2

(z2 − z1)
(

|1 − z2| + |1 − z1|
)

≥
√

cW
2

|z2 − z1|2.

On the other hand, if sign(z2) = 1 = −sign(z1) then

|�(z1) − �(z2)| ≥
√

cW
(

z2 − z1 −
1
2
z22 −

1
2
z21
)

≥
√

cW
2

(z2 − z1) ≥
√

cW
2

|z2 − z1|2.

1.1 Overview and main results

In this section we explain our main results. Our first main result is the following scaling law for (1.1).
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Theorem 1.3. Suppose thatW satisfies Assumption 1.1. Then there exist constants C ≥ c > 0 such
that for all Λ, �, �, b > 0 the following holds. If Λ2 ≥ C max

{

b�, b�, (b��)1∕2, b1∕2�
}

then

−Λ
2

2�
≤ inf


 ≤ −cΛ

2

�
. (1.3)

If Λ2 ≤ cmax
{

b�, b�, (b��)1∕2, b1∕2�
}

then

cmin{b1∕2, 1} ≤ inf


 ≤ C min{b1∕2, 1}. (1.4)

κ

Λ2

bσ

b1/2κ

bσ σ

(bσκ)1/2

κ

Λ2

(a) Case b < 1
κ

Λ2

bσ

bκ

κ

Λ2

(b) Case b > 1

Figure 1: Sketch of the scaling regimes; regions in orange indicate parameter regimes with scaling
−Λ2∕�, while the gray regions correspond to regimes with scaling min{b1∕2, 1}.

We point out that there are only three scalings of the infimal energy. While the regimes themselves
depend on all parameters, the scalings of the energy do not depend on �. Let us briefly outline the
main ideas of the proof of the scaling laws in Theorem 1.3. For the upper bounds, we use three
different types of test functions. To obtain the scalings min{1, b1∕2}, it suffices to consider flat height
profiles ℎ ≡ 0 and rather uniform structures for the order parameter u, namely u ≡ 0 for b ≥ 1 and
a function u that has two transition layers of length ∼ b1∕2 between regions where u = 1 and ones

where u = −1, see Figure 2a. Eventually, to obtain the scaling of the form −Λ2

�
we make the ansatz

that ℎ has a piecewise constant curvature ℎ′′ whose sign oscillates and a function u which - up to a
transition layer - is given by the negative of the sign of ℎ′′, see Figure 2b. In this way, the last term
of the energy is essentially given by Λ ∫ 1

0 ℎ
′′u d1 ∼ −Λ ∫ 1

0 |ℎ′′| d1. Optimizing this only versus

the term ∫ 1
0 �|ℎ

′′
|

2 d1 suggests to choose |ℎ′′| = Λ
2�

to obtain ∫ 1
0 �|ℎ

′′
|

2 + Λℎ′′u d1 ∼ −Λ2

2�
.

Incorporating the other terms of the energy makes this optimization more complex and includes a joint
optimization in the number of oscillations and the transition length for u. For example, increasing the
number of oscillations decreases the influence of the term ∫ 1

0 �|ℎ
′
|

2 d1 but will increase the energy
coming from the terms in u as every transition of u from −1 to +1 (and vice versa) induces a certain
amount of energy (depending on b). This is made precise in Section 4.1.

The proof of the lower bound turns out to be more involved. The difficulty arises from the nonlocal

coupling term, which generally does not have a sign. The lower bound −Λ2

2�
follows from Young’s

inequality and the assumption that |u| ≤ 1 (see Proposition 2.2). On the other hand, the lower bound

DOI 10.20347/WIAS.PREPRINT.3131 Berlin 2024
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1

−1

1
2

h

u

(a) Sketch of the configuration with a flat ℎ
(red) and u (blue) with one transition that sat-
isfies  (u, ℎ) ∼ b1∕2 for 0 < b ≤ 1.

1

−1

u h

10

(b) Sketch of the regime where Λ2 is suffci-
ciently large. The function ℎ (red) has piece-
wise constant curvature with changing sign.
Up to a transition layer the function u (blue)
is the negative of the sign of ℎ′′.

min{b1∕2, 1} is the expected scaling from the Modica Mortola energy,

∫

1

0

(

W (u) + b
2
|u′|2

)

d1 ≥ cMM min{1, b1∕2},

see Proposition 2.1. The main task therefore is to show that for small Λ > 0 (see the assumptions
for (1.4)), the coupling term is controlled by the other terms in the energy. Let us briefly remark here

that these assumptions on the smallness of Λ are significantly weaker than simply assuming Λ2

2�
≲

min{1, b1∕2} which would ensure the lower bound in (1.4) by the arguments above. In particular, the
statements of Theorem 1.3 do not imply that there are constants c1,… , c4 such that for all parameters
b, �, �,Λ > 0

c1min{1, b1∕2} − c2
Λ2
2�

≤ inf


 ≤ c3min{1, b1∕2} − c4
Λ2
2�
.

In order to understand the argument for the lower bound, let us first optimize in ℎ to obtain the following
nonlocal functional for u (see e.g. [23, Appendix] and the proof of Corollary 3.4)

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2

)

d1 − Λ
2

2�
∑

k∈ℤ

�k2

� + �k2
|ûk|

2. (1.5)

Here, ûk denotes the k-th Fourier coefficient of u. Hence, proving a lower bound corresponds to
bounding the third term by the first two terms. A first naive bound on the last term is given by

Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≤ Λ2
2�

∑

k∈ℤ
k2|ûk|

2 = Λ2
2� ∫

1

0
|u′|2 d1.

This yields the desired estimate if Λ2 ≲ b�. Similarly, one can bound

Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≤ Λ2
2�

∑

k∈ℤ
|ûk|

2 = Λ2
2� ∫

1

0
|u|2 d1 ≤ Λ2

2�
,

which is essentially the same bound as in Proposition 2.2 and implies the needed control if, for ex-
ample, Λ2 ≳ min{b1∕2, 1}�. However, in other regimes these naive bounds are not sufficient. At
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first glance, it might appear to be useful to underline the nonlocal nature of the third term in (1.5) by
drawing a connection to a fractional Sobolev norm by estimating

Λ2
2�

∑

k∈ℤ

�k2

� + �k2
|ûk|

2 ≲ Λ2
2�

∑

k∈ℤ

�1∕2

�1∕2
|k||ûk|

2 = Λ2

�1∕2�1∕2
[u]2H1∕2 .

