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Weak solutions to a model for phase separation coupled with finite-strain
viscoelasticity subject to external distortion

Thomas Eiter, Leonie Schmeller

Abstract

We study the coupling of a viscoelastic deformation governed by a Kelvin–Voigt model at equilibrium,
based on the concept of second-grade nonsimple materials, with a plastic deformation due to volumetric
swelling, described via a phase-field variable subject to a Cahn–Hilliard model expressed in a Lagrangian
frame. Such models can be used to describe the time evolution of hydrogels in terms of phase separa-
tion within a deformable substrate. The equations are mainly coupled via a multiplicative decomposition of
the deformation gradient into both contributions and via a Korteweg term in the Eulerian frame. To treat
time-dependent Dirichlet conditions for the deformation, an auxiliary variable with fixed boundary values is
introduced, which results in another multiplicative structure. Imposing suitable growth conditions on the elas-
tic and viscous potentials, we construct weak solutions to this quasistatic model as the limit of time-discrete
solutions to incremental minimization problems. The limit passage is possible due to additional regularity
induced by the hyperelastic and viscous stresses.

1 Introduction

Mathematical models for coupling multi-phase systems with nonlinear elastic deformation are fundamental for
describing many phenomena in soft matter physics and biology, such as the wetting of soft substrates or the
formation of patterns during swelling or deswelling of hydrogels. Hydrogels are cross-linked networks of (hy-
drophilic) polymers dissolved in a liquid, and they are ubiquitous in nature and have particular applications in
medical technology, for example as scaffolds for cell growth [25] and mini-cell encapsulations [13]. Due to the
formation of coexisting regions with different magnitudes of swelling, mathematical models for hydrogels have
to take into account phase-separation processes and nonlinear elastic behavior [8,24].

In this paper we show existence of weak solutions to such a model. The system is formulated in a Lagrangian
configuration, and the local deformation v arises from the combination of plastic deformation due to liquid
absorption with a viscoelastic deformation subject to a finite-strain model that allows the consideration of large
deformations. We consider a two-phase diffuse-interface model, where the phase-field variable ψ represents
regions with different magnitude of swelling, are energetically preferred. The phase-field evolution is subject to
a Cahn–Hillard equation, and the mechanical deformation is described by a Kelvin–Voigt material model, thus
containing elastic and viscous stresses. Since the mechanical evolution towards equilibrium usually happens at
a much faster time-scale than the phase-field evolution, we consider a quasistatic approximation and neglect
inertial effects in the mechanical equation. The elastic potential will be chosen in a way that ensures the absence
of local self-penetration, and we consider a second-grade nonsimple material, that is, the stored elastic energy
depends on the elastic strain and its gradient. Such elasticity models were first introduced by Toupin [48], and
have now become widely accepted in the community [5,7,16,27,32,34,39,49]. The viscous stress potential will
be formulated as a function in terms of the right Cauchy–Green tensor in order to ensure frame-indifference,
see also Remark 2.7 below.

The phase field and the deformation are coupled via a decomposition of the deformation gradient into elastic
and plastic parts. Instead of an additive decomposition, which is suitable for the framework of small strains, we
use a multiplicative decomposition of the deformation gradient. This concept was first introduced by Kroner [26]
and Lee and Liu [28] in the finite-strain setting and has become a common approach employed in diverse
applications, also suitable for modeling (isotropic) swelling [1,14,20,26,27,29–31,44,52]. The plastic deformation
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depends on the phase field in such a way that the effect of swelling is purely volumetric and isotropic [20,
Subsect. 14.2].

Further, we impose time-dependent Dirichlet boundary conditions for the deformation field on some part of the
boundary. These boundary conditions can be used to investigate the influence of a variable distortion on pattern
formation during wetting and dewetting of the substrate. To treat this time dependence, we follow [15, 47] and
express the deformation v in terms of a composition with an auxiliary variable y with time-independent boundary
values. As the mechanical equation is expressed in terms of the deformation gradient F = ∇v, this leads to
another multiplicative structure in our system.

The analytical investigation of models coupling the Cahn–Hilliard equation with elasticity started few decades
ago with the works by Carrive, Miranville, and Piétrus [9], Garcke [17], and Miraville [35]. Since then, the prop-
erties of such models were studied in various configurations, see [4,18,19,22,23,37,38] for example. While all
these articles deal with the small-strain setting and thus with linear elasticity, the case of large-strain elasticity,
which we are interested in, seems to have been treated in only a few articles. In [42], related static as well as
dynamic models are studied, where the latter case requires higher-order regularization terms and no Dirichlet
boundary conditions are considered. More involved models considering additional thermodynamic effects were
studied in [43,45]. While these works investigate the systems in a Lagrangian framework, there are also articles
using an Eulerian approach, see the recent articles [2,3,44] and references therein. For a numerical analysis of
large class of biological models related to the one we study here, we refer to [12,46].

To show existence of weak solutions to the model considered here, we first construct approximate solutions
by a monolithic time-incremental scheme. We obtain solutions to the time-discretized problem as solutions
to minimization problems using the direct method of calculus of variations. Since we consider a hyperelastic
stress, which serves as a second-order regularization, polyconvexity assumptions for the elastic potential are not
required. Moreover, the consideration of a second-grade nonsimple material ensures sufficient spatial regularity
of the mechanical variable as well as a uniform lower bound for the determinant of the deformation gradient using
the theory by Healey and Krömer [21] and by Mielke and Roubíček [32]. Since the time-dependent boundary
conditions and the coupling to the phase-field lead to a non-stationary problem, the mathematical analysis
also requires increased time-regularity of the mechanical variable, which is derived from the viscous stress
terms. This framework allows us to apply a generalized Korn-type inequality, originally due to Neff [36] and
Pompe [40], which implies the temporal compactness of the mechanical variables, see also [32,50]. In summary,
this means that the hyperelastic and the viscous stress serve as a regularization, which is crucial in order to
obtain the weak formulation as the limit of Euler–Lagrange equations for the discrete minimization problems.
Although these discretized problems will be solved in terms of the variables y and ψ, the formulation of the
(time-discrete) Euler–Lagrange equations and the weak formulation of the problem will be given in terms of the
physical variables v and ψ, or rather the deformation gradient F = ∇v and ψ and their derivatives, see (2.25),
(2.26), (2.27) below.

Outline In Section 2 we present the mathematical model studied in this paper and we state the main result on
existence of weak solutions to this system. In Section 3 we examine how convergence in the auxiliary variable
y with constant boundary values transfers to the actual deformation v, and we study regularity properties of the
energy functional. The time-discrete minimization problem is introduced in Section 4, and we show existence of
minimizers and derive associated a priori bounds as well as Euler–Lagrange equations. By passing to the limit
in these equations, we conclude the proof of existence of weak solutions in Section 5.

Notation The symbol R≥0 denotes the set of nonnegative real numbers. We write | · | for the Euclidean norm
of a vector in Rd, a matrix in Rd×d or a third-order tensor in Rd×d×d, where we always consider d ∈ {2, 3}.
Moreover, GL+(d) is the subclass of Rd×d with positive determinant, and SO(d) consists of all symmetric
matrices with determinant equal to 1.

Let X be a Banach space with dual space X∗. We let 〈·, ·〉X∗×X be the corresponding dual pairing. If X is a
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Hilbert space, we further write (·, ·)X for the associated scalar product. ForM ⊂ Rd, d ∈ N an open or closed
set, the space Ck(M ;X), k ∈ N0 consists of all k-times continuously differentiable maps, and Ck,λ(M ;X)
denote corresponding Hölder spaces with exponent λ ∈ (0, 1). When X = R, we simply write Ck(M), etc.

By Ω we always denote a bounded domain in Rd with Lipschitz boundary ∂Ω and unit outer normal vector
ν. We write ∂t and ∂j = ∂xj , j = 1, . . . , d for partial derivatives in time and space, respectively. Moreover,
the divergence operator div acts on tensors of second or third order with respect to their last index, that is, for
A(x) = (Aij(x)) ∈ Rd×d and G(x) = (Gijk) ∈ Rd×d×d, we have (divA)i = ∂jAij and (divG)ij =
∂kGijk, where we use Einstein summation convention.

For p ∈ [1,∞] and k ∈ N, we use the notation Lp(Ω), W k,p(Ω), and Hk(Ω) := W k,2(Ω) for Lebesgue
spaces and Sobolev spaces of scalar functions, and we write Lp(Ω;Rd) etc. for their vector-valued analogs.
Similarly, for a Banach space X and T > 0, we write Lp(0, T ;X) and H1(0, T ;X) for Bochner–Lebesgue
spaces and Bochner–Sobolev spaces. Moreover, if ΓD ⊂ ∂Ω has positive surface measure Hd−1(ΓD) > 0,
we set

W k,p
ΓD

(Ω) = {u ∈W k,p(Ω) | u = 0 on ΓD}.

2 Main results

We first introduce the specific model we investigate in this article, and we collect the general assumptions on
the energy and dissipation potentials, the measure of swelling and the time-dependent Dirichlet data. After
introducing the functional framework, we state the result on existence of weak solutions.

2.1 The model

Consider a bounded domain Ω ⊂ Rd, d = 2, 3, describing the viscoelastic body in a reference configuration,
and a time horizon T > 0. The deformation of the body is described by the field v : (0, T )×Ω→ Rd, and the
field ψ : (0, T )×Ω→ R describes the different phases of liquid absorption that result in swelling or shrinking.
The deformation field v and the phase field ψ are coupled via a multiplicative decomposition of the deformation
gradient F = ∇v into an elastic part F e and a plastic part F p. More precisely, we let the plastic and the elastic
deformation gradients be defined by

F p = F p(ψ) = g(ψ)Id and F e = F e(v, ψ) = FF−1
p =

1

g(ψ)
∇v , (2.1)

where g is a function that acts as a measure of swelling, and Id is the (d × d)-identity tensor. In particular,
swelling is modeled as a purely volumetric and isotropic effect. Based on this decomposition, the free energy
density is given by

W (F ,∇F , ψ,∇ψ) = Wel(F e) +Why(∇F ) +Wpf(ψ,∇ψ,F ), (2.2)

where F e and F are related by (2.1). The first two terms represent elastic contributions, whereWel corresponds
to a nonlinear elastic energy depending on the elastic deformation gradient F e, and Why depends on ∇F ,
which leads to a hyperelastic stress in the evolution equations. The last term Wpf is a Ginzburg–Landau free
energy, which combines a double-well potential for ψ with a term quadratic in F−T∇ψ that corresponds to
a Korteweg stress in the deformed configuration. For the detailed properties of these potentials, we refer to
Subsection 2.2.

The evolution of the phase-field variable ψ is governed by the system

∂tψ = ∆µ in [0, T ]× Ω , (2.3a)

µ = ∂ψW (F ,∇F , ψ,∇ψ)− div
[
∂∇ψW (F ,∇F , ψ,∇ψ)

]
in [0, T ]× Ω , (2.3b)

∇µ · ν = ∇ψ · ν = 0 on [0, T ]× ∂Ω . (2.3c)
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This constitutes a Cahn–Hilliard equation, which can be regarded as an H−1-gradient flow [17, 22]. More pre-
cisely, (2.3a) is a diffusion equation for the phase-field variable ψ with constant mobility equal to 1 and chemical
potential µ, which is subject to the constitutive equation (2.3b), given as the variation of the free energy W with
respect to ψ. Moreover, (2.3c) describes Neumann boundary conditions, which ensures mass conservation.
The evolution of the deformation field v is determined by the equations

div [Σel + Σvi − div Σhy] = 0 in [0, T ]× Ω , (2.3d)

v = vD on [0, T ]× ΓD , (2.3e)

[Σel + Σvi − divs Σhy]ν = 0 on [0, T ]× ∂Ω\ΓD , (2.3f)

Σhy : (ν ⊗ ν) = 0 on [0, T ]× ∂Ω . (2.3g)

Here, (2.3d) describes a Kelvin–Voigt-type viscoelastic material at mechanical equilibrium. In particular, we
consider a quasistatical approximation that neglects inertia terms. The total stress is composed of the first-
grade elastic stress Σel, the viscous stress Σvi, and the elastic hyperstress Σhy given by

Σel = ∂FWel(F e) + ∂FWpf(ψ,∇ψ,F ), Σvi = ∂ḞV (F , Ḟ , ψ), Σhy = ∂∇FWhy(∇F ), (2.3h)

where V is a viscous stress potential that depends on the defomration gradient F , its time derivative Ḟ and the
phase-field variable ψ. By (2.3e) we prescribe the deformation at the Dirichlet part ΓD ⊂ ∂Ω of the boundary
via a (time-dependent) function vD, while by (2.3f) we have natural boundary conditions for the total stress on
the remaining part ∂Ω \ ΓD. Here, divs is the surface divergence, defined as the trace of the surface gradient
∇su = (Id− ν⊗ ν)∇u. Equation (2.3g) is a second-order Neumann-type condition for the hyperstress. For a
justification of these boundary conditions, we refer to [32] or [27, Subsect. 2.5.1]. The system is completed with
initial conditions

(ψ,v)(0) = (ψ0,v0) in Ω (2.3i)

for the phase field and the deformation.

