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Hyperbolic relaxation of the chemical potential in the viscous
Cahn–Hilliard equation

In memory of Prof. Dr. Wolfgang Dreyer with admiration, sympathy and friendship

Pierluigi Colli, Jürgen Sprekels

Abstract

In this paper, we study a hyperbolic relaxation of the viscous Cahn–Hilliard system with zero
Neumann boundary conditions. In fact, we consider a relaxation term involving the second time
derivative of the chemical potential in the first equation of the system. We develop a well-posed-
ness, continuous dependence and regularity theory for the initial-boundary value problem. More-
over, we investigate the asymptotic behavior of the system as the relaxation parameter tends to 0
and prove the convergence to the viscous Cahn–Hilliard system.

1 Introduction

In this paper, we deal with an initial-boundary value problem for a system of partial differential equa-
tions of viscous Cahn–Hilliard type, which in particular includes a hyperbolic relaxation term in the first
equation.

The system is stated as follows:

α∂ttµ+ ∂tϕ−∆µ = 0 in Q := Ω× (0, T ), (1.1)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ g in Q, (1.2)

∂nµ = ∂nϕ = 0 on Σ := ∂Ω× (0, T ), (1.3)

µ(0) = µ0, (∂tµ)(0) = ν0, ϕ(0) = ϕ0 in Ω, (1.4)

where Ω ⊂ RN , N ∈ {1, 2, 3}, is a bounded and connected domain with smooth boundary ∂Ω and
T denotes some final time. We denote by n the unit outward normal to ∂Ω, with the associated out-
ward normal derivative ∂n . Note that ∂n appears in the homogeneous Neumann boundary conditions
stated in (1.3) for both the variables µ and ϕ.

The equations (1.1)–(1.2) constitute a variation of the Cahn–Hilliard system (introduced in [5] and first
approached mathematically in [18])

∂tϕ−∆µ = 0 in Q, (1.5)

−∆ϕ+ f ′(ϕ) = µ+ g in Q, (1.6)

in which a viscosity term τ∂tϕ has been included in the second equation and where especially the
hyperbolic relaxation term α∂ttµ has been added in the first equation. The viscous Cahn–Hilliard
system

∂tϕ−∆µ = 0 in Q, (1.7)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ g in Q, (1.8)
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is well known and was already investigated in a number of papers (see [8, 9, 11–15, 20–23] to quote
some recent contributions), while to our knowledge an inertial term like α∂ttµ in (1.1) is not common
and possibly deserves to be examined. In this class of problems, the unknown functions ϕ and µ
ususally stand for the order parameter, which can represent a scaled density of one of the involved
phases, and the chemical potential associated with the phase separation process, respectively.

Moreover, f ′ denotes the derivative (if it exists) of a double-well potential f , which in general is split
into a (possibly nondifferentiable) convex part f1 and a smooth and concave perturbation f2. Typical
and physically significant examples for f are the so-called classical regular potential, the logarithmic
double-well potential , and the double obstacle potential , which are given, in this order, by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.9)

flog(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 if r ∈ (−1, 1)
2 ln(2)− c1 if r ∈ {−1, 1}
+∞ if r 6∈ [−1, 1]

, (1.10)

f2obs(r) :=

{
c2(1− r2) if r ∈ [−1, 1]
+∞ if r 6∈ [−1, 1]

. (1.11)

Here, the constants ci in (1.10) and (1.11) satisfy c1 > 1 and c2 > 0, so that flog and f2obs are
nonconvex. Notice that for f = flog the term f ′(ϕ) occurring in (1.2) becomes singular as ϕ ↘ −1
and ϕ ↗ 1, which forces the order parameter ϕ to attain its values in the physically meaningful
range (−1, 1). In the nonsmooth case (1.11), the convex part f1 is given by the indicator function of
[−1, 1]. Accordingly, in such cases one has to replace the derivative of the convex part by the subdif-
ferential ∂f1 and, consequently, to interpret (1.2) as a differential inclusion or a variational inequality.
We also note that τ is a fixed positive parameter (the viscosity coefficient), while for the positive pa-
rameter α we will also discuss the asymptotic convergence to 0. We point out that in (1.2) a known
forcing term g is present that may be interpreted as a direct or secondary control term which acts
on the system. In this connection, we mention that optimal control problems for viscous Cahn–Hilliard
systems with a distributed control term involving g have recently been treated in the paper [14].

Some hyperbolic relaxations of the viscous Cahn–Hilliard system have been already considered and
studied: let us mention the recent contributions [3,6,7,17,26,27]. However, the available investigations
are concerned with systems where the inertial term involves the phase variable ϕ. In our case, the
system (1.1)–(1.4) couples a wave-type equation for µ combined with a source term given by −∂tϕ,
with a semilinear parabolic equation in which the source term includes µ.

From the energetic viewpoint, there is a change with respect to the viscous (and nonviscous) Cahn–
Hilliard equation. To see this, let us for simplicity argue now on the case g = 0. Indeed, for (1.7)–(1.8),
as well as for (1.5)–(1.6), the basic energy estimate is obtained by testing (1.7) by µ, (1.8) by ∂tϕ, and
then adding and thus producing a cancellation of the terms containing the product µ∂tϕ. Therefore,
one has ∫ t

0

∫
Ω

|∇µ|2 + τ

∫ t

0

∫
Ω

|∂tϕ|2 +

∫
Ω

(1

2
|∇ϕ(t)|2 + f(ϕ(t))

)
= constant

for t ∈ [0, T ], where the first two terms are dissipative and the energy term is given by the third one.
The second term is missing in the case of the Cahn–Hilliard system (1.5)–(1.6), but the energy is the
same and there is only one term for dissipation. On the other hand, it turns out to be more difficult
and involved to recover an energy estimate for (1.1)–(1.2): as you will check in the sequel, our main
estimate is constructed by testing (1.1) by ∂tµ and the time derivative of (1.2) by ∂tϕ, in order to have
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Hyperbolic relaxation of viscous Cahn–Hilliard equations 3

a cancellation of the terms containing the product ∂tϕ∂tµ. By integration, we then obtain∫
Ω

(α
2
|∂tµ(t)|2 +

1

2
|∇µ(t)|2 +

τ

2
|∂tϕ(t)|2

)
+

∫ t

0

∫
Ω

|∇(∂tϕ)|2 +

∫ t

0

∫
Ω

f ′′1 (ϕn)|∂tϕ|2

= constant −
∫ t

0

∫
Ω

f ′′2 (ϕ)|∂tϕ|2 for t ∈ [0, T ],

where the energy is now located in the first integral in which neither the nonlinearity f nor any of
its derivatives occur. Moreover, note that the last term on the left-hand side induces dissipation (as
f ′′1 is nonnegative), but on the right-hand side the complementary term may be positive and grow
with respect to t, since f2 is concave, in general. The viscous contribution in (1.2) is important here to
control this term on the right-hand side, since the addendum τ

2
|∂tϕ(t)|2 is part in the energy. However,

by our estimate we can proceed in the analysis and not only construct a well-posedness theory but
also investigate the asymptotic behavior as the parameter α converges to 0.

This paper is dedicated to the memory of Wolfgang Dreyer, who recently passed away. The authors of
this paper were fortunate to have benefited from Wolfgang’s friendship, as well as from his exceptional
expertise and insight in Thermodynamics and Applied Mathematics. He was a brilliant and generous
scientist who truly enjoyed engaging in scientific discussions with friends and colleagues. We both
feel enriched by having known him and are grateful for the opportunity to have collaborated with him.
Together, along with other colleagues, we co-authored the paper [2] that explored the effects of phase
separation driven by mechanical actions in tin/lead alloys, and where the corresponding system of
partial differential equations already included equations of Cahn–Hilliard type.