Then the needed control of the third term in (1.5) could be established through a nonlinear interpolation
inequality of the form

[u]2H1∕2 ≤ C ∫

1

0

(1
�
W (u) + �|u′|2

)

d1. (1.6)

That such an inequality might hold could be suspected as the linear interpolation inequality, i.e., re-
placingW (u) by |u|2, is immediate (see (3.2)). Moreover, if one replaces the fractional Sobolev space
H1∕2 by H1 a similar inequality was shown in [14, Lemma 3.1] and [9, Theorem 1.2]. Precisely, for
any connected open domain Ω ⊆ ℝd there are �0 > 0 and q > 0 such that for all 0 < � ≤ �0 and all
u ∈ W 2,2

loc (Ω) there holds

q‖Du‖2L2(Ω) ≤ ∫Ω

(

1
�
W (u) + � ||

|

D2u||
|

2
)

dd . (1.7)

However, we prove that (1.6) holds only with an extra factor | ln(�)| on the right hand side. Precisely,
we prove (see Proposition 3.2) a nonlinear interpolation inequality of the form

cL|u|
2
H1∕2(Πd ) ≤ | ln �|∫Πd

(1
�
W (u) + �|∇u|2

)

dd , (1.8)

where Πd denotes the d-dimensional torus. We also provide an example which shows that this esti-
mate is sharp in � (see Remark 3.1). Moreover, we establish the following similar nonlinear interpola-
tion inequalities for fractional Sobolev spaces also in the non-periodic setting which are of independent
interest (see Section 3).

Theorem 1.4. Let W satisfy (H1) and (H2), d ∈ ℕ, and let Ω ⊆ ℝd be open, convex and bounded.

1 If s ∈ (0, 1∕2) then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all
� ∈ (0, 1∕2) there holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+2s
dx dy ≤ ∫Ω

(1
�
W (u) + �|∇u|2

)

dd .

2 If s = 1∕2 then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all � ∈ (0, 1∕2)
there holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+1
dx dy ≤ | ln �|∫Ω

(1
�
W (u) + �|∇u|2

)

dd .

3 If s ∈ (1∕2, 1) then there exists a constant c > 0 such that for all u ∈ W 1,2(Ω) and all
� ∈ (0, 1∕2) there holds

c ∫Ω ∫Ω
|u(x) − u(y)|2

|x − y|d+2s
dx dy ≤ �1−2s ∫Ω

(1
�
W (u) + �|∇u|2

)

dd .
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Nonlinear interpolation inequalities and pattern formation in biomembranes 7

We present the statements here only for functions inW 1,2(Ω) but following the lines of the proofs one
can also obtain analogous bounds on fractional W s,p-seminorms for functions u ∈ W 1,p(Ω) for more
general p ∈ (1,∞) for suitably adapted double-well potentials. We note that the interpolation results
hold in arbitrary space dimensions. We hope that they will be useful for the study of higher-dimensional
variants of (1.1). Returning to the lower bound in Theorem 1.3, let us remark that the logarithmic
factor in the nonlinear fractional interpolation inequality (1.8) implies that using this inequality can only
provide the desired control under stronger conditions on the smallness of Λ than assumed in (1.4).
In order to overcome this problem we prove for the specific expression of our problem the following
sharper inequality without a logarithmic factor.

Proposition 1.5. Let d > 1, and suppose that W satisfies Assumption 1.1. Then there exists a
constant c > 0 such that for all L ∈ ℕ, all M, � > 0, and all u ∈ W 1,2

per (Π
d) there holds

∑

k∈ℤd
min{1,

|k|2

M2
}|ûk|2 ≤ c

( 1
L
+ L
M2

)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

We note that a similar term to the one on the left-hand side is also estimated in [17, Lemma 1] but
by different quantities on the right-hand side, and in particular not by a Modica-Mortola-type energy.
Moreover, the term

∑

k∈ℤd |k|2|ûk|2 corresponds to the Laplacian of u. We therefore believe that this
estimate can also be useful to study higher-dimensional variants of (1.1) involving an approximated
bending term �

2
‖Δℎ‖2

L2
.

2 Preliminaries

Throughout the proof of the scaling law, the following two lower bounds on parts of the energy (1.1) will
be frequently used. The first one is a well-known lower bound for the classical Modica-Mortola energy,
which we recall for the readers’ convenience.

Proposition 2.1. Let W satisfy (H1). There is a constant cMM > 0 such that for all " > 0 and all
u ∈ W 1,2

per,vol

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ cMM min{1, "}.

We can choose cMM ∶= max
{

min[−1∕2,1∕2]W ,
(

min[−1∕2,1∕2]W
)1∕2

}

.

Proof. Let " > 0 and u ∈ W 1,2
per,vol. If max |u| ≤ 1

2
then

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ min
t∈[−1∕2,1∕2]

W (t).

Next, assume there exists t0 ∈ (0, 1) with u(t0) > 1∕2. Since ∫ 1
0 u dx = 0 and u is continuous, there

is t1 ∈ (0, 1) such that u(t1) < 0. Without loss of generality, we may assume that that t0 < t1 (the

DOI 10.20347/WIAS.PREPRINT.3131 Berlin 2024



J. Ginster, A. Pešić, B. Zwicknagl 8

case t1 < t0 can be treated similarly). Then

∫

1

0

(

W (u) + "2|u′|2
)

d1 ≥ ∫

t1

t0

(

W (u) + "2|u′|2
)

d1 ≥ 2"∫

t1

t0

√

W (u)u′ d1

= 2"∫

u(t1)

u(t0)

√

W (t) dt ≥ 2"∫

1∕2

0

√

W (t) dt

≥ "
(

min
[0,1∕2]

W
)1∕2

.

Eventually, we argue analogously if there exists t0 ∈ (0, 1) with u(t0) < −1∕2.

On the other hand, we have the following lower bound on the nonlocal coupling term. We note that the
constant −1∕2 in the lower bound in the following Proposition is optimal, see Remark 4.4 below.

Proposition 2.2. For all parametersΛ, �, �, b > 0 and all Borel measurable functionsW ∶ [−1, 1]→
[0,∞) it holds

−Λ
2

2�
≤ inf


 .

Proof. Let (u, ℎ) ∈  be arbitrary. Then by Young’s inequality it holds

|

|

|

|

|

∫

1

0
Λuℎ′′ d1

|

|

|

|

|

≤ ∫

1

0
Λ|u||ℎ′′| d1 ≤ ∫

1

0

(

Λ2u2
2�

+ �
2
|ℎ′′|2

)

d1 ≤ Λ2
�
+ �
2 ∫

1

0
|ℎ′′|2 d1,

where the last inequality follows from the boundedness assumption |u| ≤ 1. Therefore,

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + �

2
|ℎ′′|2

)

d1 −
|

|

|

|

|

∫

1

0
Λuℎ′′d1

|

|

|

|

|

≥ ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2

)

d1 − Λ
2

2�

≥ −Λ
2

2�
.

3 Interpolation inequalities

In this section, we present some new interpolation-type arguments involving fractional-order Sobolev
semi-norms. The results here hold in arbitrary space dimension, and are later applied in d = 1 in
the proof of the Theorem 1.3. We denote by Πd the d-dimensional torus, and by C generic positive
constants that may change from line to line. Sometimes, we specify dependences of the constant on
certain parameters � by indices C� or C(�).
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Nonlinear interpolation inequalities and pattern formation in biomembranes 9

3.1 Linear interpolation with fractional Sobolev seminorms

We first recall some basics on fractional-order Sobolev seminorms for periodic functions. A periodic
function u ∈ L2(Πd) can be represented as Fourier sum via

u(x) =
∑

k∈ℤd
ûke

2�ik⋅x with ûk ∶= ∫Πd
u(t)e−2�ik⋅t dt, (3.1)

where we denote by a ⋅ b the Euclidean scalar product of vectors a, b ∈ ℂd . Consider u ∈ W 1,2
per (Π

d)
and s ∈ (0, 1]. Then the (fractional) Sobolev semi-norm is defined as

|u|2Hs(Πd ) =
∑

k∈ℤd
|k|2s|ûk|

2.