2.2 Assumptions

For the whole article, we consider a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with Lipschitz boundary. Let the
Dirichlet part ΓD ⊂ ∂Ω of the boundary have positive surface measure Hd−1(ΓD) > 0. We further assume
the following:

(A1) Let p, q, β ∈ (1,∞) satisfy

p ≥ 2β, β > d and q ≥ βd

(β − d)
.

(A2) The elastic energy density Wel : GL+(d)→ R≥0 is twice continuously differentiable and satisfies:

(i) Growth condition: There are α, c > 0 such that for all F ∈ GL+(d) it holds

Wel(A) ≥ α|A|p + cdet(A)−q . (2.4)

(ii) Control of the stress: There is C > 0 such that for F ∈ GL+(d) it holds

|∂AWel(A)AT | ≤ C (1 +Wel(A)) . (2.5)

(iii) Uniform continuity of stress: For ε > 0 there exist δ > 0 such that for A,B ∈ GL+(d) and
|B − Id| ≤ δ it holds

|∂AWel(BA)(BA)T − ∂AWel(A)AT | ≤ ε(1 +Wel(A)) . (2.6)
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(A3) The elastic hyperstress potential Why : Rd×d×d → R≥0 is a strictly convex and continuously differen-
tiable function that satisfies:

(i) Growth conditions: There are constants γ,C > 0 such that for all G ∈ Rd×d×d it holds

γ|G|β − C ≤Why(G) ≤ C(1 + |G|β) , (2.7)

|∂GWhy(G)| ≤ C(1 + |G|β−1) . (2.8)

(ii) Uniform continuity of the hyperstress: For ε > 0, there are δ > 0 and C > 0 such that for
G,H ∈ Rd×d×d with |G−H| ≤ δ it holds

|∂GWhy(G)− ∂GWhy(H)| ≤ εC(1 + |G|β−1) . (2.9)

(A4) There are constants a, b > 0 such that the phase-field energy density Wpf : R× Rd × Rd×d → R is
given by

Wpf(ψ,∇ψ,F ) =
a

4
(ψ2 − 1)2 +

b

2
|F−T∇ψ|2 . (2.10)

(A5) The viscous stress potential V : Rd×d × Rd×d × R → R≥0 is given via a reduced potential V̂ :

Rd×d × Rd×d × R → R≥0 such that V (F , Ḟ , ψ) = V̂ (F TF , Ḟ
T
F + F T Ḟ , ψ), where V̂ is

quadratic in the second argument with

∀ψ ∈ R, ∀C, Ċ ∈ Rd×d : V̂ (C, Ċ, ψ) =
1

2
Ċ : D(C, ψ)Ċ (2.11)

for a continuous forth-order tensor D : Rd×d × R → Rd×d×d×d, and such hat there are constants
c, C > 0 with

∀ψ ∈ R, ∀C, Ċ ∈ Rd×d : c|Ċ|2 ≤ V̂ (C, Ċ, ψ) ≤ C|Ċ|2 . (2.12)

(A6) The measure of swelling g is a nondecreasing function g ∈ C1(R) such that

∃ g, g ∈ R : ∀z ∈ R : 0 < g ≤ g(z) ≤ g . (2.13)

(A7) The time-dependent boundary data vD are given as a function vD : [0, T ]×Rd → Rd with the regularity

vD ∈ C1([0, T ]; C2(Rd;Rd)) (2.14)

such that there is C > 0 with

|∇yvD(t,y)|+ |∇2
yyvD(t,y)|+ |∂t∇yvD(t,y)|+ |∂t∇2

yyvD(t,y)| ≤ C (2.15)

for all y ∈ Rd and t ∈ [0, T ], and with pointwise invertible spatial derivative∇yvD(t,y) such that

∀(t,y) ∈ [0, T ]× Rd : |∇yvD(t,y)−1| ≤ C. (2.16)

Remark 2.1. One example that satisfies the conditions in (A2) and (A3) is given by the Ogden-type elastic
energy potential Wel and the hyperstress potential Why defined as

Wel(F ) =
α

p
|F |p +

c

q
(det(F ))−q and Why(G) =

γ

β
|G|β (2.17)
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with α, c > 0 and exponents p, q, β ∈ (1,∞) as in assumption (A1). Additionally, this choice satisfies static
frame-indifference, see Remark 2.7 for more information. A natural candidate for the swelling function g could
be given by a non-decreasing function with

g(t) =


g if t ≥ 1 + δ ,

1 + at if t ∈ [−1, 1] ,

g if t ≤ −1− δ

for some a, δ > 0 and 0 < g < 1 < g. Then the volumetric swelling effect is linear in ψ for ψ ∈ [−1, 1], it
vanishes for ψ = 0, and the energetically preferred states ψ = ±1 correspond to saturated and dry phases.

Remark 2.2. By the lower bound (2.4), the energy blows up if the determinant of the deformation gradient
approaches 0. This ensures that local self-penetration is avoided. Since in our analysis the deformation field
v is continuously differentiable, this further implies its local invertibility. However, (2.4) does not prevent from
global self-penetration of the material.

Remark 2.3. In (2.5) and (2.6) we formulate assumptions on the classical derivative ∂AWel of the elastic po-
tential, which can also be regarded as the derivative with respect to the elastic part of the deformation gradient,
which will occur as the argument of Wel. However, in our model the elastic stress Σel is determined by ∂FWel,
that is, the derivative with respect to the full deformation gradient. In virtue of (2.1), these terms are related by

∂FWel(F e) = ∂AWel(F e)F
−T
p =

1

g(ψ)
∂AWel(F e) (2.18)

Similarly, we observe

∂ψWel(F e) = ∂AWel(F e)F
T∂ψ

(
1

g(ψ)

)
= −∂AWel(F e)F

T g′(ψ)
g(ψ)2

.

Remark 2.4. The upper bounds and continuity properties of the derivatives of the elastic stress and hyperstress
potentials in (2.5), (2.6), (2.8) and (2.9) will be used to identify minimizers of the time-discretized problem as
solutions of associated Euler–Lagrange equations. In the time-continuous limit, this leads to a weak formulation
of the mechanical force balance (2.3d) in a Lagrangian frame, see (2.27) below. Observe that the condition (2.5)
was used by Ball [6] for a similar purpose in the framework without a second-grade elasticity term. However,
the admissible test functions used in the weak formulation in [6] depend on the weak solution of the problem.
Instead, the formulation in a Lagrangian frame and with test functions independent of the solution, which we use
here, seems favorable from the perspective of numerical implementation.

Remark 2.5. The phase-field energy densityWpf in (2.10) is composed of a double-well potential and a gradient
term associated to a Korteweg stress. The first term favors pure phases ψ = ±1, while the second one
penalizes transitions between these phases thus modeling capillarity effects. In order to take into account the
phase-field gradient in the deformed configuration, we consider here F−T∇ψ instead of ∇ψ. Choosing a =
o(ε−1) and b = o(ε), the limit ε→ 0 formally leads to a sharp-interface model with surface tension.

Remark 2.6. Instead of (A5), we could choose the viscous potential V quadratic in Ḟ in order to simplify the
analysis. However, for a physically reasonable model, V has to satisfy dynamic frame-indifference, which means
that for all F , Ḟ ∈ Rd×d and all smooth functions t 7→ R(t) ∈ SO(d) it holds

V (RF , ∂tRF + RḞ , ψ) = V (F , Ḟ , ψ),

see also [27, Sect. 9]. This is equivalent to the existence of a reduced potential V̂ in terms of the right Cauchy–

Green tensor C = F TF and its time derivative Ċ = Ḟ
T
F + F T Ḟ as we assume in (A5). In this regard,

the quadratic structure of V̂ in 2.11, which leads to a viscous stress Σvi linear in Ċ, is the simplest choice that
is physically reasonable. Observe that we allow the forth-order tensor D to depend on C, ψ in an arbitrary
(smooth) nonlinear fashion, but even if D is constant, the viscous potential V explicitly depends on F .
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Remark 2.7. To obtain a physically reasonable model, the elastic stress potential Wel and the hyperstress
potential Why has to satisfy static frame-indifference: For all rotation matrices R ∈ SO(d) it holds

Wel(RF , ψ) = Wel(F , ψ) and Why(RG) = Why(G)

for all F ∈ Rd×d and G ∈ Rd×d×d, where (RG)jk` :=
∑d

m=1 RjmGmk`. Note that one can also formulate
the static frame-indifference of the elastic potentials and the dynamic frame-indifference of the viscous potential
(see Remark 2.6) in terms of the associated stresses Σel, Σhy and Σvi, which are given in (2.3h), in the following
way: For all rotation matrices R ∈ SO(d) it holds

Σel(RF , ψ) = RΣel(F , ψ) and Σhy(RG) = RΣhy(G) ,

and for all smooth functions t 7→ R(t) ∈ SO(d) it holds

Σvi(RF , ∂tRF + RḞ , ψ) = RΣvi(F , Ḟ , ψ)

for all F , Ḟ ∈ Rd×d and G ∈ Rd×d×d.

2.3 Functional setup

In view of the time-dependent Dirichlet conditions (2.3e) and the growth condition (2.4) for the elastic energy,
the set of admissible deformations at time t ∈ [0, T ] is given by

U(t) = {w ∈W 2,β(Ω;Rd) |w = vD(t) on ΓD, det(∇w) > 0 in Ω} , (2.19)

which is a closed subspace of W 2,β(Ω;Rd). To avoid this time-dependent function space, we introduce

Y = {y ∈W 2,β(Ω;Rd) |y = id on ΓD, det(∇y) > 0 in Ω} , (2.20)

which is again a closed subspace ofW 2,β(Ω;Rd). Under the assumption (A7), vD induces a bijective mapping
between Y and U(t) by

y 7→ v(t, ·) := vD(t,y(·)), (2.21)

see Lemma 3.1 below. In particular, v(t, x) = vD(t, x) for x ∈ ΓD for all t ∈ [0, T ], and∇v(t, ·) has positive
determinant if and only if∇y does.

The set of admissible phase fields ψ is given by

Z = H1(Ω) .

Observe that from (2.3a) and (2.3c), we can conclude conservation of mass, precisely,

∀t ∈ [0, T ] :

∫
Ω

(
ψ(t)− ψ0

)
dx = 0 .

In particular, ∂tψ has vanishing mean value, and we can formulate the Cahn–Hilliard equation (2.3a) as an
H−1-gradient flow. To this end, we introduce the mean-free function space V0 and its dual space by

V0 =
{
φ ∈ H1(Ω) |

∫
Ω
φ dx = 0

}
and Ṽ0 =

{
φ ∈ (H1(Ω))∗ | 〈φ, 1〉(H1)∗×H1 = 0

}
. (2.22a)

This allows us to define the inverse operator (−∆)−1 : Ṽ0 → V0 of

−∆ : V0 → Ṽ0 , φ 7→ (∇φ,∇·)L2(Ω). (2.22b)

The space Ṽ0 is endowed with the scalar product

〈φ1, φ2〉Ṽ0 = (∇(−∆)−1φ1,∇(−∆)−1φ2)L2(Ω) for φ1, φ2 ∈ Ṽ0 (2.22c)
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and the corresponding norm. Note that the definition in (2.22c) is suitable for constant Cahn–Hilliard mobility as
assumed for our system, but it has to be adapted for other mobilities. Moreover, each function f ∈ V0 can be
interpreted as an element of Ṽ0 via the mapping

ξ 7→
∫

Ω
f · ξ dx for ξ ∈ V0 ,

such that 〈·, ·〉Ṽ0 is also defined for elements in V0.