The paper is organized as follows. In the following section, we formulate the general assumptions and
state the main results concerning the system (1.1)–(1.4). In Section 3, we then prove the existence
of a solution by using a double approximation based on a Yosida regularization of ∂f1 and on a
Faedo–Galerkin scheme. This proof requires the main analytical effort of this paper, since it involves
a number of estimates and two passage-to-the-limit processes. In Section 4, we show the results
on continuous dependence with respect to data and on the regularity of the solution: actually, three
theorems are proved there. The final Section 5.1 then brings the asymptotic results of the convergence
of the system to the viscous Cahn–Hilliard system as α tends to 0 and an estimate of the difference
of solutions in terms of a precise rate of convergence.

We fix some notation. For any Banach space X , we let X∗ denote its dual space, and ‖ · ‖X stands
for the norm in X and any power of X . For two Banach spaces X and Y that are both continuously
embedded in some topological vector space Z , the linear spaceX∩Y is the Banach space equipped
with its natural norm ‖v‖X∩Y := ‖v‖X +‖v‖Y for v ∈ X∩Y . The standard Lebesgue and Sobolev
spaces Lp(Ω) and Wm,p(Ω) are defined on Ω for 1 ≤ p ≤ ∞ and m ∈ N ∪ {0}. For the sake of
convenience, we denote the norm of Lp(Ω) by ‖ · ‖p for 1 ≤ p ≤ ∞. If p = 2, we employ the
usual notation Hm(Ω) := Wm,2(Ω). We also set

H := L2(Ω), V := H1(Ω), W :=
{
v ∈ H2(Ω) : ∂nv = 0 on Γ

}
.

Moreover, V ∗ is the dual space of V , and 〈 · , · 〉 stands for the duality pairing between V ∗ and V .
We denote by ( · , · ) the natural inner product in H . As usual, H is identified with a subspace of the
dual space V ∗ according to the identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .
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Note that W ⊂ V ⊂ H ≡ H∗ ⊂ V ∗ with dense and compact embeddings. About the constants
used in the sequel for estimates, we adopt the rule that C denotes any positive constant that depends
only on the given data. The value of such generic constants C may change from formula to formula
or even within the lines of the same formula. Finally, the notation Cδ indicates a positive constant that
additionally depends on the quantity δ.

2 Main results

In this section, we formulate the general assumptions for the data of the system (1.1)–(1.4) and state
existence, continuous dependence, and regularity results. First, let us remark that the positive param-
eter α is not listed in the assumptions below, since it is also involved in the related asymptotic analysis,
and, consequently, we let

0 < α ≤ 1.

On the other hand, throughout the paper we suppose that

τ > 0 is a fixed constant. (2.1)

For the nonlinearity f we generally assume that

f = f1 + f2, where

f1 : R→ [0,+∞] is convex and lower semicontinuous with f1(0) = 0,

f2 : R→ R has a Lipschitz continuous first derivative f ′2 on R. (2.2)

A consequence of (2.2) is that

the subdifferential ∂f1 is maximal monotone in R× R, with 0 ∈ ∂f1(0), (2.3)

and an important requirement for the sequel is that

the domain D(∂f1) of ∂f1 has a non-empty interior containing 0. (2.4)

Note that these conditions are fulfilled in each of the cases considered in (1.9), (1.10), (1.11) with the
domain D(∂f1) given by R, (−1, 1), [−1, 1], respectively. From now onwards we use the symbol
∂f ◦1 (r) for the element of ∂f1(r) (with r ∈ D(∂f1)) having minimum modulus, and we extend the
notations f1, ∂f1, D(∂f1), and ∂f ◦1 to the corresponding functionals and the operators induced on
L2 spaces.

Also, we assume for the forcing term g and the initial values µ0, ν0, ϕ0 that

g ∈ H1(0, T ;H), (2.5)

µ0 ∈ V, ν0 ∈ H, (2.6)

ϕ0 ∈ W ∩D(∂f1) with ∂f ◦1 (ϕ0) ∈ H. (2.7)

Note that the condition ϕ0 ∈ W implies that ϕ0 ∈ C0(Ω). Moreover, we require that

m0 :=
1

|Ω|

∫
Ω

ϕ0 lies in the interior of D(∂f1). (2.8)
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Here, |Ω| denotes the Lebesgue measure of Ω, andm0 thus represents the mean value of ϕ0. In the
following, we use the general notation v to denote the mean value of a generic function v ∈ L1(Ω). If
v is in V ∗, then we can set

v :=
1

|Ω|
〈v, 1〉 (2.9)

as well, noting that the constant function 1 is an element of V . Clearly, v is the usual mean value of v
if v ∈ H . Note also that m0 = ϕ0.

Let us now specify our notion of solution. We state the problem (1.1)–(1.4) in a variational form. We
also introduce an additional variable ξ, which plays the role of f ′1(ϕ) in the case when the derivative
of f1 is replaced by a real subdifferential ∂f1. Namely, the solution is a triple (µ, ϕ, ξ) satisfying the
regularity requirements

µ ∈ W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (2.10)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.11)

ξ ∈ L∞(0, T ;H), (2.12)

and the following variational equations and initial conditions:

α〈∂ttµ(t), v〉+ (∂tϕ(t), v) +

∫
Ω

∇µ(t) · ∇v = 0

for a.e. t ∈ (0, T ) and every v ∈ V , (2.13)

τ(∂tϕ(t), v) +

∫
Ω

∇ϕ(t) · ∇v + (ξ(t) + f ′2(ϕ(t)), v) = (µ(t) + g(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (2.14)

ξ ∈ ∂f1(ϕ) a.e. in Q, (2.15)

µ(0) = µ0 , (∂tµ)(0) = ν0 , ϕ(0) = ϕ0 a.e. in Ω . (2.16)

Of course, in view of the regularities in (2.10)–(2.12), the variational equality (2.14) is actually equiv-
alent to an equation (cf. (1.2)) plus the boundary condition for ϕ which is already encoded in the fact
that ϕ ∈ L∞(0, T ;W ). Therefore, (2.14) can be replaced by

τ∂tϕ−∆ϕ+ ξ + f ′2(ϕ) = µ+ g a.e. in Q. (2.17)

On the contrary, the analogue equivalence for (2.13) (cf. (1.1)) would be true only if µ were more
regular (cf. the first ad third term in (2.13)).

Remark 2.1. Note that, owing to the compactness of the embedding W ⊂ C0(Ω) for N ≤ 3, it
follows from [28, Sect. 8, Cor. 4] and the regularity (2.11) that ϕ ∈ C0(Q). By the same token, we
have thanks to (2.10) that µ ∈ C1([0, T ];V ∗) ∩ C0([0, T ];H), and, consequently, ∂tµ is at least
weakly continuous from [0, T ] to H , which gives a meaning to the initial conditions in (2.16).

The next statement yields a well-posedness result for (2.13)–(2.16).

Theorem 2.2. Assume that (2.1)–(2.8) are fulfilled. Then there exists a unique triple (µ, ϕ, ξ), with
the regularity as in (2.10)–(2.12), that solves problem (2.13)–(2.16) and satisfies the estimate

α‖µ‖W 2,∞(0,T ;V ∗) + α1/2‖µ‖W 1,∞(0,T ;H) + ‖µ‖L∞(0,T ;V )

+ ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖ξ‖L∞(0,T ;H) ≤ K1 (2.18)
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for some constant K1 > 0 that depends only on Ω, T and the data in (2.1)–(2.8), but is independent
of α.

The uniqueness property stated above is a consequence of the following continuous dependence
result. Here, we use the notation

1 ∗ v(t) =

∫ t

0

v(s)ds, for v ∈ L1(0, T ;V ∗) at least.

Theorem 2.3. Under the assumptions (2.1)–(2.4), let gi, µ0,i, ν0,i, ϕ0,i, i = 1, 2, be two sets of data
satisfying (2.5)–(2.8), and let (µi, ϕi, ξi), i = 1, 2, denote any corresponding solutions to problem
(2.13)–(2.16) with the regularity as in (2.10)–(2.12). Then, the estimate

α1/2‖µ1 − µ2‖L∞(0,T ;H) + ‖∇(1 ∗ (µ1 − µ2))‖L∞(0,T ;H) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ K2

(
‖g1 − g2‖L2(0,T ;H) + α1/2‖µ0,1 − µ0,2‖H + α1/2‖ν0,1 − ν0,2‖H

)
+K2

(
1 + α−1/2

)
‖ϕ0,1 − ϕ0,2‖H (2.19)

holds true with a constant K2 > 0 that depends only on Ω, T , τ , some Lipschitz constant for f ′2, and
is independent of α.