By Hölder’s inequality, we have the (linear) interpolation estimate

|u|2Hs(Πd ) =

(

∑

k∈ℤd
|ûk|

2(1−s) ⋅ |k|2s|ûk|
2s

)

≤

(

∑

k∈ℤd
|ûk|

2

)1−s(
∑

k∈ℤd
|k|2|ûk|

2

)s

= ‖u‖2(1−s)
L2(Πd )|u|

2s
H1(Πd ) = �

−2(1−s)s
‖u‖2(1−s)

L2(Πd )�
2(1−s)s

|u|2sH1(Πd )

≤ �−2s‖u‖2L2(Πd ) + �
2(1−s)

|u|2H1(Πd ). (3.2)

By [2, Proposition 1.3], there is an (equivalent) integral representation (cf. also, e.g., [26, 18] for similar
characterizations on full space)

cFl‖u‖
2
Hs(Πd ) ≤ ∫Πd ∫[−1∕2,1∕2)d

|u(x + y) − u(y)|2

|x|d+2s
dx dy ≤ cFu‖u‖

2
Hs(Πd ). (3.3)

Following the proof there, the constants can be chosen as

cFu ∶= ∫ℝd

sin2(�x1)
4|x|d+2s

dx and cFl ∶= 22s−3−dd−5(1 − s)−1
�(d−1)∕2

Γ
(

(d−1)
2
+ 1

) .

3.2 Nonlinear interpolation with fractional Sobolev seminorms

As discussed in Section 1.1, we will need counterparts of interpolation inequalities of the form (3.2)
where the L2-norm is replaced by a term involving W . This has been used in the study of ”local”
approximations of (1.1) (see [14, Lemma 3.1] and [9, Theorem 1.2]), see (1.7)) and its discussion in
Section 1.1. However, for fractional Sobolev seminorms, the situation turns out to be slightly more
subtle, as the following example shows.

Remark 3.1. Suppose that W satisfies (H1). We claim that there is no constant c > 0 such that for
all u ∈ W 1,2

per and all � > 0 there holds

c|u|2H1∕2(0,1) ≤ ∫

1

0

(1
�
W (u) + �|u′|2

)

d1. (3.4)

Indeed, consider for 0 < � < 1∕8 the function u� ∈ W 1,2
per ((0, 1); [−1, 1]) given by

u�(x) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 2
�
x + 1 if x ∈ (0, �),

−1 if x ∈ (�, 1
2
− �

2
),

2
�
x − 1

�
if x ∈ (1

2
− �

2
, 1
2
+ �

2
), and

1 if x ∈ (1
2
+ �

2
, 1).
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J. Ginster, A. Pešić, B. Zwicknagl 10

Then the right-hand side of (3.4) is uniformly bounded above since

∫

1

0

(1
�
W (u) + �|u′|2

)

d1 ≤ 2�
�
maxW + � ⋅ 2�

(2
�

)2
= 2maxW + 8.

However, using (3.3) the left-hand side is estimated below via (see, e.g., [16] for a similar computation)

∫

1

0 ∫

1∕2

−1∕2

|u(x + y) − u(y)|2

|x|2
dx dy ≥ ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

|u(x + y) − u(y)|2

|x|2
dx dy

= ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

4
|x|2

dx dy = 4∫

(1−�)∕2

1∕4

(

−2 + 1
1+�
2
− y

)

dy

= −8
(1
4
− �
2

)

− 4 ln

(

�
1
4
+ �

2

)

⟶∞ as � → 0.

While Remark 3.1 shows that there is no interpolation inequality of the form (3.4), we show below that
a corresponding estimate holds for all fractionalH s-Sobolev norms with s ∈ (0, 1∕2) (see Proposition
3.2), and that the logarithmic correction observed in Remark 3.1 is the worst case in the interpolation
inequality for the H1∕2-seminorm.

Proposition 3.2. Suppose that W satisfies (H1) and (H2), and let d ∈ ℕ.

1 If s ∈ (0, 1∕2) then there exists a constant cL,s > 0 such that for all u ∈ W 1,2
per (Π

d) and all
� ∈ (0, 1∕2) there holds

cL,s|u|
2
Hs(Πd ) ≤ ∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

2 For s = 1∕2, there exists a constant cL > 0 such that for all u ∈ W 1,2
per (Π

d) and all � ∈ (0, 1∕2)
there holds

cL|u|
2
Hs(Πd ) ≤ | ln �|∫Πd

(1
�
W (u) + �|∇u|2

)

dd . (3.5)

3 If s ∈ (1∕2, 1) then there exists a constant cL,s > 0 such that for all u ∈ W 1,2
per (Π

d) and all
� ∈ (0, 1∕2) there holds

cL,s|u|
2
Hs(Πd ) ≤ �1−2s ∫Πd

(1
�
W (u) + �|∇u|2

)

dd . (3.6)

Remark 3.3. We note that the scaling in � for s > 1
2
, c.f. (3.6), is the same as in the linear interpolation

inequality (3.2). We point out, however, that the same cannot be true for 0 < s < 1
2
. Indeed, for the

function u� in Remark 3.1 and 0 < � < 1∕5 it holds

|u�|
2
Hs ≥ cF l ∫

1

0 ∫

1∕2

−1∕2

|u�(x + y) − u�(y)|2

x1+2s
dxdy ≥ ∫

(1−�)∕2

1∕4 ∫

1∕2

(1+�)∕2−y

4
|x|1+2s

dxdy

≥ ∫

2∕5

1∕4 ∫

1∕2

1∕4+�∕2

4
|x|1+2s

dxdy ≥ 4(2∕5 − 1∕4) ⋅ (1∕2 − 1∕4 − 1∕10) ≥ 9
100

,

whereas it holds as in Remark 3.1

�1−2s ∫

1

0

(1
�
W (u�) + �|u′�|

2
)

d1 ≤ �1−2s (2maxW + 8)⟶ 0 as � → 0.
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Nonlinear interpolation inequalities and pattern formation in biomembranes 11

Proof of Proposition 3.2. Large parts of the proof agree for all three cases. We therefore consider
them together and comment on the differences. Let u ∈ W 1,2

per (Π
d) ∩ C1(Πd), s ∈ (0, 1∕2], and

� ∈ (0, 1∕2). By (3.3), it suffices to estimate

cFl|u|
2
Hs(Πd ) ≤ ∫Πd ∫[−1∕2,1∕2)d

|u(x + y) − u(y)|2

|x|d+2s
dx dy

= ∫Ω1

|u(x + y) − u(y)|2

|x|d+2s
dx, dy + ∫Ω2

|u(x + y) − u(y)|2

|x|d+2s
dxdy + ∫Ω3

|u(x + y) − u(y)|2

|x|d+2s
dxdy

(3.7)

with

Ω1 ∶= (−�, �)d × Πd ,

Ω2 ∶=
{

(x, y) ∈ [−1
2
, 1
2
)d × Πd ∶ |x| ≥ � and |u(x + y) − u(y)| ≤ 1∕4 or

|u(x + y) − u(y)| ≥ 4
}

,
and

Ω3 ∶=
{

(x, y) ∈ [−1
2
, 1
2
)d × Πd ∶ |x| ≥ � and 4 > |u(x + y) − u(y)| > 1∕4

}

.