The free energy density given by (2.2) gives rise to the total free energy

F : [0, T ]× Y × Z → R ∪ {∞},

F (t,y, ψ) =

∫
Ω

[
Wel(F (t,y)F−1

p (ψ)) +Wpf(ψ,∇ψ,F (t,y)) +Why(∇F (t,y))
]

dx .
(2.23)

Further, the viscous dissipation V is defined via the viscous dissipation potential V and takes the form

V : [0, T ]× Y ×H1(Ω;Rd)×Z → R,

V(t,y1,y2, ψ) =

∫
Ω
V (F (t,y1),F (t,y2), ψ) dx .

(2.24)

Usually, we will consider the case y2 = ∂ty1, but other choices will be necessary in the time-discrete setting.

2.4 Existence of weak solutions

We can now define the notion of weak solutions to (2.3). For given initial data (y0, ψ0) ∈ Y × Z , a pair
(y, ψ) : [0, T ]→ Y ×Z is called a weak solution to (2.3) if

(i) y ∈ L∞(0, T ;W 2,β(Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)),

(ii) ψ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)∗),

(iii) (y(0), ψ(0)) = (y0, ψ0),

(iv) there exists µ ∈ L2(0, T ;H1(Ω)) such that for all ζ ∈ L2(0, T ;H1(Ω)) it holds∫ T

0
〈∂tψ, ζ〉(H1)∗×H1 ds = −

∫
ΩT

∇µ · ∇ζ d(s, x) , (2.25)∫
ΩT

µ ζ d(s, x) =

∫
ΩT

∂ψW (F ,∇F , ψ,∇ψ)ζ + ∂∇ψW (F ,∇F , ψ,∇ψ) · ∇ζ d(s, x) , (2.26)

(v) for all w ∈ L2(0, T ;W 2,β
ΓD

(Ω;Rd)) it holds

0 =

∫
ΩT

[
∂AWel (F e) : ∇wF−1

p + ∂FWpf(ψ,∇ψ,F )

+ ∂ḞV (t,F , ∂tF ) : ∇w + ∂GWhy(∇F ) ···∇2w
]

d(s, x) ,

(2.27)

where F (t, x) := ∇vD(t,y(t, x)), F p(t, x) := g(ψ(t, x))Id and F e := FF−1
p .

Here the initial data y0 and v0 are related by v0 = vD(0,y0). In this sense, a weak solution (y, ψ) satisfies
the initial conditions (2.3i).
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Phase separation coupled with finite-strain viscoelasticity 9

The weak formulation (2.25), (2.26) and (2.27) is in a compact form. Due to (2.1) and (2.10), more detailed
expressions for the derivatives in (2.26) are given by

∂ψW (F ,∇F , ψ,∇ψ) = −∂AWel

(
1

g(ψ)
F

)
: F

g′(ψ)

g(ψ)2
+ a(ψ3 − ψ), (2.28)

∂∇ψW (F ,∇F , ψ,∇ψ) = ∂∇ψWpf(ψ,∇ψ,F ) = bF−1F−T∇ψ. (2.29)

In (2.27) we replaced the derivative of Wel with respect to F = ∇v, which appears in the elastic stress
Σel = ∂FW , with a term involving the classical derivative of Wel, see also Remark 2.3. The corresponding
derivative of Wpf is given by

∂FWpf(ψ,∇ψ,F ) : G = −b(F−1F−T∇ψ) : (GTF−T∇ψ), G ∈ Rd×d. (2.30)

Clearly, (2.25) and (2.26) are weak formulations of (2.3a) and (2.3b) in virtue of the boundary conditions in (2.3c).
The corresponding statement can also be shown for (2.27), see [32] for details.

As the main result of this article, we show existence of weak solutions to (2.3) globally in time that satisfy an
energy-dissipation estimate. Here we require a smallness condition that involves the boundary velocity vD and
the constants α and γ occurring in the growth conditions for the elastic potential and the hyperstress potential
from (A2) and (A3).

Theorem 2.8 (Existence of weak solutions). Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain, let
Hd−1(ΓD) > 0, and let the assumptions (A1)–(A7) hold true. Then there is δ0 > 0 such that if

α−1γ‖∇2vD‖βL∞((0,T )×Ω) < δ0, (2.31)

then there exists a weak solution (y, ψ) to system (2.3) such that the energy-dissipation estimate

F (t,y(t), ψ(t)) +

∫ t

0

∫
Ω

1

2
|∇µ|2 dx ds+

∫ t

0
V(s,y(s), ∂ty(s), ψ(s)) ds

≤ F (0,y0, ψ0) +

∫ t

0
∂tF (s,y(s), ψ(s)) ds

(2.32)

holds for a.a. t ∈ [0, T ].

The proof of Theorem 2.8 will be given in Section 5.

If (y, ψ) is a weak solution as in Theorem 2.8, then we can use the transformation (2.21), to obtain the actual
deformation v(t, x) := vD(t,y(x)) from the auxiliary variable y. Then (v, ψ) has the same regularity as
(y, ψ) and satisfies (2.25), (2.26) and (2.27) with F := ∇v. Thus, (v, ψ) can also be considered a weak
solution to (2.3). Nevertheless, we chose the formulation of Theorem 2.8 in terms of the auxiliary variable y since
it enables us to identify the term ∂tF in the energy-dissipation inequality (2.32) as the power of external forces
due to the time-dependent boundary conditions. Moreover, (2.32) reveals that the energetic principles behind
the time evolution of the system: It combines energy storage via the free energy F with energy dissipation due
to two effects, one arising from the chemical potential µ, and the other due to the viscosity potential V via (2.24).

Observe that the smallness condition (2.31) is trivially satisfied if vD(t, ·) is affine linear for every t ∈ [0, T ]
since then ∇2vD = 0. In particular, the prescription of time-dependent dilatation or shearing of the boundary
part ΓD is admissible without size restrictions. If∇2vD = 0 is not satisfied, the second-order gradient∇2v of
the deformation also contains first-order derivatives of the auxiliary variable y, see (3.1) below. These first-order
terms thus appear in the hyperstress potentialWhy and the smallness condition ensures their compensation by
the elastic potential Wel due to the growth condition in assumption (A2), so that the free energy F is coercive
in terms of the variables (y, ψ), as shown in Lemma 3.4 below.
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3 Preliminary results

In this section, we first study how convergence properties can be transferred from the auxiliary variable y or the
phase-field ψ to convergence of associated functions. Afterwards, we derive several properties of the energy
functional F .

3.1 Convergence properties

By the construction in (2.21), the deformation gradient has a multiplicative structure when expressed in the
auxiliary variable y, namely

F (t, x) = ∇v(t, x) = ∇yvD(t,y(t, x))∇y(t, x) for (t, x) ∈ [0, T ]× Ω , (3.1)

where∇yvD denotes the derivative of vD with respect to the second argument y. The second-order gradient
of v : Ω→ Rd, which we denote by∇F = ∇2v, is a third-order tensor with components

(∇F )ijk =
(
∇2v

)
ijk

= ∂j∂kvi = (∇yj)
T (∇2

yyvD,i)(∇yk) + (∇yvD,i)
T∂j∂ky (3.2)

for i, j, k ∈ {1, . . . , d}.

In the following lemma, we compare Lebesgue and Sobolev norms of y and v = vD(t,y). In particular, we
conclude that the relation (2.21) induces a homeomorphism between Y and U(t) defined in (2.19) and (2.20),
and that strong convergence transfers from one space to the other.

Lemma 3.1. Let vD be as in (A7). Then vD(t.·) is bijective for all t ∈ [0, T ], and there is a constant C > 0,
independent of t, such that for all y ∈ Y and v(t, x) = vD(t,y(x)) and all p ∈ [1,∞), we have

‖v‖W 1,p(Ω) ≤ C(1 + ‖y‖W 1,p(Ω)), (3.3)

‖y‖W 1,p(Ω) ≤ C(1 + ‖v‖W 1,p(Ω)), (3.4)

‖∇2v‖Lp(Ω) ≤ C(‖∇y‖2L2p(Ω) + ‖∇2y‖Lp(Ω)), (3.5)

‖∇2y‖Lp(Ω) ≤ C(‖∇v‖2L2p(Ω) + ‖∇2v‖Lp(Ω)). (3.6)

Moreover, y 7→ vD(t,y) defines a homeomorphic mapping from Y to U(t) if β ∈ (1,∞) with β ≥ d/2.

Proof. Bijectivity of vD(t, ·) follows directly from the invertibility of ∇vD(t, ·) in all points and Hadamard’s
inverse function theorem. Since∇vD(t, ·) and its matrix inverse are bounded, from (3.1) we directly obtain

‖∇v‖Lp(Ω) ≤ C‖∇y‖Lp(Ω), ‖∇y‖Lp(Ω) ≤ C‖∇v‖Lp(Ω). (3.7)

Moreover, we can use Poincaré’s inequality to conclude

‖v‖Lp(Ω) ≤ ‖v − vD‖Lp(Ω) + ‖vD‖Lp(Ω) ≤ C‖∇(v − vD)‖Lp(Ω) + ‖vD‖Lp(Ω) ≤ C(1 + ‖∇v‖Lp(Ω))

and

‖y‖Lp(Ω) ≤ ‖y − id‖Lp(Ω) + ‖id‖Lp(Ω) ≤ C‖∇(y − id)‖Lp(Ω) + ‖id‖Lp(Ω) ≤ C(1 + ‖∇y‖Lp(Ω)).

Combining these estimates yields (3.3) and (3.4). Similarly, (3.2) and (2.15) directly yield (3.5). By multiplying
with the inverse matrix (∇vD)−1 we further deduce from (3.2) that

∂j∂ky = (∇vD)−1
(
∂j∂kv − (∇yj ⊗∇yk) : ∇2vD

)
, (3.8)

which allows to conclude (3.6) from (2.15) and the first-order estimate (3.7).
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Phase separation coupled with finite-strain viscoelasticity 11

If β ≥ d/2, we have W 1,β(Ω) ↪→ L2β(Ω). Hence, the previous estimates show that y ∈ W 2,β(Ω) if and
only if v(t) = vD(t,y) ∈W 2,β(Ω). Moreover, since

det(∇v(t)) = det(∇yvD(t,y)) det(∇y),

we see that det(∇v(t)) > 0 if and only if det(∇y) > 0. Therefore, we obtain the bijectivity of the mapping
Y → U(t), y 7→ vD(t,y). To show its continuity, consider a convergent sequence (yk)k ⊂ Y with (strong)
limit y ∈ Y , and let vk(t) = vD(t,yk) and v(t) = vD(t,y). We can choose a subsequence (ykm)m
converging a.e., and using the continuity properties of vD, we obtain vkm(t, x) → v(t, x), ∇vkm(t, x) →
∇v(t, x) and ∇2vkm(t, x) → ∇2v(t, x) a.e. as m → ∞ from (3.1) and (3.2). In virtue of the Sobolev
embeddings W 1,β(Ω) ↪→ L2β(Ω), we can use the previous estimates and Pratt’s theorem (see [11, Ch. 6,
Satz 5.1] for instance) to conclude that vkm(t) → v(t) in U(t) as m → ∞. Since the limit is the same for
any choice of subsequence, we obtain convergence of the original sequence (vk)k. To show continuity of the
inverse mapping from U(t) to Y , we can proceed analogously and make use of (3.8) instead of (3.2). This
completes the proof.