We observe that, by taking the same data in Theorem 2.3, the estimate (2.19) ensures uniqueness for
the solution components µ and ϕ in the statement of Theorem 2.2, while the uniqueness of ξ results
from (2.17) since the other terms in the equality are uniquely determined.

On the basis of the estimates (2.18) and (2.19), we are interested to investigate the asymptotic be-
havior of the problem (2.13)–(2.16) as α ↘ 0. This analysis will be developed in Section 5, whereas
now we discuss some further results that mostly depend on the values of α > 0. A regularity result is
stated below, under the additional assumption that

µ0 ∈ W, ν0 ∈ V. (2.20)

Theorem 2.4. Assume that (2.1)–(2.8) and (2.20) are fulfilled. Then the unique solution (µ, ϕ, ξ) to
problem (2.13)–(2.16) satisfies

µ ∈ W 2,∞(0, T ;H) ∩W 1,∞(0, T ;V ) ∩ L∞(0, T ;W ) , (2.21)

and there exists a constant K3, independent of α, such that

α‖µ‖W 2,∞(0,T ;H) + α1/2‖µ‖W 1,∞(0,T ;V ) + ‖µ‖L∞(0,T ;W ) ≤ K3

(
1 + α−1/2

)
. (2.22)

Notice that, due to the compactness of the embedding W ⊂ C0(Ω), it follows from [28, Sect. 8,
Cor. 4] that µ ∈ C0(Q).

For the next regularity and continuous dependence result we have to assume further regularity for g,
that is,

g ∈ L∞(Q), (2.23)

and for the nonlinearity f . Namely, we suppose that the effective domain of ∂f1 is an open interval
and that the restriction of f1 to this interval is a smooth function. More precisely, we assume that

D(∂f1) = (r−, r+), with −∞ ≤ r− < 0 < r+ ≤ +∞,
and the restriction of f1 to (r−, r+) belongs to C2(r−, r+). (2.24)

DOI 10.20347/WIAS.PREPRINT.3128 Berlin 2024
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Then, for r ∈ (r−, r+), the subdifferential ∂f1(r) reduces to the singleton {f ′1(r)}, and we require
that

lim
r↘r−

f ′1(r) = −∞ , lim
r↗r+

f ′1(r) = +∞. (2.25)

Please note that both the potentials freg and flog in (1.9) and (1.10) fulfill (2.24)–(2.25) with (r−, r+) =
R and (r−, r+) = (−1, 1), respectively.

The so-called separation property and a refined continuous dependence result are stated as follows.

Theorem 2.5. Assume that (2.1)–(2.8) and (2.20)–(2.25) are fulfilled. There exists two real numbers
r∗ and r∗, depending on α and on the structure of the system, such that

r− < r∗ ≤ ϕ(x, t) ≤ r∗ < r+ for every (x, t) ∈ Q. (2.26)

Moreover, if for i = 1, 2 we let (gi, µ0,i, ν0,i, ϕ0,i) be a set of data and (µi, ϕi, ξi), with ξi = f ′1(ϕi),
denote the corresponding solution to problem (2.13)–(2.16), the estimate

‖µ1 − µ2‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V )L2(0,T ;W )

≤ K4

(
‖g1 − g2‖L2(0,T ;H) + ‖µ0,1 − µ0,2‖V + ‖ν0,1 − ν0,2‖H + ‖ϕ0,1 − ϕ0,2‖V

)
(2.27)

holds true for some constant K4 > 0 that depends on α and on the structure of the system.

Remark 2.6. Please note that in the case when the domain D(∂f1) is the entire real line, i.e., if
r− = −∞ and r+ = +∞, then the property (2.26) is direcly ensured by the estimate (2.18), since
ϕ is bounded in C0(Q); therefore, if D(∂f1) = R, then the additional regularity assumptions (2.20)
and (2.23) are not needed to prove (2.26).

Remark 2.7. It would be interesting to investigate the system (1.1)–(1.4) from the viewpoint of an
optimal control problem, with the distributed control located in the source term g in equation (1.2).
Thus, in order to discuss differentiability properties and optimality conditions, it could be important to
deal with smoother data and a smooth nonlinearity f , and with the control g lying in a control box in
L∞(Q) (cf. (2.23)). In this framework, stronger stability and continuous depencence estimates can
possibly be derived for the system. However, the estimates (2.18), (2.22) and (2.27) are already a
good starting point in that direction.

3 Existence of solutions

In this section, we are going to prove the existence result for the problem (2.13)–(2.16), by constructing
a solution (µ, ϕ, ξ) that satisfies (2.10)–(2.12). We adopt two levels of approximation: at first, we
replace the subdifferential ∂f1 in (2.15) by the derivative of the Moreau–Yosida regularization f1,ε of
f1, depending on a parameter ε ∈ (0, 1); then, we apply a Faedo–Galerkin scheme to the resulting
approximate system.

To begin with, we consider for every ε ∈ (0, 1) the Moreau–Yosida regularization f1,ε of f1, that is
(see, e.g., [1,4]),

f1,ε(r) := inf
s∈R

{
1

2ε
|r − s|2 + f1(s)

}
=

1

2ε

∣∣r − Jε(r)∣∣2 + f1(Jε(r)) =

∫ r

0

f ′1,ε(s)ds,

DOI 10.20347/WIAS.PREPRINT.3128 Berlin 2024
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where f ′1,ε : R→ R and the associated resolvent operator Jε are given by

f ′1,ε(r) :=
1

ε
(r − Jε(r)), Jε(r) := (I + ε∂f1)−1(r), for all r ∈ R,

with I denoting the identity operator. Note that the derivative f ′1,ε turns out to be a regularization of
the graph ∂f1. Indeed, f ′1,ε and f1,ε fullill, for all 0 < ε < 1 (see, e.g., [4, pp. 28 and 39]),

f ′1,ε : R→ R is monotone and Lipschitz continuous

with Lipschitz constant 1/ε, and it holds f ′1,ε(0) = 0, (3.1)

|f ′1,ε(r)| ≤ |∂f ◦1 (r)| for every r ∈ D(∂f1), (3.2)

0 ≤ f1,ε(r) ≤ f1(r) for every r ∈ R. (3.3)

As for the second approximation, we employ a Faedo–Galerkin discrete scheme using a special basis.
To this end, we take the eigenvalues {λj}j∈N of the eigenvalue problem

−∆v = λv in Ω, ∂nv = 0 on ∂Ω,

and let {ej}j∈N ⊂ W be the associated eigenfunctions, normalized by ‖ej‖H = 1, j ∈ N. Then,
we have that

0 = λ1 < λ2 ≤ . . . , lim
j→∞

λj = +∞,∫
Ω

ejek =

∫
Ω

∇ej · ∇ek = 0 for j 6= k,

and we note that e1 is just the constant function |Ω|−1/2. We then define the n-dimensional spaces
Vn := span{e1, . . . , en} for n ∈ N, where V1 is just the space of constant functions on Ω. It is well
known that the union of these spaces is dense in both H and V .