We consider the three terms in (3.7) separately. The contribution from Ω1 is estimated by

∫Ω1

|u(x + y) − u(y)|2

|x|d+2s
dxdy = ∫Πd ∫(−�,�)d

1
|x|d+2s

(

∫

1

0
∇u(y + tx) ⋅ x dt

)2

dx dy

≤ ∫Πd ∫(−�,�)d
|x|2−d−2s ∫

1

0
|∇u(y + tx)|2 dt dx dy

≤ ∫(−�,�)d
|x|2−d−2s ∫

1

0 ∫tx+Πd
|∇u(w)|2 dwdt dx

≤ C(d)�2(1−s) ∫Πd
|∇u|2 dd

≤ C(d) max{1, �1−2s}� ∫Πd
|∇u|2 dd .

(3.8)

Consider now the contribution from Ω2. We show first that for all (x, y) ∈ Ω2,

|u(x + y) − u(y)|2 ≤ 18
(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

. (3.9)

Assume first that |u(x+ y) − u(y)| ≤ 1∕4. Let e ∈ {±1} be such that |u(x+ y) − e| = min{|u(x+
y) ± 1|}. It follows that |u(y) − e| ≤ 2min{|u(y) ± 1|}. Consequently,

|u(x + y) − u(y)|2 ≤ 2
(

|u(x + y) − e|2 + |u(y) − e|2
)

≤ 8
(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

.

Now assume that |u(x + y) − u(y)| ≥ 4. Then min{|u(y) ± 1|} ≥ 1 or min{|u(x + y) ± 1|} ≥ 1.
Without loss of generality, we assume that the latter is true. Let E ∈ {±1} be such that |u(x) −E| =
min{|u(x)± 1|}. Then |u(x+ y)−E| ≤ min{|u(x+ y)± 1|}+2 ≤ 3min{|u(x+ y)± 1|}. Hence,

|u(x + y) − u(y)|2 ≤ 2
(

|u(x + y) − E|2 + |u(y) − E|2
)

≤ 18
(

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
)

.
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It follows from (3.9) (with the notation for (x, y) as in (3.7)) that

∫Ω2

|u(x + y) − u(y)|2

|x|d+2s
dx dy ≤ 18∫Ω2

min{|u(x + y) ± 1|2} + min{|u(y) ± 1|2}
|x|d+2s

dx dy

≤ 36∫{|x|≥�} ∫Πd
min{|u(w) ± 1|2}

|x|d+2s
dwdx

≤ 36C(d)
( 1
2s

(

�−2s − 1
)

)

∫Πd
min{|u(w) ± 1|}2 dw

≤ �1−2s
C(d, s)
cW

1
� ∫Πd

W (u) dd ≤ C(d, s,W ) max{1, �1−2s}∫Πd
1
�
W (u) dd .

(3.10)

Finally, consider the contribution from Ω3. Note that for all points (x, y) ∈ Ω3 we have 1∕4 ≤ |u(x +
y) − u(y)| ≤ 4 which implies that |u(x + y) − u(y)|2 ≤ 4|u(x + y) − u(y)|. Moreover, note that it
holds for all a, b ∈ ℝ with |a − b| ≥ 1∕4 that

∫

b

a
min{|t ± 1|} dt ≥ ∫

9∕8

7∕8
|t − 1| dt = 2∫

1∕8

0
t dt = 1

64
.

Consequently,

|u(x + y) − u(y)| ≤ 4 ≤ 256∫

u(x+y)

u(y)
min{|t ± 1|} dt ≤ 256

√

cW ∫

u(x+y)

u(y)

√

W d1

≤ 256
√

cW
|x|∫

1

0

(1
�
W (u(y + �x)) + �|∇u(y + �x)|2

)

d�. (3.11)

We now distinguish the cases s ≠ 1∕2 and s = 1∕2. If s ≠ 1∕2 we obtain with (3.11)

∫Ω3

|u(x + y) − u(y)|2

|x|d+2s
dy dx ≤ 4∫Ω3

|u(x + y) − u(y)|
|x|d+2s

dy dx

≤ 1024
√

cW ∫Πd ∫{|x|∈(�,√d∕2)}
|x|

|x|d+2s

(

∫

1

0

(1
�
W (u(y + �x)) + �|∇u|2(y + �x)

)

d�
)

dx dy

≤ C(d)
√

cW

(

∫
|x|∈(�,

√

d∕2)

1
|x|d+2s−1

dx
)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

(3.12)

We use again that for � ≤ 1∕2,

∫√

d∕2≥|x|≥�

1
|x|d+2s−1

dx ≤ C(d)
|1 − 2s|

max{1, �1−2s},

which is uniformly bounded in � if s ∈ (0, 1∕2). Hence, inserting (3.8), (3.10), and (3.12) into (3.7)
yields the first and third assertions. If s = 1∕2, the assertion follows similarly using d + 2s − 1 = d
and

∫√

d∕2≥|x|≥�

1
|x|d

dx ≤ C(d)| ln(�)|.

We note that following the lines of the proof of Proposition 3.2, one can also obtain the nonlinear
interpolation inequalities in the non-periodic setting stated in Theorem 1.4.

DOI 10.20347/WIAS.PREPRINT.3131 Berlin 2024



Nonlinear interpolation inequalities and pattern formation in biomembranes 13

3.3 A nonlocal interpolation inequality

It turns out that the estimates obtained in Section 3.2 are sharp but not enough to prove the lower
bound for the energy functional (1.1). We note that for s = 1∕2, the estimates from the previous
section would give us that for arbitrary �, � > 0, we have for all u ∈ W 1,2

per and � ∈ (0, 1∕2)

∑

k∈ℤ
min

{

�k
2

�
, 1

}

|ûk|
2 ≤

∑

k∈ℤ

(�
�

)1∕2
|k||ûk|

2 =
(�
�

)1∕2
|u|2H1∕2

≤
(�
�

)1∕2
| ln �|∫

1

0

(1
�
W (u) + �|u′|2

)

d1.

In this section we prove Proposition 1.5 which, as explained in Section 1.1, improves the above es-
timate to avoid the logarithmic term in � under mild assumptions on W , c.f. Assumption 1.1. Some
of the techniques in the proof are inspired by the works [12, 10], where the authors bound ‖u‖2

L2
by

∫Ω
(

1
�
W (u) + �|∇u|2

)

dd with a small prefactor and a nonlocal term which corresponds roughly

to a negative Sobolev norm.