The following result is fundamental to transfer weak convergence properties of the auxiliary variable y ∈ Y to
the deformation v = vD(t,y) ∈ U(t).

Lemma 3.2. Let assumption (A7) hold true. Let y ∈ Y , and let (yk)k∈N ⊂ Y be weakly convergent with
yk ⇀ y in W 2,β(Ω;Rd) for β > d. Then, for all t ∈ [0, T ] it follows

vk(t) = vD(t,yk) ⇀ vD(t,y) = v(t) in U(t) . (3.9)

Proof. Due to the compact embedding W 2,β(Ω;Rd) b C1(Ω;Rd), by Rellich’s theorem, we have

yk → y ,∇yk → ∇y uniformly in Ω as k →∞ . (3.10)

Since vD(t, ·) and∇yvD(t, ·) are continuous by (A7), we conclude the convergence

vk(t) = vD(t,yk)→ vD(t,y) = v(t) in C(Ω;Rd) ,
∇vk(t) = ∇yvD(t,yk)∇yk → ∇yvD(t,y)∇y = ∇v(t) in C(Ω;Rd×d)

(3.11)

for all t ∈ [0, T ]. Moreover, for i, j, ` ∈ {1, . . . , d}, we have(
∇2vk(t, x)

)
ij`

= (∇yk)
T
j (∇2

yyvD,i(t,yk))(∇yk)` + (∇yvD,i(t,yk))`
T (∇2

j`yk) .

The first term converges strongly in C(Ω) by the regularity assumptions on vD and the uniform convergence
from (3.10), and weak convergence of the second term in Lβ(Ω) follows from (3.11) and the weak convergence
∇2yk ⇀ ∇2y. This shows the weak convergence

∇2vk(t) ⇀ ∇2v(t) in Lβ(Ω;Rd×d×d) (3.12)

for t ∈ [0, T ]. Summarizing (3.11) and (3.12) yields (3.9).

Next we study the convergence of the plasticity term g(ψ) when we have weak convergence in the phase-field
variable ψ.

Lemma 3.3. Let (ψk)k∈N ⊂ H1(Ω) and ψ ∈ H1(Ω) such that ψk ⇀ ψ in H1(Ω) as k →∞. Let g satisfy
assumption (A6), and define gk(x) := g(ψk(x)) and g∞(x) := g(ψ(x)). The following properties are valid:

(i) For all q ∈ [1, 6) it holds

gk → g∞ and
1

gk
→ 1

g∞
in Lq(Ω) as k →∞ (3.13)
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(ii) Let p ∈ [1,∞) and let (Gk)k∈N ⊂ Lp(Ω;Rd×d) and G ∈ Lp(Ω;Rd×d) such that Gk → G in
Lp(Ω;Rd×d). Then

1

gk
Gk →

1

g∞
G in Lp(Ω;Rd×d) . (3.14)

(iii) Let p ∈ (1,∞) and let (F k)k∈N ⊂ Lp(Ω;Rd×d) and F ∈ Lp(Ω;Rd×d) such that F k ⇀ F in
Lp(Ω;Rd×d). Then

1

gk
F k ⇀

1

g∞
F in Lp(Ω;Rd×d) . (3.15)

Proof. From Rellich’s compactness theorem, we first conclude that ψk → ψ in Lq(Ω) for q ∈ [1, 6), with
d ∈ {2, 3}. Since |g′| is bounded due to assumption (A6), we can apply the mean-value theorem to conclude
that

‖g(ψk)− g(ψ)‖Lq(Ω) ≤ sup
z∈R
|g′(z)|‖ψk − ψ‖Lq(Ω) → 0 as k →∞ .

Moreover, using that g is bounded from below by (2.13), we obtain

‖ 1

g(ψk)
− 1

g(ψ)
‖Lq(Ω) ≤

1

g2
‖g(ψk)− g(ψ)‖Lq(Ω) → 0 as k →∞ ,

which shows (i).

Concerning (ii), we estimate

‖g−1
k Gk − g−1

∞ G‖Lp(Ω) ≤ ‖g−1
k (Gk −G)‖Lp(Ω) + ‖(g−1

k − g
−1
∞ )G‖Lp(Ω) → 0 as k →∞ ,

where the first term converges due to the boundedness of g from below, and the second term converges by
Lebesgue’s theorem. We thus conclude (3.14).

To show (iii), let H ∈ Lp′(Ω;Rd×d) be arbitrary with p′ = p/(p−1). From (3.13) we conclude that g−1
k H →

g−1
∞ H in Lp

′
(Ω). We thus obtain∫

Ω

(
1

gk
F k −

1

g∞
F

)
: H dx =

∫
Ω

(F k − F ) :
1

g∞
H dx+

∫
Ω
F k :

(
1

gk
H − 1

g∞
H

)
dx→ 0

as k →∞. This implies the weak convergence asserted in (3.15) and concludes the proof.

3.2 Properties of the energy functional

We next prove additional properties of the energy functional F defined in (2.23). At first, we show weak se-
quential compactness of the sublevel sets provided that the smallness condition (2.31) is satisfied.

Lemma 3.4 (Coercivity and weak lower semiconituity of F ). Let the assumptions (A1)–(A4), (A6) and (A7) hold
true. Then there exists δ0 > 0 such that if α−1γ‖∇2vD‖βL∞((0,T )×Ω) < δ0, then the following properties are
valid:

(i) For every t ∈ [0, T ], the functional F (t, ·, ·) is coercive on Y×Z in such a way that there are constants
c, c1 > 0 such that for all t ∈ [0, T ] it holds

F (t,y, ψ) ≥ c
(
α‖y‖p

W 1,p(Ω)
+ ‖ det(∇y)−1‖qLq(Ω) + γ‖y‖β

W 2,β(Ω)
+ ‖ψ‖2H1(Ω) − c1

)
(3.16)

for all (y, ψ) ∈ Y × Z .

(ii) For every t ∈ [0, 1], the functional F (t, ·, ·) : Y × Z → R is weakly lower continuous and its sublevel
sets are weakly sequentially compact.
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Proof. At first, we show coercivity. With the notation in (2.1), with (2.21) and with the definition of Wel, Wpf ,
Why in (2.17) and (2.10), and for g as in (2.13), we obtain

F (t,y, ψ) =

∫
Ω

(
Wel(F e) +

a

4
(ψ2 − 1)2 +

b

2
|F−T∇ψ|2 +Why(∇F )

)
dx

≥
∫

Ω

( α

2pgp
|∇v|p +

cgdq

q
J−q +

a

8
ψ4 − a

4
+ ĉ|∇ψ|2

)
dx+

cγ

β
‖∇F ‖β

Lβ(Ω)
,

(3.17)

with v(t, x) = vD(t,y(x)), F = ∇v and J = det(F ), where we used Young’s inequality to estimate

(ψ2 − 1)2 ≥ ψ4

2 − 1 as well as

|F−T∇ψ|2 ≥ ε|∇ψ|2 − ε2

4
|F |2 ≥ ε|∇ψ|2 − cpε

2

4
(1 + |F |p)

for some cp > 0, and we choose ε2 = 2α
cppgp

. For the first term on the right-hand side of (3.17) we use (3.1),
(2.16) and Poincaré’s inequality to estimate

‖∇v‖Lp(Ω) ≥ C‖∇y‖Lp(Ω) ≥ C(‖∇(y − id)‖Lp(Ω) − ‖∇id‖Lp(Ω))

≥ C(‖(y − id)‖W 1,p(Ω) − ‖∇id‖Lp(Ω))

≥ C‖y‖W 1,p(Ω) − c̃ .

Moreover,∇v(t) = ∇yvD(t,y)∇y implies

J = det
(
∇yvD(t,y)

)
det(∇y) ≤ C det(∇y)

by (2.15), and by the boundedness of Ω and Young’s inequality we deduce

‖ψ‖4L4(Ω) ≥ C‖ψ‖
4
L2(Ω) ≥ C

(
‖ψ‖2L2(Ω) − 1

)
.

Using the last three inequalities in (3.17) leads to

F (t,y, ψ) ≥ c
(
α‖y‖p

W 1,p(Ω)
+ ‖ det(∇y)−1‖qLq(Ω) + ‖ψ‖2W 1,2(Ω) − c1

)
+
cγ

β
‖∇F ‖β

Lβ(Ω)
. (3.18)

To treat the second-order term, we set B := ‖∇2vD‖L∞((0,T )×Ω) and use (3.2) to observe

‖∇F ‖Lβ(Ω) ≥ ‖∇yv
T
D∇2y‖Lβ(Ω) − ‖∇yT∇2

yyvD∇y‖Lβ(Ω) ≥ C‖∇2y‖Lβ(Ω) −B‖∇y‖2L2β(Ω) .

Due to p ≥ 2β, by Young’s inequalities, it follows

‖∇y‖2β
L2β(Ω)

≤ C(1 + ‖∇y‖pLp(Ω)) ,

and similarly,

‖y‖p
W 1,p(Ω)

≥ 1

2
‖y‖p

W 1,p(Ω)
+ c‖y‖β

W 1,β(Ω)
− c̃ .

Combining these inequalities with (3.18), we obtain

F (t,y, ψ) ≥ (cα− CγBβ)‖y‖W 1,p(Ω) + c
(
‖ det(∇y)−1‖qLq(Ω) + ‖ψ‖2W 1,2(Ω) + ‖y‖β

W 1,β(Ω)
− c1

)
,

which yields (3.16) if α−1γBβ is sufficiently small.

To show weak lower semicontinuity, we consider F (t,y, ψ) as a functional in (F , ψ). Since W is a convex
function in (∇ψ,∇F ), and weak convergence of a sequence (yk) in Y yields weak convergence of (F k) =
(∇vD(t,yk) in W 1,β(Ω,Rd×d by Lemma 3.2, we obtain weak lower semicontinuity of F (t, ·, ·), see [10,
Thm. 8.16] for instance. The weak sequential compactness of sublevel sets now follows from the coercivity
property by a standard argument.
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Next we examine the time regularity of the energy functional F . For this, we use the decomposition

F (t,y, ψ) =

∫
Ω
Wel(F e) dx+

∫
Ω
Wpf(ψ,∇ψ,F ) dx+

∫
Ω
Why(∇F ) dx

=: Fel(t,y, ψ) + Fpf(t,y, ψ) + Fhy(t,y),

where F = ∇yvD(t,y)∇y, F p = g(ψ)Id and F e = FF−1
p .

Lemma 3.5. Let the assumptions (A1), (A2), (A3), (A6), (A7) be satisfied, and let (y, ψ) ∈ Y × Z . Then
F (·,y, ψ) ∈ C1([0, T ]) with

∂tFel(t,y, ψ) =

∫
Ω
∂AWel(F e)F

T
e :
[
∂t∇yvD(t,y))(∇yvD(t,y))−1

]
dx,

∂tFpf(t,y, ψ) =

∫
Ω
∂FWpf(ψ,∇ψ,F ) : ∂tF dx,

∂tFhy(t,y) =

∫
Ω
∂GWhy(∇F ) ···∂t∇F dx .

(3.19)

Moreover, there exist constants c0, c1 > 0 such that

|∂tF (t,y, ψ)| ≤ c1 (F (t,y, ψ) + c0) , (3.20)

for every t ∈ [0, T ]. Additionally, on sublevel sets, F (·,y, ψ) is Lipschitz continuous and ∂tF (·,y, ψ) is
uniformly continuous in the following sense: Let F > 0 and ε > 0. There exist CF > 0 and δ > 0 such that
for all (y, ψ) ∈ Y × Z with F (t,y, ψ) ≤ F for some t ∈ [0, T ], it holds

|F (t,y, ψ)−F (s,y, ψ)| ≤ CF |t− s| , (3.21)

for all s ∈ [0, T ], and
|∂tF (t,y, ψ)− ∂tF (s,y, ψ)| < ε (3.22)

for all t, s ∈ [0, T ] with |t− s| < δ.

Estimate (3.20) shows that the power of the external forces ∂tF , in terms of the Dirichlet data, can be controlled
by the energy.