The approximating n-dimensional problem is stated as follows: find functions

µn(x, t) =
n∑
j=1

µnj(t)ej(x), ϕn(x, t) =
n∑
j=1

ϕnj(t)ej(x), (3.4)

such that

α(∂ttµn(t), v) + (∂tϕn(t), v) +

∫
Ω

∇µn(t) · ∇v = 0

for all t ∈ [0, T ] and every v ∈ Vn, (3.5)

τ(∂tϕn(t), v) +

∫
Ω

∇ϕn(t) · ∇v + (f ′1,ε(ϕn(t)) + f ′2(ϕn(t)), v) = (µn(t) + g(t), v)

for all t ∈ [0, T ] and every v ∈ Vn, (3.6)

µn(0) = Pn(µ0) , (∂tµn)(0) = Pn(ν0) , ϕn(0) = Pn(ϕ0) a.e. in Ω , (3.7)

where Pn denotes the H-orthogonal projection onto Vn. Then Pn(v) =
∑n

j=1(v, ej)ej for every
v ∈ H , and we have (see, e.g., [10, formula (3.14)])

‖Pn(v)‖Y ≤ CΩ‖v‖Y for every v ∈ Y , where Y ∈ {H, V,W}, (3.8)
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Hyperbolic relaxation of viscous Cahn–Hilliard equations 9

for some constant CΩ > 0 depending only on Ω. By comparing (3.5)–(3.7) with (2.13)–(2.16), note
that the inclusion (2.15) present in (2.13)–(2.16) is not reproduced in (3.5)–(3.7), since the role of the
ξ variable is now played by f ′1,ε(ϕn), written as it is, in (3.6).

Next, we take v = ek in all of the equations (3.5)–(3.7), for k = 1, . . . , n, obtaining the system

α
d2

dt2
µnk +

d

dt
ϕnk + λk µnk = 0 in (0, T ), (3.9)

τ
d

dt
ϕnk + λk ϕnk + (f ′1,ε(ϕn) + f2(ϕn), ek) = µnk + (g, ek) in (0, T ), (3.10)

µnk(0) = (µ0, ek),
d

dt
µnk(0) = (ν0, ek), ϕnk(0) = (ϕ0, ek). (3.11)

Then we have to deal with a Cauchy problem for a system of ordinary differential equations, which is
of second order in the variables µnk and of first order in the variables ϕnk. This system is set in explicit
form and offers Lipschitz continuous nonlinearities and source terms (g, ek) in H1(0, T ) (cf. (2.5)).
By Carathéodory’s theorem, the Cauchy problem (3.9)–(3.11) has a unique solution expressed by
µnk, ϕnk, with µnk ∈ H3(0, T ) and ϕnk ∈ H2(0, T ), for k = 1, . . . , n. On account of (3.9)–(3.10)
and (3.4), this solution uniquely determines a pair (µn, ϕn) ∈ H3(0, T ;Vn) × H2(0, T ;Vn) that
solves (3.5)–(3.7).

We now derive a series of a priori estimates for the finite-dimensional approximations. In the following,
C > 0 denotes constants that may depend on the data of the state system, but are independent of
n ∈ N, ε ∈ (0, 1) and α ∈ (0, 1].

First estimate. The aim is taking the time derivative of (3.6) and then testing by ∂tϕn. In addition,
we add the resulting equality to (3.5) where we choose v = ∂tµn. By this approach we obtain the
cancellation of two terms. Next, we integrate with respect to time and, in order to recover our estimate,
we have to control the H-norm of the initial value ∂tϕn(0). Taking t = 0 and v = ∂tϕn(0) in (3.6),
by (3.7) we easily infer that

τ‖∂tϕn(0)‖2
H = (∆ϕn(0)− f ′1,ε(ϕn(0))− f ′2(ϕn(0)) + µn(0) + g(0), ∂tϕn(0))

≤ τ

2
‖∂tϕn(0)‖2

H +
1

2τ
‖∆Pn(ϕ0)− f ′1,ε(Pn(ϕ0))− f ′2(Pn(ϕ0)) + Pn(µ0) + g(0)‖2

H ,

thanks to the Schwarz and Young inequalities. By virtue of the assumptions (2.5)–(2.7) on g and the
initial data, and of the property (3.8), it turns out that there is a constant Cε, depending only on the
data and on ε, such that

τ‖∂tϕn(0)‖H ≤ ‖∆Pn(ϕ0)− f ′1,ε(Pn(ϕ0))− f ′2(Pn(ϕ0)) + Pn(µ0) + g(0)‖H ≤ Cε . (3.12)

The dependence on ε follows from the Lipschitz continuity of f ′1,ε with constant 1/ε (cf. (3.1)), while
f ′2 is Lipschitz continuous independently of ε (see (2.2)).
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Now, we can perform the computation described above and deduce that

α

2
‖∂tµn(t)‖2

H +
1

2
‖∇µn(t)‖2

H +
τ

2
‖∂tϕn(t)‖2

H

+

∫∫
Qt

|∇(∂tϕn)|2 +

∫∫
Qt

f ′′1,ε(ϕn)|∂tϕn|2

≤ α

2
‖Pn(ν0)‖2

H +
1

2
‖∇Pn(µ0)‖2

H

+
1

2τ
‖∆Pn(ϕ0)− f ′1,ε(Pn(ϕ0))− f ′2(Pn(ϕ0)) + Pn(µ0) + g(0)‖2

H

−
∫∫

Qt

f ′′2 (ϕn))|∂tϕn|2 +

∫∫
Qt

∂tg ∂tϕn, (3.13)

where we have used the notation

Qt := Ω× (0, t), t ∈ (0, T ].

By the monotonicity of f ′1,ε, the last term on the left-hand side of (3.13) is nonnegative. Moreover,
owing to (2.2), we have that |f ′′2 (ϕn)||∂tϕn|2 ≤ C|∂tϕn|2 a.e. in Qt. Then, in view of (2.5), (2.6),
(3.8), Young’s inequality, and Gronwall’s lemma, it is straightforward to infer from (3.13) that

α1/2‖∂tµn‖L∞(0,T ;H) + ‖∇µn‖L∞(0,T ;H) + ‖∂tϕn‖L∞(0,T ;H) + ‖∇(∂tϕn)‖L2(0,T ;H)

≤ C
(
‖ν0‖H + ‖µ0‖V + ‖∂tg‖L2(0,T ;H)

+ ‖∆Pn(ϕ0)− f ′1,ε(Pn(ϕ0))− f ′2(Pn(ϕ0)) + Pn(µ0) + g(0)‖H
)
, (3.14)

for some constant C depending only on data, as 0 < α ≤ 1. Therefore, recalling the initial conditions
in (3.7), since

µn(t) = Pn(µ0) +

∫ t

0

∂tµn(s)ds, ϕn(t) = Pn(ϕ0) +

∫ t

0

∂tϕn(s)ds for all t ∈ [0, T ],

we easily conclude from (3.12) that

α1/2‖µn‖W 1,∞(0,T ;H) + ‖∇µn‖L∞(0,T ;H) + ‖ϕn‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ Cε . (3.15)

Complementary estimates. Taking now v ∈ V , and using (3.5) and (3.8), we have that

α〈∂ttµn(t), v〉 = α(∂ttµn(t), Pn(v)) + α(∂ttµn(t), v − Pn(v))

≤ |α(∂ttµn(t), Pn(v))| ≤
∣∣∣∣(∂tϕn(t), Pn(v)) +

∫
Ω

∇µn(t) · ∇Pn(v)

∣∣∣∣
≤ C

(
‖∂tϕn‖L∞(0,T ;H) + ‖∇µn‖L∞(0,T ;H)

)
‖v‖V for a.e. t ∈ (0, T ), (3.16)

so that from (3.15) it clearly follows that

α‖∂ttµn‖L∞(0,T ;V ∗) ≤ Cε . (3.17)
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In addition, we can take v = −∆(ϕn(t)) in (3.6) and integrate by parts in some term. With the help
of Young’s inequality and the Lipschitz continuity of f ′2, we obtain

‖∆ϕn(t)‖2
H +

∫
Ω

f ′′1,ε(ϕn(t))|∇ϕn(t)|2

= (τ∂tϕn(t) + f ′2(ϕn(t))− g(t),∆ϕn(t)) +

∫
Ω

∇µn(t) · ∇ϕn(t)

≤ 1

2
‖∆ϕn(t)‖2

H + C
(
1 + ‖ϕn‖2

W 1,∞(0,T ;H) + ‖g‖2
L∞(0,T ;H)

)
+ ‖∇µn‖L∞(0,T ;H)‖∇ϕn‖L∞(0,T ;H) for a.e. t ∈ (0, T ), (3.18)

where the second term in the first line is nonnegative due to (3.1). Consequently, from (3.15) and the
elliptic regularity theory, we find that