Proof of Proposition 1.5. Let L ∈ ℕ and M > 0. By density it suffices to consider u ∈ W 1,2
per (Π

d) ∩
C1(Πd). We will use a continuous, piecewise affine approximation of u. For that, we decompose the
cube Πd into Ld cubes of side length L−1, and consider an associated regular triangulation of the
cube Πd into d!Ld regular simplices (see Figure 3). Note that for each simplex T of the triangulation

Figure 3: Example of a regular triangulation of Π2.

it holds that

diam(T ) =

√

d
L
, d(T ) = 1

d!Ld
.

By definition, each Ti contains d +1 vertices, more precisely, Ti is the convex hull of (d +1) vertices.
Note that there are in total (L + 1)d vertices in the triangulation, and we denote the (finite) set of
vertices d,L, and the set of simplices by d,L. We define a periodic piecewise affine approximation
ũ(L) of u based on this triangulation, inspired by a Clement-type approximation (see e.g. [8] and the
references therein). For this, it suffices to define the function values at each vertex. For each vertex
v ∈ [0, 1)d of the triangulation, let Tv be an arbitrary simplex of the triangulation that contains v, and
let u(L)(v) be the average of u on the simplex Tv, i.e.,

u(L)(v) ∶= ⨍Tv
u dd .

If one of the coordinates of v is equal to one, the value u(L)(v) is determined by ℤd-periodicity of u(L).
Using barycentric coordinates on T ∈ d,L, we can represent every x ∈ T as convex combination
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x =
∑d+1

j=1 �
(T )
j (x)v(T )j with �(T )j (x) ∈ [0, 1],

∑d+1
j=1 �

(T )
j (x) = 1, and T = conv{v(T )j ∶ j = 1,… , d +

1} with v(T )j ∈ d,L. Then

u(L)(x) ∶=
d+1
∑

j=1
�(T )j (x) uL(v

(T )
j ). (3.13)

We denote the Fourier coefficients of u(L) by û(L)k , k ∈ ℤd , and observe

∑

k∈ℤd
min{1,

|k|2

M2
}|ûk|2 ≤ 2

∑

k∈ℤd
min{1,

|k|2

M2
}
(

|ûk − û
(L)
k |

2 + |ûk|
2
)

≤ 2

(

∑

k∈ℤd
|ûk − û

(L)
k |

2 +
∑

k∈ℤd

|k|2

M2
|û(L)k |

2

)

= 2
(

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
+ 1
M2

‖

‖

‖

∇u(L)‖‖
‖

2

L2(Πd )

)

.(3.14)

We estimate the two terms on the right-hand side of (3.14) separately. First, using (3.13) and Jensen’s
inequality, we obtain

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
=

∑

T∈d,L
∫T

|

|

|

u − u(L)||
|

2
dd ≤

∑

T∈d,L
∫T

|

|

|

|

|

|

d+1
∑

j=1
�(T )j (x)

(

u(x) − u(L)(v(T )j )
)

|

|

|

|

|

|

2

dx

=
∑

T∈d,L
∫T

|

|

|

|

|

|

|

d+1
∑

j=1
�(T )j (x)⨍T

v(T )j

(u(x) − u(y)) dy
|

|

|

|

|

|

|

2

dx

≤ (d + 1)
∑

T∈d,L
∫T

d+1
∑

j=1
⨍T

v(T )j

(u(x) − u(y))2 dy dx. (3.15)

We now use Assumption 1.1, and let � be as in (H3). We set  ∶= �◦u. For vectors a, b ∈ ℝd , we
denote by [a, b] the line connecting a and b. Then

(d + 1)
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(u(x) − u(y))2 dy dx

≤ (d + 1)c′W
∑

v∈d,L
∫Tv ⨍Tvj

| (x) −  (y)| dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(

|

|

|

 (x) −  (v(T )j )
|

|

|

+ |

|

|

 (v(T )j ) −  (y)
|

|

|

)

dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
∫T ⨍T

v(T )j

(

∫[x,v(T )j ]
|∇ (z)| dz + ∫[v(T )j ,y]

|∇ (z)| dz

)

dy dx

≤ (d + 1)c′W
∑

T∈d,L

d+1
∑

j=1
diam(T )

⎛

⎜

⎜

⎝

∫T
|∇ (z)| dz + ∫T

v(T )j

|∇ (z)| dz
⎞

⎟

⎟

⎠

, (3.16)

where we used that all simplices T ∈ d,L have the same diameter. Hence, combining (3.15) and
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(3.16), we obtain

‖

‖

‖

u − u(L)‖‖
‖

2

L2(Πd )
≤ (d + 1)c′W

d1∕2

L
∑

T∈d,L

⎛

⎜

⎜

⎝

∫T
|∇ (z)| dz + ∫T

v(T )j

|∇ (z)| dz
⎞

⎟

⎟

⎠

≤ 2(d + 1)2c′W
d1∕2

L ∫Πd
|∇ (z)| dz. (3.17)

We now turn to the second term of the right-hand side of (3.14). We observe that for all T =
conv{v(T )j ∶ j = 1,… , d + 1} ∈ d,L and all x ∈ int(T ), there holds

|∇uL(x)| ≤
d+1
∑

j,k=1

|uL(v
(T )
k ) − uL(v

(T )
j )|

|v(T )k − v(T )j |

≤ L
d+1
∑

j,k=1
|uL(v

(T )
k ) − uL(v

(T )
j )|.

Furthermore, for any T , T ′ ∈ d,L there is an isometry RT ,T ′ ∶ T → T ′, and hence

‖

‖

‖

∇u(L)‖‖
‖

2

L2(Πd )
=

∑

T∈d,L
∫T

|

|

|

∇u(L)||
|

2
dd ≤ L2

∑

T∈d,L
∫T

(

d+1
∑

j,k=1
|uL(v

(T )
k ) − uL(v

(T )
j )|

)2

dd

= (d + 1)L2
∑

T∈d,L

d+1
∑

j,k=1

⎛

⎜

⎜

⎝

⨍T
v(T )j

(

u − u◦RT
v(T )j

,T
v(T )k

)

)

dd
⎞

⎟

⎟

⎠

2

≤ (d + 1)L2
∑

T∈d,L

d+1
∑

j,k=1
⨍T

v(T )j

(

u − u◦RT
v(T )j

,T
v(T )k

)

)2

dd

≤ (d + 1)c′WL
2
∑

T∈d,L

d+1
∑

j,k=1
⨍T

v(T )j

|

|

|

|

|

 −  ◦RT
v(T )j

,T
v(T )k

)

|

|

|

|

|

dd

≤ 2(d + 1)3c′WL
2
∑

T∈d,L

4 diam(T )∫Πd
|∇ | dd , (3.18)

where the last step follows similarly to (3.16). Therefore, combining (3.14), (3.17) and (3.18), we con-
clude

∑

k∈ℤd
min{1, |k|2∕M2}|ûk|2 ≤ c

( 1
L
+ L
M2

)

∫Πd
|∇ | dd

= c
( 1
L
+ L
M2

)

∫Πd
√

W (u)|∇u| dd

≤ c
( 1
L
+ L
M2

)

∫Πd

(1
�
W (u) + �|∇u|2

)

dd .