Proof of Lemma 3.5. We first note that for all y ∈ Y we have y ∈ C1(Ω;Rd), and together with (2.7) and
(2.13) we conclude that F (t,y, ψ) <∞ for all t ∈ [0, T ] and (y, ψ) ∈ Y × Z . Moreover, t 7→ F (t,y, ψ)
is continuous due to regularity properties of vD from (A6). To show the differentiability and the estimate (3.20),
we fix t ∈ [0, T ]. For h ∈ R such that t+ h ∈ [0, T ], the difference quotient is given by

1

h
(Fel(t+ h,y)−Fel(t,y)) =

∫
Ω

1

h

∫ h

0
∂AWel(F e(t+ θ, x)) : ∂t(F e(t+ θ, x)) dθ dx ,

with F e(t + h, x) = 1
g(ψ(x))∇yvD(t + h,y(x))∇y(x). Using (2.14), we find that the integrand on the

right-hand side converges to

∂AWel(F e(t, x)) : ∂tF e(t, x) = ∂AWel(F e(t, x))F e(t, x)T : ∂t∇yvD(t,y(x)))(∇yvD(t,y(x)))−1

as h → 0. From (2.5) and (A7), we further obtain an integrable upper bound such that by dominated conver-
gence we conclude the existence of ∂tFel as in (3.19) and estimate (3.20) for F replaced with Fel.

For the phase-field energy, we can proceed in the very same way to determine the time derivative ∂tFpf . From
the formula (2.30) we then conclude

|∂tFpf(t,y, ψ)| ≤ b
∫

Ω

∣∣∂tFF−1| |F−T∇ψ|2 dx

≤ ‖∂t∇yvD(t,y)(∇yvD(t,y))−1‖L∞(Ω)Fpf(t,y, ψ).
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Due to the bounds in (A7), this yields estimate (3.20) for F replaced with Fpf .

We next calculate the time derivative of the hyperelasticity term Fhy using the assumption (A3). For t and h as
above, the difference quotient is given as

1

h
(Fhy(t+ h,y)−Fhy(t,y)) =

∫
Ω

1

h

∫ h

0
∂GWhy(∇F (t+ θ, x)) ···∂t(∇F (t+ θ, x)) dθ dx ,

with∇F (t, x) = ∇2v(t, x) calculated in (3.2). Clearly, the integrand converges to

∂GWhy(∇F (t, x)) ···∂t(∇F (t, x))

as h → 0, due to the regularity of vD from (2.14). In order to perform the limit passage also in the spatial
integral, we need an integrable upper bound. For this purpose, we derive from (3.2) that

∂t (∇F (t+ θ, ·))ijk = (∇yj)
T∂t(∇2

yyvDi(t+ θ,y))(∇yk) + ∂t(∇yvDi(t+ θ,y))T (∇2
jky) .

Due to the assumptions (A3) and (A7), this implies∣∣∂GWhy(∇F (t+ θ, x)) ···∂t(∇F (t+ θ, x))
∣∣ ≤ C(1 + |∇F (t+ θ, x)|β−1)(|∇y|2 + |∇2y|)
≤ C(|∇y(x)|2 + |∇2y(x)|+ |∇y(x)|2β + |∇2y(x)|β) ,

≤ C(1 + |∇y(x)|2β + |∇2y(x)|β) ,

which is an integrable bound since y ∈ Y ⊂ W 2,β(Ω;Rd) with β > d implies ∇2y ∈ Lβ(Ω;Rd×d×d) and
∇y ∈ L2β(Ω;Rd×d) by Sobolev embeddings. Hence, we can apply dominated convergence to conclude time
differentiability of Fhy with ∂tFhy given in (3.19). Using the previous estimate, we further find that

|∂tFhy(t,y)| ≤
∫

Ω
|∂GWhy(∇F ) ···∂t(∇F )| dx ≤ C

∫
Ω

1 + |∇y(x)|2β + |∇2y(x)|β dx.

Since 2β ≤ p, Young’s inequality implies

‖∇y‖2β
L2β(Ω;Rd×d)

≤ ‖∇y‖2β
Lp(Ω;Rd×d)

≤ C(1 + ‖∇y‖p
Lp(Ω;Rd×d)

),

and with Lemma 3.1 we obtain

|∂tFhy(t,y)| ≤ C
(
1 + ‖∇y‖pLp(Ω) + ‖∇F ‖β

Lβ(Ω)

)
≤ C(1 + Fel(t,y, ψ) + Fhy(t,y)) .

In total, we conclude the full estimate (3.20) for t ∈ [0, T ].

By Gronwall’s inequality applied to the functions t 7→ ± (F (t,y, ψ) + c0) we further conclude

|F (t,y, ψ)−F (s,y, ψ)| ≤ (exp (c1|t− s|)− 1) (F (t,y, ψ) + c0) (3.23)

for all s, t ∈ [0, T ], and the Lipschitz estimate (3.21) now follows from (3.23) and the elementary estimate
eτ − 1 ≤ τeτ for τ ∈ R since F (t,y, ψ) ≤ F implies

|F (t,y, ψ)−F (s,y, ψ)| ≤ (exp (c1|t− s|)− 1) (F + c0) ≤ c1|t− s| ec1T (F + c0) .

It remains to verify the asserted uniform continuity of ∂tF (·,y, ψ) on sublevel sets. We introduce

F e(t) = ∇vD(t,y)∇yF−1
p ,

L(t) = (∇∂tvD(t,y))[∇vD(t,y)]−1 ,

K(A) = ∂AWel(A)AT .
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Then ∂tFel can be expressed as

∂tFel(t,y, ψ) =

∫
Ω
K(F e(t))F

−1
p : L(t) dx .

Let ε̂ > 0 be arbitrary. From (2.14) we deduce that t 7→ ∇vD(t,y) ∈ C(Ω;Rd×d) and t 7→ L(t) ∈
C(Ω;Rd×d) are uniformly continuous, so that for any ε̃ > 0 there is δ̃ > 0 such that |t− s| < δ̃ implies

|L(t, x)−L(s, x)| ≤ ε̃ , |F e(s, x)F−1
e (t, x)− Id| ≤ ε̃ for x ∈ Ω .

Therefore, for any ε > 0, we choose δ̃ sufficiently small such that we can employ (2.6) to ensure

|K(F e(t))−K(F e(s))| =
∣∣K(F e(t)−K

(
[F e(s)F e(t)

−1]F e(t)
)∣∣ ≤ ε(1 +Wel(F e(t))

)
for |t− s| < δ̃. Using assumption (A6) and (2.5), we then have

|∂tFel(t,y, ψ)− ∂tFel(s,y, ψ)|

≤ C
∫

Ω
(|K(F e(t))−K(F e(s))| |L(s)|+ |K(F e(t))| |L(t)−L(s)|) dx

≤ C
∫

Ω
ε
(
1 +Wel(F e(t))

)
+ ε̃
(
c+Wel(F e(t))

)
dx

≤ C (ε+ ε̃) (1 + Fel(t,y, ψ)) ≤ ε̂

for |t− s| < δ̃ if ε, ε̃ > 0 are sufficiently small. For the time derivative of Fpf and Fhy, we proceed similarly,
also using (2.8) and (2.9). In total we obtain (3.22), which finishes the proof.

From previous results, we conclude the following convergence property of ∂tF .

Lemma 3.6. Let α−1γ‖∇2vD‖βL∞((0,T )×Ω) < δ0 with δ0 as in Lemma 3.4. For each t ∈ [0, T ] and all

sequences ψm ⇀ ψ in Z , ym ⇀ y in Y such that F (t,ym, ψm)→ F (t,y, ψ), we have

∂tF (t,ym, ψm)→ ∂tF (t,y, ψ) as m→∞ .

Proof. By using [15, Prop. 3.3], the statement is a direct consequence of the lower semicontinuity of F(t, ·, ·)
shown in Lemma 3.4 and the uniform continuity of ∂tF on sublevel sets as shown in Lemma 3.5.

We next show the Gateaux differentiability of the free energy. Since we are interested in the derivative with
respect to the displacement v rather than the auxiliary variable y, we introduce the free energy as a function of
(v, ψ), namely

E : W 2,β(Ω;Rd)×H1(Ω)→ R ∪ {∞},

E (v, ψ) =

∫
Ω
Wel(

1
g(ψ)∇v) +Wpf(ψ,∇ψ.F ) +Why(∇2v) dx .

(3.24)

Then it is clear that E (v, ψ) = F (t,y, ψ) if v = vD(t,y). To obtain simple formulas, we again use the
notation ∂FWel(F e), which denotes the derivative with respect to the full deformation gradient F = ∇v, in
contrast to ∂AWel(F e), which is the derivative of Wel with respect to the entire argument F e = FF−1

p (ψ),
see also Remark 2.3.

Lemma 3.7. Let v ∈ U(t) and t ∈ [0, T ], and let ψ ∈ Z . Then E is Gateaux-differentiable in (v, ψ), and for

(w, ζ) ∈W 2,β
ΓD

(Ω;Rd)×H1(Ω) it holds

〈DvE (v, ψ),w〉 =

∫
Ω

(
∂FWel(F e) + ∂FWpf(ψ,∇ψ,F )

)
: ∇w + ∂GWhy(∇F ) ···∇2w dx ,

〈DψE (v, ψ), ζ〉 =

∫
Ω
∂ψW (F ,∇F , ψ,∇ψ)ζ + ∂∇ψWpf(ψ,∇ψ,F ) · ∇ζ dx ,

(3.25)

where more explicit formulas for ∂FWel, ∂FWpf , ∂ψW and ∂∇ψWpf are given in (2.18), (2.30), (2.28) and
(2.29).
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Proof. For v ∈ U(t), ψ ∈ Z and w ∈W 2,β
ΓD

(Ω;Rd) we first consider the difference quotient

1

h

(
E (v + hw, ψ)− E (v, ψ)

)
=

∫
Ω

1

h

∫ h

0
∂AWel

(
1

g(ψ)(∇v + θ∇w)
)

: ∇w 1
g(ψ) + ∂GWhy(∇2v + θ∇2w) ···∇2w dθ dx

for |h| > 0 small. Due to Sobolov embeddings, we have v,w ∈ C1(Ω), so that ∇v and det(∇v)−1 as
well as ∇v + θ∇w and det(∇v + θ∇w)−1 are uniformly bounded for θ sufficiently small. Moreover, the
bound (2.8) of ∂GWhy yields a uniform bound for ∂GR(∇2v+ θ∇2w) ···∇2w. Therefore, we pass to the limit
h→ 0 by dominated convergence and obtain the asserted derivative DvE .

Now let ζ ∈ H1(Ω) and h > 0, and consider the difference quotient

1

h

(
E (v, ψ + hζ)− E (v, ψ)

)
=

∫
Ω

1

h

∫ h

0
∂ψWel

(
1

g(ψ+θζ)∇v
)

: ∇v g′(ψ+θζ)
g(ψ+θζ)2

ζ

+ ∂ψWpf(ψ + θζ,∇ψ + θ∇ζ,∇v)ζ + ∂∇ψWpf(ψ + θζ,∇ψ + θ∇ζ,∇v) · ∇ζ dθ dx.

For the first term, we can derive an integrable bound since ∇v and 1
g and g′ are bounded due to Sobolev

embeddings and assumption (A6). An integrable bound for the second term can be derived from the Sobolev
embedding H1(Ω) ↪→ L4(Ω) and the definition of Wpf in (2.10). We can thus pass to the limit h → 0 by
dominated convergence, which yields the claimed formula for DψE .

4 The time-discretized system

Using an incremental minimization scheme, we derive solutions to a time discretization of the weak formulation
of (2.3). We show the existence of these minimizers by the direct method of calculus of variations. Subsequently,
we show regularity properties of the time interpolants associated to the discrete solutions, and we derive uniform
bounds. For the whole section, we assume that the assumptions (A1)–(A7) are satisfied.

We consider an equidistant partition 0 = t0M < t1M < · · · < tMM = T of the time interval [0, T ] with time step
size τM = T

M , where M ∈ N controls the discretization fineness, such that

tmM = mτM =
mT

M
, m ∈ {0, 1, . . . ,M} .