‖∆ϕn‖L∞(0,T ;H) + ‖ϕn‖L∞(0,T ;W ) ≤ Cε . (3.19)

Passage to the limit in the Faedo–Galerkin scheme. By virtue of the uniform estimates shown
above, there exists a pair (µε, ϕε) such that (possibly on a subsequence, which is again labeled by
n ∈ N)

µn → µε weakly star in W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (3.20)

ϕn → ϕε weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ). (3.21)

By (3.20) and the compact embeddings V ⊂ H ⊂ V ∗, it follows from [28, Sect. 8, Cor. 4] that

µn → µε strongly in C1([0, T ];V ∗) ∩ C0([0, T ];H) . (3.22)

Moreover, owing to the compactness of the embeddings W ⊂ C0(Ω) and W ⊂ V , it turns out that

ϕn → ϕε strongly in C0(Q) ∩ C0([0, T ];V ) , (3.23)

whence, by the Lipschitz continuity of f ′1,ε and f ′2, we deduce that

f ′1,ε(ϕn) + f ′2(ϕn)→ f ′1,ε(ϕε) + f ′2(ϕε) strongly in C0(Q) ∩ C0([0, T ];H) , (3.24)

at least. Then, taking first v ∈ Vk with k ≤ n in (3.5)–(3.6), and passing to the limit as n → ∞, it is
not difficult to infer that

α〈∂ttµε, v〉+ (∂tϕε, v) +

∫
Ω

∇µε · ∇v = 0 a.e. in (0, T ), (3.25)

τ(∂tϕε, v) +

∫
Ω

∇ϕε · ∇v + (f ′1,ε(ϕε) + f ′2(ϕε), v) = (µε + g, v) a.e. in (0, T ), (3.26)

at first for all v ∈ ∪k∈NVk, and then, by density, for all v ∈ V . Note that, due to the regularity of ϕε,
the second variational equality can be equivalently rewritten as

τ∂tϕε −∆ϕε + f ′1,ε(ϕε) + f ′2(ϕε) = µε + g a.e. in Q, (3.27)

where it is understood that ϕε satisfies the boundary condition ∂nϕε = 0 a.e. on Σ, on account of
ϕε ∈ L∞(0, T ;W ).
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Thanks to (3.22) and (3.23), we can pass to the limit as n→∞ also in the initial conditions (3.7) and
find that

µε(0) = µ0 , (∂tµε)(0) = ν0 , ϕε(0) = ϕ0 , a.e. in Ω, (3.28)

since (see (2.6)–(2.7))

Pn(µ0)→ µ0, Pn(ν0)→ ν0, Pn(ϕ0)→ ϕ0, strongly in V, H, W, respectively,

and ∂tµε is weakly continuous from [0, T ] to H . Also, we can invoke the weak star lower semiconti-
nuity of norms and pass to the limit in (3.14) to derive the inequality

α1/2‖∂tµε‖L∞(0,T ;H) + ‖∇µε‖L∞(0,T ;H) + ‖∂tϕε‖L∞(0,T ;H) + ‖∇(∂tϕε)‖L2(0,T ;H)

≤ C
(
‖ν0‖H + ‖µ0‖V + ‖∂tg‖L2(0,T ;H)

+ ‖∆ϕ0 − f ′1,ε(ϕ0)− f ′2(ϕ0) + µ0 + g(0)‖H
)
. (3.29)

Hence, recalling (2.7) and (3.2), it turns out especially that ‖f ′1,ε(ϕ0)‖H is bounded independently of
ε, which implies that the complete right-hand side of (3.29) is uniformly bounded. Then, arguing as
before, we can improve (3.15) for (µε, ϕε) and recover that

α1/2‖µε‖W 1,∞(0,T ;H) + ‖∇µε‖L∞(0,T ;H) + ‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C . (3.30)

As a consequence, by repeating the arguments in (3.16) and (3.18) for µε and ϕε, we easily find out
that

α‖∂ttµε‖L∞(0,T ;V ∗) + ‖∆ϕε‖L∞(0,T ;H) + ‖ϕε‖L∞(0,T ;W ) ≤ C (3.31)

for some constant C which is independent of both ε ∈ (0, 1) and α ∈ (0, 1].

Further estimates. We insert the constant function v = 1/|Ω| in (3.25) and deduce that
∂t(α∂tµε + ϕε) = 0 a.e. in (0, T ). Hence, in view of (3.28), (2.8) and (2.9) it is straightforward
to obtain

α ∂tµε(t) + ϕε(t) = α ν0 +m0 for all t ∈ [0, T ]. (3.32)

Now, we take v = ϕε(t)−m0 in (3.26) and, without integrating with respect to time, we have that∫
Ω

|∇(ϕε(t)−m0)|2 + (f ′1,ε(ϕε(t)), ϕε(t)−m0)

= −(τ∂tϕε(t) + f ′2(ϕε(t))− g(t), ϕε(t)−m0) + (µε(t), ϕε(t)−m0). (3.33)

Now, in view of the properties (2.2)–(2.4) of f1 and ∂f1, and on account of (2.8), it turns out that there
exist two positive constants δ0 and C0, independent of ε, such that

f ′1,ε(r)(r −m0) ≥ δ0|f ′1,ε(r)| − C0 for every r ∈ R. (3.34)

For this property we refer to [25, Appendix, Prop. A.1] and also to the detailed proof given in [19,
p. 908]. Applying (3.34) to the second term in the left-hand side of (3.33), due to (2.5) on g and to the
Lipschitz continuity of f ′2, we infer that

δ0|f ′1,ε(ϕε(t))| ≤ C
(
1 + ‖ϕε‖2

W 1,∞(0,T ;H)

)
+ (µε(t), ϕε(t)−m0). (3.35)
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As for the last term in (3.35), thanks to (3.32) and the Poincaré–Wirtinger inequality, we can argue as
follows:

(µε(t), ϕε(t)−m0)

= (µε(t), α ∂tµε(t) + ϕε(t)− α ν0 −m0) + (µε(t), α ν0 − α ∂tµε(t))
= (µε(t)− µε(t), α ∂tµε(t) + ϕε(t)− α ν0 −m0) + α(µε(t), ν0 − ∂tµε(t))

≤ C‖∇µε‖L∞(0,T ;H)

(
α1/2‖∂tµε‖L∞(0,T ;H) + ‖ϕε‖L∞(0,T ;H) + 1

)
+ C

(
α‖µε‖2

W 1,∞(0,T ;H) + 1
)

(3.36)

since 0 < α ≤ 1. Hence, by (3.35), (3.36), and (3.30), we can conclude that

‖f ′1,ε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ C . (3.37)

Next, we choose the constant function v = 1 in (3.26). We obtain, for a.e. t ∈ (0, T ),∫
Ω

f ′1,ε(ϕε(t)) +

∫
Ω

(τ∂tϕε + f ′2(ϕε(t))− g(t)) = |Ω|µε(t). (3.38)

Owing to (3.37) and (3.30), both summands on the left-hand side are bounded in L∞(0, T ). Then we
infer that

‖µε‖L∞(0,T ) ≤ C. (3.39)

Moreover, using again the Poincarè–Wirtinger inequality, we have that

‖µε‖L∞(0,T ;H) ≤ ‖µε − µε‖L∞(0,T ;H) + C‖µε‖L∞(0,T )

≤ C‖∇µε‖L∞(0,T ;H) + C ≤ C. (3.40)

Now we can go back to (3.26) or, better, to (3.27) and compare the terms in the equation: from (3.30),
(3.31) and (2.5) it follows that ∂tϕε, ∆ϕε, f

′
2(ϕε), µε, g are all uniformly bounded in L∞(0, T ;H),

whence
‖f ′1,ε(ϕε)‖L∞(0,T ;H) ≤ C . (3.41)

Passage to the limit as ε → 0 . Thanks to the uniform estimates (3.30), (3.31), (3.40), and (3.41),
it follows that there is a triple (µ, ϕ, ξ) such that, for some subsequence εk tending to 0, it holds