We state the following consequence of Proposition 1.5, which will be used in the proof of the lower
bound.

Corollary 3.4. There is a constant cint > 0 such that for all b, �, �,Λ > 0 with � ≥ � and all
(u, ℎ) ∈ W 1,2

per ×W
2,2

per and all � > 0 there holds

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −cint
Λ2

(��)1∕2 ∫

1

0

(1
�
W (u) + �|u′|2

)

d1.
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Proof. Let (u, ℎ) ∈ W 1,2
per × W

2,2
per , and denote by ûk and ℎ̂k the Fourier coefficients of u and ℎ,

respectively. Then, optimizing in ℎ̂k, we obtain

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 =
∑

k∈ℤ

((�
2
k4 + �

2
k2
)

|ℎ̂k|
2 + Λk2ûkℎ̂k

)

≥ −
∑

k∈ℤ

Λ2k2

2(�k2 + �)
|ûk|

2

≥ −Λ
2

2�
∑

k∈ℤ
min{1, �

�
k2}|ûk|2.

We now apply Proposition 1.5 with M ∶= (�∕�)1∕2 ≥ 1 and L ∶= ⌊M⌋ to conclude

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −cint
Λ2

(��)1∕2 ∫

1

0

(1
�
W (u) + �|u′|2

)

d1.

4 Proof of the scaling law

In this section, we prove the scaling law stated in Theorem 1.3. The structure is as follows: We prove
the upper and lower bounds separately in Subsections 4.1 and 4.2, respectively. Precisely, the upper
bound in (1.3) is proven in Proposition 4.5, the lower bound follows directly from Proposition 2.2. Fur-
thermore, we show in Proposition 4.1 that there is a constantC > 0 (depending onW ) such that for all
parameters Λ, �, �, b > 0, we have admissible test functions (u, ℎ) with  (u, ℎ) ≤ C min{b1∕2, 1},
which in particular implies the upper bound in (1.4). The lower bound in (1.4) is proven in Proposition
4.6.

4.1 Upper bound

We start with the upper bounds in Theorem 1.3.

Proposition 4.1. For all parametersΛ, �, �, b > 0 and allW satisfying (H1) there exists (u, ℎ) ∈ 
such that

 (u, ℎ) ≤
(

8 + max
[−1,1]

W
)

min{1, b1∕2}.

Proof. If b ≥ 1, we use u = ℎ = 0, and obtain

inf


 ≤  (0, 0) = W (0). (4.1)

If b < 1, we set ℎ ≡ 0 and u as (see Figure 2a)

u(x) ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4
b1∕2
x − 1, if x ∈

(

0, b
1∕2

2

)

;

1, if x ∈
[

b1∕2

2
, 1
2

)

;

− 4
b1∕2
x + 1 + 2

b1∕2
, if x ∈

[

1
2
, 1
2
+ b1∕2

2

)

−1, if x ∈
[

1
2
+ b1∕2

2
, 1
)

.
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Then (u, ℎ) ∈  and

 (u, ℎ) = ∫

1

0

(

W (u) + b
2
|u′|2

)

d1 ≤ b1∕2max
[−1,1]

W + b∫

b1∕2∕2

0

( 4
b1∕2

)2
d1

= b1∕2max
[−1,1]

W + 8b1∕2 = (8 + max
[−1,1]

W )b1∕2.
(4.2)

Combining (4.1) and (4.2) shows the assertion.

To obtain the upper bound ∼ −Λ2∕�, we use more complex structures. We proceed in two steps, and
first present the construction with two parameters which subsequently are chosen in various parameter
regimes.

Proposition 4.2. For every n ∈ ℕ, every " ∈ (0, 1], all W satisfying (H1) and all parameters
Λ, �, �, b > 0, there exists an admissible pair (un,", ℎn) ∈  such that

 (un,", ℎn) ≤ max[−1,1]
W " + 8bn

2

"
−
24Λ2(1 − "∕2)2n2

� + 48�n2
. (4.3)

Remark 4.3. We note that the simultaneous explicit optimization in n and " in (4.3) is generally not

trivial. However, the last term ∼ 24Λ2n2

�+48�n2
can exhibit essentially two behaviors. For n2 = 1, one obtains

∼ Λ2

�+�
, whereas for n2 ∼ �

�
one obtains for the this term ∼ Λ2

�
. After choosing n2 one can then

optimize explicitly in ". We show later that in terms of matching lower bounds these choices lead to
the optimal energy up to a multiplicative constant.

Proof. Let n ∈ ℕ and " ∈ (0, 1]. We use the construction sketched in Figure 2b. Precisely, consider

ℎ(x) ∶=

{

1
2
x(x − 1

2
) if x ∈ (0, 1∕2),

− 1
2
(x − 1)(x − 1

2
) if x ∈ [1∕2, 1),

and extend it periodically to ℝ. Let � > 0 to be chosen below, and define ℎn(x) ∶= �ℎ(nx) and
un," ∶ [0, 1]→ ℝ as

un,"(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if x ∈
(

k
2n
+ "

4n
, k+1
2n
− "

4n

)

for k odd,

−1 if x ∈
(

k
2n
+ "

4n
, k+1
2n
− "

4n

)

for k even,
4n
"
x − 2k

"
if x ∈

(

k
2n
− "

4n
, k
2n
+ "

4n

)

for k odd,

− 4n
"
x + 2k

"
if x ∈

(

k
2n
− "

4n
, k
2n
+ "

4n

)

for k even.

Then (ℎn, un) is admissible. Note that outside the ”transition layers”, we have u′ = 0, and in the
transition layers |u′| = 4n

"
. As there are 2n such layers, each of length "

2n
, we have

∫

1

0

(

W (un,") +
b
2
|u′n,"|

2
)

d1 ≤ "max
[−1,1]

W + b
2
"
(4n
"

)2
= "max

[−1,1]
W + 8bn

2

"

and

−∫

1

0
ℎ′′n un," d

1 = (1 − ")�n2 + 4n∫

"
4n

0
�n24n

"
x dx = (1 − ")�n2 + �"n

2

2
.
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Hence, we obtain

 (un,", ℎn) ≤ "max
[−1,1]

W + 8bn
2

"
+
��2n2

96
+ �
2
�2n4 − Λ(1 − "∕2)�n2.

We now optimize in �, i.e., we choose � ∶= Λ(1−"∕2)
�n2+(�∕48)

, and conclude

 (u, ℎ) ≤ max
[−1,1]

W " + 8bn
2

"
−
24Λ2(1 − "∕2)2n2

� + 48�n2
.

Remark 4.4. We note that Proposition 4.5 implies that the lower bound obtained in Proposition 2.2 is
optimal. Precisely, we claim that for all �, �,Λ > 0 and W satisfying (H1) there holds

lim
b→0

inf


 = −Λ
2

2�
.