We let (y0, ψ0) ∈ Y × Z be an initial datum. To obtain the time-discrete approximate solutions, for each
m ∈ {1, . . . ,M} we iteratively solve the minimization problem

(ymM , ψ
m
M ) ∈ argmin

(y,ψ)∈Y×Zψ0

FmM (y, ψ) (4.1)

for the nonlinear functional

FmM (y, ψ) = F (tmM ,y, ψ) + 1
2τM
‖ψ − ψm−1

M ‖2
Ṽ0

+ τMV
(
tmM ,y

m−1
M ,

y−ym−1
M

τM
, ψm−1

M

)
, (4.2)

where we set Zψ0 := {φ ∈ H1(Ω) |
∫

Ω(φ− ψ0) dx = 0}. The space Ṽ0 and the corresponding norm were
defined in (2.22). We first show existence of these minimizers under the smallness condition from Lemma 3.4.

Lemma 4.1. Let (y0, ψ0) ∈ Y × Z . Then there is δ0 > 0 such that if the smallness condition (2.31) holds,
then for every M ∈ N and m ∈ {1, . . . ,M} there is a minimizer (ymM , ψ

m
M ) ∈ Y × Zψ0 of FmM defined

in (4.2).
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Proof of Lemma 4.1. The setY×Zψ0 is a closed and convex subset ofW 2,β(Ω;Rd)×H1(Ω). In Lemma 3.4
we showed that F (t, ·, ·) has weakly sequentially compact sublevel sets if (2.31) holds for δ0 > 0 sufficiently
small. The additional terms in (4.2) maintain these properties due to their quadratic structure, see also assump-
tion (A5), so that the direct method of calculus of variations yields the existence of minimizers of (4.2) for every
m ∈ {1, . . . ,M} iteratively.

From the minimizers obtained in Lemma 4.1, we construct the piecewise constant interpolants (yM , ψM ),
(y

M
, ψ

M
) and the piecewise linear interpolants (ŷM , ψ̂M ) on [0, T ] by

ψM (t) = ψmM for t ∈ (tMm−1, t
m
M ] ,

ψ
M

(t) = ψm−1
M for t ∈ [tMm−1, t

m
M ) ,

yM (t) = ymM for t ∈ (tMm−1, t
m
M ] ,

y
M

(t) = ym−1
M for t ∈ [tMm−1, t

m
M ) ,

ψ̂M (t) =
t− tm−1

M

τM
ψmM +

tmM − t
τM

ψm−1
M for t ∈ (tMm−1, t

m
M ] ,

ŷM (t) =
t− tm−1

M

τM
ymM +

tmM − t
τM

ym−1
M for t ∈ (tMm−1, t

m
M ] ,

(4.3a)

and the interpolant for the chemical potential is

µM (t) = −(−∆)−1(∂tψ̂M (t)) + λM (t) , (4.3b)

where λM (t) is a Lagrange multiplier originating from the conservation of mass and determined by

λM (t) =
1

|Ω|

∫
Ω
∂ψWel(∇vMF−1

p (ψM )) + ∂ψWpf(ψM ,∇ψM ,∇vM ) dx . (4.3c)

Here we consider the inverse of the Laplace operator−∆ : V0 → Ṽ0 introduced in (2.22b), and since ∂tψ̂M (t)
is mean-free by construction, equation (4.3b) yields a well-defined object µM (t) ∈ H1(Ω) for all t ∈ [0, T ].

We next derive the equations satisfied by the interpolants, which correspond to Euler–Lagrange equations for
the solutions to the minimization problem (4.1). To simplify notation, we further introduce

vM (t) = vD(t,yM (t)), vM (t) = vD(t,y
M

(t)), v̂M (t) = vD(t, ŷM (t)),

FM (t) = ∇vM (t), FM (t) = ∇vM (t), F̂M (t) = ∇v̂M (t),

and F e,M (t) = FM (t)F p(ψ(t))−1.

Lemma 4.2. Let M ∈ N and let the interpolants (4.3) be constructed from the solutions (ymM , ψ
m
M , µ

m
M )Mm=1

to (4.1). Then for all t ∈ [0, T ] and ζ ∈ H1(Ω), w ∈W 2,β
ΓD

(Ω;Rd) the identities∫
Ω
∂tψ̂M (t)ζ dx = −

∫
Ω
∇µM (t) · ∇ζ dx , (4.4)∫

Ω
µM (t)ζ dx =

∫
Ω

[
∂ψW (FM (t),∇FM (t), ψM (t),∇ψM (t))ζ

+ ∂∇ψWpf(ψM (t),∇ψM (t),FM (t)) · ∇ζ
]

dx ,

(4.5)

0 =

∫
Ω

[
∂FWel

(
F e,M (t)

)
: ∇w + ∂FWpf

(
ψM (t),∇ψM (t),∇FM (t)

)
: ∇w

+ ∂GWhy(∇FM (t)) ···∇2w + ∂ḞV (FM (t), ∂tF̂M (t), ψ
M

(t)) : ∇w
]

dx

(4.6)
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hold, and the energy-dissipation inequality

F (t,yM (t), ψM (t)) +

∫ t

0

∫
Ω
|∇µM (s, x)|2 dx ds

+

∫ t

0

∫
Ω
V (FM (s, x), ∂tF̂M (s, x), ψ

M
(s, x)) dx ds

≤ F (0,y0, ψ0) +

∫ t

0
∂tF (s,y

M
(s), ψ

M
(s)) ds

(4.7)

is valid.

Proof of Lemma 4.2. By (4.3b), the discrete chemical potential satisfies (−∆)−1(∂tψ̂M (t)) = λM (t) −
µM (t). For ζ ∈ H1(Ω) we then obtain∫

Ω
∂tψ̂M (t, x)ζ(x) dx = 〈(−∆)−1(∂tψ̂M (t)), ζ〉Ṽ0

= 〈(λM (t)− µM (t)), ζ〉Ṽ0

= −
∫

Ω
∇µM (t, x) · ∇ζ(x) dx ,

where we used λM (t) ∈ R in the last step. This shows (4.4).

By construction, (ymM , ψ
m
M ) is a minimizer of FmM in Y × Z for m = 1, . . . ,M . Due to the homeomorphism

between Y and U(t) induced by vD(t), see Lemma 3.1, the pair qmM = (vmM , ψ
m
M ) with vmM := vD(tmM ,y

m
M )

is a minimizer of the functional

EmM (v, ψ) = E (v, ψ) + 1
2τM
‖ψ − ψm−1

M ‖2
Ṽ0

+ τM

∫
Ω
V
(
∇vm−1

M ,
∇v−∇vm−1

M
τM

, ψm−1
M

)
dx

in the class U(tmM )×Z , where E was defined in (3.24). Since E is Gateaux differentiable by Lemma 3.7, and
the second term is quadratic in ψ, we conclude 〈DψEmM (qmM ), ζ1〉 = 0 for all ζ1 ∈ V0 and m = 1, . . . ,M , so
that

0 = 〈DψE (vM (t), ψM (t)), ζ1〉+ 〈∂tψ̂M (t), ζ1〉Ṽ0 (4.8)

for t ∈ [0, T ]. We use
∫

Ω λM (t)ζ1 dx = λM (t)
∫

Ω ζ1 dx = 0 for ζ1 ∈ V0 and (4.3b), which allows us to
conclude

〈∂tψ̂M (t), ζ1〉Ṽ0 = ((−∆)−1∂tψ̂M (t), ζ1)L2(Ω)

= (λM (t)− µM (t), ζ1)L2(Ω)

= −(µM (t), ζ1)L2(Ω) .

Plugging this into (4.8) gives

0 = 〈DψE (vM (t), ψM (t)), ζ1〉 − (µM (t), ζ1)L2(Ω) (4.9)

for all ζ1 ∈ V0. Moreover, for a constant test function ζ2 ≡ C ∈ R, the definitions of µM and λM in (4.3b) and
(4.3c) imply

〈DψE (vM (t), ψM (t)), ζ2〉 − (µM (t), ζ2)L2(Ω)

= |Ω|λM (t)C + ((−∆)−1∂tψ̂M (t), ζ2)L2(Ω) − (λM (t), ζ2)L2(Ω) = 0 .

Since every ζ ∈ H1(Ω) can be decomposed as ζ = ζ1 + ζ2 ∈ H1(Ω) with ζ1 ∈ V0 and ζ2 ≡ C ∈ R,
adding (4.8) and (4.9) results in (4.5) due to (3.25).

Combining the Gateaux differentiability of E by Lemma 3.7 with the quadratic structure of V from assump-
tion (A5), we conclude from the minimality of qmM = (vmM , ψ

m
M ) that 0 = DvEmM (qmM ) for m = 1, . . . ,M , so

that

0 = 〈DvE (vM (t), ψM (t)),w〉+

∫
Ω
∂ḞV (FM (t), ∂tF̂M (t), ψ

M
) : ∇w dx
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for t ∈ [0, T ] and all w ∈W 2,β
ΓD

(Ω;Rd). In virtue of (3.25), this shows (4.6).

The last step in this proof is to verify the energy-dissipation inequality. By minimality of (ymM , ψ
m
M ), we have

FmM (ymM , ψ
m
M ) ≤ FmM (ym−1

M , ψm−1
M ), which implies

F (tmM ,y
m
M , ψ

m
M ) +

1

2τM
‖ψmM − ψm−1

M ‖2
Ṽ0

+ τMV
(
tmM ,y

m−1
M ,

ymM−y
m−1
M

τM
, ψm−1

M

)
≤ F (tmM ,y

m−1
M , ψm−1

M ) = F (tm−1
M ,ym−1

M , ψm−1
M ) +

∫ tmM

tm−1
M

∂tF (s,ym−1
M , ψm−1

M ) ds .

Summing up this estimate over m = 1, . . . , k results in

F (tkM ,y
k
M , ψ

k
M ) +

k∑
m=1

(
τM
2

∥∥∥∥ψmM − ψm−1
M

τM

∥∥∥∥2

Ṽ0

+ τMV
(
tmM ,y

m−1
M ,

ymM−y
m−1
M

τmM
, ψm−1

M

))

≤ F (0,y0, ψ0) +
k∑

m=1

∫ tmM

tm−1
M

∂tF
(
s,ym−1

M , ψm−1
M

)
ds .

(4.10)

Using that ‖ 1
τM

(ψmM − ψ
m−1
M )‖2

Ṽ0
= ‖∇µmM‖2L2 by (2.22c), we thus have (4.7) for t ∈ [0, T ].

From the energy-dissipation inequality we derive a useful bound of the interpolants.

Lemma 4.3. In the setting of Lemma 4.2 there exists a constant C > 0, independent of M ∈ N, such that

F (t,yM (t), ψM (t)) +

∫ t

0

∫
Ω

1

2
|∇µM (s)|2 + V (FM (s), ∂tF̂M (s), ψ

M
(s)) dx ds

≤ C
(
F (0,y0, ψ0) + 1

) (4.11)

for all t ∈ [0, T ].

Proof of Lemma 4.3. Starting with the discrete energy-dissipation inequality (4.10) and the estimate on ∂tF
derived in (3.20), we obtain by an application of a discrete version of Gronwall’s inequality to F + c0 that

F (t,yM (t), ψM (t)) ≤ (F (0,y0, ψ0) + c0) exp(c1t)− c0 ≤ C(F (0,y0, ψ0) + 1)

for a constant C > 0 and all t ∈ [0, T ]. We can now use (3.20) and this estimate in (4.7) to conclude from
0 ≤ F (t, qM ) that∫ t

0

∫
Ω

1

2
|∇µM (s)|2 + V (FM (s), ∂tF̂M (s), ψ

M
(s)) dx ds

≤ F (0,y0, ψ0) +

∫ t

0
c1

(
F (s,y

M
(s), ψ

M
(s)) + c0

)
ds

≤ C(F (0,y0, ψ0) + 1) .

Combining the last two inequalities shows (4.11).