µεk → µ weakly star in W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (3.42)

ϕεk → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.43)

f ′1,εk(ϕεk)→ ξ weakly star in L∞(0, T ;H). (3.44)

As argued in the previous limit procedure (cf. (3.22)–(3.24)), by compactness, in particular exploiting
[28, Sect. 8, Cor. 4], and by the Lipschitz continuity of f ′2, we have that

µεk → µ strongly in C1([0, T ];V ∗) ∩ C0([0, T ];H) , (3.45)

ϕεk → ϕ strongly in C0(Q) ∩ C0([0, T ];V ) , (3.46)

f ′2(ϕεk)→ f ′2(ϕ) strongly in C0(Q) ∩ C0([0, T ];H) . (3.47)

Then we can pass to the limit as εk → 0 in (3.25) and (3.26) by finding (2.13) and (2.14), respec-
tively. Moreover, the initial conditions (2.16) follow from (3.28). It remains to check (2.15): but, since

DOI 10.20347/WIAS.PREPRINT.3128 Berlin 2024



P. Colli, J. Sprekels 14

the extension of ∂f1 to L2(0, T ;H) is a maximal monotone operator and f ′1,ε denotes its Yosida
approximation, and since we have that

lim sup
k,n→∞

∫ T

0

(f ′1,εk(ϕεk(t))− f ′1,εn(ϕεn(t)), ϕεk(t)− ϕεn(t))dt = 0

due to the weak convergence of f ′1,εk(ϕεk) to ξ in L2(0, T ;H) and the strong convergence of ϕεk
to ϕ in L2(0, T ;H), we can apply [1, Prop. 2.2, p. 38] and recover the inclusion ξ ∈ ∂f1(ϕ) in
L2(0, T ;H) and almost everywhere in Q.

In conclusion, we note that the triple (µ, ϕ, ξ) found by the limit procedure is actually the unique
solution of the problem (2.13)–(2.16), on account of the continuous dependence result, and that the
estimate (2.18) follows easily from the uniform bounds in (3.30), (3.31), (3.40), (3.41) and the weak
star lower semicontinuity of norms. Therefore, Theorem 2.2 is completely proved.

4 Continuous dependence and regularity

In this section, we show report the proofs of the continuous dependence and regularity results.

Proof of Theorem 2.3. We just have to prove the inequality (2.19) by letting (µi, ϕi, ξi) be any
solution of problem (2.13)–(2.16) with the corresponding data gi, µ0,i, ν0,i, ϕ0,i, satisfying (2.5)–(2.8)
for i = 1, 2. For convenience, within this proof we set

g = g1 − g2, µ0 = µ0,1 − µ0,2, ν0 = ν0,1 − ν0,2, ϕ0 = ϕ0,1 − ϕ0,2,

as well as
µ = µ1 − µ2 , ϕ = ϕ1 − ϕ2 , ξ = ξ1 − ξ2.

Then, taking the differences of the respective equalities (2.13)–(2.14) and integrating the one resulting
from (2.13) with respect to time, we obtain

(α∂tµ(t) + ϕ(t), v) +

∫
Ω

∇(1 ∗ µ)(t) · ∇v = (αν0 + ϕ0, v)

for a.e. t ∈ (0, T ) and every v ∈ V , (4.1)

τ(∂tϕ(t), v) +

∫
Ω

∇ϕ(t) · ∇v + (ξ(t), v) = (µ(t) + g(t)− f ′2(ϕ1(t)) + f ′2(ϕ2(t)), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (4.2)

ξi ∈ ∂f1(ϕi), i = 1, 2, a.e. in Q, (4.3)

µ(0) = µ0 , ϕ(0) = ϕ0 a.e. in Ω . (4.4)

Next, we take v = µ(t) in (4.1) and v = ϕ(t) in (4.2), then we add them noting a cancellation of
terms and integrate once more with respect to t. With the help of (4.4), we infer that

α

2
‖µ(t)‖2

H +
1

2
‖∇(1 ∗ µ)(t)‖2

H +
τ

2
‖ϕ(t)‖2

H +

∫∫
Qt

|∇ϕ|2 +

∫∫
Qt

ξϕ

≤ α

2
‖µ0‖2

H +
τ

2
‖ϕ0‖2

H +

∫∫
Qt

(αν0 + ϕ0)µ

+

∫∫
Qt

g ϕ−
∫∫

Qt

(f ′2(ϕ1)− f ′2(ϕ2))ϕ (4.5)
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for all t ∈ (0, T ]. Now, thanks to (4.3) the last term on the left-hand side is nonnegative. On the
right-hand side, by the Young inequality, we have that∫∫

Qt

(αν0 + ϕ0)µ ≤ α

∫ t

0

‖µ(s)‖2
Hds+ C

(
α‖ν0‖2

H + α−1‖ϕ0‖2
H

)
,

and, using also the Lipschitz continuity of ϕ, it follows that∫∫
Qt

g ϕ−
∫∫

Qt

(f ′2(ϕ1)− f ′2(ϕ2))ϕ ≤ C

∫ t

0

‖ϕ(s)‖2
Hds+

1

2
‖g‖2

L2(0,T ;H).

Therefore, we can collect these inequalities and apply the Gronwall lemma to the resultant from (4.5)
in order to plainly obtain the estimate (2.19).

Proof of Theorem 2.4. We already know from (2.11) that ∂tϕ is in L∞(0, T ;H) ∩ L2(0, T ;V ).
Then, in view of (2.20), the regularity in (2.21) follows from the variational theory for linear evolution
problems of second order in time (see, e.g., [16]). Then, in order to reproduce the estimate in (2.22),
let us proceed formally and test equation (2.13) by −∆(∂tµ(t)). By this, we can easily integrate by
parts and also with respect to time. With the help of Young’s inequality we obtain

α

2

∫
Ω

|∇(∂tµ(t))|2 +
1

2

∫
Ω

|∆µ(t)|2

=
α

2

∫
Ω

|∇ν0|2 +
1

2

∫
Ω

|∆µ0|2 −
∫∫

Qt

∇(∂tϕ) · ∇(∂tµ)

≤ α

2
‖ν0‖2

V +
1

2
‖∆µ0‖2

H +
1

2α

∫∫
Qt

|∇(∂tϕ)|2 +
α

2

∫∫
Qt

|∇(∂tµ)|2, (4.6)

whence the estimate

α1/2‖µ‖W 1,∞(0,T ;V ) + ‖µ‖L∞(0,T ;W ) ≤ C
(
1 + α−1/2

)
(4.7)

follows from an application of Gronwall’s lemma, along with (2.20) and (2.18). Having shown (4.7), it is
now straightforward to compare the terms in (2.13) and to deduce that α‖∂ttϕ‖L∞(0,T ;H) is bounded
by a quantity like the right-hand side of (4.7). Thus, we complete the proof of (2.22).

Proof of Theorem 2.5. We first show (2.26). It is already known from (2.7) that the initial value of ϕ,
i.e. ϕ0, belongs to a compact subset of D(∂f1) = (r−, r+). By the previous proof, we have checked
that µ is bounded in L∞(0, T ;W ), hence in L∞(Q), as follows from the above estimate (4.7). Then,
let us rewrite equation (2.17) as

τ∂tϕ−∆ϕ+ f ′1(ϕ) = h, with h = µ+ g − f ′2(ϕ), a.e. in Q. (4.8)

The term ξ in (2.17) has been expressed here as f ′1(ϕ), as it is allowed by the assumption (2.24).
Note that the right-hand side h of (4.8) is actually bounded in L∞(Q), thanks to (2.23) and the bound
for ϕ ensured by (2.18), along with the Lipschitz continuity of f ′2.