Indeed, this follows from Proposition 4.5 for b → 0 by choosing " ∶= b1∕2 and n ∶= ⌊b−1∕8⌋ in
Proposition 4.6.

We now prove the upper bound in Theorem 1.3, part 2.

Proposition 4.5. Let W satisfy (H1). Then there exists C > 0 such that for all b, �, �,Λ > 0
satisfying Λ2 ≥ C max{�b, b�, (b��)1∕2, b1∕2�} there exists an admissible pair (u, ℎ) such that

 (u, ℎ) ≤ − 1
20
Λ2
�
.

Proof. WriteK ∶= max[−1,1]W . Then it follows from Proposition 4.2 that for all n ∈ ℕ and " ∈ (0, 1]
there exist admissible pairs (un,", ℎn) ∈  such that

 (un,", ℎn) ≤ K" + 8bn
2

"
− 1
8
Λ2n2

� + �n2
.

Now assume that Λ2 ≥ C̄ max
{

b�, b�, (b��)1∕2, b1∕2�
}

, where C̄ = max{2048, 256
√

2K}. In
the following we will distinguish several cases in which we choose " and n appropriately to obtain the
assertion.
First, we assume that � ≤ �. In this case, we set n = 1. This means that we obtain for all " ∈ (0, 1]
an admissible pair (u1,", ℎ1) ∈  such that

 (u1,", ℎ1) ≤ K" + 8b
"
− 1
8
Λ2
� + �

≤ K" + 8b
"
− 1
16
Λ2
�
.

If K ≤ 8b then set " = 1 to obtain

 (u1,1, ℎ1) ≤ K + 8b − 1
16
Λ2
�

≤ 16b − 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 512b�. If on the other hand 8b ≤ K then set "∗ =
b1∕281∕2

K1∕2 to obtain

 (u1,"∗ , ℎ1) ≤ 2
√

8Kb1∕2 − 1
16
Λ2
�

≤ − 1
32
Λ2
�
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since Λ2 ≥ 256
√

2Kb1∕2�. Secondly, we assume that � ≤ �. In this case we set n∗ = ⌈

�1∕2

�1∕2
⌉.

In particular, it holds �
�
≤ n2∗ ≤ 4�

�
. Hence, for every " ∈ (0, 1] there exists an admissible pair

(un∗,", ℎn∗) ∈  satisfying

 (un∗,", ℎn∗) ≤ K" + 32b�
"�

− 1
16
Λ2
�
.

If K ≤ 32b�
�

then we set " = 1 to obtain

 (un∗,1, ℎn∗) ≤
64b�
�

− 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 2048b�. Eventually, if K ≥ 32b�
�

then set "∗ =
√

32b�
K�

∈ (0, 1] to obtain

 (un∗,"∗ , ℎn∗) ≤ 2
√

32Kb�
�

− 1
16
Λ2
�

≤ − 1
32
Λ2
�

since Λ2 ≥ 256
√

2K(b��)1∕2.

4.2 Lower Bound

We now prove the lower bounds in Theorem 1.3. Note that the lower bound in (1.3) follows directly
from Proposition 2.2, and it remains to prove (1.4).

Proposition 4.6. LetW satisfy (H1) and (H2). Then there exists c > 0 such that for all b, �, �,Λ >
0 satisfying Λ2 ≤ cmax{b�, b�, (b��)1∕2, b1∕2�} it holds

cmin{1, b1∕2} ≤ inf


 .

Proof. Let (u, ℎ) ∈ . First, as in the proof of Corollary 3.4 it holds

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −Λ
2

2�
∑

k∈ℤ
min{1, �

�
k2}|ûk|2. (4.4)

In particular, we obtain that

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −Λ
2

2�
‖u‖2L2 . (4.5)

Set c̄ = min
{

1∕2, 1∕(cint
√

8), cMM∕
√

2
}

, where cint and cMM are the constants from Corollary

3.4 and Proposition 2.1, respectively, and assume that Λ2 ≤ c̄max{b�, b�, (b��)1∕2, b1∕2�}. We
distinguish the following cases.

1 If max{b�, b�, (b��)1∕2, b1∕2�} = b� then we estimate using (4.4) and Proposition 2.1

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 − Λ

2

2�
|u′|2

)

d1

≥ ∫

1

0

(

W (u) + b
4
|u′|2

)

d1 ≥
cMM

2
min{1, b1∕2}.
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2 If max{b�, b�, (b��)1∕2, b1∕2�} = b� then we estimate using (4.5), Poincaré’s inequality and
Proposition 2.1

 (u, ℎ) ≥ ∫

1

0

(

W (u) + b
2
|u′|2 − Λ

2

2�
|u′|2

)

d1

≥ ∫

1

0

(

W (u) + b
4
|u′|2

)

d1 ≥
cMM

2
min{1, b1∕2}.

3 If max{b�, b�, (b��)1∕2, b1∕2�} = (b��)1∕2 then we estimate using Corollary 3.4 with � =
2cintΛ2

(��)1∕2
, where cint > 0 is the constant from Corollary 3.4,

∫

1

0

(�
2
|ℎ′′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1 ≥ −∫

1

0

(

1
2
W (u) + 2c2int

Λ4
��

|u′|2
)

d1

≥ −1
2 ∫

1

0

(

W (u) + b
2
|u′|2

)

d1.

Hence, by Proposition 2.1

 (u, ℎ) ≥ 1
2 ∫

1

0

(

W (u) + b
2

)

d1 ≥
cMM

2
√

2
min{1, b1∕2}.

4 If max{b�, b�, (b��)1∕2, b1∕2�} = b1∕2� then we estimate using Proposition 2.1 and Proposi-
tion 2.2

 (u, ℎ) ≥
cMM
√

2
min{1, b1∕2} − Λ

2

2�
≥
cMM

2
√

2
min{1, b1∕2}.

For the last estimate note that in this case it holds b1∕2� ≥ b� which implies thatmin{1, b1∕2} =
b1∕2 ≥ c̄ Λ

2

�
≥ cMM

√

2
Λ2

�
.

This concludes the proof of Proposition 4.6.

5 Existence of Minimizers

In this section, we discuss the existence of minimizers for  depending on the parameters b, �, � and
Λ.

Proposition 5.1. 1 Let b, � > 0 and �,Λ ≥ 0. Then

inf


 = min


 .

2 Let � = 0, and b,Λ, � ≥ 0. If Λ
2

�
≥ b then there are no minimizers and

inf


 =

{

−∞ if b < Λ2

�
,

0 if b = Λ2

�
.
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If b > Λ2

�
, then there exists a minimizer if and only if there is a minimizer u of

inf
u∈W 1,2

per
∫

1

0

(

W (u) +
(

b − Λ
2

�

)

|u′|2
)

d1

that satisfies the regularity property u ∈ W 2,2
per (0, 1). For any C1-double well potential W satis-

fying (H1) there is a constant K > 0 such that this holds if b > K Λ2

�
.