The next step is to show a priori bounds on the interpolants. These estimates are the crucial step to derive the
convergence to a weak solution to (2.3) in Section 5.
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Lemma 4.4 (A priori bounds). There is a constant C > 0 such that for all M ∈ N the interpolants satisfy in
(4.3) satisfy the a priori estimates

‖yM‖L∞(0,T ;W 1,p(Ω;Rd)) + ‖y
M
‖L∞(0,T ;W 1,p(Ω;Rd)) ≤ C , (4.12a)

‖yM‖L∞(0,T ;W 2,β(Ω;Rd)) + ‖y
M
‖L∞(0,T ;W 2,β(Ω;Rd)) ≤ C , (4.12b)

‖ det(∇yM )−1‖L∞(0,T ;L∞(Ω)) + ‖ det(∇y
M

)−1‖L∞(0,T ;L∞(Ω)) ≤ C (4.12c)

‖∂tŷM‖L2(0,T ;H1(Ω;Rd)) ≤ C . (4.12d)

‖ψM‖L∞(0,T ;H1(Ω)) + ‖ψ
M
‖L∞(0,T ;H1(Ω)) ≤ C , (4.12e)

‖∂tψ̂M‖L2(0,T ;H1(Ω)∗) ≤ C , (4.12f)

‖µM‖L2(0,T ;H1(Ω)) ≤ C . (4.12g)

To derive these bounds, we make use of two auxiliary results. The first one is based on the following theorem by
Healey and Krömer [21], which ensures a positive lower bound for the determinant of the deformation gradient
F , and which will finally lead to the bound (4.12c).

Lemma 4.5. Let η : GL+(d) → R≥0 be twice continuously differentiable and H : Rd×d×d → R≥0 be
convex and continuously differentiable, such that there are p, q, β ∈ (1,∞) with β > d, p > 2, q ≥ βd

(β−d) ,
and c,K > 0 with

η(F ) ≥ c|F |p + c det(F )−q for all F ∈ GL+(d) ,

c|G|β ≤ H(G) ≤ K(1 + |G|β) for all G ∈ Rd×d×d .

Let F̃ : Y → R be defined by F̃ (y) =
∫

Ω η(∇y) + H(∇2y) dx. Then for each CM > 0 there exists

CHK > 0 such that for all y ∈ Y with F̃ (y) ≤ CM it holds

‖y‖W 2,p(Ω;Rd) ≤ CHK , det(∇y(x)) ≥ C−1
HK

for all x ∈ Ω.

Proof. The original result was established in [21]. The version stated here can be found in [32, Theorem 3.1].

The second result is a generalized Korn inequality, which was essentially derived in [36, 40]. It enables us to
obtain the uniform bound (4.12d) from the boundedness of the nonlinear viscosity term.

Lemma 4.6. Let λ ∈ (0, 1) and K > 1. Then there exists CK > 0 such that for all F ∈ Cλ(Ω;Rd×d) with
‖F ‖Cλ(Ω) ≤ K and with detF (x) ≥ K−1 for x ∈ Ω, it holds

∀w ∈ H1(Ω) :

∫
Ω
|∇wTF + F T∇w|2 dx+

∫
Γ
|w|2 dHd−1 ≥ CK‖w‖2H1(Ω).

Proof. The result for a constant CK depending on F was shown in [40, Theorem 2.3]. To obtain a uniform
constant that only depends on K , we can repeat the argument from [32, Theorem 3.3], where the uniformity
was shown for the special case w|Γ = 0.

Observe that for Lemma 4.6, besides the uniform lower bound on detF , we also need the uniform bound of F in
Cλ(Ω), which will be ensured by the uniform bound of y, and thus of v, inW 2,β(Ω) and Sobolev embeddings.
The second-order derivatives from the hyperelasticity term are thus also necessary to ensure sufficient time
regularity.

With the help of Lemma 4.5 and Lemma 4.6, we can now derive the a priori estimates from Lemma 4.4.

DOI 10.20347/WIAS.PREPRINT.3130 Berlin 2024



T. Eiter, L. Schmeller 22

Proof of Lemma 4.4. The coercivity estimate (3.16) and the bound derived in Lemma 4.3 allow us to conclude
the uniform bounds (4.12a), (4.12b) and (4.12e). Further, from Lemma 4.3 we conclude the boundedness of
(∇µM )M∈N inL2(0, T ;L2(Ω)), which directly implies the bound (4.12f) by (4.4). Additionally, choosing ζ ≡ 1
in (4.5) gives the boundedness of (−

∫
Ω µM (t) dx)M∈N using (4.12e). Hence, we can use Poincare‘s inequality

to conclude (4.12g).

To derive the lower bound on the Jacobians stated in (4.12c), we use Lemma 4.5 with η(F ) := |F |p +

det(F )−q andH(G) := |G|β . Then the coercivity estimate (3.16) and Lemma 4.3 imply that F̃ (yM (t)) and

F̃ (y
M

(t)) are bounded uniformly in t ∈ [0, T ] and M ∈ N. Now Lemma 4.5 yields (4.12c).

To prove (4.12d), we use the generalized Korn inequality from Lemma 4.6. By (4.12b), Lemma 3.1 and Sobolev
embeddings, we have a uniform upper bound for ‖FM (s)‖Cλ(Ω) for λ = 1−d/p, and (4.12c) yields a uniform

lower bound for det(FM (s)). After estimating V from below by (2.12), we can thus use Lemma 4.6 to obtain∫ T

0

∫
Ω
V (FM (s), ∂tF̂M (s), ψ

M
(s)) dx ds

≥ c
∫ T

0

∫
Ω
|∂tF̂M (s)TFM (s) + FM (s)T∂tF̂M (s)|2 dx ds

≥ c
∫ T

0

(
‖∂t ˆv(s)M‖

2
H1(Ω;Rd) ds−

∫
Γ
|∂tvD(s)|2 dHd−1

)
ds

≥ c(‖∂tŷM‖2L2([0,T ];H1(Ω;Rd)) − 1) ,

where the last estimate follows from Lemma 3.1 and (2.15). Due to Lemma 4.3, the left-hand side is bounded,
and we obtain (4.12d). This concludes the proof.

5 Passage to the time-continuous limit

To show existence of weak solutions to (2.3), we pass to the limit along the time-discrete solutions constructed
in Section 4. At first, we show existence of a subsequence with suitable convergence properties.

Lemma 5.1 (Convergence of the interpolants). Let (A1)–(A7) be satisfied, and let the assumptions of Lemma 4.4
be satisfied. Then we find (not relabeled) subsequences of the introduced interpolants, a pair (y, ψ) : [0, T ]→
Y ×Z and a function µ ∈ L2(0, T ;H1(Ω)) such that

ŷM , yM , yM
∗−⇀ y in L∞(0, T ;W 2,β(Ω;Rd)) , (5.1a)

ŷM ⇀ y in H1(0, T ;H1(Ω;Rd)) , (5.1b)

ŷM → y in C([0, T ], C1,λ(Ω;Rd)) for all λ ∈ (0, 1− d
β ) , (5.1c)

ŷM , yM ,yM → y in L∞([0, T ],W 1,r(Ω;Rd)) for all r ∈ [1,∞), (5.1d)

yM (t), y
M

(t) ⇀ y(t) in W 2,β(Ω;Rd) for all t ∈ [0, T ] , (5.1e)

and

ψ̂M , ψM , ψM
∗−⇀ ψ in L∞(0, T ;H1(Ω)) , (5.1f)

ψ̂M ⇀ ψ in H1(0, T ;H1(Ω)∗) , (5.1g)

ψ̂M , ψM , ψM → ψ in L∞(0, T ;H1(Ω)∗) , (5.1h)

ψ̂M (t), ψM (t), ψ
M

(t) ⇀ ψ in H1(Ω) for all t ∈ [0, T ] , (5.1i)

µM ⇀ µ in L2(0, T ;H1(Ω)) (5.1j)
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as M →∞. Moreover, we have

∇2vM → ∇2v in Lβ(0, T ;Lβ(Ω;Rd×d×d)) , (5.2a)

ψM , ψM → ψ in Lr(0, T ;H1(Ω)) for all r ∈ [1,∞) , (5.2b)

where vM (t, x) := vD(t,yM (x)) and v(t, x) := vD(t,y(x)) for (t, x) ∈ [0, T ]× Ω, and it holds

F (t,yM , ψM )→ F (t,y, ψ) for all t ∈ [0, T ]. (5.3)

Proof. While the prove of the convergence properties in (5.1) completely relies on the a priori bounds estab-
lished in Lemma 4.4, for (5.2) we exploit the specific structure of the underlying equations.

We start with the convergence properties of (ŷM )M . By (4.12b) and (4.12d) we have

‖ŷM‖L∞(0,T ;W 2,β(Ω)) ≤ C(‖yM‖L∞(0,T ;W 2,β(Ω)) + ‖y
M
‖L∞(0,T ;W 2,β(Ω))) ≤ C ,

‖∂tŷM‖L2(0,T ;H1(Ω)) ≤ C .

Hence, there exists y ∈ L∞(0, T ;W 2,β(Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)) such that (5.1b) and

ŷM
∗−⇀ y in L∞(0, T ;W 2,β(Ω;Rd)) (5.4)

hold as M →∞ (for a not relabeled subsequence). Using the Aubin-Lions lemma (e.g., see [41, Lemma 7.7])
and the compact embedding W 2,β(Ω) ↪→ C1,λ(Ω) for 0 < λ < 1− d

β , we find (5.1c). Furthermore, (4.12b)

yields elements y,y ∈ L∞(0, T ;W 2,β(Ω;Rd)) and (not relabeled) subsequences such that

yM
∗−⇀ y, y

M

∗−⇀ y in L∞(0, T ;W 2,β(Ω;Rd)) . (5.5)

To show that all three limit functions y, y and y coincide, let t ∈ [0, T ]. Then there is m ∈ {1, . . . ,M} such

that t ∈ (tm−1
M , tmM ]. Then yM (t) = yM (tmM ) = ŷM (tmM ), and from (4.12d) we obtain

‖yM (t)− ŷM (t)‖H1(Ω) = ‖yM (tmM )− ŷM (t)‖H1(Ω) ≤
∫ tmM

t
‖∂tŷM (s)‖H1(Ω) ds

≤ C(tmM − t)
1
2 ‖∂tŷM‖L2(0,T ;H1(Ω)) ≤ τ

1
2
MC

(5.6)

for a.a. t ∈ (0, T ), so that ‖yM − ŷM‖L∞(0,T ;H1(Ω)) → 0 as M → ∞. Analogously, we find ‖y
M
−

ŷM‖L∞(0,T ;H1(Ω)) → 0. Since we have already shown (5.1c), which implies the strong convergence ŷM → y
in L2(0, T ;H1(Ω)), the sequences (yM )M and (y

M
)M also converge strongly in this space towards the

same limit y. Together with (5.4) and (5.5), we thus conclude (5.1a). Moreover, for r ∈ (2,∞) we further
deduce by interpolation that

‖yM − y‖L∞(0,T ;W 1,r(Ω)) ≤ C‖yM − y‖2/r
L∞(0,T ;H1(Ω))

‖yM − y‖1−2/r
L∞(0,T ;W 1,∞(Ω))

≤ C‖yM − y‖2/r
L∞(0,T ;H1(Ω))

‖yM − y‖1−2/r

L∞(0,T ;W 2,β(Ω))
→ 0

as M → ∞ since the second factor is bounded due to (5.1a). As the same argument can be repeated for
(y

M
) and (ŷM ), we obtain (5.1d). Additionally, (4.12b) yields the pointwise boundedness of (yM (t))M∈N in

W 2,β(Ω) for all t ∈ [0, T ], so that we obtain a (t-dependent) subsequence (yMk
(t))k∈N with yMk

(t) ⇀ xt in
W 2,β(Ω) for some xt ∈W 2,β(Ω). In particular, this weak convergence transfers to H1(Ω), and (5.6) implies
ŷMk

(t) ⇀ xt in H1(Ω). From (5.1c) we conclude xt = y(t). In particular, this limit does not depend on the
chosen subsequence, and we conclude yM (t) ⇀ y(t) as M → ∞. Arguing similarly for (y

M
(t))k∈N, we

arrive at (5.1e).