To prove (2.26), it is enough to derive an L∞(Q)-bound for f ′1(ϕ). Let us outline the argument by
proceeding formally and pointing out that just a truncation of the test functions would be needed for
a rigorous proof. We take any p > 2 and test (4.8) by |f ′1(ϕ)|p−2f ′1(ϕ), a function of ϕ which is
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increasing and attains the value 0 at 0 (cf. (2.2)–(2.4)). Then, we integrate from 0 to t ∈ (0, T ],
obtaining∫

Ω

(∫ ϕ(t)

0

|f ′1(s)|p−2f ′1(s)ds
)

+ (p− 1)

∫∫
Qt

|f ′1(ϕ)|p−2f ′′1 (ϕ)|∇ϕ|2 +

∫∫
Qt

|f ′1(ϕ)|p

=

∫
Ω

(∫ ϕ0

0

|f ′1(s)|p−2f ′1(s)ds
)

+

∫∫
Qt

h|f ′1(ϕ)|p−2f ′1(ϕ) . (4.9)

Note that the first term and the second term on the left-hand side are nonnegative, in particular, since
the derivative f ′′1 is nonnegative everywhere in (r−, r+). About the right-hand side we may observe
that ∫

Ω

(∫ ϕ0

0

|f ′1(s)|p−2f ′1(s)ds
)
≤ ‖f ′1(ϕ0)‖p−1

∞ ‖ϕ0‖∞|Ω| ,

and, with p′ = p/(p− 1) and the help of the Young inequality, that∫∫
Qt

h|f ′1(ϕ)|p−2f ′1(ϕ) ≤ ‖h‖Lp(Qt) ‖ |f ′1(ϕ)|p−1‖Lp′ (Qt)

= ‖h‖Lp(Qt) ‖f ′1(ϕ)‖p/p
′

Lp(Qt)
≤ 1

p
‖h‖pLp(Qt)

+
1

p′
‖f ′1(ϕ)‖pLp(Qt)

.

By rearranging from (4.9), and taking t = T , we infer that

‖f ′1(ϕ)‖Lp(Q) ≤
(
p‖f ′1(ϕ0)‖p−1

∞ ‖ϕ0‖∞|Ω|+ ‖h‖pLp(Q)

)1/p

≤
(
p‖f ′1(ϕ0)‖p−1

∞ ‖ϕ0‖∞|Ω|
)1/p

+ ‖h‖Lp(Q).

Then, letting p tend to +∞, we conclude that

‖f ′1(ϕ)‖L∞(Q) ≤ ‖f ′1(ϕ0)‖∞ + ‖h‖L∞(Q),

which ensures the validity of (2.26), for some constants r∗, r∗ as in the statement.

Next, we argue in order to prove the continuous dependence estimate (2.27). We use the same nota-
tion as in the proof of Theorem 2.3, so that

g = g1 − g2, µ0 = µ0,1 − µ0,2, ν0 = ν0,1 − ν0,2, ϕ0 = ϕ0,1 − ϕ0,2,

and
µ = µ1 − µ2 , ϕ = ϕ1 − ϕ2 ,

where (µi, ϕi, ξi), with ξi = f ′1(ϕi), is the solution to problem (2.13)–(2.16) corresponding to
gi, µ0,i, ν0,i, ϕ0,i, i = 1, 2, these data satisfying (2.5)–(2.8). Then, taking the differences of the re-
spective equalities (2.13)–(2.14), we obtain

α〈∂ttµ(t), v〉+

∫
Ω

∇µ(t) · ∇v = −(∂tϕ(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (4.10)

τ(∂tϕ(t), v) +

∫
Ω

∇ϕ(t) · ∇v = (µ(t) + g(t)− f ′(ϕ1(t)) + f ′(ϕ2(t)), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (4.11)

µ(0) = µ0 , (∂tµ)(0) = ν0 , ϕ(0) = ϕ0 a.e. in Ω , (4.12)
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where we have used f ′ = f ′1 + f ′2 in equation (4.11) noting that the estimate (2.26) and the assump-
tions (2.24) on f1 now allow us to take f ′ as a global Lipschitz continuous function (with Lipschitz
constant depending on α). In view of (2.19), we have for the term on the right-hand side of (4.11) that

‖µ+ g − f ′(ϕ1) + f ′(ϕ2)‖L2(0,T ;H) ≤ ‖µ‖L2(0,T ;H) + ‖g‖L2(0,T ;H) + Cα‖ϕ‖L2(0,T ;H)

≤ Cα

(
‖g‖L2(0,T ;H) + ‖µ0‖H + ‖ν0‖H + ‖ϕ0‖H

)
, (4.13)

where the constants are denoted by Cα since they depend on α as well. Then, using the standard
parabolic regularity estimate (see, e.g., [24] or [16])

‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V )L2(0,T ;W )

≤ C
(
‖µ+ g − f ′(ϕ1) + f ′(ϕ2)‖L2(0,T ;H) + ‖ϕ0‖V

)
for the ϕ solution to (4.11) with the respective initial condition, it is straightforward to deduce that

‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V )L2(0,T ;W )

≤ Cα
(
‖g‖L2(0,T ;H) + ‖µ0‖H + ‖ν0‖H + ‖ϕ0‖V

)
. (4.14)

Next, we can choose v = ∂tµ in (4.10), integrate with respect to time, and infer that

α

2
‖∂tµ(t)‖2

H +
1

2
‖∇µ(t)‖2

H

≤ α

2
‖ν0‖2

H +
1

2
‖∇µ0‖H +

∫ t

0

‖∂tϕ(s)‖H‖∂tµ(s)‖Hds. (4.15)

Then, first applying Young’s inequality to the last term and then Gronwall’s lemma, we arrive at the
estimate

‖µ‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) ≤ Cα
(
‖µ0‖V + ‖ν0‖H + ‖∂tϕ‖L2(0,T ;H)

)
,

whence from (4.14) it is clear that

‖µ‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) ≤ Cα
(
‖g‖L2(0,T ;H) + ‖µ0‖V + ‖ν0‖H + ‖ϕ0‖V

)
.

By this estimate, comparison of the terms in (4.10) yields

α‖∂ttµ‖L2(0,T ;V ∗) ≤ ‖∇µ‖L2(0,T ;H) + ‖∂tϕ‖L2(0,T ;H)

≤ Cα
(
‖g‖L2(0,T ;H) + ‖µ0‖V + ‖ν0‖H + ‖ϕ0‖V

)
, (4.16)

so that (2.27) is completely proved.

5 Asymptotic analysis

This section is devoted to the study of the asymptotic behavior of the problem (1.1)–(1.4) as α ap-
proaches 0. We allow the initial data for µ and ∂tµ, as well as the source term g, to depend on α,
while we keep fixed ϕ0, the initial value of ϕ, for reasons of simplicity in front of restrictions like (2.7)
and (2.8) for ϕ0.
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Thus, for 0 < α ≤ 1, we consider families of data gα, µ0,α, ν0,α such that

{gα} is uniformly bounded in H1(0, T ;H)

and strongly converges to g in L2(0, T ;H) as α↘ 0, (5.1)

{µ0,α} is uniformly bounded in V, (5.2)

{ν0,α} is uniformly bounded in H. (5.3)

Of course, it follows from (5.1) that g ∈ H1(0, T ;H) and ∂tgα → ∂tg weakly in L2(0, T ;H). We
can state the following convergence result.