3 Let b = 0 and �, �,Λ ≥ 0. Then

inf


 = −Λ
2

2�

and no minimizers exist if Λ > 0. Here −Λ2

2�
has to be understood as −∞ for Λ > 0, � = 0

and as 0 for Λ = 0, � = 0.

Proof. First, note that by the compact embedding W 1,2((0, 1)) ↪ L2(0, 1) it follows for uk ⇀ u in
W 1,2

per,vol and ℎk ⇀ ℎ in W 2,2
per that

lim inf
k→∞

 (uk, ℎk) ≥  (u, ℎ),

i.e.,  is lower semicontinuous with respect to weak convergence. Hence, 1. follows from the direct
method of the Calculus of Variations if  is coercive on . Set f (s, �) ∶= �

2
|�|2 + Λs�. Then for

|s| ≤ 1 there holds

|f (s, �)| ≥ �
2
|�|2 − Λ|�| ≥ �

4
|�|2 − Λ

2

�
,

and hence,

 (u, ℎ) ≥ ∫

1

0

(b
2
|u′|2 + �

4
|ℎ′′|2

)

d1 − Λ
2

�
.

Since by periodicity of ℎ we have ∫ 1
0 ℎ

′ dx = 0, Poincaré’s inequality yields ‖ℎ′‖L2 ≤ ‖ℎ′′‖L2 .
Since additionally ∫ 1

0 ℎ(x) dx = 0, we obtain ‖ℎ‖L2 ≤ ‖ℎ′′‖L2 . This means that for all C > 0 and
(u, ℎ) ∈  such that  (u, ℎ) ≤ C it holds

‖u‖W 1,2 ≤ 1 + 2Cb
+ Λ

2

�b
and ‖ℎ‖W 2,2 ≤ 6

�

(

C + Λ
2

�

)

.

Hence, for all C > 0 the set {(u, ℎ) ∈  ∶  (u, ℎ) ≤ C} is weakly precompact, i.e.,  is coercive
on . This concludes the proof of 1.
In order to show 2., let � = 0 and Λ, �, b ≥ 0. Note that using integration by parts and Young’s
inequality we find that

 (u, ℎ) = ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 + Λuℎ′′

)

d1

= ∫

1

0

(

W (u) + b
2
|u′|2 + �

2
|ℎ′|2 − Λu′ℎ′

)

d1

≥ ∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1. (5.1)

In the last inequality equality holds if and only if ℎ′(x) = Λ
�
u′(x) for almost every x ∈ (0, 1). Now,

consider u(x) = �(0,1∕4)∪(3∕4,1) − �(1∕4,3∕4), where � denotes the indicator function taking only values
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0 and 1, and u" = u ∗ �" for a symmetric standard mollifier �". Then for 0 < " < 1∕8 it holds

u" ∈ W
1,2
per,vol with |u"| ≤ 1. If b ≤ Λ2

�
we obtain for ℎ" =

Λ
�
u" by (5.1)

 (u", ℎ") = ∫

1

0

(

W (u") +
1
2

(

b − Λ
2

�

)

|u′"|
2
)

d1
"→0
⟶

{

−∞ if b < Λ2

�
,

0 if b = Λ2

�
.

(5.2)

Hence, inf  = −∞ for b < Λ2

�
and clearly there are no minimizers. Now, consider b = Λ2

�
. Note that

for u ∈ W 1,2
per,vol by the embedding W 1,2 ↪ C0 and ∫ 1

0 u dx = 0 there exists x ∈ (0, 1) such that

u(x) = 0. Then the continuity of u implies that ∫ 1
0 W (u) dx > 0. Together with (5.1) and (5.2) this

yields that inf  = 0 but there are no minimizers. Eventually, consider the case b > Λ2

�
. Then (5.1)

shows that

inf


 = inf
u∈W 1,2

per,vol
∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1.

By the direct method of the Calculus of Variations it is straight forward to show existence of minimizers
u∗ ∈ W 1,2

per,vol for the right hand side. Recall that for any minimizer u∗ ∈ W 1,2
per,vol of the right hand side

above there exists ℎ ∈ W 2,2
per such that

 (u∗, ℎ) = ∫

1

0

(

W (u) + 1
2

(

b − Λ
2

�

)

|u′|2
)

d1

if and only if ℎ′ = Λ
�
u′. Consequently, a minimizer of  exists if and only if there exists a minimizer

u∗ ∈ W 2,2
per of ∫ 1

0

(

W (u) + 1
2

(

b − Λ2

�

)

|u′|2
)

d1. By the volume constraint there exists for every

u ∈ W 1,2
per,vol a point x ∈ (0, 1) such that u(x) = 0. Now, assume that 1

2

(

b − Λ2

�

)

> W (0). Then it

follows for a minimizer u of ∫ 1
0

(

W (u) + 1
2

(

b − Λ2

�

)

|u′|2
)

d1 that ∫ 1
0 |u′|2 d1 < 1 which implies

for all y ∈ (0, 1)

|u(y)| = |u(y) − u(x)| ≤
(

∫

1

0
|u′|2 d1

)1∕2

< 1.

Hence, u satisfies the Euler Lagrange equation
(

b − Λ
2

�

)

u′′ = W ′(u) + �,

where � ∈ ℝ is a Lagrange multiplier for the volume constraint ∫ 1
0 u d

1 = 0. In particular, u ∈ W 2,2.
By the argument before this implies that a minimizer for  exists. This shows 2.

Eventually we prove 3. The inequality inf  ≥ −Λ2

2�
follows from Proposition 2.2 and the inequality

inf  ≤ −Λ2

2�
from Remark 4.4 since the energy is monotone in b. To show non-existence of minimiz-

ers, let us assume that there exists a minimizing pair (u, ℎ) ∈ . Then

−Λ
2

2�
=  b(u, ℎ) ≥ ∫

1

0

(�
2
|ℎ′′|2 + Λuℎ′′

)

d1 ≥ ∫

1

0

(�
2
|ℎ′′|2 − Λ|ℎ′′|

)

d1 ≥ −Λ
2

2�
,

where the last inequality follows from the fact thatminy∈ℝ
(

�
2
y2 − Λy

)

= −Λ2

2�
. In particular, we have

W (u(t)) + �
2
|ℎ′(t)|2 = 0 and

�
2
|ℎ′′(t)|2 + Λu(t)ℎ′′(t) = −Λ

2

2�
for a.e. t ∈ (0, 1),
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which implies

|ℎ′(t)| = 0 and |ℎ′′(t)| = Λ
�

for a.e. t ∈ (0, 1),

which yields a contradiction.

Remark 5.2. Let us note that some difficulties in the proof of item 2. of Proposition 5.1 arise from
our assumption that u takes values only in [−1, 1], i.e., between the wells of W . If we allowed for a
larger L∞-bound on u, we could (for small values of b − Λ2∕�) use directly that minimizers of the
(unconstraint) Modica-Mortola-type functional on W 1,2 satisfy the L∞-constraint (see [32, Theorem
4.10]), which would then imply that minimizers of the constraint problem are smooth enough.
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