Next we address the interpolants for the phase field. Similarly to before, we deduce the boundedness of
(ψ̂M )M∈N in L∞(0, T ;H1(Ω)) from the corresponding boundedness of (ψM )M∈N, (ψ

M
)M∈N by (4.12e).
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By (4.12f) we know that (∂tψ̂M )M∈N is also bounded in L2(0, T ;H1(Ω)∗), so that there exists a (not rela-

beled) subsequence and ψ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H1(Ω)∗) with ψ̂M
∗−⇀ ψ in L∞(0, T ;H1(Ω))

and (5.1g). From the Aubin-Lions lemma we now conclude

ψ̂M → ψ in C(0, T ;L2(Ω)) as M →∞ . (5.7)

From (4.12e) we further obtain elements ψ,ψ ∈ L∞(0, T ;H1(Ω)) and a subsequence such that there exist

ψ,ψ ∈ L∞(0, T ;H1(Ω)) with

ψM
∗−⇀ ψ , ψ

M

∗−⇀ ψ in L∞(0, T ;H1(Ω)) . (5.8)

To show that the limits ψ, ψ and ψ coincide, we argue as above to first conclude

‖ψM (t)− ψ̂M (t)‖H1(Ω)∗ ≤ C(tmM − t)
1
2 ‖∂tψ̂M‖L2(0,T ;H1(Ω)∗) ≤ τ

1
2
MC

for t ∈ (tm−1
M , tmM ], where we used (4.12f). This implies ‖ψM − ψ̂M‖L∞(0,T ;H1(Ω)∗) → 0, and we obtain

‖ψ
M
− ψ̂M‖L∞(0,T ;H1(Ω)∗) → 0 as M →∞ in the same way. Now, (5.7) yields (5.1h), so that (5.8) implies

ψ = ψ = ψ and thus (5.1f). To conclude the pointwise convergence stated in (5.1i), we observe that

M∑
m=1

‖ψMm − ψMm−1‖H1(Ω)∗ ≤ C
M∑
m=1

τM‖
ψMm − ψMm−1

τM
‖Ṽ0 = C

∫ T

0
‖∇µM (s)‖L2(Ω) ds ≤ C ,

by estimate (4.12g). This shows that ψ̂M , ψM and ψ
M

have uniformly bounded total variation as H1(Ω)∗-
valued functions. Hence, by a vector-valued version of Helly’s selection principle, see [33, Thm. B.5.10] for
instance, we obtain (5.1i). The convergence of (µM )M stated in (5.1j) follows directly from estimate (4.12g)
after selection of a suitable subsequence.

Next we show (5.2a). We set F e,M = FMF−1
p (ψM ) for FM = ∇yvD(t,yM )∇yM . By the convexity of

Why, we have∫
ΩT

(
Why(∇FM )−Why(∇F )

)
d(t, x) ≤

∫
ΩT

∂GWhy(∇FM ) ··· (∇FM −∇F ) d(t, x) . (5.9)

Due to (5.1c), we have the uniform convergence ŷM → y and ∇ŷM → ∇y in [0, T ] × Ω, which yields
the uniform convergence yk → y and ∇yk → ∇y in [0, T ] × Ω. By continuity of ∇vD, this shows that

FM → F uniformly in [0, T ]×Ω asM →∞. Using w = vMk
(t)−v(t) ∈W 2,β

ΓD
(Ω;Rd) as a test function

in the time-discrete Euler–Lagrange equation (4.6) and integrating in time, we can replace the right-hand side
of (5.9) to conclude

lim sup
M→∞

∫
ΩT

(
Why(∇FM )−Why(∇F )

)
d(t, x)

≤ − lim
M→∞

∫
ΩT

(
∂FWel(F e,M ) + ∂ḞV (FM , ∂tF̂M )

)
:
(
FM − F

)
d(s, x) = 0 .

Here we use growth conditions for Wel and ∂ḞV due to (2.4) and (A5) and the boundedness of ∂tF̂M in
L2(0, T ;L2(Ω;Rd×d)). From the weak convergence ∇FMk

⇀ ∇F in Lβ((0, T ) × Ω;Rd×d×d), which is
due to (5.1a) and Lemma 3.1, and the convexity of Why, we further conclude

lim inf
M→∞

∫
ΩT

(
Why(∇FM )−Why(∇F )

)
d(t, x) ≥ 0.

In summary, this yields the convergence limM→∞
∫

ΩT
Why(∇FM ) =

∫
ΩT

Why(∇F ). Together with the

weak convergence ∇FMk
⇀ ∇F in Lβ((0, T ) × Ω;Rd×d×d), the strict convexity of Why and the growth

condition (2.7), this implies the strong convergence (5.2a), see [51, Theorem X.2.4] for instance.
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To show (5.2b), we test (4.5) with ζ = ψM (t), integrate over time and pass to the limit such that we obtain∫
ΩT

|F−TM ∇ψM |2 d(t, x)→ −
∫

ΩT

(
∂ψ∂ψW (F ,∇F , ψ,∇ψ)ψ + µψ

)
d(t, x) ,

as M →∞. Here we use that ∂ψWpf(ψM ,∇ψM ,FM ) is uniformly bounded in L2 due to Sobolev embed-
dings. Further, due to ∂ψWel(F e,M ) = ∂FWel(F e,M )F T : ∂ψ(F−1

p (ψ)), the growth condition (2.5) and
the assumptions on g, we have a uniform bound and can pass to the limit M →∞. Similarly, testing (4.5) with
ζ = ψ(t), integrating over time and passing to the limit by using the uniform convergence FM → F yields∫

ΩT

|F−T∇ψ|2 d(t, x) = −
∫

ΩT

(
∂ψW (F ,∇F , ψ,∇ψ)ψ + µψ

)
d(t, x) = lim

M→∞

∫
ΩT

|∇ψM |2 d(t, x)

by the previous identity. Together with the weak∗ convergence from (5.1f), this gives the strong convergence

F
−T
M ψM → F

−T
ψ and thus ψM → ψ in L2(0, T ;H1(Ω)) as M → ∞. In particular, this also implies the

strong convergence ψM → ψ in Lr(0, T ;H1(Ω)) for r ∈ [1, 2). For r ∈ (2,∞), interpolation yields

‖ψM − ψ‖Lr(0,T ;H1(Ω)) ≤ ‖ψM − ψ‖
2/r
L2(0,T ;H1(Ω))

‖ψM − ψ‖
(r−2)/r
L∞(0,T ;H1(Ω))

→ 0

as M → ∞ since the second factor is bounded due to (5.1f). In a similar way, we further conclude ψ
M
→ ψ

in Lr([0, 1];H1(Ω)) as M →∞. In total, this yields (5.2b).

Finally, (5.3) is a direct consequence of the convergence properties in (5.1) and (5.2).

Based on the solutions of the time-discrete Euler–Lagrange equations, we now perform the passage to vanishing
time step size τM → 0, or equivalently M →∞, to obtain a weak solution to (2.3).

Proof of Theorem 2.8. The strategy of the proof is to pass to the limit M → ∞ after integrating the weak
formulations from Lemma 4.2 over the time interval [0, T ], which is based on the the convergence result in
Lemma 5.1. We will discuss each limit transition individually.

Since the interpolants occur in (4.4) in a linear way, after integration over the time interval [0, T ], we can directly
pass to the limit M →∞, using the convergence properties (5.1g) and (5.1j), to obtain (2.25).

Similarly, the left-hand side of (2.26) is immediately recovered as the limitM →∞ of the left-hand side of (4.5),
again after integration in time and using (5.1j). The right-hand sides of (4.5) and (2.26) are composed of three
contributions associated with the quantities ∂ψWel, ∂ψWpf and ∂∇ψWpf . In virtue of (2.10), one can pass to
the limit in the latter two terms using the strong convergence (5.2b) and Sobolev embeddings. However, the limit
passage in the term associated with ∂ψWel, which is given in (2.28), is more complicated. First, by the compact
embeddingW 2,β(Ω;Rd) b C1(Ω;Rd), and by the assumptions on g in (2.13), we conclude that (F e,M )M∈N
is bounded in L∞(Ω;Rd×d). Moreover, (4.12c) yields a pointwise lower bound for det(∇yM (x)) for x ∈ Ω.
Hence, the dominated convergence theorem leads to∫

ΩT

∂ψWel

(
F e,M

)
ζ d(t, x)→

∫
ΩT

∂ψWel (F e)ζ d(t, x)

as M →∞. Summing up the individual components of the right-hand side, we conclude the proof of (2.26).

Next we perform the limit passage from (4.6) to (2.27), after integration over [0, T ]. By (5.1d) we know FM →
F in Lr(0, T ;Lr(Ω;Rd×d)), and Lemma 3.3 yields g−1

M → g−1 in Lq(Ω) for q ∈ [1, 6). Hence, we find an
a.e. pointwise convergent (not relabled) subsequence such that F e,M → F e, and thus

(
∂FWel(F e,M )

)
M

is pointwise convergent a.e. Using that g and 1
g are bounded functions and that (FM ) is uniformly bounded

by (5.1a), we observe that
(
∂FWel(F eM )

)
M

is uniformly bounded, and by dominated convergence we con-

clude for any w ∈ Lβ(0, T ;W 2,β
ΓD

(Ω;Rd)) that∫
ΩT

∂FWel(F e,M ) : ∇w d(s, x)→
∫

ΩT

∂FWel (F e) : ∇w d(s, x) as M →∞ .
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Further we use the quadratic structure of the viscous potential V̂ , see (A5), and the uniform boundedness of
(FM )M ⊂ L∞(0, T ;L∞(Ω;Rd×d)) due to (5.1a), to obtain∣∣∂ḞV (FM , ∂tF̂ ) : ∇w

∣∣ =
∣∣(∂tF̂ T

FM + F T
M∂tF̂ ) : D(F T

MFM )(∇wTFM + F T
M∇w)

∣∣
≤ C|∂tF̂ | |∇w| ≤ C

(
|∂tF̂ |2 + |∇w|2

)
.

As (∂tF̂M )M ⊂ L2(0, T ;L2(Ω;Rd×d)) is bounded due to (5.1b), for w ∈ L2(0, T ;W 2,β
Γ0

(Ω;Rd)) it thus
follows∫

ΩT

∂ḞV (FM , ∂tF̂M , ψM ) : ∇w d(s, x)→
∫

ΩT

∂ḞV (F , ∂tF , ψ) : ∇w d(s, x) as M →∞

by Pratt’s theorem and the continuity of D assumed in (A5). The convergence of the hyperelasticity terms in
(4.6) follows by dominated convergence, using the upper bound (2.8) and the strong convergence of (∇2vM )M
from (5.2a). In total, we thus obtain (2.27).

Similarly, the energy-dissipation inequality (2.32) is derived from the discrete energy-dissipation inequality (4.7)
for the interpolants by a limit procedure. To pass to the limit inferior on the left-hand side of (4.7), we use the
convergence properties in (5.1) and employ the lower semiconituity of F (by Lemma 3.4) and of the norm in
L2((0, t) × Ω). For the viscous term associated to V , we use the quadratic structure assumed in (A5) and
the strong convergence of (FM ) induced by (5.1d). Concerning the right-hand side of (4.7), we combine that
yM (t) ⇀ y(t) in Y and ψM (t) ⇀ ψ(t) in Z by (5.1e) and (5.1i) with the convergence of the corresponding
free energy stated in (5.3) to conclude

lim
M→∞

∂tF (t,y
M

(t), ψ
M

(t)) = ∂tF (t,y(t), ψ(t))

from Lemma 3.6. As ∂tF (t,y
M

(t), ψ
M

(t)) is uniformly bounded due to the uniform continuity stated in
Lemma 3.5, we can pass to the limit on the right-hand side of (4.7). In total, this leads to the energy-dissipation
balance (2.32) and completes the proof.
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[32] A. Mielke and T. Roubíček. Thermoviscoelasticity in kelvin–voigt rheology at large strains. Archive for
Rational Mechanics and Analysis, 238(1):1–45, 2020.
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