Theorem 5.1. Assume that (2.1)–(2.4), (2.7)–(2.8), (5.1)–(5.3) are fulfilled. For all α ∈ (0, 1], let the
triple (µα, ϕα, ξα), with

µα ∈ W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (5.4)

ϕα ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (5.5)

ξα ∈ L∞(0, T ;H), (5.6)

be the solution to the initial value problem

α〈∂ttµα(t), v〉+ (∂tϕα(t), v) +

∫
Ω

∇µα(t) · ∇v = 0

for a.e. t ∈ (0, T ) and every v ∈ V , (5.7)

τ(∂tϕα(t), v) +

∫
Ω

∇ϕα(t) · ∇v + (ξα(t) + f ′2(ϕα(t)), v) = (µα(t) + gα(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (5.8)

ξα ∈ ∂f1(ϕα) a.e. in Q, (5.9)

µα(0) = µ0,α , (∂tµα)(0) = ν0,α , ϕα(0) = ϕ0 a.e. in Ω . (5.10)

Then there exists a triple (µ, ϕ, ξ) such that, for some subsequence αk tending to 0, there holds

µαk
→ µ weakly star in L∞(0, T ;V ), (5.11)

αkµαk
→ 0 weakly star in W 2,∞(0, T ;V ∗) and strongly in W 1,∞(0, T ;H), (5.12)

ϕαk
→ ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and strongly in C0([0, T ];V ) ∩ C0(Q), (5.13)

ξαk
→ ξ weakly star in L∞(0, T ;H). (5.14)

Moreover, (µ, ϕ, ξ) is a solution to the viscous Cahn–Hilliard system

(∂tϕ(t), v) +

∫
Ω

∇µ(t) · ∇v = 0

for a.e. t ∈ (0, T ) and every v ∈ V , (5.15)

τ(∂tϕ(t), v) +

∫
Ω

∇ϕ(t) · ∇v + (ξ(t) + f ′2(ϕ(t)), v) = (µ(t) + g(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V , (5.16)

ξ ∈ ∂f1(ϕ) a.e. in Q, (5.17)

ϕ(0) = ϕ0 a.e. in Ω . (5.18)
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Proof. A closer inspection of the proof of Theorem 2.2 in Section 3 reveals that the estimate (2.18)
still holds under the conditions (5.1)–(5.3). Then, by a standard weak star compactness argument, we
deduce the existence of a subsequence αk ↘ 0 and a triple (µ, ϕ, ξ) such that (5.11)–(5.14) hold. In
fact, the strong convergence property in (5.13) is a consequence of the compactness result reported
in [28, Sect. 8, Cor. 4]. Moreover, by the Lipschitz continuity of f ′2, we also have that

f ′2(ϕαk
)→ f ′2(ϕ) strongly in C0(Q) ∩ C0([0, T ];H) . (5.19)

Then, we can pass to the limit in (5.7), (5.8), and the third condition in (5.10), all written for αk,
and easily obtain (5.15), (5.16), (5.18). Recovering (5.17) from (5.9) is straightforward, due to the
weak convergence of ξαk

and the strong convergence of ϕαk
in L2(0, T ;H), along with the maximal

monotonicity of ∂f1 (see, e.g., [1, Cor. 2.4, p. 41]). This concludes the proof.

Remark 5.2. Note that Theorem 5.1 implicitly yields an existence result for solutions to the viscous
Cahn–Hilliard system (5.15)–(5.18). The found solution is already a regular and strong solution: in-
deed, the component ϕ is in W 1,∞(0, T ;H) ∩ H1(0, T ;V ) ∩ L∞(0, T ;W ) and therefore also in
C0(Q), while from (5.11), a comparison in (5.15), and the elliptic regularity theory, it turns out that
µ ∈ L∞(0, T ;W )∩L2(0, T ;H3(Ω)) in addition, so that µ ∈ C0(Q), in particular. Both the equali-
ties (5.15) and (5.16) can be equivalently rewritten as the equations

∂tϕ−∆µ = 0 a.e. in Q, (5.20)

τ∂tϕ−∆ϕ+ ξ + f ′2(ϕ) = µ+ g a.e. in Q, (5.21)

plus the homogeneous boundary conditions

∂nµ = ∂nϕ = 0 a.e. on Σ. (5.22)

The mentioned regularity for (µ, ϕ, ξ) is exactly the same as in [14, Thm. 2.2], where a slightly more
general system is investigated. However, the existence of a less regular solution can also be proved,
along with the uniqueness of the component ϕ of the solution, as it results for instance from [9,
Thm. 2.5]. Please note that in general uniqueness cannot be expected for ξ and µ unless ∂f1 is
single-valued (like e.g. the case considered in (2.24)); otherwise, only the difference ξ− µ is uniquely
determined from (5.21).

Remark 5.3. By the uniqueness property for the component ϕ, which is pointed out in the previous
remark, we infer that not only a subsequence {ϕαk

} but the entire family {ϕα}α∈(0,1] converges to ϕ
in the sense of (5.13) as α↘ 0.

The next result is devoted to an error estimate of the difference ϕα − ϕ in certain norms and in terms
of the parameter α.

Theorem 5.4. Under the same assumptions as in Theorem 5.1, we let (µα, ϕα, ξα) denote the so-
lution to (5.7)–(5.10), for α ∈ (0, 1], and (µ, ϕ, ξ) be the solution to (5.15)–(5.18) found by the
asymptotic limit in (5.11)–(5.14). Then there is a constant K5 > 0, which depends on the structure of
the system but is independent of α, such that

α1/2‖µa‖L∞(0,T ;H) + ‖∇(1 ∗ (µα − µ))‖L∞(0,T ;H) + ‖ϕα − ϕ‖L∞(0,T ;H)∩L2(0,T ;V )

≤ K5

(
α1/4 + ‖gα − g‖L2(0,T ;H)

)
. (5.23)
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Proof. We argue similarly as in the proof of Theorem 2.3. We take the difference of (5.7) and (5.15),
then we integrate with respect to time with the help of (5.10) and (5.18). We obtain

((ϕα − ϕ)(t), v) +

∫
Ω

∇(1 ∗ (µα − µ))(t) · ∇v = (α ν0,α − α ∂tµα(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V . (5.24)

At the same time, we subtract (5.16) from (5.8) and have that

τ(∂t(ϕα − ϕ)(t), v) +

∫
Ω

∇(ϕα − ϕ)(t) · ∇v + ((ξα − ξ)(t), v)

= ((µα − µ)(t) + (gα − g)(t)− f ′2(ϕα(t)) + f ′2(ϕ(t)), v)

for a.e. t ∈ (0, T ) and every v ∈ V . (5.25)

Then we take v = (µα − µ)(t) in (5.24) and v = (ϕα − ϕ)(t) in (5.25), sum up noting that a
cancellation occurs, and integrate with respect to t. Since the product (ξα−ξ)(ϕα−ϕ) is nonnegative
due to (5.9), (5.17) and the monotonicity of ∂f1, we easily derive the inequality

α

2
‖µα(t)‖2

H +
1

2
‖∇(1 ∗ (µα − µ))(t)‖2

H +
τ

2
‖(ϕα − ϕ)(t)‖2

H +

∫∫
Qt

|∇(ϕα − ϕ)|2

≤ α

2
‖µ0,α‖2

H +

∫∫
Qt

α ν0,α(µα − µ) +

∫∫
Qt

α ∂tµα µ

+

∫∫
Qt

(gα − g)(ϕα − ϕ)−
∫∫

Qt

(f ′2(ϕα)− f ′2(ϕ))(ϕα − ϕ) (5.26)

for all t ∈ (0, T ]. Now, we recall the boundedness properties (5.2) and (5.3), the estimate (2.18) for
‖µα‖L∞(0,T ;H) and α1/2‖∂tµα‖L∞(0,T ;H), as well as the regularity µ ∈ L∞(0, T ;H), in order to
deduce that

α

2
‖µ0,α‖2

H +

∫∫
Qt

α ν0,α(µα − µ) +

∫∫
Qt

α ∂tµα µ

≤ α‖µ0,α‖2
H + α‖ν0,α‖H + Cα1/2 ≤ Cα1/2.

In addition, by virtue of the Lipschitz continuity of f ′2 and the Young inequality, we have that∫∫
Qt

(gα − g)(ϕα − ϕ)−
∫∫

Qt

(f ′2(ϕα)− f ′2(ϕ))(ϕα − ϕ)

≤ ‖gα − g‖2
L2(0,T ;H) + C

∫ t

0

‖(ϕα − ϕ)(s)‖2ds.

Then, collecting the above computations in (5.26) and applying Gronwall’s lemma, the estimate (5.23)
follows.

We finally notice that (5.23) gives an error estimate, in particular, for

‖ϕα − ϕ‖L∞(0,T ;H)∩L2(0,T ;V )

of order 1/4, provided that the convergence of ‖gα − g‖L2(0,T ;H) to 0 is at least of this order.
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